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Abstract This paper is concerned with stochastic differential equations (SDEs for short) with ir-

regular coefficients. By utilising a functional analytic approximation approach, we establish the

existence and uniqueness of strong solutions to a class of SDEs with critically irregular drift coeffi-

cients in a new critical Lebesgue space, where the element may be only weakly integrable in time.

To be more precise, let b : [0, T ] × Rd → Rd be Borel measurable, where T > 0 is arbitrarily fixed

and d > 1. We consider the following SDE

Xt = x+

t∫
0

b(s,Xs)ds+Wt, t ∈ [0, T ], x ∈ Rd,

where {Wt}t∈[0,T ] is a d-dimensional standard Wiener process. For p, q ∈ [1,+∞), we denote by

C[q]([0, T ];Lp(Rd)) the space of all Borel measurable functions f such that t
1
q f(t) ∈ C([0, T ];Lp(Rd)).

If b = b1 + b2 such that |b1(T − ·)| ∈ C[q]([0, T ];Lp(Rd)) with 2/q + d/p = 1 and ‖b1(T −
·)‖C[q]([0,T ];Lp(Rd)) is sufficiently small, and that b2 is bounded and Borel measurable, then we show

that there exists a weak solution to the above equation, and if in addition limt↓0 ‖t
1
q b(T−t)‖Lp(Rd) =

0, the pathwise uniqueness holds. Furthermore, we obtain the strong Feller property of the semi-

group and the existence of density associated with the above SDE. Besides, we extend the classical

results concerning partial differential equations (PDEs) of parabolic type with Lq(0, T ;Lp(Rd)) co-

efficients to the case of parabolic PDEs with L∞[q](0, T ;Lp(Rd)) coefficients, and derive the Lipschitz

regularity for solutions of second order parabolic PDEs (see Theorem 3.1). Our results extend
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Krylov-Röckner and Krylov’s profound results of SDEs with singular time dependent drift coeffi-

cients [20, 23] to the critical case of SDEs with critically irregular drift coefficients in a new critical

Lebesgue space.

MSC (2020): 60H10; 60K35; 34F05

Keywords: SDEs with irregular drifts; existence; uniqueness; weak/strong solutions; the strong

Feller property

1 Introduction

Let T ∈ (0,+∞) be arbitrarily fixed. For a Borel measure function h : [0, T ] → R, we set the

notation ITh(t) := h(T − t), t ∈ [0, T ]. Furthermore, for a (joint) Borel measurable function

f : [0, T ]×Rd → R, we denote IT f(t, x) := f(T − t, x), (t, x) ∈ [0, T ]×Rd. We are concerned with

the following SDE in Rd: dXt(x) = b(t,Xt(x))dt+ dWt, t ∈ (0, T ],

X0(x) = x ∈ Rd,
(1.1)

where {Wt}t∈[0,T ] = {(W1,t,W2,t,··· ,Wd,t)}t∈[0,T ] is a d-dimensional standard Wiener process defined

on a given stochastic basis (Ω,F , {Ft}t∈[0,T ],P), and the drift coefficient b : [0, T ]×Rd → Rd is Borel

measurable such that b ∈ L1(0, T ;L1
loc(Rd;Rd)).

When b is Lipschitz continuous in x ∈ Rd uniformly for t ∈ [0, T ], the existence and uniqueness

for strong solutions of (1.1) can be followed by the classical Cauchy-Lipschitz theorem. This result

was firstly extended by Veretennikov in the seminal work [36] to the bounded Borel measurable

function b. Since then, Veretennikov’s result was strengthened in different forms under the same

assumption on b. For instance, Mohammed, Nilssen, Proske in [25] not only showed the existence

and uniqueness of strong solutions, but also obtained that the unique strong solution forms a Sobolev

differentiable stochastic flow; Davie showed in [6] that for almost every Wiener path W , there is a

unique continuous X satisfying the integral equation (also see [9]); Wei, Lv and Wang in [39] further

proved that the unique strong solution forms a stochastic flow of quasi-diffeomorphisms if b is Dini

continuous in the spatial variable.

For integrable drift coefficient, i.e.

b ∈ Lq(0, T ;Lp(Rd;Rd)) (1.2)

with some p, q ∈ [2,+∞) such that

2

q
+
d

p
< 1, (1.3)

by applying Girsanov’s theorem and Krylov’s estimate, Krylov and Röckner [20] showed the ex-

istence and uniqueness of strong solutions for SDE (1.1). On the other hand, under the same
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conditions (1.2) and (1.3), Fedrizzi and Flandoli [8] proved the α-Hölder continuity of x ∈ Rd 7→
Xt(x) ∈ Rd for every α ∈ (0, 1). Some further interesting extensions for non-constant diffusion

coefficients can be found in Zhang [44, 45]. Recently, Menoukeu-Pamen and Mohammed in [24]

studied Malliavin regularity of SDE (1.1) with unbounded drift coefficient b but fulfilling linear

growth condition, and further proved the existence of Sobolev differentiable flows. More recently,

Yang and Zhang [43] established strong well-posedness for time-dependent Kato class drifts.

It is known that solutions of Navier-Stokes equations can be analysed by probabilistic represen-

tations based on SDEs with rough vector fields b, see, e.g., Rezakhanlou [28, 29], Constantin and

Iyer [5], and from the viewpoint of Navier-Stokes equations b can be taken in the critical case, i.e.

2

q
+
d

p
= 1, p, q ∈ [2,+∞). (1.4)

Therefore, the study of the qualitative properties of solutions of SDEs in the critical case is of very

high importance. However, it has been a long-standing problem whether SDE (1.1) is well-posed or

not in the strong or weak sense under the critical case.

Inspired by Ambrosio [2], by introducing a notation of Lagrangian flow, Beck, Flandoli, Gubinelli

and Maurelli in [4] derived the existence and uniqueness, in the present setting, for SDE (1.1) for

every ω ∈ Ω being fixed. Recently, Kinzebulatov and Semenov [15] constructed a weak solution

for (1.1) with time-independent drift and p = d. Later, Kinzebulatov and Madou [17] generalized

this result and established the weak well-posedness for time-dependent drifts (also see [16, 40]). For

more details about the weak well-posedness, we refer to [21, 22, 30]. More recently, Krylov in [23]

established the strong well-posedness for time-independent critical drift, and his result was then

extended by Röckner and Zhao in [31] to the time-dependent drift. For the drift in the critical

Lorentz space, the unique strong solvability for (1.1) was derived by Nam in [26], and for square

integrable (in the time variable) drift, the strong well-posedness was proved by Tian, Ding and Wei

in [35].

All the above research works are concerned with the Lebesgue integrable or weakly integrable

(with respect to the spatial variables) drift, which satisfies the critical condition (1.4), there is no

investigation to deal with the weakly integrable (with respect to the time variable) ones. In this

paper, we shall discuss the existence and uniqueness of strong solutions to SDE (1.1) with the

weakly integrable (with respect to the time variable) drift under another critical condition, which

is analogue of, but weaker than, (1.2) and (1.4). Before giving our main result, we first introduce

the following notion.

Definition 1.1 For q > 1, we denote by L∞[q](0, T ) the space of all Borel measurable functions

h : [0, T ]→ R ∪ {−∞,+∞} such that ess sup
t∈[0,T ]

(t
1
q |h(t)|) < +∞, and the norm is specified by

‖h‖L∞
[q]

(0,T ) := ess sup
t∈[0,T ]

(t
1
q |h(t)|).
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In case that q = +∞, we then set L∞[∞](0, T ) =: L∞(0, T ). We use B([0, T ]) to denote the subspace

of L∞[∞](0, T ) such that for every h ∈ B([0, T ])

‖h‖B([0,T ]) := sup
t∈[0,T ]

|h(t)| < +∞.

Similarly, for p > 1, we define L∞[q](0, T ;Lp(Rd)) to be the set of all Lp(Rd)-valued L∞[q](0, T )

functions f such that

‖f‖L∞
[q]

(0,T ;Lp(Rd)) := ess sup
t∈[0,T ]

(t
1
q ‖f(t)‖Lp(Rd)) < +∞.

Let B([0, T ];Lp(Rd)) be the set of all L∞[∞](0, T ;Lp(Rd)) such that for every f ∈ B([0, T ];Lp(Rd)),

‖f‖B([0,T ];Lp(Rd)) := sup
t∈[0,T ]

‖f(t)‖Lp(Rd) < +∞. (1.5)

Analogously, we define C[q]([0, T ]) to be the subspace of L∞[q](0, T ) such that for every h ∈

L∞[q](0, T ), t
1
q h(t) ∈ C([0, T ]). The norm of h in C[q]([0, T ]) is defined by

‖h‖C[q]([0,T ]) := sup
t∈[0,T ]

(t
1
q |h(t)|).

C0
[q]([0, T ]) is the space consisting by all the functions h in C[q]([0, T ]) such that limt↓0(t

1
q |h(t)|) = 0.

Respectively, for p > 1, we define C[q]([0, T ];Lp(Rd)) and C0
[q]([0, T ];Lp(Rd)), and the norms are

specified by (1.5).

Remark 1.1 Clearly, for p, q ∈ [1,+∞] and T ∈ (0,+∞), spaces L∞[q](0, T ), L∞[q](0, T ;Lp(Rd)),
C[q]([0, T ];Lp(Rd)) and C0

[q]([0, T ];Lp(Rd)) are Banach spaces.

Our main result is the following

Theorem 1.1 Assume that d > 1. Let b = b1 + b2 such that IT b1 ∈ C[q]([0, T ];Lp(Rd;Rd)) with p, q

satisfying

2

q
+
d

p
= 1, p, q ∈ [1,+∞), (1.6)

and b2 is bounded, Borel measurable. Suppose that ‖IT b1‖C[q]([0,T ];Lp(Rd)) is sufficiently small, then

we have the following consequences

(i) There is a filtered probability space (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃) on which there are two processes

{X̃t}t∈[0,T ] and {W̃t}t∈[0,T ] such that {W̃t}t∈[0,T ] is a d-dimensional {F̃t}t∈[0,T ]-Wiener process and

{X̃t}t∈[0,T ] is an {F̃t}t∈[0,T ]-adapted, continuous, d-dimensional process for which

P̃
( T∫

0

|b(t, X̃t)|dt < +∞
)

= 1 (1.7)
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and the equation

X̃t = x+

t∫
0

b(s, X̃s)ds+ W̃t, t ∈ [0, T ], P̃− a.s. (1.8)

holds.

(ii) If in addition IT b1 ∈ C0
[q]([0, T ];Lp(Rd;Rd)), then the pathwise uniqueness of solutions for

SDE (1.1) holds.

(iii) Assume that the condition in (ii) is fulfilled. Let Px be the unique probability law of the solu-

tion {Xt}t∈[0,T ] on d-dimensional classical Wiener space (W d([0, T ]),B(W d([0, T ]))) corresponding

to the initial value x ∈ Rd. For every f ∈ L∞(Rd), we define

Ptf(x) := EPxf(w(t)), t > 0,

where w(t) is the canonical realization of the solution Xt with initial data X0 = x ∈ Rd on

(W d([0, T ]),B(W d([0, T ]))). Then, the semigroup {Pt}t∈[0,T ] has strong Feller property, i.e. each

Pt maps a bounded function to a bounded and continuous function. Moreover, Pt admits a density

p(t, x, y) for almost all t ∈ [0, T ]. Besides, for every t0 > 0 and for every r ∈ [1,+∞),

T∫
t0

∫
Rd

|p(t, x, y)|rdydt < +∞. (1.9)

Remark 1.2 By Theorem 1.1 (i) and (ii), and with the help of Yamada-Watanabe’s principle (see

[41]), there is a unique strong solution to SDE (1.1). Let Lq,1(0, T ;Lp(Rd)) (1 < q, p < ∞) be the

Lorentz-Lebesgue space. If b lies in Lq,1(0, T ;Lp(Rd)) and condition (1.6) holds true, by utilizing

Girsanov’s theorem, Nam [26] also established the existence and uniqueness of strong solutions for

(1.1). We notice that Nam’s method follows exactly the approach developed in Krylov-Röckner [20]

wherein it required that p ≥ 2 (remarked [20, p160] after inequality (3.3)) so Nam’s main result is

valid for p > 2, i.e. (1.4) holds. With a different start of point, in the present paper, we use an

approximation approach to establish the existence and uniqueness of strong solutions, as well as the

strong Feller property for SDE (1.1) with requirement that p > 1, i.e. (1.6) holds. Therefore, our

condition is obviously more general than Nam’s condition in the case of d = 1.

Remark 1.3 (i) Recently, for time independent drift Krylov [23] proved the unique strong solvability

for (1.1) by assuming b ∈ Ld(Rd;Rd) and d > 3. More recently, Röckner and Zhao [31] generalized

Krylov’s result to the time dependent drift and proved the unique strong solvability by assuming

that p > 3. In the present paper, we consider time dependent drift for p > 1, so it is different

from that in [23, 31]. Moreover, our methods and main results are very different from Krylov’s and

Röckner-Zhao’s as well.

(ii) In case of q = 2, if one assumes further that IT b1 ∈ C0
[2]([0, T ]; Cu(Rd;Rd)), where Cu(Rd)

is the space of functions that are bounded and uniformly continuous, all derivations in the proof of

Theorem 1.1 are valid, thus Theorem 1.1 remains true in this setting.
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The novelties of Theorem 1.1 are twofold: p is only assumed to be greater than d and the

space C0
[q]([0, T ];Lp(Rd;Rd)) contains a class of weakly Lebesgue integrable (with respect to the

time variable) functions that are in Lqw([0, T ];Lp(Rd;Rd)), where Lqw([0, T ];Lp(Rd;Rd)) is the space

consisting by all the Lp(Rd;Rd)-valued q-th order weakly integrable functions. And in this sense,

our “critical” is stronger than the “critical” in Krylov-Röckner [20]. To illustrate the novelty of our

assumptions on the drift, let us consider the following example.

Example 1.1 Let (1.6) hold. Suppose b̃ ∈ C([0, T ];Lp(Rd;Rd)) with T = 1/2, so that ‖b̃‖C([0,T ];Lp(Rd))

is small enough. We set

b(t, x) = (
1

2
− t)−

1
q | log(

1

2
− t)|−

1
q b̃(t, x), (1.10)

then

t
1
q b(

1

2
− t, x) = | log t|−

1
q b̃(

1

2
− t, x),

which indicates that I 1
2
b ∈ C0

[q]([0,
1
2 ];Lp(Rd;Rd)). Let b be given by (1.10) in SDE (1.1). By

Theorem 1.1, there exists a unique strong solution to SDE (1.1). On the other hand, from the

explicit form (1.10), b ∈ Lqw(0, 1
2 ;Lp(Rd;Rd))\Lq(0, 1

2 ;Lp(Rd;Rd)), the existing results do not imply

the existence and uniqueness of strong solutions to (1.1) with b given by (1.10). From this point

of view, it is clear that we extend the existing results on Lq(0, 1
2 ;Lp(Rd;Rd)) with 2/q + d/p = 1

partially.

The existence and uniqueness of strong solutions here is only for constant diffusion coefficient.

We do not know in the present setting for general d, whether the strong solutions do exist and

further, if they would exist, whether the uniqueness holds for non-constant and non-degenerate

diffusion coefficients. But for d = 1, we can give a positive answer.

Theorem 1.2 Let σ : R→ R be Borel measurable. Suppose that there are positive constants δ1 and

δ2 such that δ1 6 σ 6 δ2. Consider the following SDE with non-constant diffusion in R

dXt = b(t,Xt)dt+ σ(Xt)dWt, X0 = x ∈ R, t ∈ (0, T ]. (1.11)

Let p and q be given in Theorem 1.1, that b = b1 + b2 such that IT b1 ∈ C0
[q]([0, T ];Lp(R)) and

‖IT b1‖C[q]([0,T ];Lp(R)) is sufficiently small, b2 is bounded Borel measurable. Moreover, for this p, we

assume in addition that σ′ = σ̃1 + σ̃2, with σ̃1 ∈ Lp(R) and ‖σ̃1‖Lp(R) is small enough, σ̃2 ∈ L∞(R).

Then there exists a unique strong solution to SDE (1.11).

The rest of this paper is arranged as follows. In Section 2, we present some preliminaries. Section

3 is devoted to establishing the well-posedness for parabolic PDEs. In Sections 4, we derive a new

Krylov type estimate. Section 5 is devoted to the proof of existence result of Theorem 1.1 and in

Section 6, we prove the uniqueness, strong Feller property as well as the existence of the density.

In Section 7, the final section, we show Theorem 1.2.

When there is no ambiguity, we use C to denote a constant whose true value may vary from line

to line. As usual, N stands for the set of all natural numbers.
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2 Preliminaries

Let us start by showing that functions in C[q]([0, T ];Lp(Rd)) possess certain fine approximation

properties, which will be used in Section 5.

Proposition 2.1 Suppose that p, q ∈ [1,+∞). Given a function f in C[q]([0, T ];Lp(Rd)), we set

fn(t, x) = (f(t, ·) ∗ ρn)(x), n ∈ N, where ∗ stands for the usual convolution and

ρn := ndρ(n·) with 0 6 ρ ∈ C∞0 (Rd), support(ρ) ⊂ B0(1), (2.1)

and
∫
Rd ρ(x)dx = 1. Then

lim
n→∞

sup
t∈(0,T ]

(
t

1
q ‖fn(t)− f(t)‖Lp(Rd)

)
= 0. (2.2)

Proof. Let f ∈ C[q]([0, T ];Lp(Rd)) and set g(t, x) = t
1
q f(t, x). Then g ∈ C([0, T ];Lp(Rd)), if one

defines the value at 0 by its right limit. Thus, to prove (2.2), it is sufficient to show that for

f ∈ C([0, T ];Lp(Rd))

lim sup
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖Lp(Rd) = 0. (2.3)

By virtue of properties of the convolution, for every fixed t ∈ [0, T ], then

lim
n→∞

‖fn(t)− f(t)‖Lp(Rd) = 0. (2.4)

On the other hand for t1, t2 ∈ [0, T ], by utilizing Young’s inequality,

‖fn(t1)− fn(t2)‖p
Lp(Rd)

=

∫
Rd

|(f(t1, ·)− f(t2, ·)) ∗ ρn(x)|pdx

6
∫
Rd

|f(t1, x)− f(t2, x)|pdx. (2.5)

From (2.5), for any ε > 0, there exists δ > 0 such that for |t1 − t2| 6 δ, then one has uniformly in

n the following

‖fn(t1)− fn(t2)‖Lp(Rd) 6 ‖f(t1)− f(t2)‖Lp(Rd) <
ε

2
. (2.6)

Let t ∈ [0, T ] be given, then (2.4) holds. With the aid of (2.5) and (2.6), then

lim sup
n→∞

sup
s∈[t−δ,t+δ]∩[0,T ]

‖fn(s)− f(s)‖Lp(Rd)

6 lim sup
n→∞

sup
s∈[t−δ,t+δ]∩[0,T ]

‖fn(s)− f(s)− fn(t) + f(t)‖Lp(Rd) + lim sup
n→∞

‖fn(t)− f(t)‖Lp(Rd)

< ε.

Since ε > 0 and t ∈ [0, T ] are arbitrary, we conclude that (2.3) holds. �
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Remark 2.1 We claim that the above approximation property is not true if one takes the function

in L∞[q](0, T ;Lp(Rd)) instead of in C[q]([0, T ];Lp(Rd)). For simplicity, we assume that T = d = 1 and

p = 2. For k ∈ N, we define fk(x) by the following

fk(x) := k1[k,k+ 1
k2 )(x),

and further set

f(t, x) :=
∞∑
k=1

1[ k−1
k
, k
k+1

)(t)f
k(x) =

∞∑
k=1

1[ k−1
k
, k
k+1

)(t)k1[k,k+ 1
k2 )(x).

Then ∫
R

|f(t, x)|2dx =
∞∑
k=1

1[ k−1
k
, k
k+1

)(t)

∫
R

k21[k,k+ 1
k2 )(x)dx =

∞∑
k=1

1[ k−1
k
, k
k+1

)(t) = 1[0,1)(t).

Hence f ∈ L∞(0, 1;L2(R)). We estimate (2.3) by the following∫
R

|fn(t, x)− f(t, x)|2dx

=

∫
R

∣∣∣∣∣
∫
R

f(t, y)ρn(x− y)dy − f(t, x)

∣∣∣∣∣
2

dx

=

∫
R

∞∑
k=1

k21[ k−1
k
, k
k+1

)(t)

∣∣∣∣∣
∫
R

1[k,k+ 1
k2 )(y)ρn(x− y)dy − 1[k,k+ 1

k2 )(x)

∣∣∣∣∣
2

dx

=

∫
R

∞∑
k=1

k21[ k−1
k
, k
k+1

)(t)

∣∣∣∣∣
k+ 1

k2∫
k

ρn(x− y)dy − 1[k,k+ 1
k2 )(x)

∣∣∣∣∣
2

dx

> 1[ k−1
k
, k
k+1

)(t)

k+ 1
k2∫

k

k2

∣∣∣∣∣
k+ 1

k2∫
k

ρn(x− y)dy − 1

∣∣∣∣∣
2

dx.

For any fixed n, for sufficiently large k, we have |
∫ k+ 1

k2

k ρn(x− y)dy| < 1
2 . Thus

sup
t∈[0,1]

∫
R

|fn(t, x)− f(t, x)|2dx

> sup
k

sup
t∈[0,1]

1[ k−1
k
, k
k+1

)(t)

k+ 1
k2∫

k

k2

∣∣∣∣∣
k+ 1

k2∫
k

ρn(x− y)dy − 1

∣∣∣∣∣
2

dx >
1

4
.

Therefore

lim inf
n→∞

sup
t∈[0,1]

∫
R

|fn(t, x)− f(t, x)|2dx > 1

4
.
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3 Parabolic partial differential equations

Let g ∈ L1(0, T ;Lploc(R
d;Rd)) with p > 1, f ∈ L1(0, T ;L1

loc(Rd)). Consider the following Cauchy

problem for u : [0, T ]× Rd → R ∂tu(t, x) = 1
2∆u(t, x) + g(t, x) · ∇u(t, x) + f(t, x), (t, x) ∈ (0, T ]× Rd,

u(0, x) = 0, x ∈ Rd.
(3.1)

We call u(t, x) a weak solution of (3.1) if it lies in C([0, T ];W 1,p(Rd)) such that for every test function

ϕ ∈ C∞0 ([0, T )× Rd), the identity

0 =

T∫
0

∫
Rd

u(t, x)∂tϕ(t, x)dxdt+
1

2

T∫
0

∫
Rd

u(t, x)∆ϕ(t, x)dxdt

+

T∫
0

∫
Rd

g(t, x) · ∇u(t, x)ϕ(t, x)dxdt+

T∫
0

∫
Rd

f(t, x)ϕ(t, x)dxdt (3.2)

holds.

The following proposition is routine and we therefore omit its proof. For more details, the reader

is referred to [46, Proposition 3.5].

Proposition 3.1 Let p ∈ [1,+∞) such that g ∈ L1(0, T ;Lp(Rd;Rd)), f ∈ L1(0, T ;Lp(Rd)) and

u ∈ C([0, T ];W 1,p(Rd)). The following statements are equivalent

(i) u is a weak solution of (3.1);

(ii) For every ψ ∈ C∞0 (Rd) and every t ∈ [0, T ], the following identity

∫
Rd

u(t, x)ψ(x)dx =
1

2

t∫
0

∫
Rd

u(s, x)∆ψ(x)dxds+

t∫
0

∫
Rd

g(s, x) · ∇u(s, x)ψ(x)dxds

+

t∫
0

∫
Rd

f(s, x)ψ(x)dxds

holds;

(iii) For every t ∈ [0, T ] and for almost everywhere x ∈ Rd, u fulfils the following integral

equation

u(t, x) =

t∫
0

K(t− s, ·) ∗ (g(s, ·) · ∇u(s, ·))(x)ds+

t∫
0

(K(t− s, ·) ∗ f(s, ·))(x)ds, (3.3)

where K(t, x) = (2πt)−
d
2 e−

|x|2
2t , t > 0, x ∈ Rd.

We now state our main result of this section.
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Theorem 3.1 Let d > 1 and p, q ∈ [1,+∞). Let g ∈ L∞[q](0, T ;Lp(Rd;Rd)) and f ∈ L∞[q](0, T ;Lp(Rd))
such that (1.6) holds true and ‖g‖L∞

[q]
(0,T ;Lp(Rd)) is sufficiently small. Then the Cauchy problem (3.1)

has a unique weak solution u. Moreover, the unique weak solution lies in B([0, T ]; C1
u(Rd)) and there

is a constant C0(p, d) such that

‖u‖B([0,T ];C1
u(Rd)) 6

C0(p, d)‖f‖L∞
[q]

(0,T ;Lp(Rd))

1− C0(p, d)‖g‖L∞
[q]

(0,T ;Lp(Rd))

, (3.4)

where C1
u(Rd) is the space of functions which are bounded and uniformly continuous and have bounded

and uniformly continuous 1 order derivatives, and

‖u‖B([0,T ];C1
u(Rd)) := sup

(t,x)∈[0,T ]×Rd
|u(t, x)|+ sup

(t,x)∈[0,T ]×Rd
|∇u(t, x)|.

Proof. We prove the result by first assuming that g = 0. With the help of Proposition 3.1, it

suffices to show that

u(t, x) =

t∫
0

(K(t− s, ·) ∗ f(s, ·))(x)ds (3.5)

is in C([0, T ];W 1,p(Rd))∩B([0, T ]; C1
u(Rd)). Firstly, by the explicit representation (3.5) and observing

from (1.6) that p > d, for every (t, x) ∈ (0, T )× Rd, we have

|u(t, x)| 6
t∫

0

‖f(s)‖Lp(Rd)‖K(t− s)‖
L

p
p−1 (Rd)

dr

6 ‖f‖L∞
[q]

(0,t;Lp(Rd))

t∫
0

s
− 1
q (t− s)−

d
2pds

= t
1
2 ‖f‖L∞

[q]
(0,t;Lp(Rd))B(1− 1

q
,
1

q
+

1

2
),

where B is the Beta function.

Therefore u ∈ B([0, T ]× Rd) and

‖u‖B([0,T ]×Rd) 6 CT
1
2 ‖f‖L∞

[q]
(0,T ;Lp(Rd)). (3.6)

For x ∈ Rd and 1 6 i 6 d, by (1.6) it follows that

∣∣∣∂xiu(t, x)
∣∣∣ =

∣∣∣∣∣
t∫

0

∫
Rd

∂xiK(t− r, x− y)f(r, y)dydr

∣∣∣∣∣
6

1

(2π)
d
2

t∫
0

‖f‖Lp(Rd)(r)(t− r)−
d
2
−1

[∫
Rd

∣∣∣e− |x−y|22(t−r) |xi − yi|
∣∣∣ p
p−1

dy

] p−1
p

dr

6 C‖f‖L∞
[q]

(0,t;Lp(Rd))

t∫
0

r
− 1
q (t− r)−1+ 1

q dr

= C(p, d)‖f‖L∞
[q]

(0,T ;Lp(Rd)), (3.7)
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where the constant in (3.7) is given by

C(p, d) = π
− d+p−1

2p 2
p−d
2p

[
Γ
(2p− 1

2p− 2

)] p−1
p
(p− 1

p

) (d+1)p−d
2p

B(1− 1

q
,
1

q
),

and Γ is the gamma function. Since 1 6 i 6 d is arbitrary, |∇u| ∈ B([0, T ] × Rd). By (3.6) and

(3.7), it remains to check that the derivatives of u in x is uniformly continuous in x.

For x, h ∈ Rd and 1 6 i 6 d, we estimate the difference of ∂xiu(t, x+ h)− ∂xiu(t, x) by

|∂xiu(t, x+ h)− ∂xiu(t, x)|

=

∣∣∣∣∣
t∫

0

∫
Rd

∂xiK(t− r, y)[f(r, x+ h− y)− f(r, x− y)]dydr

∣∣∣∣∣
6

∣∣∣∣∣
t∫

0

[∫
Rd

|∂xiK(t− r, y)|
p
p−1dy

] p−1
p
[∫
Rd

|f(r, x+ h− y)− f(r, x− y)|pdy

] 1
p

dr

∣∣∣∣∣
6 C

t∫
0

(t− r)−
1
2
− d

2p

[∫
Rd

|f(r, y + h)− f(r, y)|pdy

] 1
p

dr. (3.8)

Note that (1.4) is true, from (3.8) and p > d, therefore,

sup
(t,x)∈[0,T ]×Rd

∣∣∣∂xiu(t, x+ h)− ∂xiu(t, x)
∣∣∣

6 C sup
t∈[0,T ]

t∫
0

(t− r)−1+ 1
q

[∫
Rd

|f(r, y + h)− f(r, y)|pdy

] 1
p

dr. (3.9)

We set ht(r) = (t − r)−1+ 1
q r
− 1
q , then ht ∈ L1(0, t). Notice that f ∈ L∞[q](0, T ;Lp(Rd)), so for every

t ∈ (0, T ], htf ∈ L1(0, t;Lp(Rd)), and it implies that there exists T0 ∈ (0, T ] such that

sup
t∈[0,T ]

t∫
0

(t− r)−1+ 1
q

[∫
Rd

|f(r, y + h)− f(r, y)|pdy

] 1
p

dr

=

T0∫
0

(T0 − r)−1+ 1
q

[∫
Rd

|f(r, y + h)− f(r, y)|pdy

] 1
p

dr. (3.10)

With the help of Lebesgue’s theorem, from (3.9) and (3.10)

lim
h→0

sup
(t,x)∈[0,T ]×Rd

|∂xiu(t, x+ h)− ∂xiu(t, x)|

6 C lim
h→0

T0∫
0

(T0 − r)−1+ 1
q

[∫
Rd

|f(r, y + h)− f(r, y)|pdy

] 1
p

dr = 0,

which implies ∂xiu ∈ B([0, T ]; Cu(Rd)). And 1 6 i 6 d is arbitrary, so ∇u is uniformly continuous

in x and uniformly respect to t.
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Now we will show that u ∈ C([0, T ];W 1,p(Rd)). To prove this result, for p > 1, β > 0, let

Hβ,p(Rd) := (I −∆)−β/2(Lp(Rd)) be the Bessel potential space with the norm

‖h‖Hβ,p(Rd) = ‖(I −∆)β/2h‖Lp(Rd).

For h ∈ Lp(Rd), we use the notation Tth to denote K(t, ·) ∗ h with K given in (3.3). Then by a

same discussion as [46, Lemma 2.5], we have the following claims:

(i) For p > 1, β > 0 and every h ∈ Lp(Rd), there is a constant C(p, d, β) > 0 such that

‖Tth‖Hβ,p(Rd) 6 C(p, d, β)t−
β
2 ‖h‖Lp(Rd). (3.11)

(ii) For p > 1, θ ∈ [0, 1], there is a constant C(p, d, θ) > 0 such that for every h ∈ Hβ,p(Rd)

‖Tth− h‖Lp(Rd) 6 C(p, d, θ)t
θ
2 ‖h‖Hθ,p(Rd). (3.12)

For every 0 6 s < t 6 T , then

u(t, x)− u(s, x) =

t∫
0

Tt−rf(r)dr −
s∫

0

Ts−rf(r)dr

=

t∫
s

Tt−rf(r)dr +

s∫
0

[Tt−r − Ts−r]f(r)dr

=

t∫
s

Tt−rf(r)dr +

s∫
0

T s−r
2

[Tt−s − I]T s−r
2
f(r)dr. (3.13)

Noticing that W 1,p(Rd) = H1,p(Rd) (see [1]), from (3.13), (3.11) and (3.12), then

‖u(t)− u(s)‖W 1,p(Rd)

6

t∫
s

‖Tt−rf(r)‖H1,p(Rd)dr +

s∫
0

‖T s−r
2

[Tt−s − I]T s−r
2
f(r)‖H1,p(Rd)dr

6 C

t∫
s

(t− r)−
1
2 ‖f(r)‖Lp(Rd)dr + C

s∫
0

(s− r)−
1
2 ‖[Tt−s − I]T s−r

2
f(r)‖Lp(Rd)dr

6 C

t∫
s

(t− r)−
1
2 ‖f(r)‖Lp(Rd)dr + C(t− s)

θ
2

s∫
0

(s− r)−
1
2 ‖T s−r

2
f(r)‖Hθ,p(Rd)dr

6 C

t∫
s

(t− r)−
1
2 ‖f(r)‖Lp(Rd)dr + C(t− s)

θ
2

s∫
0

(s− r)−
1+θ

2 ‖f(r)‖Lp(Rd)dr, (3.14)

for some θ ∈ [0, 1].
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Since f ∈ L∞[q](0, T ;Lp(Rd)), if one chooses θ = (q−2)/q, from (3.14) by using Hölder’s inequality,

it then yields the following

‖u(t)− u(s)‖W 1,p(Rd)

6 C‖f‖L∞
[q]

(0,T ;Lp(Rd))

[ t∫
s

(t− r)−
1
2 r
− 1
q dr + (t− s)

θ
2

s∫
0

(s− r)−
1+θ

2 r
− 1
q dr

]

6 C‖f‖L∞
[q]

(0,T ;Lp(Rd))|t− s|
θ
2 . (3.15)

From this, one completes the proof for g = 0.

For any g, since u ∈ B([0, T ]; C1
u(Rd)), we conclude that: if g ∈ L∞[q](0, T ;Lp(Rd;Rd)), then

g · ∇u ∈ L∞[q](0, T ;Lp(Rd)). We define a mapping from B([0, T ]; C1
u(Rd)) to itself by

Tv(t, x) =

t∫
0

K(t− s, ·) ∗ (g(s, ·) · ∇v(s, ·))(x)ds+

t∫
0

(K(t− s, ·) ∗ f(s, ·))(x)ds.

Noticing that ‖g‖L∞
[q]

(0,T ;Lp(Rd)) is small enough, the mapping is contractive, so there is a unique

u ∈ B([0, T ]; C1
u(Rd)) satisfying u = Tu. This fact combining an argument as g = 0 implies the

existence and uniqueness of weak solutions of the Cauchy problem (3.1).

Since (3.3) holds, by virtue of (3.6) and (3.7), there is a constant C0(p, d) such that

‖u‖B([0,T ];C1
u(Rd)) 6 C0(p, d)

[
‖g‖L∞

[q]
(0,T ;Lp(Rd))‖u‖B([0,T ];C1

u(Rd)) + ‖f‖L∞
[q]

(0,T ;Lp(Rd))

]
,

which suggests that (3.4) is valid since ‖g‖L∞
[q]

(0,T ;Lp(Rd)) is sufficiently small. �

Remark 3.1 If p, q ∈ (1,+∞), f ∈ Lq(0, T ;Lp(Rd)) and g ∈ Lq(0, T ;Lp(Rd;Rd)), from classi-

cal Lq(Lp) theory for second order parabolic PDEs, there is a unique u ∈ W 1,q(0, T ;Lp(Rd)) ∩
Lq(0, T ;W 2,p(Rd)) solving the Cauchy problem (3.1). Using the Sobolev embedding theorems (or

see [20, Lemma 10.2]), if 2/q + d/p < 1, then ∇u is bounded and continuous in x. But this em-

bedding is not true in general when 2/q + d/p = 1. By extending the Banach space Lq(0, T ;Lp) to

L∞[q](0, T ;Lp), under the critical case 2/q + d/p = 1, we further get the boundedness and continuity

for ∇u in x. This result is new and interesting which can also be as a supplement for the classical

regularity theory of second order parabolic PDEs.

In case that both f and g are more regular, we can then obtain the continuity of ∇u in (t, x).

Corollary 3.1 Let p and q be given in Theorem 3.1, such that f ∈ C0
[q]([0, T ];Lp(Rd)) and g ∈

C0
[q]([0, T ];Lp(Rd;Rd)) and ‖g‖C[q]([0,T ];Lp(Rd)) is small enough. Then u ∈ C([0, T ]; C1

u(Rd)).

Proof. We only need to prove the continuity in t for ∇u and for simplicity, we show the case of

g = 0. We first show the continuity at 0. In view of (3.7), then for t > 0,

lim
t↓0

sup
x∈Rd

|∂xiu(t, x)| 6 lim
t↓0

C[t
1
q ‖f(t)‖Lp(Rd)] = 0. (3.16)
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Noting that u(0, x) = 0, it implies |∇u(0, x)| = 0, so ∇u is continuous in t at 0.

For t > 0, we only prove the right continuity of ∇u at t since the proof for left continuity is

similar. Let ϑ > 0, t ∈ (0, T ) such that t+ ϑ ∈ (0, T ), then for every 1 6 i 6 d∣∣∣∂xiu(t+ ϑ, x)− ∂xiu(t, x)
∣∣∣

=

∣∣∣∣∣
t+ϑ∫
0

∫
Rd

∂xiK(t+ ϑ− s, x− y)f(s, y)dyds−
t∫

0

∫
Rd

∂xiK(t− s, x− y)f(s, y)dyds

∣∣∣∣∣
6

∣∣∣∣∣
ϑ∫

0

∫
Rd

∂xiK(t+ ϑ− s, x− y)f(s, y)dyds

∣∣∣∣∣
+

∣∣∣∣∣
t∫

0

∫
Rd

∂xiK(t− s, x− y)[f(s+ ϑ, y)− f(s, y)]dyds

∣∣∣∣∣
= : I1(t, ϑ) + I2(t, ϑ).

By using (3.16), then I1(t, ϑ)→ 0 as ϑ→ 0. Now let us calculate I2(t, ϑ).

|I2(t, ϑ)| 6 C

t∫
0

(t− s)−1+ 1
q ‖f(s+ ϑ)− f(s)‖Lp(Rd)ds

6 C

t∫
0

(t− s)−1+ 1
q (s+ ϑ)

− 1
q ‖(s+ ϑ)

1
q f(s+ ϑ)− s

1
q f(s)‖Lp(Rd)ds

+C

t∫
0

(t− s)−1+ 1
q (s+ ϑ)

− 1
q ‖(s+ ϑ)

1
q f(s)− s

1
q f(s)‖Lp(Rd)ds

6 C

t∫
0

(t− s)−1+ 1
q s
− 1
q ‖(s+ ϑ)

1
q f(s+ ϑ)− s

1
q f(s)‖Lp(Rd)ds

+C

t∫
0

(t− s)−1+ 1
q s
− 1
q ‖s

1
q f(s)‖Lp(Rd)

[
1− (

s

s+ ϑ
)

1
q

]
ds.

Noticing that as the functions of s on (0, t), (t − s)−1+ 1
q s
− 1
q ∈ L1(0, t), ‖(s + ϑ)

1
q f(s + ϑ) −

s
1
q f(s)‖Lp(Rd) and ‖s

1
q f(s)‖Lp(Rd)

[
1− (s/(s+ ϑ))

1
q

]
are bounded. Applying the dominated conver-

gence theorem, we then have I2(t, ϑ)→ 0 as ϑ→ 0. We thus complete the proof. �

14



4 A Krylov estimate

Let {Wt}t∈[0,T ] be a d-dimensional standard Wiener process, X0 ∈ F0, {ξt}t∈[0,T ] is a {Ft}t∈[0,T ]

adapted process, we define

Xt = X0 +

t∫
0

ξsds+Wt. (4.1)

We now derive a Krylov estimate, which will be pivotal in our proof towards the existence of

weak solutions.

Theorem 4.1 Suppose Xt is given by (4.1) and X0 = x ∈ Rd. Let p, q ∈ [1,+∞) and IT f ∈
L∞[q](0, T ;Lp(Rd)) such that (1.6) holds. Let C0(p, d) be given in Theorem 3.1, then

E
T∫

0

f(t,Xt)dt 6 C0(p, d)

(
1 + E

T∫
0

|ξt|dt

)
‖IT f‖L∞

[q]
(0,T ;Lp(Rd)). (4.2)

Proof. Let u be given by

u(t, x) =

t∫
0

(K(t− s, ·) ∗ IT f(s, ·))(x)ds.

Noticing that IT f ∈ L∞[q](0, T ;Lp(Rd)) with p, q satisfying (1.6), by virtue of Theorem 3.1, then

u ∈ C([0, T ];W 1,p(Rd)) ∩B([0, T ]; C1
u(Rd)) and it solves the following Cauchy problem ∂tu(t, x) = 1

2∆u(t, x) + IT f(t, x), (t, x) ∈ (0, T ]× Rd,

u(0, x) = 0, x ∈ Rd,

in the sense of (3.2). Moreover, (3.4) holds with g = 0.

Noticing that (1.6) holds and IT f ∈ L∞[q](0, T ;Lp(Rd)), we conclude that for every T0 < T and

every m > 1, u(T − ·, ·) ∈ Lm(0, T0;W 2,p(Rd)) ∩W 1,m(0, T0;Lp(Rd)). By virtue of Itô’s formula

(see [20, Theorem 3.7]), for every t ∈ [0, T0], we have

du(T − t,Xt)

= −∂tu(T − t,Xt)dt+
1

2
∆u(T − t,Xt)dt+ ξt · ∇u(T − t,Xt)dt+∇u(T − t,Xt) · dWt

= ξt · ∇u(T − t,Xt)dt− f(t,Xt)dt+∇u(T − t,Xt) · dWt. (4.3)

Since ∇u is bounded, if we integrate the last term in (4.3) on (0, T0), then the stochastic integral is

a martingale, which implies that

u(T, x)− u(T − T0, XT0) = E
T0∫

0

f(t,Xt)dt− E
T0∫

0

ξt · ∇u(T − t,Xt)dt. (4.4)
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Hence

E
T0∫

0

f(t,Xt)dt 6 sup
(t,x)∈(0,T )×Rd

|u(t, x)|+ sup
(t,x)∈(0,T )×Rd

|∇u(t, x)|E
T∫

0

|ξt|dt− u(T − T0, XT0). (4.5)

In view of the fact u ∈ C([0, T ];W 1,p(Rd)) ↪→ C([0, T ]; Cb(Rd)) and by virtue of Theorem 3.1, from

(4.5), by letting T0 tend to T , we obtain that (4.2) holds true. �

Remark 4.1 Krylov’s estimates will play a crucial role in proving the existence of weak solutions

for SDE (1.1). Observing that, when verifying a Krylov estimate, the central part is to estimate the

boundedness of ∇u (u is the unique solution of a second order parabolic PDE). With this observation,

we only assume that f ∈ L∞[q](0, T ;Lp(Rd)) with 2/q + d/p = 1.

5 An existence result for weak solutions

We now consider SDE (1.1) and our main result is concerning the existence of weak solutions. We

have

Theorem 5.1 Assume that p, q ∈ [1,+∞). Let b = b1 + b2 be such that IT b1 ∈ C[q]([0, T ];Lp(Rd))
with p, q satisfying (1.4), b2 is bounded and Borel measurable. Let C0(p, d) be the constant from

(4.2) and

‖IT b1‖C[q]([0,T ];Lp(Rd)) < (2C0(p, d))−1. (5.1)

There is a filtered probability space (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃), two processes {X̃t}t∈[0,T ] and {W̃t}t∈[0,T ]

such that {W̃t}t∈[0,T ] is a d-dimensional {F̃t}t∈[0,T ]-Wiener process and {X̃t}t∈[0,T ] is an {F̃t}t∈[0,T ]-

adapted, continuous, d-dimensional process for which (1.7) holds, and almost surely, for all t ∈
[0, T ], (1.8) holds.

Proof. We follow the proof of [19, Theorem 1, p.87]. Firstly, we smooth out bi (i = 1, 2) using the

convolution: bn1 (t, x) = (b1(t, ·) ∗ ρn)(x), bn2 (t, x) = (b2(t, ·) ∗ ρn)(x) with ρn given by (2.3).

According to Proposition 2.1 and the properties of convolution, it is clear that, as n→∞,

‖IT bn1 − IT b1‖C[q]([0,T ];Lp(Rd)) → 0, ‖bn2 − b2‖Lq(0,T ;Lploc(Rd)) → 0, (5.2)

and for every n > 1, by Hausdorff-Young’s convolution inequality, we have ‖IT b
n
1‖Cq((0,T ];Lp(Rd)) 6 ‖IT b1‖Cq((0,T ];Lp(Rd)),

‖bn2‖L∞((0,T )×Rd) 6 ‖b2‖L∞((0,T )×Rd).
(5.3)

Moreover there is a sequence of integrable functions hni on [0, T ], such that

|bni (t, x)− bni (t, y)| 6 hni (t)|x− y|, ∀ x, y ∈ Rd, i = 1, 2.
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Using Cauchy-Lipschitz’s theorem, there is a unique {Ft}t∈[0,T ]-adapted, continuous, d-dimensional

process Xn
t defined for [0, T ] on (Ω,F , {Ft}t∈[0,T ],P) such that

Xn
t = x+

t∫
0

bn(s,Xn
s )ds+Wt = x+

t∫
0

bn1 (s,Xn
s )ds+

t∫
0

bn2 (s,Xn
s )ds+Wt. (5.4)

With the help of Theorem 4.1 and (5.3),

E
T∫

0

|bn1 (t,Xn
t )|dt 6

(
1 + E

T∫
0

|bn(t,Xn
t )|dt

)
C0(p, d)‖IT bn1‖C[q]([0,T ];Lp(Rd))

6

(
1 + T‖b2‖L∞((0,T )×Rd)

+E
T∫

0

|bn1 (t,Xn
t )|dt

)
C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd)).

Noticing that (5.1) holds, then

C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd)) <
1

2
,

therefore

E
T∫

0

|bn1 (t,Xn
t )|dt 6 2

(
1 + T‖b2‖L∞((0,T )×Rd)

)
C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd)). (5.5)

On the other hand, bn2 is bounded uniformly in n, with the help of (5.3), one concludes that

E
T∫

0

|bn2 (t,Xn
t )|dt 6 T‖b2‖L∞((0,T )×Rd). (5.6)

By (5.4)–(5.6), then

sup
n

sup
t∈[0,T ]

E|Xn
t | 6 C < +∞. (5.7)

If one replaces the time interval [0, T ] by [t1, t2] for every 0 6 t1 < t2 6 T , similar calculations

from (4.3) to (4.4) also yields that

E
t2∫
t1

|bn1 (t,Xn
t )|dt

6 E|Un(T − t2, Xn
t2)− Un(T − t1, Xn

t1)|+ sup
(t,x)∈(0,T )×Rd

‖∇Un‖E
t2∫
t1

|bn(t,Xn
t )|dt

6 sup
x∈Rd

|Un(T − t2, x)− Un(T − t1, x)|

+ sup
(t,x)∈(0,T )×Rd

‖∇Un‖

(
E|Xn

t2 −X
n
t1 |+ E

t2∫
t1

|bn(t,Xn
t )|dt

)
, (5.8)
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where Un is the unique weak solution of ∂tUn(t, x) = 1
2∆Un(t, x) + |IT bn1 (t, x)|, (t, x) ∈ (0, T ]× Rd,

Un(0, x) = 0, x ∈ Rd.

With the aid of Sobolev’s embedding theorem, (3.15) and (5.3), from (5.8)

E
t2∫
t1

|bn1 (t,Xn
t )|dt

6 C‖Un(T − t2)− Un(T − t1)‖W 1,p(Rd) + C0(p, d)‖IT bn1‖C[q]([0,T ];Lp(Rd))

(
E|Xn

t2 −X
n
t1 |

+|t2 − t1|‖bn2‖L∞((0,T )×Rd) + E
t2∫
t1

|bn1 (t,Xn
t )|dt

)

6 C|t2 − t1|
θ
2 ‖IT bn1‖C[q]([0,T ];Lp(Rd)) + C0(p, d)‖IT bn1‖C[q]([0,T ];Lp(Rd))

(
E|Xn

t2 −X
n
t1 |

+|t2 − t1|‖bn2‖L∞((0,T )×Rd) + E
t2∫
t1

|bn1 (t,Xn
t )|dt

)

6 C|t2 − t1|
θ
2 ‖IT b1‖C[q]([0,T ];Lp(Rd)) + C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd))

(
E|Xn

t2 −X
n
t1 |

+|t2 − t1|‖b2‖L∞((0,T )×Rd) + E
t2∫
t1

|bn1 (t,Xn
t )|dt

)
,

which suggests that

E
t2∫
t1

|bn1 (t,Xn
t )|dt 6

C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd))

1− C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd))

[
C|t2 − t1|

θ
2

+E|Xn
t2 −X

n
t1 |+ |t2 − t1|‖b2‖L∞((0,T )×Rd)

]
, (5.9)

where θ is given in (3.15).

By (5.1), there is a δ > 0, such that

C0(p, d)‖IT b1‖C[q]([0,T ];Lp(Rd)) 6 (1− C0(p, d))‖IT b1‖C[q]([0,T ];Lp(Rd)))(1− δ).

Combining (5.4) and (5.9), it yields that

E|Xn
t2 −X

n
t1 | 6 E

t2∫
t1

|bn1 (t,Xn
t )|dt+ E

t2∫
t1

|bn2 (t,Xn
t )|dt+ E|Wt2 −Wt1 |

6 (1− δ)E|Xn
t2 −X

n
t1 |+ C

(
|t2 − t1|

θ
2 + |t2 − t1|+ |t2 − t1|

1
2

)
6 (1− δ)E|Xn

t2 −X
n
t1 |+ C|t2 − t1|

θ
2 ,

18



which implies that

E|Xn
t2 −X

n
t1 | 6

C

δ
|t2 − t1|

θ
2 6 C|t2 − t1|

θ
2 . (5.10)

By (5.7) and (5.10), for every ε > 0, one concludes that

lim
c→∞

sup
n

sup
t∈[0,T ]

P{|Xn
t | > c} = 0 (5.11)

and

lim
h↓0

sup
n

sup
t1,t2∈[0,T ],|t1−t2|6h

P{|Xn
t1 −X

n
t2 | > ε} = 0. (5.12)

In view of Skorohod’s representation theorem (see [19, Lemma 2, p.87]), there is a probability

space (Ω̃, F̃ , P̃) and random processes (X̃n
t , W̃

n
t ), (X̃t, W̃t) on this probability space such that

(i) the finite-dimensional distributions of (X̃n
t , W̃

n
t ) coincide with the corresponding finite-

dimensional distributions of the processes same as (Xn
t ,W

n
t );

(ii) (X̃n
· , W̃

n
· ) converges to (X̃·, W̃·), P̃-almost surely.

In particular W̃ is still a Wiener process and

X̃n
t = x+

t∫
0

bn1 (s, X̃n
s )ds+

t∫
0

bn2 (s, X̃n
s )ds+ W̃n

t . (5.13)

For any k ∈ N, by virtue of Theorem 4.1,

Ẽ

( T∫
0

|bn1 (s, X̃n
s )− b1(s, X̃s)|ds

)

6 Ẽ

( T∫
0

|bn1 (s, X̃n
s )− bk1(s, X̃n

s )|ds

)
+ Ẽ

( T∫
0

|bk1(s, X̃n
s )− bk1(s, X̃s)|ds

)

+Ẽ

( T∫
0

|bk1(s, X̃s)− b1(s, X̃s)|ds

)

6 C
[
‖IT bn1 − IT bk1‖C[q]([0,T ];Lp(Rd)) + ‖IT bk1 − IT b1‖C[q]([0,T ];Lp(Rd))

]
+Ẽ

( T∫
0

|bk1(s, X̃n
s )− bk1(s, X̃s)|ds

)
. (5.14)

By letting n→ +∞ first, k → +∞ next, from (5.2) and (5.14) we arrive at

lim
n→∞

t∫
0

bn1 (s, X̃n
s )ds =

t∫
0

b1(s, X̃s)ds, P̃− a.s.. (5.15)

19



Similarly, we obtain

Ẽ

( T∫
0

|bn2 (s, X̃n
s )− b2(s, X̃s)|ds

)

6 Ẽ

( T∫
0

|bn2 (s, X̃n
s )− bk2(s, X̃n

s )|ds

)
+ Ẽ

( T∫
0

|bk2(s, X̃n
s )− bk2(s, X̃s)|ds

)

+Ẽ

( T∫
0

|bk2(s, X̃s)− b2(s, X̃s)|ds

)

= : Jn1 + Jn2 + Jn3 . (5.16)

For k fixed, as n→ +∞, Jn2 → 0. For Jn1 , we have

Jn1 6 ‖b2‖L∞((0,T )×Rd)Ẽ
T∫

0

|1− 1|X̃n
s |6R
|ds+ Ẽ

( T∫
0

1|X̃n
s |6R
|bn2 (s, X̃n

s )− bk2(s, X̃n
s )|ds

)

6
C

R
Ẽ

T∫
0

|X̃n
s |ds+ C‖1|x|6R|bn2 − bk2|‖Lq(0,T ;Lp(Rd)), (5.17)

for every R > 0.

By taking n → +∞, k → +∞, R → +∞ in turn, then Jn1 → 0 as n → +∞. And the same

conclusion for Jn3 is true by a same discussion. Combining (5.2), (5.16) and (5.17) we arrive at

lim
n→∞

t∫
0

bn2 (s, X̃n
s )ds =

t∫
0

b2(s, X̃s)ds, P̃− a.s.. (5.18)

From (5.13), (5.15) and (5.18), one reaches at

X̃t = x+

t∫
0

b(s, X̃s)ds+ W̃t.

From this one finishes the proof since by using Theorem 4.1, (1.7) holds true obviously. �

6 Uniqueness and the strong Feller property

We first discuss the uniqueness in probability laws. Before proceeding, let us present some useful

lemmas.

Consider the following SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x ∈ Rd, t ∈ (0, T ], (6.1)
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where σ(t, x) ∈ Rd×d, b(t, x) ∈ Rd. The regularity assumptions on σ and b should guarantee

the existence of weak solutions to (6.1) (e.g. σ and b are bounded Borel measurable, and σ is

uniformly elliptic, see [19, Theorem 1, p.87]). Let (Xt,Wt)t∈[0,T ] be a weak solution of (6.1) on

a probability space (Ω,F ,P) with a reference family {Ft}t∈[0,T ], and let (X̃t, W̃t)t∈[0,T ] be another

weak solution of (6.1) on a probability space (Ω̃, F̃ , P̃) with a reference family {F̃t}t∈[0,T ]. We

denote the probability laws of {Xt}t∈[0,T ] and {X̃t}t∈[0,T ] on d-dimensional classical Wiener space

(W d([0, T ]),B(W d([0, T ]))) by Px = P ◦X−1 and P̃x = P ◦ X̃−1, respectively. Then we have

(i) for every x ∈ Rd, Px(w ∈W d([0, T ]);w0 = x) = P̃x(w ∈W d([0, T ]);w0 = x) = 1;

(ii) for every A1, A2 ∈ B(W d([0, T ])), the mappings x 7→ Px(A1) and x 7→ P̃x(A2) are B(Rd)
measurable.

Moreover, from [13, Theorem 20.1, p.182] (or [14, Proposition 2.1, p.169]), for every f ∈ C2
b (Rd)

(iii) the processes

f(Xt)− f(x)−
t∫

0

[
∇f(Xs) · b(s,Xs) +

1

2
trac(σ(s,Xs)σ(s,Xs)

>∇2(f(Xs)))
]
ds, t ∈ [0, T ],

and

f(X̃t)− f(x)−
t∫

0

[
∇f(X̃s) · b(s, X̃s) +

1

2
trac(σ(s, X̃s)σ(s, X̃s)

>∇2(f(X̃s)))
]
ds, t ∈ [0, T ],

are locally continuous {Ft}t∈[0,T ] and {F̃t}t∈[0,T ] martingales, respectively.

Combining the above conclusions (i)-(iii) and [13, Theorem 20.1, p.195] (or [14, Corollary,

p.206]), we have

Lemma 6.1 Px = P̃x is equivalent to∫
W d([0,T ])

f(w(t))Px(dw) =

∫
W d([0,T ])

f(w(t))P̃x(dw), (6.2)

for every t ∈ [0, T ] and every f ∈ Cb(Rd).

Now we give our uniqueness result on weak solutions.

Lemma 6.2 Let p, q and b be stated in Theorem 5.1. We assume that IT b1 ∈ C0
[q]([0, T ];Lp(Rd;Rd))

in addition. If there are two weak solutions of (1.1), then the probability laws of them on d-

dimensional classical Wiener space (W d([0, T ]),B(W d([0, T ]))) are the same.

Proof. We show the uniqueness by using Itô-Tanaka’s trick (see [10]). Consider the following vector

valued Cauchy problem
∂tU(t, x) = 1

2∆U(t, x) + IT b1(t, x) · ∇U(t, x)

+IT b1(t, x), (t, x) ∈ (0, T ]× Rd,
U(0, x) = 0, x ∈ Rd.

(6.3)

21



According to Theorem 3.1, there is a unique weak solution U to (6.3). Moreover by Corollary 3.1,

U ∈ C([0, T ]; C1
u(Rd;Rd)) and there is a δ > 0 such that

‖U‖C([0,T ];C1
u(Rd;Rd)) 6

C0(p, d)‖IT b1‖C0
[q]

([0,T ];Lp(Rd;Rd))

1− C0(p, d)‖IT b1‖C0
[q]

([0,T ];Lp(Rd;Rd))

< 1− δ,

since (5.1) holds.

We define Φ(t, x) = x+ ITU(t, x), then δ < ‖∇Φ‖C([0,T ];Cb(Rd)) < 2− δ,
1

2−δ < ‖∇Ψ‖C([0,T ];Cb(Rd)) <
1
δ ,

(6.4)

where Ψ(t, x) = Φ−1(t, x). By the classical Hadamard theorem ([27, p.330]), Φ(t, ·) forms a nonsin-

gular diffeomorphism of class C1 uniformly in t ∈ [0, T ].

Noticing that IT b1 ∈ C0
[q]([0, T ];Lp(Rd;Rd)), thus the unique weak solution of (6.3) also belongs

to Lm(T − T0, T ;W 2,p(Rd;Rd)) ∩W 1,m(T − T0, T ;Lp(Rd;Rd)) for every T0 < T and every m > 1.

Therefore, ITU ∈ Lm(0, T0;W 2,p(Rd;Rd)) ∩ W 1,m(0, T0;Lp(Rd;Rd)). If (Xt,Wt)t∈[0,T ] is a weak

solution of (1.1), we can use Itô’s formula (see [20, Theorem 3.7]) to Φ(t,Xt) and obtain

dΦ(t,Xt) = b2(t,Xt)dt+ (I +∇ITU(t,Xt))dWt, t ∈ (0, T0].

By Corollary 3.1, we can take T0 approaching to T , then get dΦ(t,Xt) = b2(t,Xt)dt+ (I +∇ITU(t,Xt))dWt, t ∈ (0, T ],

Φ(0, X0) = x+ U(T, x).

Denote Yt = Xt + ITU(t,Xt), then

dYt = b2(t,Ψ(t, Yt))dt+ (I +∇ITU(t,Ψ(t, Yt))dWt, t ∈ (0, T ], (6.5)

with Y0 = y.

Now we assume that (X,W ) and (X̃, W̃ ) are weak solutions of (1.1) and the probability laws

of X and X̃ on (W d([0, T ]),B(W d([0, T ]))) are Px and P̃x respectively. Correspondingly, we denote

Py and P̃y the probability laws of Y and Ỹ . Since Yt = Φ(t,Xt) and Φ ∈ C([0, 1]; C1(Rd;Rd)) is a

diffeomorphism on Rd uniformly for every t ∈ [0, T ], the relationships of Px and Py, P̃x and P̃y are

given by

Py = Px ◦ Φ−1, P̃y = P̃x ◦ Φ−1, (6.6)

where for a given measure µ on a Banach space S, and ϑ a map on S, we use the notation µ ◦ ϑ−1

to denote image measure of µ by the map ϑ, i.e.∫
S

φd(µ ◦ ϑ−1) =

∫
S

φ(ϑ)dµ.
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Combining (6.4) and noting that b2 is bounded Borel measurable, ITU is continuous in (t, x), and

I + ITU satisfies uniformly elliptic condition, applying [32, Theorem 5.6] (also see [14, Theorem

3.3, p185] for time independent σ), the uniqueness of probability law for (6.5) is true. So Py = P̃y.

For every f ∈ Cb(Rd) and every t ∈ [0, T ], by (6.6) then∫
W d([0,T ])

f(w(t))Px(dw) =

∫
W d([0,T ])

f(Ψ(t,Φ(t, w(t))))Px(dw)

=

∫
W d([0,T ])

f(Ψ(t, w(t)))Py(dw) (6.7)

and ∫
W d([0,T ])

f(w(t))P̃x(dw) =

∫
W d([0,T ])

f(Ψ(t,Φ(t, w(t))))P̃x(dw)

=

∫
W d([0,T ])

f(Ψ(t, w(t)))P̃y(dw). (6.8)

Since Py = P̃y, and for every t ∈ [0, T ], f ◦Ψ(t, ·) ∈ Cb(Rd), from (6.7) and (6.8) one ends up with

(6.2). By applying Lemma 6.1, it is unique and we finish the proof. �

We are now in the position to give our strong uniqueness result.

Theorem 6.1 Let p, q, b and b1 be stated in Lemma 6.2. Then there exists a unique strong solution

to SDE (1.1).

Proof. Clearly, by Yamada-Watanabe’s principle (see [41]) and Theorem 5.1, one only needs to

prove the pathwise uniqueness. In view of Lemma 6.2 and the fact the uniqueness in probability

law implies the pathwise uniqueness for d = 1 (see [42, Proposition 1.1]), so we need to show the

pathwise uniqueness for d > 1.

Since (1.6) holds and q < +∞, we conclude p > 2 when d > 1 and for every T0 ∈ (0, T ),

b1 ∈ Lm(0, T0;Lp(Rd;Rd)),

with p > 2 and every m > 1. Therefore, b is in Krylov-Röckner class up to time T0, and this implies

the pathwise uniqueness of solutions for SDE (1.1) up to time T0 < T (see [20]). Particularly, we

can choose T0 = T − ε (ε > 0 is sufficiently small) and it yields the strong uniqueness of solutions

on [0, T − ε]. By letting ε tend to 0, we conclude the the strong uniqueness of solutions on [0, T ).

On the other hand, by virtue of Theorem 5.1 all the solutions of SDE (1.1) are continuous, so the

strong uniqueness of solutions holds true on [0, T ]. �

Remark 6.1 We divide the proof for the strong uniqueness into two cases: d = 1 and d > 1. When

d > 1, Krylov-Röckner’s result is adapted here directly. However, when d = 1, the assumption 2/q+

1/p = 1 only implies that p > 1(; p > 2), so b is not in Krylov-Röckner class and Krylov-Röckner’s
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result (see [20]) can not be used here. Fortunately, when d = 1 the uniqueness in probability law

and the pathwise uniqueness are equivalent. Therefore, it is sufficient to show the uniqueness in

probability. To reach our aim, we introduce a useful lemma (Lemma 6.2) before stating our main

theorem.

Remark 6.2 (i) When the Banach space C[q]([0, T ];Lp(Rd)) is replaced by Lq(0, T ;Lp(Rd)), with

q, p meeting condition (1.3), there are many elegant works [44, 45]. For example, under the hypoth-

esises that

(1) σ(t, x) is uniformly continuous in x ∈ Rd uniformly with respect to t and there is a positive

constant δ such that for all (t, x) ∈ [0, T ]× Rd,

δ|ξ|2 6 |σ(t, x)ξ|2 6 1

δ
|ξ|2.

(2) |∇xσ(t, x)|, |b| ∈ Lq(0, T ;Lp(Rd)). Zhang [45] obtained the existence and uniqueness of the

strong solution to SDE (6.1.)

(ii) Other topics on SDE (6.1) such as existence, uniqueness of solutions, stochastic homeomor-

phism, weak differentiability for b and σ in different classes, we refer to [3, 7, 11, 12, 34, 37, 38]

and the references cited up there.

Now we discuss the Feller property and the existence of density and initially we give a lemma.

Lemma 6.3 ([33]) Consider the following SDE dXt(x) = b(t,Xt(x))dt+ σ(t,Xt(x))dWt, t ∈ (s, T ],

Xs(x) = x ∈ Rd.
(6.9)

Suppose that b is bounded and Borel measurable, σ is bounded continuous and (ai,j) = (
∑

k σi,kσj,k)/2

is uniformly continuous and uniformly elliptic. Then there is a unique weak solution of (6.9) which

is a strong Markov process. Let P̃ (s, x, t, dy) be its transition probabilities and for every bounded

function f , we define

P̃s,tf(x) =

∫
Rd

f(y)P̃ (s, x, t, dy), (6.10)

then we have the following claims:

(i) P̃s,tf(x) is continuous in s and x for s < t.

(ii) P̃ (s, x, t, dy) has a density p̃(s, x, t, y) for almost all t ∈ [0, T ] which satisfies

T∫
t0

∫
Rd

|p̃(s, x, t, y)|rdydt < +∞, (6.11)

for every r ∈ [1,+∞) provided s < t0.

Now we give our second result.
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Theorem 6.2 Let p, q and b be described in Theorem 6.1. Consider the following SDE: dXt(x) = b(t,Xt(x))dt+ dWt, 0 6 s < t 6 T,

Xs(x) = x ∈ Rd.
(6.12)

Let P (s, x, t, dy) be the transition probabilities associated with the solution of (6.12) and for every

bounded function f , we set Ps,tf(x) by (6.10). Then Ps,tf(x) is continuous in s and x for s < t

and P (s, x, t, dy) has a density p(s, x, t, y) for almost all t ∈ [0, T ] which satisfies (6.11).

Proof. In view of Theorems 5.1 and 6.1, there exists a unique strong solution to SDE (6.12).

Let Ps,x = P ◦X−1 be the probability laws of {Xt}t∈[s,T ] on d-dimensional classical Wiener space

(W d([s, T ]),B(W d([s, T ]))). Consider SDE (6.5) with initial data Yt|t=s = Φ(s, x) and let P̃s,Φ(s,x) =

P◦Y −1 be the probability laws of {Yt}t∈[s,T ] on d-dimensional classical Wiener space (W d([s, T ]),B(W d([s, T ]))).

By virtue of Lemma 6.3, P̃s,Φ(s,x) is a strong Markov process and then by (6.4) and (6.6), Ps,x is also

a strong Markov process. Let P (s, x, t, dy) and P̃ (s,Φ(s, x), t, dy) be the transition probabilities of

Ps,x and P̃s,Φ(s,x), respectively. Then for every f ∈ L∞(Rd),

Ps,tf(x) = EPs,xf(w(t)) =

∫
Rd

f(y)P (s, x, t, dy)

and

P̃s,tf(x) = EP̃s,Φ(s,x)f(w(t)) =

∫
Rd

f(y)P̃ (s,Φ(s, x), t, dy).

With the help of (6.6), it yields that

Ps,tf(x) = P̃s,tf(Ψ(t, x)) =

∫
Rd

f(Ψ(t, y))P̃ (s,Φ(s, x), t, dy). (6.13)

So Ps,tf(x) is continuous in s and x for s < t. In particular, the semi-group P0,t(=: Pt) has the

strong Feller property. And by Lemma 6.3, P̃s,t has a density p̃(s,Φ(s, x), t, y). From (6.13), then

Ps,tf(x) =

∫
Rd

f(Ψ(t, y))p̃(s,Φ(s, x), t, y)dy =

∫
Rd

f(y)p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)|dy.

Hence, for almost all t ∈ [0, T ], Ps,t has a density p(s, x, t, y) which is given by

p(s, x, t, y) = p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)|. (6.14)

From (6.14), for every r ∈ [1,+∞) and s < t0

T∫
t0

∫
Rd

|p(s, x, t, y)|rdydt =

T∫
t0

∫
Rd

|p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)||rdydt

=

T∫
t0

∫
Rd

|p̃(s,Φ(s, x), t, y)|∇Φ(t,Ψ(t, y))||r|∇Ψ(t, y)|dydt

6 C

T∫
t0

∫
Rd

|p̃(s,Φ(s, x), t, y)|rdydt < +∞,
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where in the last line we have used (6.4). �

7 SDEs with non-constant diffusion coefficients

Theorems 5.1 and 6.1 can be generalized to the case of non-constant diffusion if the diffusion

coefficients are regular enough. For simplicity, we give an extension in this short section and we

assume that the diffusion coefficient is time independent and d = 1.

Theorem 7.1 Let σ : R→ R be Borel measurable. Suppose that there are positive constants δ1 and

δ2 such that δ1 6 σ 6 δ2. Consider the following SDE with non-constant diffusion in R

dXt = b(t,Xt)dt+ σ(Xt)dWt, X0 = x ∈ R, t ∈ (0, T ]. (7.1)

Let p and q be given in Theorem 5.1, that b = b1 + b2 such that IT b1 ∈ C[q]([0, T ];Lp(R)) and

‖IT b1‖C[q]([0,T ];Lp(R)) is sufficiently small, b2 is bounded Borel measurable. Moreover, for this p, we

assume in addition that σ′ = σ̃1 + σ̃2, with σ̃1 ∈ Lp(R) and ‖σ̃1‖Lp(R) is small enough, σ̃2 ∈ L∞(R).

(i) There is a filtered probability space (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃), two processes X̃t and W̃t defined for

[0, T ] on it such that {W̃t}t∈[0,T ] is a 1-dimensional {F̃t}t∈[0,T ]-Wiener process and {X̃t}t∈[0,T ] is an

{F̃t}t∈[0,T ]-adapted, continuous, 1-dimensional process for which (1.7) holds, and almost surely, for

all t ∈ [0, T ]

X̃t = x+

t∫
0

b(s, X̃s)ds+

t∫
0

σ(X̃s)dW̃s.

(ii) We suppose IT b1 ∈ C0
[q]([0, T ];Lp(R)) further, then there exists a unique strong solution to

(7.1).

Proof. (i) The proof here is inspired by Zvonkin’s transformation. Let us define

Φ(x) =

x∫
0

1

σ(y)
dy,

and since δ1 6 σ 6 δ2, Φ−1 exists. Moreover, for every x, y ∈ R, δ−1
2 |x− y| 6 |Φ(x)− Φ(y)| 6 δ−1

1 |x− y|,

δ1|x− y| 6 |Φ−1(x)− Φ−1(y)| 6 δ2|x− y|.

Let us consider the following SDE

Yt(y) = y +

t∫
0

[b(s,Φ−1(Ys))σ
−1(Φ−1(Ys))−

1

2
σ′(Φ−1(Ys))]ds+Wt. (7.2)

Noting that IT b1 ∈ C[q]([0, T ];Lp(R)) and ‖IT b1‖C[q]([0,T ];Lp(R)) is small enough, so IT b1(·,Φ−1(·)) ∈
C[q]([0, T ];Lp(R)), ‖IT b1(·,Φ−1(·))‖C[q]([0,T ];Lp(R)) is sufficiently small too. And this conclusion holds
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for σ̃1(Φ−1). Upon using Theorem 5.1, there is a weak solution (Ỹt, W̃t) of (7.2) on a filtered

probability space (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃) for which {W̃t}t∈[0,T ] is a standard 1-dimensional standard

Wiener process to {F̃t}t∈[0,T ].

Initially, we assume σ ∈ C∞(R), then Φ−1 is smooth. By utilizing Itô’s formula, one derives that

dΦ−1(Ỹt) = [Φ−1]′(Ỹt)dỸt −
1

2
[Φ′(Φ−1(Ỹt))]

−1Φ′′(Φ−1(Ỹt))[Φ
−1]′(Ỹt)

2dt

= σ(Φ−1(Ỹt))[b(t,Φ
−1(Ỹt))σ

−1(Φ−1(Ỹt))−
1

2
σ′(Φ−1(Ỹt))]dt

+σ(Φ−1(Ỹt))dW̃t +
1

2
σ(Φ−1(Ỹt))σ

′(Φ−1(Ỹt))dt

= b(t,Φ−1(Ỹt))dt+ σ(Φ−1(Ỹt))dW̃t, (7.3)

which implies (X̃t, W̃t) = (Φ−1(Ỹt), W̃t) is a weak solution of (7.1).

For general σ, we smooth it by convolution σε = σ ∗ %ε, where %ε is a regularising kernel on R,

i.e.

%ε =
1

ε
%(
·
ε

) with 0 6 % ∈ C∞0 (R), support(%) ⊂ (−1, 1)

and
∫
R %(r)dr = 1. For Φ−1

ε , one gets an analogue of identity (7.3). With the same argument as in

Theorem 5.1, by taking ε→ 0, one derives the conclusion (i).

(ii) Clearly, it suffices to prove the pathwise uniqueness. By the relationship between (7.1) and

(7.2), it suffices to show the pathwise uniqueness for (7.2). Since the form of (7.2) is the same as

(1.1), we need prove the pathwise uniqueness for (1.1) on d = 1. When d = 1, the uniqueness in

probability law implies the pathwise uniqueness (see [42, Proposition 1.1]) and by Lemma 6.2 the

uniqueness in probability law is valid, so we finish the proof. �

Remark 7.1 (i) The proof for the existence of weak solutions to SDE (7.1) is inspired by Zvonkin’s

transformation. For more details in this topic, one can consult to [47].

(ii) Here we do not argue the general case, i.e. σ is time dependent and d > 1. As discussed in

[18], we may prove the existence and uniqueness for weak solutions, such that the uniqueness holds

only in the sense of finite dimensional probability laws. For more details in this topic one can refers

to [18] and the references cited up there.
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[31] M. Röckner, G. Zhao, SDEs with critical time dependent drifts: strong solutions,

arXiv:2012.04161, 2021.

[32] D.W. Stroock, S.R. Varadhan, Diffusion processes with continuous coefficients, I, Comm. Pure

Appl. Math. 22(3) (1969) 345-400.

[33] D.W. Stroock, S.R. Varadhan, Diffusion processes with continuous coefficients, II, Comm. Pure

Appl. Math. 22(4) (1969) 379-530.

[34] R. Tian, J. Wei, Y. Tang, Parabolic PDEs of second-order with singular coefficients in critical

space and applications. Stoch. Anal. Appl. 38(6) (2020) 1102-1121.

[35] R. Tian, L. Ding, J. Wei, Strong solutions of stochastic differential equations with square

integrable drift, Bull. Sci. Math. 174 (2022) 103085.

[36] A. Ju. Veretennikov, On the strong solutions of stochastic differential equations, Theory

Probab. Appl. 24(2) (1980) 348-360.

29



[37] F-Y. Wang, X.C. Zhang, Degenerate SDE with Hölder–Dini drift and non-Lipschitz noise
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