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Abstract. In Computer Science there is a strong consensus that it is
highly desirable to combine the versatility of Machine Learning (ML)
with the assurances formal verification can provide. However, it is unclear
what such ‘verified ML’ should look like.
This paper is the first to formalise the concepts of classifiers and learners
in ML in terms of computable analysis. It provides results about which
properties of classifiers and learners are computable. By doing this we
establish a bridge between the continuous mathematics underpinning ML
and the discrete setting of most of computer science.
We define the computational tasks underlying the newly suggested veri-
fied ML in a model-agnostic way, i.e., they work for all machine learning
approaches including, e.g., random forests, support vector machines, and
Neural Networks. We show that they are in principle computable.

Keywords: Machine Learning · adversarial examples · formal verifica-
tion · computable analysis

1 Introduction

Machine Learning (ML) concerns the process of building both predictive and
generative models through the use of optimisation procedures. The remarkable
success of ML methods in various domains raises the question of how much trust
one can put into the responses that an ML model provides. As ML models are
also applied in critical domains, some form of verification seems essential (e.g.
eloquently argued by Kwiatkowska [9]).

However, due to the widespread use of non-discrete mathematics in ML, tra-
ditional verification techniques are hard to apply to its artefacts. Furthermore,
many ML applications lack specifications in the form of, say, an input/output re-
lationship, on which ‘classical’ verification approaches are often based. A typical
example of this would be an ML application that shall decide if a given picture
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depicts a cat. Lacking a specification, what kind of properties can be verified?
We will take the view that, like in classical verification, it is useful to expand
the range of properties beyond simple input/output relations.

By employing the toolset of computable analysis (the field concerned with
computation on continuous data types), we are using the same continuous math-
ematics underpinning the theory of machine learning, and avoids any ad-hoc
discretization.

We present an investigation into what kind of verification questions are an-
swerable in principle about ML models – irrespective of the particular ML frame-
work applied. We see these questions as basic building blocks for a future ML
property specification language. Discretization, as far as it may be necessary for
the sake of efficiency, can then be left to the implementation; without impacting
correctness.

We use the language of computable analysis to formally define the computa-
tional questions we want to ask. We can prove that they are solvable in general
(by exhibiting algorithms for them), while remaining independent of any concrete
ML methodology. The semi-decision procedures in this paper are not meant for
implementation. We are also not making any claims about computational com-
plexity.

Our paper is organised as follows: in Section 2 we provide a gentle summary
of our results. In Section 3, we provide definitions and key properties from com-
putable analysis. Section 4 develops our theory with mathematical precision.
Finally, Section 5 discusses related work.

2 A Gentle Summary of our Results

In this section, we provide a gentle introduction to our results. The technical de-
tails and proofs, which are using concepts of Computable Analysis, are provided
later in the paper. The main results are of the nature that specific functions
model aspects of interest in ML (verification), and are computable.

We first model classifiers, define elementary questions on them and explore
when they are computable. Then we formalise the idea of adversarial examples
for a classifier utilising metric spaces. We show that detecting adversarial exam-
ples or proving their absence is computable. Next, we consider the process of
learning itself. One question of interest here is the robustness of the results of
a learned classifier depending on changes of the training data. We study this in
two settings within Subsection 2.3.

2.1 Classifiers

One basic notion of ML is that of a classifier. A classifier takes as an input some
description of an object, say, in the form of a vector of real numbers, and outputs
either a colour or does not give an answer. This makes classifiers a generalisation
of semi-decision procedures.
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Computable Analysis is developed as the theory of functions on the real
numbers and other sets from analysis, which can be computed by machines.
The first step in formalising a classifier in Computable Analysis is to discuss its
domain and codomain. To this end Computable Analysis uses the notion of a
represented space (to be formalised later in this paper, as are the other technical
notions). The domain of a classifier can in general be an arbitrary represented
space, while the codomain is defined as follows:

Definition 1. The represented space k⊥ contains the elements {0, . . . , k−1,⊥},
where 0, . . . , k − 1 are discrete points and ⊥ is an additional point specified by
no information at all / represents ‘no information’.

Including the bottom element ⊥ in our framework is essential to obtain a
satisfactory theory. It can represent uncertainty. When we are modelling an ML-
classifier that outputs probabilities attached to the colours, we could e.g. consider
n ∈ k to be the answer if the assigned probability exceeds 0.5, and ⊥ to be the
answer if no individual colour exceeds 0.5.

A classifier has to be a computable function in order to be implementable.
A key observation of Computable Analysis is that computable functions are
by necessity continuous1. In fact, it turns out that the most suitable notion
of function space in Computable Analysis is the space C(X,Y) of continuous
functions from X to Y. This justifies the following definition:

Definition (Definition 8). A classifier is a continuous function that takes
some x ∈ X as input, and either outputs a colour j ∈ k, or diverges (which is
seen as outputting ⊥). The collection of classifiers is the space C(X,k⊥).

Any concrete classifier we would care about will actually be computable.
However, the definition includes also non-computable (but continuous) ones.

Example 1. A support vector machine produces separating hyperplanes, which
act as classifier by returning one colour on one side of the hyperplane, another
colour on the other side, and no answer for points on the hyperplane.

Given a classifier, what verification questions could we ask? We may want to
confirm individual requirements or look at assertions regarding the behaviour of
the classifier on an entire set or region A. These could be used for verification,
where we desire to obtain a guarantee that the system is working correctly, or
to identify potential errors. Concrete question include:

1. existsValue which answers true on input (n,A, f) iff ∃x ∈ A f(x) = n.
Otherwise, there is no answer.

1 Arguing informally, continuity means that sufficiently good approximations of the in-
put specify approximations of the output to desired precision. Computability means
that we can actually compute the desired approximations of the output from suffi-
ciently good approximations of the input. The latter cannot be possible for discon-
tinuous function.
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Example 2. Consider a DDOS-attack detection system realized as a clas-
sifier f . The region A consists of data indicating an attack is happening,
and the colour n means that the system concludes there is no attack. If
existsValue(n,A, f) returns true, we have identified a false negative in f .

2. forallValue which answers true on input (n,A, f) iff ∀x ∈ A f(x) = n.
Otherwise, there is no answer.

Example 3. Continuing with example 2, here we may consider the property
that for every data point in the region A the presence of the attack is suc-
cessfully identified. If forallValue(n,A, f) returns true, we have verified that
all points in the set A are classified as expected.

3. fixedValue, which on input (n,A, f) answers 1 iff ∀x ∈ A f(x) = n, and
answer 0 iff ∃x ∈ A f(x) ∈ k \ {n}. The answer ⊥ is given if the classifier
returns ⊥ for at least one point in A, but does not return any colour except
n on points from A.

Example 4. Consider an automated stock trading system which makes deci-
sions to buy, sell or hold a particular stock based on its technical indicators.
Deciding to buy or sell is represented as a colour (as it is an active decision),
while ⊥ means to hold the current position. Given a region A of very posi-
tive technical indicator values, we may want to ideally be assured that the
system will always buy, while the decision to sell would be a clear mistake.
If fixedValue(buy, A, f) returns 1, we know that the system meets the ideal
requirement. If it returns 0, we have found a mistake. Answer ⊥ means that
the system falls short of its target without making a clear mistake.

4. constantValue which on input (A, f) answers 1 iff there is some n ∈ k such
that fixedValue(n,A, f) answers 1, and which answers 0 iff fixedValue(n,A, f)
answers 0 for all n ∈ k.

The question constantValue is a first approximation of how to deal with
adversarial examples.
Example 5. Assume we have reason to believe that all points in the region
A are very similar, and should thus be classified in the same way by the
classifier f . If constantValue(A, f) returns 1, we have the confirmation that
this indeed happens. Obtaining the answer 0 suggests that a mistake might
have happened, as two similar data points get assigned different colours. No
answer (i.e. ⊥) means that some points in A remain unclassified by f .

It remains to specify what regions A are considered and how they are rep-
resented. Two familiar notions from computable analysis are exactly what we
need to make these questions computable, namely the compact sets K(X) and
the overt sets V(X) (see Proposition 2). Finite sets are both compact and overt.
This means that for any finite sample of data all four questions are computable.
The far more interesting applications however concern infinite sets, e.g. all points
belonging to a geometrically defined region, as they go beyond testing a classifier
for a finite number of inputs.
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2.2 Adversarial Examples

One specific verification task that has caught the attention of the ML community
is to find adversarial examples [22,5,7] or to prevent them from occurring. One
says that an adversarial example occurs when a ‘small’ change to the input
results in an ‘unreasonably large’ change in the output (i.e. akin our fourth task
above). For example, given a correctly classified image, small, even unnoticeable
changes to the pixels in the image can vastly change the classification output.

Example 6. In particular image-based Deep Neural Networs (DNNs) can be eas-
ily fooled with precise pixel manipulation. The work in [23] uses a Gaussian
mixture model to identify keypoints in images that describe the saliency map
of DNN classifiers. Modifying these keypoints may then change the classifica-
tion label made by said DNN. They explore their approach on ‘traffic light
challenges’ (publicly available dashboard images of traffic lights with red/green
annotations). In this challenge, they find modifying a single pixel is enough to
change neural network classification.

If we want to discuss small changes in data, say, in an image, we need to
assume a notion of distance. We will thus assume that our domain X comes
equipped with a metric d : X×X→ R≥0, specifically, that (X, d) is a computable
metric space (which covers nearly any metric space considered in real analysis).

Detecting the presence or the absence of adversarial examples can be explored
using the following function:

Definition 2. Let (X, d) be a computable metric space, and C(X,k⊥) the space
of classifiers. The map locallyConstant : X×R+×C(X,k⊥)→ 2⊥ returns 1 on
input (x, ε, f) iff f returns the same colour n ∈ k for all y ∈ X with d(x, y) ≤ ε.
It returns 0 if there exists some y ∈ X with d(x, y) < ε such that f returns
distinct colours on x and y. It returns ⊥, if some points ε-close to x remain
unclassified by f (such as in the cases of the global-robustness property [10]), but
no distinct colours appear; or if there is a distinct colour appearing at a distance
of exactly ε to x.

The map locallyConstant is illustrated in Figure 1. Consider the (closed) ε-
ball around a point x. For a classifier f , locallyConstant outputs 1 if everything
in the ball yields the same answer under f . The answer is 0 if there are two points
(depicted as a red and a blue star in the figure) that yield distinct answers in the
ball. The answer ⊥ appears in two cases: If there are unclassified points inside
the open ε-ball around x (the white region inside the ball on the right), or if
another colour appears on the boundary of the ball, but not inside it (blue star).

We prove in Theorem 1 below that locallyConstant is computable under mild
assumptions, namely that every closed ball B(x, ε) is compact (which implies
that (X, d) is locally compact). The Euclidean space Rn is both a typical example
for an effectively locally compact computable metric space where all closed balls
are compact, and the predominant example relevant for ML.

To relate back to adversarial examples, locallyConstant tells us whether a
classifier admits an adversarial example close to a given point x.
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Fig. 1: Illustrating the map locallyConstant

(a) Output 1 (b) Output 0 (c) Output ⊥

Example 7. In the context of fully-autonomous vehicles that use sensor-captured
data as input for DNN models, [7] explains how lighting conditions and angles,
as well as defects in sensor equipment themselves, yield realistic adversarial ex-
amples. Assume the metric to be chosen to model the impact of these issues on
the sensor data. Then one could deploy locallyConstant on a fully-autonomous
vehicle in order to detect if one can trust the classifier on the current input data
(answer 1) or not (answer 0).

2.3 Learners

Up to now, we considered already trained ML procedures. Now we discuss the
process of learning itself, and introduce the concept of a learner. A learner takes
a sample of points with corresponding labels and outputs a trained model:

Definition 3. A learner is a (computable) procedure that takes as an input a
tuple ((x0, n0), . . . , (x`, n`)) ∈ (X × k)∗ and outputs a classifier f ∈ C(X,k⊥).
The collection of all learners is the space C((X× k)∗, C(X,k⊥)).

Note that we not only consider classifiers to be continuous functions, but
that also learning itself is assumed to be continuous. As discussed above, this is
a consequence of demanding that learning is a computable process. Continuity
here means in essence2 that if the data sample is altered by changing some xk
to some very close x′k instead, the resulting classifiers f and f ′ cannot assign
distinct colours to the same point y (though they may still differ in the use of
⊥).

Now we can ask how ‘robust’ the classifier we are learning with the training
data actually is. This phenomenon has recently attracted attention in the ML
literature under the term of underspecification [4]. Whether we view the phe-
nomenon as robustness of learning or underspecification of the desired outcome
is a matter of perspective: A failure of robustness is tied to the existence of
(almost) equally good alternative classifiers.

Our first question on a classifier is: is it possible by adding one extra point
to the training data to change the classification? In other words, can a small

2 By uncurrying, we can move from a learner L to the function ` : (X×k)∗×X→ k⊥
such that L((xi, ni)i≤j)(x) = `((xi, ni)i≤j , x). One of them is continuous iff the other
is. Now we can see that if ` returns a colour, it returns the same colour on an open
neighbourhood of both training sample and test point.
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addition to the training data lead to a change in classification (this is not already
guaranteed by continuity of learning; the size of training data is a discrete value).

1. robustPoint takes as input a point x, a learner and some training data. It
answers 1 if every extension of the training data by one more sample point
leads to x still receiving the same colour. It answers 0, if there exists an
extension of the training data by a single sample point leading to x receiving
a different colour. The case ⊥ covers if x is unclassified for the original data
or some of its extensions.

2. robustArea takes as input an area A, a learner and some training data. It
yields 1 if every point in A is recognized as robust by robustPoint, it yields 0
if there exists a point x ∈ A where robustPoint returns 0, and ⊥ otherwise.

IfX is computably compact and computably overt, and we take the regions A
to be themselves compact and overt sets, then both operations are computable.

Allowing to add more than one point does not genuinely complicate the the-
ory. However, it is useful to also ask the question where the additional points are
added. Again, we consider a metric expressing the distance between the points
added to the training set and the point whose classification we are interested in.

We will call training data dense at a point x, if adding a small number of
additional data points sufficiently far from x does not change its classification
under the learned classifier. It is sparse if the classification can be changed.

We will show that the operation SprsOrDns is computable (if the computable
metric space X is computably compact). This operation has a number of pa-
rameters: a learner L, the number N of permitted additional data points, the
distance ε, the training data (xi, ni)i≤` and the point x of interest. It answers 0
iff (xi, ni)i≤` is sparse at x, and answers 1 if (xi, ni)i≤` is dense at x.

Fig. 2: Illustrating lack of robustness. Left: Original data, Right: Changed sepa-
rating line due to one added data point (at (18,0)).
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Fig. 3: Illustration of predicates concerning the original classifier. Left: Robust-
ness (Red: Robustness, Blue: Not Robust), Right: Sparsity/Density (Red: Dense,
Blue: Sparse) – note: ⊥ is at the boundaries between the coloured areas.

Figures 2 and 3 illustrate the notions of robustness and sparsity/density on
the same data set 3. In Figure 2 we show a classification example: our algo-
rithm utilises a Support Vector Machine to create a separating line between the
grey and red dots. The left side shows the original data set, and the right side
shows the data set after the addition of another grey dot. We point out that the
separating line has moved significantly.

In the left image of Figure 3 one can see which areas of the input space
can be affected in the classification due to adding one point to the training
data. The algorithm adds the extra data point, calculates the separating line,
and then checks whether each point in the graph is on the left or right of the
separating line. It continues to do this for all possible addition data points in
order to see what points of the graph never change sides of the line (robust) and
which do. The blue area consists of all points which are not robust, i.e. can fall
on either side of the separating line depending on the additional point. The red
area consists of all robust points, i.e., they always fall on the same side of the
separating line independent of the additional point.

The right image of Figure 3 then shows the notion of sparsity/density: As
before, we consider whether a point could fall on either side of the separating line
after the addition of another sample point. However, we only consider sample
points further than 5 units away from the point under consideration. There can
be points which are dense, but not robust (see the area directly above (10, 0)
and (20, 0)). This can be explained as follows: To obtain a very steep separating
line, the extra data point needs to be placed in the area around (15, 0). Thus,
the steep separating lines contribute to the pattern at the top of the picture, but
do not affect the red component at the bottom.

3 Our overall algorithms are theoretical and not easily put into code. However, the
individual concepts can be, in order to help the understanding of mathematical
concepts such as robustness/sparsity and density.
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Density implies robustness, but not the converse, as for the former we exclude
additional training data too close to the point under discussion. It depends on
the application which notion is more suitable. Lack of robustness under addition
of a single data point indicates a too small set of training data. If we consider
adding a more significant fraction of additional training data, robustness may
be a too demanding notion. In this case, dense points are still those where only
very similar counterexamples would challenge the response of the classifier.

3 Computing with real numbers and other non-discrete
data types

The following summarises the formal definitions and key properties of the most
important notions for our paper. It is taken near verbatim from [2]. A more
comprehensive treatment is found in [16].

Definition 4. A represented space is a pair X = (X, δX) where X is a set and
δX :⊆ NN → X is a partial surjection (the notation :⊆ denotes partial functions,
NN is the space of infinite sequences of natural numbers). A function between
represented spaces is a function between the underlying sets.

For example, we will consider the real numbers R as a represented space
(R, ρ) by fixing a standard enumeration ν : N→ Q of the rational numbers, and
then letting ρ(p) = x iff ∀k ∈ N |ν(p(k))− x| < 2k. In words, a name for a real
number encodes a sequence of rational numbers converging to it with speed 2−k.
Likewise, the spaces Rn can be considered as represented spaces by encoding
real vectors as limits of sequences of rational vectors converging with speed 2−k.
This generalises to the following:

Definition 5. A computable metric space is a metric space (X, d) together with
a dense sequence (an)n∈N (generalizing the role of the rational numbers inside
R) which makes the map (n,m) 7→ d(an, am) : N2 → R computable. The induced
representation of X is δd mapping p ∈ NN to x ∈ X iff ∀n ∈ N d(x, ap(n)) < 2−n.

An important facet of computable analysis is that equality is typically not
decidable; in particular, it is not for the spaces Rn. For these, inequality is
semidecidable though (which makes them computably Hausdorff by definition).
If equality is also semidecidable, a space is called computably discrete.

Definition 6. For f :⊆ X → Y and F :⊆ NN → NN, we call F a realizer of
f (notation F ` f), iff δY (F (p)) = f(δX(p)) for all p ∈ dom(fδX). A map
between represented spaces is called computable (continuous), iff it has a com-
putable (continuous) realizer.

Two represented spaces of particular importance are the integers N and the
Sierpiński space S. The represented space N has as underlying set N and the
representation δN : NN → N defined by δN(p) = p(0), i.e., we take the first
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element of the sequence p. The Sierpiński space S has the underlying set {>,⊥}
and the representation δS : NN → S with δS(0ω) = ⊥ and δS(p) = > for p 6= 0ω.

Represented spaces have binary products, defined in the obvious way: The
underlying set of X × Y is X × Y , with the representation δX×Y(〈p, q〉) =
(δX(p), δY(q)). Here 〈 , 〉 : NN × NN → NN is the pairing function defined via
〈p, q〉(2n) = p(n) and 〈p, q〉(2n+ 1) = q(n).

A central reason why the category of represented spaces is such a convenient
setting lies in the fact that it is cartesian closed. We have available a function
space construction C(·, ·), where the represented space C(X,Y) has as underlying
set the continuous functions from X to Y, represented in such a way that the
evaluation map (f, x) : C(X,Y)×X→ Y becomes computable.

Having available the space S and the function space construction, we can
introduce the spaces O(X) and A(X) of open and closed subsets respectively of
a given represented space X. For this, we identify an open subset U of X with
its (continuous) characteristic function χU : X → S, and a closed subset with
the characteristic function of the complement. As countable join (or) and binary
meet (and) on S are computable, we can conclude that open sets are uniformly
closed under countable unions, binary intersections, and preimages under con-
tinuous functions by merely using elementary arguments about function spaces.

Note that neither negation ¬ : S → S (i.e. mapping > to ⊥ and ⊥ to >)
nor countable meet (and)

∧
: C(N,S) → S (i.e. mapping the constant sequence

(>)n∈N to > and every other sequence to ⊥) are continuous or computable.
We need two further hyperspaces, which both will be introduced as subspaces

of O(O(X)). The space K(X) of saturated compact sets identifies A ⊆ X with
{U ∈ O(X) | A ⊆ U} ∈ O(O(X)). Recall that a set is saturated, iff it is equal to
the intersection of all open sets containing it (this makes the identification work).
The saturation of A is denoted by ↑ A :=

⋂
{U ∈ O(X) | A ⊆ U}. Compactness

of A corresponds to {U ∈ O(X) | A ⊆ U} being open itself. The dual notion of
compactness is overtness. We obtain the space V(X) of overt sets by identifying
a closed set A with {U ∈ O(X) | A ∩ U 6= ∅} ∈ O(O(X)).

Aligned with the definition of the compact and overt subsets of a space, we
can also define when a space itself is compact (respectively overt):

Definition 7. A represented space X is (computably) compact, iff isFull : O(X)→
S mapping X to > and any other open set to ⊥ is continuous (computable). Du-
ally, it is (computably) overt, iff isNonEmpty : O(X) → S mapping ∅ to ⊥ and
any non-empty open set to > is continuous (computable).

The relevance of K(X) and V(X) is found in particular in the following char-
acterisations, which show that compactness just makes universal quantification
preserve open predicates, and dually, overtness makes existential quantification
preserve open predicates.

Proposition 1 ([16, Proposition 40 & 42]). The following are computable:

1. The map ∃ : O(X×Y)× V(X)→ O(Y) defined by

∃(R,A) = {y ∈ Y | ∃x ∈ A (x, y) ∈ R}.
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2. The map ∀ : O(X×Y)×K(X)→ O(Y) defined by

∀(R,A) = {y ∈ Y | ∀x ∈ A (x, y) ∈ R}.

The represented space (V ∧K)(X) contains the sets which are both compact
and overt, and codes them by providing the compact and the overt information
simultaneously. Thus, both universal and existential quantification over elements
of (V ∧ K)(X) preserve open predicates.

4 A Theory of Verified ML

Here we provide the mathematical counterpart to Section 2.

4.1 A Theory of Classifiers

As stated above, we consider classification tasks only. This means that a trained
model will take as input some description of an object, and either outputs a class
(which we take to be an integer from k = {0, . . . , k − 1}, k > 0), or it does not
give an answer. Here, not giving an answer can happen by the algorithm failing
to terminate, rather than by an explicit refusal to select a class. This is important
to handle connected domains such as the reals, in light of the continuity of all
computable functions. Formally, we are dealing with the represented space k⊥,
which contains the elements {0, . . . , k− 1,⊥}, where 0ω is the only name for ⊥,
and any 0m1`0ω is a name for ` < k, m ∈ N.

Definition 8. A classifier is a (computable/continuous) procedure that takes
some x ∈ X as input, and either outputs a colour j ∈ k, or diverges (which
is seen as outputting ⊥). The collection of classifiers is the space C(X,k⊥).

Example 8 (Expanding example 1). Consider the classifier we would obtain from
Support Vector Machine [6]. The relevant space X will be Rn for some n ∈ N.
The classifier is described by a hyperplane P splitting Rn into two connected
components C0 and C1. We have two colours, so the classifier is a map p : Rn →
2⊥. If x ∈ Ci, then p(x) = i. If x ∈ P , then p(x) = ⊥.

On the fundamental level, we need the no-answer answer ⊥ as we will never
be able to be certain that a numerical input is exactly on the separating hyper-
plane, even if we keep increasing the precision: equality on reals is not decidable.

Practically, computations might be performed using floating-point arith-
metic, where equality is decidable. In this, the use of ⊥ is still meaningful: If we
keep track of the rounding errors encountered, we can use ⊥ to denote that the
errors have become too large to classify an input.

Example 9. Neural network classifiers compute a class score for every colour,
which, when these class scores are normalised, share similar properties as a
probability distribution. This translates into our framework by fixing a threshold
p ≥ 0.5, and then assigning a particular colour to an input iff its class score
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exceeds the threshold p. If no colour has a sufficiently high score, the output
is ⊥. As long as the function computing the class scores is computable, so is
the classifier we obtain in this fashion. If our class scores can use arbitrary real
numbers, we cannot assign a colour for the inputs leading to the exact threshold.

As motivated and discussed in Section 2, we show that we can compute the
answers to the following verification questions:

Proposition 2. The following maps are computable:

1. existsValue : k×V(X)×C(X,k⊥)→ S, which answers true on input (n,A, f)
iff ∃x ∈ A f(x) = n.

2. forallValue : k×K(X)×C(X,k⊥)→ S, which answers true on input (n,A, f)
iff ∀x ∈ A f(x) = n.

3. fixedValue : k × (V ∧ K)(X) × C(X,k⊥) → 2⊥, which on input (n,A, f)
answers 1 iff ∀x ∈ A f(x) = n, and answer 0 iff ∃x ∈ A f(x) ∈ k \ {n}, and
⊥ otherwise.

4. constantValue : (V∧K)(X)×C(X,k⊥)→ 2⊥, which on input (A, f) answers
1 iff there is some n ∈ k such that fixedValue(n,A, f) answers 1, and which
answers 0 iff fixedValue(n,A, f) answers 0 for all n ∈ k.

4.2 A Theory of Treating Adversarial Examples

One useful application of the map constantValue is using it on some small regions
that we are interested in. In ML terms, it addresses the question if there are
adversarial examples for a classifier in the vicinity of x. To characterise small
regions, we would have available a metric, and then wish to use closed balls
B(x, r) as inputs to constantValue.

To this end, we need to obtain closed balls B(x, r) as elements of (V ∧K)(X).
The property that for every x ∈ X we can find an R > 0 such that for every
r < R we can compute B(x, r) ∈ K(X) is a characterization of effective local
compactness of a computable metric space X [17]. We generally get clB(x, r),
the closure of the open ball, as elements of V(X). For all but countably many
radii r we have that B(x, r) = clB(x, r), and we can effectively compute suitable
radii within any interval [17].

Theorem 1. Let X be an effectively locally compact computable metric space
with metric d such that every closed ball is compact. The map locallyConstant :
X × R+ × C(X,k⊥) → 2⊥ is computable, where locallyConstant(x, r, f) = 1 iff
∀y ∈ B(x, r) f(x) = f(y) 6= ⊥, and locallyConstant(x, r, f) = 0 iff ∃y0, y1 ∈
B(x, r) ⊥ 6= f(y0) 6= f(y1) 6= ⊥.

An adversarial example is the result of a small change or perturbation to
the original input that results in a change of classification made by, say, a DNN.
I.e. given the classifier f and an input x, an adversarial example is f(x) 6= f(x+r)
for ||r|| ≤ ε and ε > 0. The question is: what do we call a ‘small’ perturbation,
i.e., how does one choose the parameter r?
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Example 10. Assume that we want to use our classifier to classify measurement
results with some measurement errors. As an example, let us consider the use
of ML techniques to separate LIGO sensor data indicating gravitational waves
from terrestrial noise (e.g. [21]). If our measurements are only precise up to ε,
then having an adversarial example for r = ε tells us that we cannot trust the
answers from our classifier. In the example, this could mean finding that the
precise values our sensors show are classified as indicating a gravitational wave,
but a negligible perturbation would lead to a ‘noise’-classification.

We could use domain knowledge to select the radius r [13]. For example, in an
image classification task, we could assert a priori that changing a few pixels only
can never turn a picture of an elephant into a picture of a car. If we use Hamming
distance as a metric on the pictures, stating what we mean with a few pixels
gives us the value r such that any adversarial example demonstrates a fault in
the classifier. Another example by [19] finds the upper and lower bounds of the
input space via an optimisation procedure, following that DNNs are Lipschitz
continuous functions and all values between these bounds are reachable.

So far it was the responsibility of the user to specify a numerical value for
what a ‘small’ perturbation is in the definition of adversarial examples. As an
alternative, we can try to compute the maximal value r such that on any scale
smaller than r the point under consideration is not an adversarial example.

Corollary 1. Let X be an effectively locally compact computable metric space
with metric d such that all closed balls are compact. The map OptimalRadius :⊆
X × C(X,k⊥) → R defined by (x, f) ∈ dom(OptimalRadius) iff f(x) 6= ⊥,
∃y ⊥ 6= f(y) 6= f(x) and ∀r, ε > 0 ∃z ∈ B(x, r + ε) \B(x, r) f(z) 6= ⊥; and by

OptimalRadius(x, f) = sup {r ∈ R | ∃i ∈ k ∀y ∈ B(x, r) f(y) = i}
= inf {r ∈ R | ∃y ∈ B(x, r) ⊥ 6= f(x) 6= f(y) 6= ⊥}

is computable.

4.3 A Theory of Learners and their Robustness

Let us now consider the process of training the classifier. To keep matters simple,
we will not adopt a dynamic view, but rather model this as a one-step process.
We also only consider supervised learning, i.e., machine learning where the data
set consists of labelled examples and the learning algorithm is learning a function
that maps feature vectors to labels. Definition 3 formalised our conception of a
learner as a map from finite sequences of labelled points to classifiers.

We do not prescribe any particular relationship between the training data and
the behaviour of the resulting classifier. It could seem reasonable to ask that a
learner L faithfully reproduces the training data, i.e. satisfies L((xi, ni)i≤`)(xm) =
nm. But such a criterion is, in general, impossible to satisfy. This is because our
notion of training data does not rule out having multiple occurrences of the same
sample point with different labels. It would also not match applications, as it
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often is desirable that a model can disregard parts of its training data as being
plausibly faulty.

We can, however, ask whether a learner (e.g. CNN) when given non-contradictory
training data will output a classifier faithfully reproducing it:

Proposition 3. Let X be computably overt and computably Hausdorff. The op-
eration

doesDeviate : C((X× k)∗, C(X,k⊥))→ S

returning true on input L iff there is some input (xi, ni)i≤` ∈ (X × k)∗ with
xi 6= xj for i 6= j, and some m ≤ ` such that L((xi, ni)i≤`)(xm) ∈ k \ {nm} is
computable.

Robustness under additional training data Generally, our goal will not be so
much to algorithmically verify properties of learners for arbitrary training data,
but rather be interested in the behaviour of the learner on the given training
data and hypothetical small additions to it. One question here would be to ask
how robust a classifier is under small additions to the training data. A basic
version of this would be:

Proposition 4. Let X be computably compact and computably overt. The map

robustPoint : X× (X× k)∗ × C((X× k)∗, C(X,k⊥))→ 2⊥

answering 1 on input x, (xi, ni)i≤` and L iff

∀x`+1 ∈ X ∀n`+1 ∈ k L((xi, ni)i≤`)(x) = L((xi, ni)i≤`+1)(x) ∈ k

and answering 0 iff

∃x`+1 ∈ X ∃n`+1 ∈ k ⊥ 6= L((xi, ni)i≤`)(x) 6= L((xi, ni)i≤`+1)(x) 6= ⊥

is computable.

We can lift robustPoint to ask about all points in a given region, or even in
the entire space as a corollary:

Corollary 2. Let X be computably compact and computably overt. The map

robustRegion : (K ∧ V)(X)× (X× k)∗ × C((X× k)∗, C(X,k⊥))→ 2⊥

answering 1 on input A, (xi, ni)i≤` and L iff robustPoint answers 1 for every
x ∈ A together with (xi, ni)i≤` and L, and which answer 0 iff there exists some
x ∈ A such that robustPoint answers 0 on input x, (xi, ni)i≤` and L, and which
answers ⊥ otherwise, is computable.
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Sparsity of training data Allowing arbitrary additional training data as in the
definition of robustness might not be too suitable – for example, if we add the
relevant query point together with another label to the training data, it would
not be particularly surprising if the new classifier follows the new data. If we
bring in a metric structure, we can exclude new training data which is too close
to the given point.

Definition 9. Fix a learner L : (X × k)∗ → C(X,k⊥), some N ∈ N and
ε > 0. We say that (xi, ni)i≤` is sparse at x ∈ X, if there are (yi,mi)i≤j and
(y′i,m

′
i)i≤j′ such that ` + N ≥ j, j′ ≥ `, yi = y′i = xi and mi = m′i = ni for

i ≤ `, and d(yi, x), d(y′i, x) > ε for i > ` satisfying ⊥ 6= L((yi,mi)i≤j)(x) 6=
L((y′i,m

′
i)i≤j′)(x) 6= ⊥.

We say that (xi, ni)i≤` is dense at x ∈ X if for all (yi,mi)i≤j and (y′i,m
′
i)i≤j′

such that ` + N ≥ j, j′ ≥ `, yi = y′i = xi and mi = m′i = ni for i ≤ `, and
d(yi, x), d(y′i, x) ≥ ε for i > ` it holds that L((yi,mi)i≤j)(x) = L((y′i,m

′
i)i≤j′)(x) 6=

⊥.

To put it in words: Training data is dense at a point whose label it determines,
even if we add up to N additional points to the training data, which have to be
at least ε away from that point. Conversely, at a sparse point, we can achieve
different labels by such an augmentation of the training data. If we have chosen
the parameters N and ε well, then we can conclude that based on the training
data we can make reasonable assertions about the dense query points, but unless
we have some additional external knowledge of the true distribution of labels,
we cannot draw reliable conclusion about the sparse query points. We concede
that it would make sense to include points under sparse where the classifiers will
always output ⊥ even if we enhance the training data, but this would destroy
any hope of nice algorithmic properties.

Theorem 2. Let X be a computably compact computable metric space. The op-
eration

SprsOrDns : C((X× k)∗, C(X,k⊥))× N× R+ × (X× k)∗ ×X→ 2⊥

answering 0 on input L,N, ε, (xi, ni)i≤` and x iff (xi, ni)i≤` is sparse at x, and
answers 1 if (xi, ni)i≤` is dense at x is computable.

5 Related Work

For Neural Networks already in 2010, Pulina and Tachella presented an ap-
proach for verifying linear arithmetic constraints on multiplayer perceptions by
translating them into SAT-instances [18]. A decade later, a systematic review
on testing and verification of neural networks already covered 91 articles [24]. A
survey focused on verification of deep neural networks is [11]. The focus here is
on the operation we call forallValue (Proposition 2) and its generalization be-
yond classification tasks. The computation is carried out by taking into account
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the specific structure of the network and the use of piecewise linear activation
functions, which allows for the treatment of regions as rational polytopes. While
taking these details into account enables the development of efficient algorithms,
it is somewhat disappointing if using sigmoidal activation functions (as necessary
for the final activation in a binary classification setup) instead requires one to
modify even the theoretical framework behind the verification approach. (Such
a modification has been carried out using Taylor models in place of polytopes,
and the Taylor expansion of the sigmoidal activation function [8]). Our approach
is model agnostic, in particular, independent of small details such as the choice
of activation functions.

Again for Neural Networks, a more general approach to decidability of veri-
fication questions starts with the observation that as long as we are using piece-
wise linear activation functions and specifications definable in the theory of real
closed fields (i.e. quantified formulas involving +, × and ≤), we obtain decid-
ability (i.e. yes/no-answers, no need for ⊥) for free. This follows the theory of
real closed fields and is decidable (albeit with infeasible complexity). This was
remarked e.g. in [8]. If we want to ask questions involving a particular data set,
we need to be able to define the data set in the theory of real closed fields.
This seems like an awkward requirement for experimental data. In contrast,
our theory is compatible with data obtained through imprecise measurements
[15]. Extending the approach based on real-closed fields to sigmoidal activation
functions seems to require the truth of Schanuel’s conjecture [12]. Again, our
approach is model agnostic.

Recently using probably approximately correct (PAC) learning theory (for
background [20]), a study into the intermediate setting where learners are re-
quired to be computable but not resource-bounded has been achieved by [1].
They have developed a notion of a computable learner similar to ours. They
used key concepts of a computable enumerable representable (CER) hypothesis
class, along with an empirical risk minimization (ERM) learner. This allowed
them to find an ERM learner that is computable on every CER class that is
PAC learnable in the realizable case. However, verification questions are not
considered in [1].

6 Summary and Future work

We motivated and presented a number of questions that one might want to ask
when verifying classifiers obtained by ML. These include elementary questions
such as whether any point in a region gets assigned a particular colour, but
also more advanced ones such as whether adversarial examples exist. Finally, we
make a contribution to the phenomenon of underspecification by studying the
robustness of learners. Using the framework of computable analysis we are capa-
ble of precisely formalizing these questions, and to prove them to be computable
under reasonable (and necessary) assumptions.

Regarding the necessity of the assumptions, we point out that dropping con-
ditions, or considering maps providing more information instead, will generally



A Computability Perspective on (Verified) Machine Learning 17

lead to non-computability. We leave the provision of counterexamples, as well
as potentially a classification of how non-computable these maps are to future
work. The notion of a maximal partial algorithm recently proposed by Neumann
[14] also seems a promising approach to prove optimality of our results.

There is a trade-off between the robustness of a classifier and its ‘accuracy’.
It seems possible to develop a computable quantitative notion of robustness for
our function locallyConstant, which could then be used as part of the training
process in a learner. This could be a next step to adversarial robustness [3,5].

Rather than just asking questions about particular given classifiers or learn-
ers, we could start with a preconception regarding what classifier we would want
to obtain for given training data. Natural algorithmic questions then are whether
there is a learner in the first place that is guaranteed to meet our criteria for the
classifiers, and whether we can compute such a learner from the criteria.

Our choice to consider classifiers as the sole entities to be learned in the
present paper is meant to keep verification questions simple. Our framework
allows for straight-forward extensions to any desired broader setting.

References

1. Ackerman, N., Asilis, J., Di, J., Freer, C., Tristan, J.B.: On the computable learning
of continuous features. Presentation at CCA 2021

2. de Brecht, M., Pauly, A.: Noetherian Quasi-Polish spaces. In: 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017). LIPIcs, vol. 82, pp. 16:1–16:17
(2017)

3. Carlini, N., Wagner, D.: Towards Evaluating the Robustness of Neural Networks.
In: IEEE Symposium on Security and Privacy. pp. 39–57 (2017)

4. D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen,
C., Deaton, J., Eisenstein, J., Hoffman, M.D., Hormozdiari, F., Houlsby, N., Hou,
S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D.,
Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T.F.,
Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira,
S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S.,
Yun, T., Zhai, X., Sculley, D.: Underspecification presents challenges for credibility
in modern machine learning. Journal of Machine Learning Research 23(226), 1–61
(2022), http://jmlr.org/papers/v23/20-1335.html

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
6. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector

machines. IEEE Intelligent Systems and their applications 13(4), 18–28 (1998)
7. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verification of Deep Neural

Networks. In: International Conference on Computer Aided Verification. pp. 3–29
(2017)

8. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1) (2020). https://doi.org/10.1145/3419742

9. Kwiatkowska, M.Z.: Safety Verification for Deep Neural Networks with Prov-
able Guarantees (Invited Paper). In: Fokkink, W., van Glabbeek, R. (eds.) 30th
International Conference on Concurrency Theory (CONCUR 2019). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss

http://jmlr.org/papers/v23/20-1335.html
https://doi.org/10.1145/3419742
https://doi.org/10.1145/3419742


18 T. Crook, J. Morgan, A. Pauly & M. Roggenbach

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019), http:
//drops.dagstuhl.de/opus/volltexte/2019/10903

10. Leino, K., Wang, Z., Fredrikson, M.: Globally-Robust Neural Networks. In: Pro-
ceedings of the 38th International Conference on Machine Learning. pp. 6212–6222.
PMLR (Jul 2021)

11. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244–
404 (2021). https://doi.org/10.1561/2400000035

12. Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential field. In:
Odifreddi, P. (ed.) Kreiseliana. About and Around Georg Kreisel, pp. 441–467. A
K Peters (1996)

13. Morgan, J., Paiement, A., Pauly, A., Seisenberger, M.: Adaptive neighbourhoods
for the discovery of adversarial examples. arXiv preprint arXiv:2101.09108 (2021)

14. Neumann, E.: Decision problems for linear recurrences involving arbitrary real
numbers. Logical Methods in Computer Science (2021), https://arxiv.org/abs/
2008.00583

15. Pauly, A.: Representing measurement results. Journal of Universal Computer Sci-
ence 15(6), 1280–1300 (2009)

16. Pauly, A.: On the topological aspects of the theory of represented spaces. Com-
putability 5(2), 159–180 (2016). https://doi.org/10.3233/COM-150049

17. Pauly, A.: Effective local compactness and the hyperspace of located sets. arXiv
preprint arXiv:1903.05490 (2019)

18. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of ar-
tificial neural networks. In: Proceedings of the 22nd International Conference on
Computer Aided Verification. p. 243–257. CAV’10, Springer-Verlag, Berlin, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24

19. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence. pp. 2651–2659 (7 2018)

20. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge university press (2014)

21. Skliris, V., Norman, M.R.K., Sutton, P.J.: Real-time detection of unmodelled
gravitational-wave transients using convolutional neural networks (2020). https:
//doi.org/10.48550/ARXIV.2009.14611

22. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing Properties of Neural Networks. arXiv preprint arXiv:1312.6199
(2013)

23. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 408–426. Springer (2018)

24. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical
control software: A systematic literature review. Information and Software Tech-
nology 123, 106296 (2020), https://www.sciencedirect.com/science/article/
pii/S0950584920300471

http://drops.dagstuhl.de/opus/volltexte/2019/10903
http://drops.dagstuhl.de/opus/volltexte/2019/10903
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://arxiv.org/abs/2008.00583
https://arxiv.org/abs/2008.00583
https://doi.org/10.3233/COM-150049
https://doi.org/10.3233/COM-150049
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.48550/ARXIV.2009.14611
https://doi.org/10.48550/ARXIV.2009.14611
https://doi.org/10.48550/ARXIV.2009.14611
https://doi.org/10.48550/ARXIV.2009.14611
https://www.sciencedirect.com/science/article/pii/S0950584920300471
https://www.sciencedirect.com/science/article/pii/S0950584920300471

	A Computability Perspective on (Verified) Machine Learning

