
A Tool-Chain for the
Verification of Geographic Scheme Data

Madhusree Banerjee2, Victor Cai2, Sunitha Lakshmanappa2, Andrew Lawrence2,
Markus Roggenbach1, Monika Seisenberger1, Thomas Werner2

1 Swansea University, Wales, UK
2 Siemens Mobility Limited

Abstract. The Engineering Data Preparation System (E-DPS) is a tool-chain
produced by Siemens Mobility Limited for digital railway scheme design. This
paper is concerned with the creation of a tool able to formally verify that the
scheme plans follow the design rules required for correct European Train Con-
trol System (ETCS) operation. The E-DPS Checker encodes the scheme plan and
signalling design rules as an attributed graph and logical constraints over that
graph, respectively. Logical constraints are verified by the E-DPS Checker using
the satisfiability modulo theories solver Z3. This approach verifies the config-
uration of ETCS for a particular scheme and reduces the amount of principles
testing and manual checking required. The E-DPS Checker is currently being
developed to EN50128 basic integrity and has been applied to verify the correct-
ness of a number of real-world scheme plans as part of the development process.

1 Introduction

Railway verification with formal methods has a long history [7]. Often, verification
concerns the dynamic aspects of rail movement. However, there are also verification
challenges with regards to the static design of railways. Given the topological track
layout in form of a track plan, a scheme plan provides a signalling design (that can
include elements of conceptual nature, e.g., routes, as well as where to place track
side equipment, e.g., balises). In this paper, we consider the question of how to verify
if scheme plans follow a set of design rules, which arise from railway standards and
safety concerns. We formally represent both, scheme plans and design rules, and im-
plement a tool chain to automatically verify if a scheme plan complies with the desired
properties. As a speciality, we also represent counterexamples in a visual way, with a
view to bridge the gap between the shape of the formal verification result as a logical
formula and the domain specific language of railways.

Scheme plans were originally created by survey with engineers measuring the
track layout and the location of equipment by hand. Modern surveys are performed
using a LIDAR scanning train which generates a highly accurate digital map of the
railway. The detailed map is encoded in a file format that is easy for both humans
and machines to process. The existing process for checking is laborious, the data and
changes are manually reviewed by inspecting the files. This is made worse by the fact
that the scheme design follows an iterative process, in which a human reviewer may
end up checking the same files repeatedly. As human beings are weak at performing

repetitive tasks with subtle differences between each required check, fatigue can set
in and the possibility for human error increases.

Modern railway signalling systems, such as the European Train Control System
(ETCS), are designed using accurate geographical maps of the railway derived from
scheme plans. The maps contain the topology of the tracks, positions of signalling
equipment, and conceptual constructs such as train routes. The safe operation of the
signalling systems requires that the geographic maps, and the signalling schemes that
they represent, reflect the safety principles of the system.

In this paper we will consider two, medium-size, real world examples of scheme
plans, one which is an extension to an existing development, and one which is a new
development. One of these plans has about 300 passive position beacons (so-called
balises). If one was to naively checking if all pairs of balises would fulfil one layout
criterion, one would have to perform nearly one hundred thousand checks. The chal-
lenge is to design a tool-chainwhich is capable of automatically verifying such number
of checks within an acceptable time, say, within less than one hour per scheme plan.
Fig. 1 presents our tool-chain.

Fig. 1: Geographic Scheme Data Verification Tool-Chain

Our tool-chain takes as an input a scheme plan and formally represents it as a la-
belled graph in SMT-Lib2 [3]. The next step is to identify for which elements of the
scheme plan a specific design rule applies: a design rule can be seen as a pattern, which
can be instantiated using these elements. Each instantiation yields a check which is
passed on to a verification process with the SMT Solver Z3 [12] at its heart. After pos-
sibly several calls to Z3, this process produces a three-valued output of Fail/Pass/Un-
known. In case the check fails, we produce a visualisation of a counter example. The
final output is a report comprising of all results of the checks for one rule.

Our paper is organised as follows. In Section 2 we briefly discuss the topics of
scheme plans and SMT solving. In Section 3 we give some example design rules and
detail the formalisation process that represents them in first order logic. In Section 4
we describe rule instantiation for a scheme plan and how to address our verification
challenge using SMT solving. In Section 5 we present how counterexamples found in
the verification process can be visualised for rail engineers. In Section 6 we provide
performance results based on real world scheme plans. In Section 7 we give pointers
to related literature and discuss how our approach is different.

2 Background

The E-DPS system utilises several representations for processing scheme plan data.
The model on which we perform automated reasoning (cf. Scheme Plan Data of Fig. 1)
is the so-called node edge model (NEM, cf. Definition 1) which allows for automated
translation to SMT-Lib2 (see Section 2.1). AnNEM is an attributed graph,where generic
attributes store data associated with the various scheme plan elements. Fig. 2 shows
such an NEM with 2 balises placed on a passing loop. The balises are represented as
position objects, which have a location within the topology. All objects in the model
are attributed with additional information, including the type of the signalling object,
its identifier, and any other data that would be contained within the scheme plan.

Fig. 2: Example of an NEM containing nodes attributed with balise information.

Definition 1 (Node Edge Model). A node edge model is a triple (N, E, P) where
N , E, and P are sets of nodes, edges and positions, respectively. Edges have a weight
length(e). Every position p has an associated node(p). Nodes, edges and positions are
referred to as object types in the model and can be attributed with additional information.

2.1 SMT Solving

The Boolean satisfiability problem (SAT) [6] is foundational to theoretical computer
science. It can be stated as follows: given a Boolean formula ϕ does there exist a model
M assigning truth values to the variables of ϕ such that ϕ evaluates to true? Tools to
solve this problem are commonly referred to as SAT solvers. Typically, SAT solvers
produce either a satisfying assignment in the case that ϕ is satisfiable or a derivation
demonstrating that ϕ is unsatisfiable.

Satisfiability modulo theories (SMT) is a generalization of SAT to solve additional
types of problems. In SMT solving, the Boolean formula ϕ is replaced with a many-
sorted first order logic formula over a set of theories T , e.g., for numbers, arrays, and
strings. The result of SMT solving is three valued: satisfiable, if the solver could find
a model, unsatisfiable, if the solver could show that there is no model, and unknown,
if the solver’s proof procedures were unable to come to a decision within the user-
defined timeframe.

E-DPS Checker uses the SMT-Lib2 [3] standard to encode scheme plans and desir-
able properties. SMT-Lib2 is tool independent. For SMT solving, E-DPS Checker cur-
rently uses Z3 [12] developed by Microsoft Research. As an industrial user we want

to use tools that are widely adopted and offer a degree of stability. For performance
reasons, in the E-DPS Checker we disable the ability of Z3 to generate a model, i.e. a
satisfiable result, and can only obtain either unsatisfiable or unknown from an instance
check with of Z3 (cf. Fig. 1).

3 Design Rules and Their Formalization

The Radio Block Centre (RBC) is one of the many safety-critical components of ETCS
level 2. Data preparation for the RBC includes the provision of a scheme plan, detail-
ing, e.g., the specific locations of balises. The placement of track equipment must meet
strict layout requirements to ensure safe operation. There are various sources of these
layout requirements. For example, the Futur series of RBC designed by Siemens comes
with vendor-specific requirements. These ensure the correctness of product-specific
implementation of ETCS functions. Other examples are project or area specific re-
quirements that are determined by local infrastructure managers or standard bodies.
In the following we provide two example rules concerning the placement of balises.
The BG-03 design rule3 states that design placement of balises should avoid points and
crossings. Designed spacing shall be constrained by:

1. ≥ 1.0m between balise and point toes.
2. ≥ 1.0m between balise and point frog.
3. ≥ 1.4m lateral separation between a balise on one path and the centre line of the

other path.
4. No balises between the toe and frog of set of points.

The rationale for this rule is as follows. If a balise is present very near to a point node
or a diamond node, then the metal in the point may interfere with the reading of the
balise. Also, the lateral separation between two balises should be greater than 1.4 m.
As, if the two balises are placed too close to each other, then the train can read the
information from the wrong balise which can lead to wrong-side failure and in turn
could also lead to collision between trains.

The BG-05 design rule4 states that the designedminimum spacing between adjacent
balise groups shall be constrained by: ≥ MIN_BG_SEPARATION between adjacent end
balises, one at each end of the two groups. MIN_BG_SEPARATION is a numeric value
which describes the minimum distance which must be present between adjacent end
balises, one at each end of the two groups. This rule shall prevent trains from missing
a reading, as could happen if adjacent end balises of two balise groups are placed too
close to each other. Additionally, balises are expensive and there is an engineering
trade off to be made between the accuracy of train positioning and cost.

Our process of formalising properties consists of several steps, that finally lead to
an XML file of design rules, see Fig. 1. In the first step, railway engineers perform a

3 The lateral separation part is derived from [2] Subset-036 v3.1.0 Table 1 ‘One Balise and one
Antenna Unit’. The other parts are derived from [2] section 5.7.10.

4 This requirement originates from subset-040 (Dimensioning and Engineering rules) [1] sec-
tion 4.1.1.from the ETCS specification documents.

refinement of the source requirements, which usually come in the form of text doc-
uments. In this step, they re-describe the desired behaviours or restrictions in terms
of the data structures or functions of the target RBC or interlocking. This yields an
intermediate document.

In the second step, software engineers provide a clear mapping between the terms
of the intermediate document and NEM elements. Using the BG-05 requirement as an
example, the terms ‘balise group’ and ‘balise’ correlate to the ‘BaliseGroup’ and ‘Balise’
object types of the NEM.

The requirements of the intermediate document are still given as natural language
descriptions, which – for the sake of formal verification – need to be captured in an
unambiguous mathematical notation. Here, we chose many-sorted first order logic
which enables us to define operators over the generic sorts of the NEM. These opera-
tors include, e.g.: distance which is a function representing the distance between two
positions or nodes; and adjacent, which is a predicate that indicates that there is a
path between two objects with no other objects of the same type on that path.

To determine which balise pairs should be checked for BG-05, we need to consider
several conditions: balises b, b′ should not be in the same balise group; b, b′ should
be at the ends of their respective balise groups; and b, b′ should be adjacent. These
considerations finally lead to our formalisation of BG-05:5

∀b, b′ ∈ SetBalise.adjacent(b, b′) → balise_group_id(b) 6= balise_group_id(b′) →
distance(b, b′) ≥ MIN_BG_SEPARATION

Such design rule formulae are stored as an XML file for use by the checker tool, cf.
Fig. 1. Modelling assumptions and mappings are recorded in an accompanying docu-
ment. In a final step, the railway engineers who authored the intermediate document
review the formalisation. This includes checking example schemes plans that are ex-
pected to pass or fail the design rules.

4 Verification Approach

The verification process starts by encoding both the scheme plan and the design rule
into SMT-Lib2 internally inside the checker. Each element of the scheme plan is en-
coded as an NEM object in SMT-Lib2 representation. The transformation process is
complex with several stages and additional entities. Here, we provide the core con-
structions. Once encoded, the design rules are instantiated for a particular scheme
plan, removing the quantifiers and constructing a number of design rule instances.
Following the instantiation, the checker performs an iterative deepening search to
analyse the instances with reachability axioms, cf. Fig. 1.

4.1 Quantifier Instantiation and Sub-formulae Elimination

Our E-DPS Checker carries out a number of preprocessing steps in C# prior to ex-
ecuting the SMT solver, see step “Instantiate the design rule” in Fig. 1. Quantifiers
5 Due to our definition of adjacency (no intermediate balise objects), we do not need a specific
‘end balise’ relation in the formalisation of this design rule.

fall into the semi-decidable fragment of first order logic and therefore in general are
hard to reason about for SMT solvers. When the value of the quantified variable is
from some finite domain like a finite set then it is possible to iterate over all con-
crete values of the variable and write an equivalent logical expression without the
quantifier: ∀x(x ∈ S → P (x)) can equivalently be replaced by ∧t∈S P [t/x]. Formu-
lae with false premises are trivially true and can be eliminated from any conjunction:
P1 ∧ . . . ∧ Pn−1 ∧ (⊥ → Pn) can equivalently be replaced by P1 ∧ . . . ∧ Pn−1. In
practice, our E-DPS Checker generates a set of formulae referred to as assumptions
during model translation. These are used during the false premise elimination phase
to reduce the number of checks required from the order of hundreds of thousands to
thousands of checks.

4.2 Reachability

A large number of the design rules formalized as part of the checker development re-
quire that signalling elements have either a minimum or maximum separation and are
referred to as reachability constraints. The standard way to reason about reachability
is to use a breadth-first search algorithm to find the shortest path between two nodes.
The E-DPS Checker takes a declarative approach that simulates the performance ben-
efits of breadth-first search. It uses SMT solving to construct a traversal tree starting
from the source node of the search and incrementally deepens the tree until it can infer
the required information. This has taken inspiration from iterative deepening depth-
first search [9] which is an approach to simulate the behaviour of breadth-first search
with a depth-first search algorithm. It has as an additional benefit that Z3 computes
a witness to the design rule in the form of a traversal tree or path, which would be
missing if an imperative algorithm was used.

Definition 2 (Traversal Tree). A k-traversal tree traversal_treek(n0, nend) from a
source node n0 to a destination node nend is the set of all path segments up to length k.
A path segment in this context may end on the destination node or earlier.

In our first attempt, we naively formalized the standard definition of reachability,
however, this caused the SMT solver to blindly generate all paths from a source node
to the destination and was highly inefficient. The initial focus of the checker was to
prove reachability constraints with minimal separation with other kinds of properties
being in scope over the longer term. To this end, we have developed an axiomatisation
of reachability that could infer minimal separation by only analysing the immediate
vicinity around the source node.

Definition 3 (Reachability).We define a k-shortest segment in a k-traversal tree as:
∀k. ∀n0, ne. ∀p ∈ traversal_treek(n0, ne). ∀q ∈ traversal_treek(n0, ne)(length(p) ≤
length(q)) → p ∈ shortest_segk(n0, ne).
Distance is defined using 3 axioms, here we only present the axiom for validating mini-
mum separation, the other axioms follow a similar pattern. The axiom states that if we
have a k-shortest segment p and the end of the segment is not the destination node, then
we can infer that the distance between n0 and ne is at least length(p): ∀k.∀n0, ne.∀p ∈
shortest_segk(n0, ne) (end(p) 6= ne → distance(n0, ne) ≥ length(p)).

The impact of this axiomatisation is that the majority of checks can be achieved
through a low-bound in less than a second per instance.

Lemma 1 (Monotonicity of Minimum Separation). The minimum separation ax-
iom is monotonic: if the two nodes are inferred to be minimally separated at k then min-
imum separation would also hold at all subsequent k′ > k:

∀k, n0, ne.∃p ∈ shortest_segk(n0, ne) (end(p) 6= ne ∧ distance(n0, ne) ≥ length(p)) →
∃q ∈ shortest_segk+1(n0, ne) (distance(n0, ne) ≥ length(q)).

The other reachability axioms have similar correctness arguments.

4.3 Instance Checking Process

Fig. 3: Instance Checking Process

The E-DPS Checker runs an iterative process as shown in Fig. 3 to infer whether a
given design rule instance holds, resulting in one of three overall results for a design
rule Manual Check Required/Pass/Fail. A result of Manual Check Required in-
dicates that the solver was unable to decide one or more instances, however the rest
of the instances complied with the design rule. A Pass requires that all design rule
instances were successfully validated, whereas a Fail indicates that there were one or
more instances where a counter example was produced demonstrating that the design
rule does not hold. Checking the individual instances one at a time increases the per-
formance, the model axioms are only instantiated with the instances being checked
and the topological constructs under the bound of the search. The process starts by
assigning 1 to the bound k and takes as input the SMT-Lib2 representation of the NEM
model and design rule instances. Then up to three runs of Z3 are made:

Bug-finding Pass: Checks whether the design rule instance is incompatible with
the encoded node edge model. If the SMT solver returns unsat then there ex-
ists a counter example which can be discovered by the counter example pass. The
checker has inferred that the instance does not comply with the design rule.

Validating Pass: Checks whether the negated design rule instance is incompatible
with the encoded node edge model. If the SMT solver returns unsat then the de-
sign rule instance and the model are compatible. The checker has inferred that the
instance complies with the design rule.

Counter Example Pass: Generates an unsat core which forms a counter example
indicating which model elements caused the violation of the design rule.

If the bound has not been reached, then all the validated instances are removed, the
current value of the bound k is incremented, and the process is rerun. The maximum
bound is a user configurable constant.

5 Counterexample Visualisation

Our tool-chain has the capability to visualise counterexamples, see the box ”Add coun-
terexample data” in Fig. 1. Through a focus group study [10] with the intended user

Original Scheme Plan Counter Example Explanatory Text

The distance between balise
4_3 (T1, 799.4m) and the toes
(T1, 800.0m) of PointsNode5
is too short. (required: ≥
1.0m, actual: 0.6m)

Fig. 4: Counterexample Visualisation for a violation of the BG-03 design rule

group of railway engineers, we determined of how to visualise counterexamples and
accompany them with an explanatory text, see Fig. 4 for a typical example of our fi-
nal design: on the left, it shows a scheme plan with a wrongly placed balise (4_3), in
the middle it shows the visualisation of the counter example highlighting in NEM the
nodes involved (in blue) and the distance that needs changing (in yellow), on the right
a text provides an explanation of the mistake.

In case the algorithm in Fig. 3 returns that a design rule is incompatible with a
given scheme plan, the Counter Example Pass generates a so-called unsat core6 from
which we extract information about the found counterexample. For instance, the unsat
core for the violation shown in Figure 4 looks as follows:

(distance_to_distancebound_2 def_edge_T1_node_4_3_PointsNode5
def_pointsnode_PointsNode5 def_position_Balise_4_3 rule2)

6 Given an unsatisfiable Boolean propositional formula in conjunctive normal form, a subset
of clauses whose conjunction is unsatisfiable is called an unsatisfiable core.

The transformation from such an unsat core to its visualisation involves several steps.
Thanks to a consistent naming scheme of the axioms in SMT-Lib2 it is possible to
identifywhich elements of theNEMare violating a rule. For instance, labelled elements
of the scheme plan have axioms nameswith the prefix def_. Thus, by parsing the above
unsat core, we know that the violating elements are PointsNode5 and the balise 4_3,
and that the violating distance involves the edge called T1_node_4_3_PointsNode5.7

This allows us to produce explanatory text. This information is also stored in an XML
report, which is read and rendered by the E-DPS Editor. Here, an XAML file contains
a specification of how to display the various elements contained in such a report.

6 Analysis of Performance on Real World Examples

To analyse performance of the automated checks, we have applied balise group place-
ment rules BG-03 and BG-05 against real-world example railway scheme plans.8 Our
real-world railway scheme plans include all the physical components (tracks, signals,
points etc.) as well as the logical components like routes, subroutes and locking condi-
tions. For the performance analysis we have considered two real-world railway scheme
plans, one example from new development (ND) and another an extension to an ex-
isting development (ED). Below are the features of the example railway scheme plan
considered for the performance analysis:

Railway Scheme Plan Tracks Signals Block Markers Points Balises
ND 10 27 21 12 72
ED 42 44 0 32 237

The following table documents the comparison of automated testing against manual
process of checking of the design rules against the real-world railway scheme plan.
Timing is provided in seconds. Note that the data listed for the manual checking pro-
cess is not actually a measured time; it is rather an estimation given by the time to
perform the required calculations multiplied by the number of checks needed. Here,
we made the assumption that it takes a human operation one second to perform one
arithmetic operation.

Railway Scheme Plan Design Rule Automated Check (s) Manual Check (s)
ND BG-03 (part 1) 31.724 576
ND BG-03 (part 2) 63.807 209162
ND BG-05 191.574 5184
ED BG-03 (part 1) 34.392 7584
ED BG-03 (part 2) 85.096 1824962
ED BG-05 207.949 56169

7 In more complex scheme plans, the connection between the violating elements can consist
of several edges, in our example it involves only one edge.

8 The following is the configuration of the machine used to run the automated tests: ZBook
Fury 15 G7 Mobile Workstation, Microsoft Windows 10 Enterprise OS, x64-based PC, Intel®
Core™ i7-10850H CPU @ 2.7GHz with 6 cores.

The primary benefit with automated checking is that it takes less time to perform the
checks. As can be seen from the table above, automated checking is faster by at least
one order of magnitude. A further benefit is that it is guaranteed that all the faults will
be found by automated checking. A human checker might overlook a combination.
Also, human errors due to repetitive work are eliminated. Furthermore, automated
checks cater for re-design of scheme plans. Though in the examples of ED and ND, the
automated checking did not reveal any new mistakes, it is often the case that errors in
scheme plans are found at later stages of the scheme design and were costly to resolve.
Automated checking guarantees that errors are found early on.

7 Related Work

Formal methods have been applied to verify both traditional and more modern sig-
nalling systems. For instance, the specification of ETCS has been verified in [13], and
European Rail Traffic Management System in [5]. In [8], Idani et al. developed an ap-
proach to modelling railway topologies and signalling systems. Similarly to them, our
work involves both graphical DSLs and formal methods, but they check dynamic prop-
erties while our work verifies static properties of the infrastructure. In [11], Luteberget
developed a tool suite named Junction, which features verification of infrastructure
data for consistency and compliance with rules and regulations encoded in a knowl-
edge base. We took inspiration from this work for visualising counterexamples. One
difference is that we are using first order logic to express properties, while Luteberget
is restricted to Horn clauses. Our choice of technology is driven by the need to have a
uniform formal methods framework: Siemens Mobility has started to build a number
of tools around SMT solving.

8 Summary and Future Work

We have presented a tool-chain that scales to the verification of static properties of
real-world scheme plans. The tool-chain is based on SMT solving and utilizes the Z3
solver. Thanks to optimisations of properties and the strategy of which properties to
check first, verification time is kept small. The formal method is made applicable by
counterexample visualisation which was developed involving railway engineers as
end users.

Parallel deploymentwith themanual process is futurework.We further plan to uti-
lize satisfiability modulo monotonic theories [4] for model generation, currently Z3 is
unable to generate suchmodels. This will enable extending this approach to automated
test data generation and automatic scheme plan design. The design rule instantiation
approach currently relies on the trustworthiness of the C# code, further investigation
of the interplay between pre-computing solutions and checking solutions is desirable.
Another approach to further increase integrity will be to pursue proof checking and
proof reconstruction.

Acknowledgement The authors would like to thank Peter Woodbridge, Simon Chad-
wick and Mark Thomas for providing valuable advice and feedback.

References

1. Dimensioning and Engineering rules. Tech. rep., https://www.era.europa.eu/system/
files/2023-01/sos3_index013_-_subset-040_v340.pdf

2. FFFIS for Eurobalise. Tech. rep., https://www.era.europa.eu/system/files/2023-01/
sos3_index009_-_subset-036_v310.pdf

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical report, De-
partment of Computer Science, The University of Iowa (2021), http://smtlib.cs.uiowa.
edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

4. Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT Modulo Monotonic Theories. Proceedings of
the AAAI Conference on Artificial Intelligence 29(1) (2015)

5. Berger, U., James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Verification of the
European Rail Traffic Management System in Real-Time Maude. Science of Computer Pro-
gramming 154, 61–88 (2018)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press (2021)

7. Fantechi, A.: Twenty-Five Years of Formal Methods and Railways: What Next? In: Counsell,
S., Núñez, M. (eds.) Software Engineering and FormalMethods. pp. 167–183. Springer, Cham
(2014)

8. Idani, A., Ledru, Y., Ait Wakrime, A., Ben Ayed, R., Bon, P.: Towards a Tool-Based Domain
Specific Approach for Railway Systems Modeling and Validation. In: Collart-Dutilleul, S.,
Lecomte, T., Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems.
Modelling, Analysis, Verification, and Certification. pp. 23–40. Springer International Pub-
lishing, Cham (2019)

9. Korf, R.E.: Depth-first Iterative-Deepening: An Optimal Admissible Tree Search. Artificial
Intelligence 27(1), 97–109 (1985)

10. Krueger, R.A.: Focus groups: A practical guide for applied research. Sage publications (2014)
11. Luteberget, B.: Automated Reasoning for Planning Railway Infrastructure. Ph.D. thesis, Fac-

ulty of Mathematics and Natural Sciences, University of Oslo (2019)
12. deMoura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)

Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

13. Platzer, A., Quesel, J.D.: European Train Control System: A Case Study in Formal Verifi-
cation. In: International Conference on Formal Engineering Methods, ICFEM 2009: For-
mal Methods and Software Engineering. Lecture Notes in Computer Science, vol. 5885, pp.
246–265. Springer Berlin Heidelberg (2009)

https://www.era.europa.eu/system/files/2023-01/sos3_index013_-_subset-040_v340.pdf
https://www.era.europa.eu/system/files/2023-01/sos3_index013_-_subset-040_v340.pdf
https://www.era.europa.eu/system/files/2023-01/sos3_index009_-_subset-036_v310.pdf
https://www.era.europa.eu/system/files/2023-01/sos3_index009_-_subset-036_v310.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

	A Tool-Chain for the Verification of Geographic Scheme Data

