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Research in medicine and evolutionary biology suggests that the sequencing
of parental investment has a crucial impact on offspring life history and
health. Here, we take advantage of the synchronous birth system of wild
banded mongooses to test experimentally the lifetime consequences to off-
spring of receiving extra investment prenatally versus postnatally. We
provided extra food to half of the breeding females in each group during
pregnancy, leaving the other half as matched controls. This manipulation
resulted in two categories of experimental offspring in synchronously born
litters: (i) ‘prenatal boost’ offspring whose mothers had been fed during
pregnancy, and (ii) ‘postnatal boost’ offspring whose mothers were not fed
during pregnancy but who received extra alloparental care in the postnatal
period. Prenatal boost offspring lived substantially longer as adults, but
postnatal boost offspring had higher lifetime reproductive success (LRS)
and higher glucocorticoid levels across the lifespan. Both types of exper-
imental offspring had higher LRS than offspring from unmanipulated
litters. We found no difference between the two experimental categories of
offspring in adult weight, age at first reproduction, oxidative stress or telo-
mere lengths. These findings are rare experimental evidence that prenatal
and postnatal investments have distinct effects in moulding individual life
history and fitness in wild mammals.

This article is part of the theme issue ‘Evolutionary ecology of inequality’.

1. Introduction
Family life has evolved in a very wide range of taxa because of the advantages
that parental and alloparental (i.e. helping) investment can provide for
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developing offspring [1,2]. Offspring that receive more
resources or care during development often survive better
[3–5], attain a larger adult size [5–7], breed earlier [8] and/
or enjoy enhanced reproductive success as adults [5,7,9–11].
Classic life-history theory predicts that parents and helpers
who experience lower opportunity costs of caring, or those
whose help results in a greater boost to offspring fitness,
should allocate more investment per offspring or brood
over their lifetime [12–15]. These and other predictions con-
cerning optimal allocation of parental investment have
received widespread empirical support (reviewed in [1,16]).

Much less attention has focused on a second crucial
aspect of a parent or helper’s investment decision: the sche-
duling of investment over the course of development. Most
existing models of parental investment consider optimal allo-
cation to a single stage of development or average allocation
per offspring (reviewed in [15,17]). In humans and many
other animals, however, parents provide resources over an
extended period which includes distinct phases of gestation,
postnatal nursing and juvenile provisioning. Resources allo-
cated to offspring at one stage of development may affect
the capacity of offspring to respond to investment at later
stages, so that investments at each stage may combine or
interact in non-additive ways [18,19]. For example, resources
allocated early in life may be lost entirely unless they are fol-
lowed up with investment at later stage: this is the case for
example, where there are minimum thresholds of investment
required to survive at one or more developmental stages
[13,14,18,20]. The optimal schedule of investment for parents
and helpers should thus depend on how investment at each
stage of development affects the fitness benefits to offspring
of investment at later stages and subsequently across the
adult lifespan.

The optimal scheduling of developmental investment for
humans is the focus of economic studies of ‘skills formation’
[18,19,21] and ‘health capital’ [22–25]. These studies address
the question of how investment during childhood influences
key attributes of adults such as their lifetime earnings and
health outcomes, and what stages of development should be
targeted for positive intervention to have the maximum
health or economic benefits to adults [26]. Theoretical
models of skill formation break the developmental period up
into multiple stages and specify the nature of developmental
linkage or ‘complementarity’ between stages, that is, how
investment at one stage influences the robustness and respon-
siveness of offspring at the next developmental stage [19]. A
general finding of these studies, both theoretical and empirical,
is that targeting investment at earlier stages of development is
a more cost effective way to maximize adult skills or health
than attempting to remediate later on [18,21,26].

It is unclear whether this principle that ‘earlier investment
is more efficient’ extends to the prenatal period. In human
health studies, optimal development is proposed to require
a match between the prenatal and postnatal nutritional
environments (the ‘developmental mismatch’ hypothesis
[27–29]). Hence, large offspring born into a resource-scarce
environment and small offspring born into a resource-rich
environment are both predicted to develop sub-optimally in
terms of maximizing fitness [27,30]. Data in humans suggest
that both maternal under-nutrition and over-nutrition during
pregnancy are associated with later poor health outcomes for
offspring, providing some support for this prediction [31,32].
In addition, experiments on animal models show causally
that mismatch between the quality and stressfulness of prena-
tal and postnatal environments leads to negative fitness
outcomes [33,34]. However, several studies of wild vertebrate
populations have failed to find support for the developmen-
tal mismatch hypothesis (e.g. [35–38]). To our knowledge,
there are no experimental data from wild mammals to under-
stand the relative importance of prenatal versus postnatal
investment, and complementarity between them, in shaping
growth, physiology, life history and fitness. Such information
is important to understand whether mammalian develop-
ment is shaped by natural selection to respond optimally to
schedules of investment set by parents or, in cooperative
animal societies, parents and alloparents of varying degrees
of kinship.

Here, we report a long running field experiment in a wild
cooperative mammal, the banded mongoose (Mungos mungo),
which we use to test the lifetime physiological and life-history
consequences of varying investment received by offspring in
prenatal versus postnatal periods of development. In this
species, multiple adult females in each group (median = 5) syn-
chronize birth to the same morning, producing a joint litter of
5–25 offspring (median 12) that are guarded and suckled
underground or at the entrance to the den for the first
month of life, apparently without any discrimination accord-
ing to maternity [39,40]. When they are one month old,
offspring emerge from the den and start to accompany the
group on foraging trips, during which they are escorted and
provisioned on a one-to-one basis by particular male or
female adults called escorts [41–43]. Most pups have a single
escort until they reach nutritional independence at 10 weeks
old, but some pups spend a small percentage of their time
with additional escorts [42]. Escorts provide insect prey and
small vertebrates to the pup in their care and guard and
defend it from predators. Escort-pup pairs are no more closely
related to each other than expected by chance [44]. Pups who
spend more time in close association with their escort during
development receive more food, grow faster and attain
larger body size at adulthood compared to pups that do not
have a close escorting relationship [5].

In a previous paper, we described the first results from
our experiment to provision half of the pregnant females in
each group with high-quality resources (cooked egg)
throughout the latter half of gestation, leaving the other
half of pregnant females as matched controls [45]. We
found that mothers who received extra food in pregnancy
gave birth to offspring which were heavier than the offspring
of non-fed mothers, as we expected. However, subsequently,
these fed mothers targeted extra care and investment at the
(smaller) offspring of unfed mothers in the escorting
period, whereas their own offspring were escorted by unfed
mothers and other group members at ‘typical’ levels. Thus
our provisioning experiment, coupled with the targeted help-
ing responses of fed mothers in the postnatal period, resulted
in two categories of offspring in experimental litters:

(i) ‘prenatal boost’ (PRE) offspring, whose mothers
received extra food during pregnancy, but who
received ‘typical’ levels of investment during the
escorting period; and

(ii) ‘postnatal boost’ (POST) offspring, whose mothers
were not fed in pregnancy, but who received supernor-
mal levels of investment by escorts in the escorting
period.
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In this paper, we follow the long-term fate of these two
categories of offspring and compare them with offspring
from unmanipulated breeding attempts. Specifically, we
have two main objectives. First, we aim to test the effect of
the manipulation on four key life-history metrics: (i) weight
at 1 year, (ii) age at first reproduction, (iii) adult survival,
and (iv) lifetime reproductive success (LRS). Second, we
aim to investigate three proposed physiological mechanisms
underlying these key life-history metrics: (i) telomere
length, (ii) glucocorticoid levels, and (iii) markers of oxidative
stress. There is evidence from a wide range of vertebrates that
these physiological mechanisms are implicated in life-history
trade-offs (e.g. [46–48]). However, it is usually difficult to
establish the causal role of these mechanisms, particularly
in wild populations [49]. Our experimental design provides
a unique opportunity to compare the physiology of offspring
born on exactly the same day in the same group and territory,
exposed to the same or similar predation risks and social
stressors, yet subject to very different schedules of prenatal
and postnatal investment.
78:20220309
2. Material and methods
(a) Study population
Data were collected from a population of wild banded mongooses
on the Mweya Peninsula, Queen Elizabeth National Park, Uganda
(0°120 S, 29°540 E). Detailed life-history data on this population
has been collected continuously since 1995 [40,50]. Typically,
our study population consists of 10–12 social groups, that are vis-
ited every 1–3 days to record group composition, life-history and
behavioural data, and for collection of faecal samples and weight
data. Most individuals are trained to step onto a portable elec-
tronic balance in return for a small milk reward and are
weighed weekly in the field before morning foraging. Banded
mongooses are cooperative breeders where births are synchro-
nized within the social groups, with on average five females
(mean ± s.d. = 5.0 ± 2.6, n = 84 litters; [45]) giving birth to a com-
munal litter which is then jointly cared for by the group
members [40]. After emergence from the den, most pups form
one-to-one relationships with helpers—termed escorts—that
feed and protect them [42,43,51]. During the escorting period,
groups are visited daily to identify pup-escort pairs and quantify
the strength and fidelity of the escorting relationship. We calcu-
lated escorting index [42,44] as the proportion of observation
sessions in which the pup in question was classified as being
escorted, i.e. spent over half of the focal observation session
within 0.5 m of an adult. In practice, although pups can in prin-
ciple associate with many adults, strong relationships that predict
pup fitness as adults are a one-to-one bond in which pups rarely
receive help from other adults, and adults rarely give help to
other pups. Individuals in the population are identified using
unique shave markings on their back, and passive integrated
transponder tags (TAG-P-122IJ, Wyre Micro Design Ltd., UK)
inserted under the skin on the scruff of the neck. To enable track-
ing the groups, one to two individuals in each group are fitted
with radio collars (Sirtrack Ltd, Havelock North, New Zealand)
with a 20 cm whip antenna (Biotrack Ltd., Dorset, UK). Individ-
uals within the population are trapped every 3–6 months, using
box traps (67 × 23 × 23 cm; Tomahawk Live Trap Co., Tomahawk,
WI, USA) and anaesthetized using isoflurane (for details, see
[52,53]) for morphometrics and collection of blood samples.
Animals are released back to their group within 2 h; no animal
has ever died or become sick as a result of trapping and
anaesthetization. For further information, see the ethics statement.
(b) Experimental provisioning of pregnant females
We manipulated prenatal condition in eight groups between
August 2013 and April 2017 as described in detail in Marshall
et al. [45]. Gestation lasts on average 62 days [54] and groups con-
taining pregnant females are visited daily for accurate detection
of birth dates from change of body shape of the females.
During breeding attempts we provisioned half of all pregnant
females in 34 communal breeding attempts involving 101 fed
and 97 unfed mothers. Females were fed an average of 50 g
cooked egg per day (bird eggs are a natural high value com-
ponent of the diet). The amount of egg received by fed females
each day (0, 50, 100 g) and the time of day she received the
egg (morning or afternoon) was randomized to ensure that
females could not predict the amount and timing of provi-
sioning, which might have influenced their natural foraging
behaviour. To avoid carry-over effects of provisioning, exper-
imental litters were followed by a ‘rest’ litter in which no
pregnant females were provisioned. The manipulation resulted
in exactly 50 pups from fed females, and 50 pups from unfed
females that survived to emerge from the den at the age
of one month. These are the pups that are the focus of the current
investigation. For more details of the experiment see [45].

In our previous paper [45], we reported the impacts of this
experiment on patterns of cooperative care and pup weight up
to the age of three months. We briefly summarize the most rel-
evant findings here. Females were captured 3–4 weeks after
oestrus and pregnancy confirmed via ultrasound. Provisioning
began 2–4 days after pregnancy was confirmed and continued
for an average of 24 days (± 9 days, mean ± s.d.). Median
number of breeding females was 6 (range 2–10), and median
adult group size was 22 (range 6–34). In each experimental
litter, approximately half of breeding females (median = 0.5)
were assigned to be fed, the other half were left as matched
within-group controls. Fed mothers gained significantly more
weight over their pregnancy compared to unfed mothers (per
cent change in weight fed versus unfed mothers: 24.1 ± 4.5
versus 15.1 ± 3.7) and gave birth to heavier offspring (estimated
birth weight of offspring of fed versus unfed mothers: 164.9 ±
3.5 g versus 142 ± 3.2 g). After pups emerged from the den, fed
mothers escorted pups at significantly higher levels than unfed
mothers (and males) in the same breeding attempt, and more
than mothers in unmanipulated breeding attempts. Moreover,
they targeted this extra escorting effort at the pups of unfed
mothers rather than their own offspring. Mothers that were fed
invested twice as much care in offspring from unfed mothers
compared to offspring from fed mothers (note that this ‘levelling
up’ behaviour is not seen in unmanipulated litters, where there is
much less disparity in condition between carers). The offspring
escorted by fed mothers were related to them by median related-
ness 0.09 (interquartile range (IQR) =−0.008 to 0.25), adding
to previous evidence that mothers cannot discriminate their
own offspring within synchronously born communal litters
[39,45,55]. As a result of extra postnatal investment by fed
mothers, the offspring of unfed mothers received more escorting
overall, were fed at higher rates and grew faster than the off-
spring of fed mothers in the same litter. The offspring of fed
mothers by contrast received ‘typical’ levels of escorting and
grew at the same rate as unmanipulated pups [45].

Experimental provisioning of pregnant females thus resulted in
the two categories of offspringdescribed in the introduction: PREoff-
spring, who received prenatal investment followed by typical levels
of postnatal care or food; and POST offspring, who received typical
levels of prenatal investment followed by supernormal levels of post-
natal care and food. Finally, for certain analyses we compared life-
history patterns observed in experimental litters (PRE and POST)
with those in unmanipulated litters measured before the provision-
ing experiment began. The unmanipulated litter data was
composed of 40 litters in 11 groups, measured across an 8 year
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period from 2009 to 2017. Of the 72 identifiedmothers that contribu-
ted to the dataset, 13 contributed to all three categories of offspring;
25 out of 72 mothers had pups in both unmanipulated and exper-
imental litters; and 16 out of 42 mothers that contributed to
experimental litters had pups in both PRE and POST categories.
Figure 1 shows a schematic of the experimental design and the
resulting categories of offspring.

(c) Physiological sampling
Pups were trapped within two weeks of emergence from the den
(between 30 and 50 days of age) and anaesthetized using isoflurane.
Theywere thenweighed,measured andmarkedusing commercially
available blonde hair dye (L’Oreal, UK). An approximately 2 mm
skin sample was collected from the tail tip for genetic assignment
of parentage using a panel of 43 polymorphicmicrosatellitemarkers.
For further details of the set-up, see [45].

(i) Collection of blood samples
Blood (volume 100–500 µl)was collected from the jugular vein using
a 25G needle and syringe, and transferred to a 3 ml EDTA BD Vacu-
tainer. Thewhole blood samplewas centrifuged at 2000g for 4 min at
4°C (Spectrafuge mini centrifuge, Sigma Aldrich, UK) to extract
plasma, which was frozen for analysis of malondialdehyde (MDA)
and protein carbonyls (PCs). Samples of red blood cells (RBC) were
frozen for later analysis of glutathione (GSH) and superoxide dismu-
tase (SOD) and buffy coat containingwhite blood cells (WBC) frozen
for analysis of telomere length. All samples were snap-frozen in
liquid nitrogenwithin 10 min of collection, transported to the labora-
tory inCornwall,UK, inacryogenic shipper (Taylor-WhartonCX100,
Jencons, UK) and stored at −80°C until analysis.

(ii) Quantification of oxidative stress markers
Laboratory analyses were performed blindly with respect to sample
identityand the experimental design.All stepswere conductedon ice
to minimize oxidation. All chemicals were high performance liquid
chromatography (HPLC) grade, and chemical solutions were pre-
pared using ultra-pure water H2O MQ (Milli-Q Synthesis;
Millipore, Watford, UK). Only samples collected less than 1 year
prior to the first laboratory analyses were selected for quantification
and further assays were conducted within 2 years of collection,
except for SOD which had to be re-quantified owing to equipment
failure (time since collection: MDA: 314 ± 106 days; PC: 362 ± 83
days; SOD: 800 ± 59 days; GSH: 528 ± 39 days). However, time
since collection did not significantly influence the level of any of
the markers (MDA: F= 0.40, p= 0.52; PC: F = 2.18, p= 0.14; SOD:
F= 1.68, p= 0.20; GSH: F= 0.08, p= 0.77).

(iii) Malondialdehyde
Plasma MDA was determined using HPLC with a fluorescence
detector (Agilent 1000). We followed the method in Nussey
et al. [56] with some modifications. Details about the method
can be found in [48]. Repeatability (corresponding to intraclass
correlation coefficient, sensu [57]) computed for 22 duplicate
samples was 81.8%.

(iv) Protein carbonyls
Plasma PCs were measured using a colorimetric assay (Protein
Carbonyl Assay Kit, Cayman Chemical Company), using a mol-
ecular devices plate reader (Spectramax M2; Molecular Devices,
USA). Owing to limitations in the amount of plasma available as
well as the high protein content of samples, 50 µl of plasma was
used in the sample and control tubes instead of the 200 µl rec-
ommended in the kit instructions. Carbonyl content in samples
was expressed in nmol mg−1 protein in the controls; repeatability
computed for 88 duplicate samples was 87.9% [58].

(v) Superoxide dismutase
We assessed SOD activity (U ml−1) in RBC samples using the
Cayman chemicals SOD assay kit (Cayman Chemical Company,
USA). RBC samples were diluted in a 1 : 10 w/v solution using
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ice cold H2O MQ and then centrifuged at 10 000g for 15 min at 4°
C. The supernatant was collected and further diluted 1 : 100 with
sample buffer for quantification. The quantification is based on
the detection of superoxide radicals generated by xanthine oxi-
dase and neutralized by SOD, using a molecular devices plate
reader (Spectramax M2; Molecular Devices, USA). One unit is
defined as the amount of enzyme needed to exhibit 50% dismu-
tation of the superoxide radical. Repeatability for 28 duplicate
samples was 70.2% [58].

(vi) Glutathione
We assessed GSH level in RBC samples using the Cayman
chemicals GSH assay kit (Cayman Chemical Company, USA).
Similarly to the SOD assay, RBC samples were diluted in a
1 : 10 w/v solution using ice cold H2O MQ, then centrifuged at
10 000g for 15 min at 4°C. The supernatant was collected and
deproteinated before the assay. The quantification is based on
the detection of 5-thio-2-nitrobenzoic acid, produced by a reac-
tion between the sulfhydryl group of GSH and 5,50-dithio-bis-
2-nitrobenzoic acid, using a molecular devices plate reader (Spec-
tramax M2; Molecular Devices, USA). Repeatability computed
for 37 duplicate samples was 87.9%.

(vii) Quantification of telomere length
Telomere length was determined using an established quantitative
polymerase chain reaction (qPCR) protocol optimized for the
banded mongoose (for details see [59]). In short, DNA was
extracted fromWBC using the DNeasy blood and tissue extraction
kit (Qiagen) according to the manufacturer’s instructions. Relative
telomere length was determined as the ratio of telomere repeat
copy number compared to the non-variable control gene (M.
mungo inter-photoreceptor retinoid-binding protein gene, acces-
sion number AY170065) and standardized to a common
(golden) sample run in parallel. PCR plate number was added
as a random factor in analyses of telomere length to account for
between-plate variation (estimated as 9% across plates).

(viii) Collection of faecal samples and quantification of faecal
glucocorticoid metabolites

Faecal samples were collected during the morning latrine session
soon after groups emerge from the burrow. Faecal samples were
collected into small plastic bags, placed on ice and transferred to
a −20°C freezer within 5 h of collection. To avoid interference
with group scent marking behaviour, only half of each sample
was collected. Hormone extraction, assay and validation was car-
ried out at Chester Zoo Endocrinology Laboratory according to
previously established and validated protocol [60,61].

(d) Statistical analyses
We assessed the long-term consequences of maternal feeding
during pregnancy with respect to physiological markers (oxidative
stress, telomere length and faecal glucocorticoid metabolites) and
fitness (start of reproduction, weight at maturity and LRS) of PRE
and POST offspring. Linear mixed effects models (LMM) and gen-
eralized mixed effects models (GLMM) were used as detailed
below. Additionally, for some analyses we compared offspring
from experimental litters (PRE and POST offspring) with data
on unmanipulated litters; all model results are included in full
in the electronic supplementary material.

(i) Consequences of maternal supplementation on proxies of
fitness

We measured body mass at onset of adulthood, 12 months of age
(± 30 days). We computed a mixed effects LMM with body
mass (in grams) as a response variable, and treatment group
(PRE versus POST), sex and the interaction between treatment
group and sex, as explanatory variables. Litter identity was
included as a random effect. Age at sexual maturity (days) was
assessed in two ways. First, the age at first oestrus behaviour
(males: mate guarding females or ‘pestering’, i.e. approaching
and trying to mate with females that are in oestrus; females:
being mate guarded or pestered; e.g. [40]) was recorded from
focal watch data, and used as an integer response variable in a
Poisson mixed effects GLMM with social group, litter, and
mother’s identity as random factors. Individual identity was
also fitted as an observation level random effect to account for
overdispersion [62]. Second, age at first successful reproduction
was deduced from parentage data of pups born after the onset
of the study and used as the response variable in a Poisson
model constructed the same way. Survival was monitored by
visits to the group every 1–3 days. Banded mongooses disperse
in groups, making it possible to unequivocally distinguish
death from dispersal [63]. To study the effect of PRE and POST
and sex on survival, we used a Cox mixed effects model as
implemented in the package Coxme [64] with survival as the
response variable, treatment group, sex and their interaction as
explanatory variables, and maternal identity as a random factor.

Finally, we estimated LRS of individuals using the high qual-
ity population pedigree constructed earlier based on 43
polymorphic microsatellite markers [65,66]. Number of offspring
assigned to the individual was the response variable in a Poisson
GLMM, with treatment group, sex and their interaction as expla-
natory variables and social group, litter and maternal identity as
random factors. Observation time, measured as the number of
days the individual was alive between start of study and end
of data collection for the pedigree analysis was included as an
offset in the analysis, to account for potential differences in long-
evity, and for some of the individuals still being alive and
potentially producing more offspring, after the last round of
genotyping in 2019.
(ii) Consequences of maternal supplementation on offspring
physiology

Glucocorticoid metabolites. Effects of treatment on offspring stress
physiology during growth and across the lifespan was analysed
using LMMs with faecal glucocorticoid content (ng g−1) as the
response variable. The model looking at effects across the lifespan
had treatment group, sex and their interaction, age at sampling,
weight at emergence from the den (standardized, z-score), and
social care during growth (escorting index, 0–1) as explanatory
variables, and individual identity, litter, mother and social group
as random factors. Model using samples during growth (age
less than six months) had the same predictors but only litter as
a random factor, to improve model convergence with lower
sample size. Escorting index was calculated as the proportion of
days that a pup was recorded with an escort, out of the total
number of days where escorting was recorded by any group
member (7–21 observation days per breeding attempt), and it
was included in the analyses together with emergence weight to
account for variation within treatment groups.

Telomere length. Potential effects of treatment on telomere
length of offspring were assessed at first sampling point
(median age at sampling = 38 days, range 1–9 months) with a
LMM that included sex, treatment group (PRE versus POST)
and their interaction, emergence weight and escorting index as
above, and age at sampling as explanatory variables, and social
group, litter, mother’s identity and sample plate as random
effects. Second, we analysed telomere length across the lifespan
from repeated samples (average 2.4 samples, range 1–8 per indi-
vidual, taken between the ages of one month to 4.7 years of age)
with the same model, but also adding individual as a random
term in the model.
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Oxidative stress markers. We did not have oxidative stress
measures for all markers for each individual, because of limited
size of the blood samples, and thus we could not use data
reduction methods such as principal components analysis to
reduce the number of models. In any case, the markers of oxi-
dative damage and antioxidant defences were not significantly
correlated (all pairwise r < 0.2, p > 0.18). To examine whether
the markers of oxidative damage and antioxidant defence were
impacted by the provisioning experiment, we ran a set of
LMMs, with oxidative stress markers as a response variable
(either PC, MDA, GSH or SOD) and treatment group (PRE
versus POST), age at sampling, emergence weight as above, sex
and the interaction between treatment group and sex, as explana-
tory variables. Litter and pup identity were included as random
effects.

Data were analysed using R, v. 3.6.1 (R Core Team 2017)
using package lme4 to run linear and Poisson mixed-effects
models [67] and package MuMIn [68] to calculate the marginal
and conditional R2, i.e. variance explained by the models, with
and without random factors. For all analyses, we checked
model assumptions, i.e. normality, linearity and homoscedasti-
city. When required, the data were normalized by using a log-
transformation (for GSH data) or square root (faecal glucocor-
tiosteroids). We used likelihood ratio tests to assess the
significance of variables. Non-significant interactions were
dropped from final models to allow us to test the significance
of the main effects included in these non-significant interactions
[69]. Full details of the statistical models, test statistics for
dropped interactions and random factors included in each are
described in the electronic supplementary material.

Power analyses. As some analyses had limited sample size, we
ran post hoc tests to investigate the statistical power of our ana-
lyses to detect a difference between treatment groups based on
actual effect size. In addition, we calculated the power our ana-
lyses would have had, to detect a small (Cohen’s d = 0.2)
difference between the treatment groups. Calculations were
done using G*Power [70] and actual analysis power is reported
for all analyses comparing treatment groups.
3. Results
(a) Life-history effects
(i) Weight at 1 year
At onset of adulthood, males were marginally heavier than
females (weight at 1 year of age ± s.e.: 1293 ± 24.8 g, n= 35
versus 1226 ± 25.1 g, n = 15, β = 85.45 ± 44.12, x21 ¼ 3:83, p =
0.050, but no differences in size remained between PRE and
POST offspring (treatment group: x21 ¼ 2:77, p = 0.096; mar-
ginal/conditional R2 = 0.056/0.967; statistical power = 0.92).
There was no difference in weight between experimental
and unmanipulated litters (litter type: x21 ¼ 0:007, p = 0.934).

(ii) Age at first reproduction
Females showed behavioural signs of sexual maturity at a
younger age than males (age at first observed oestrus behav-
iour ± s.e.: females: 320 ± 6.5 days, n = 17; males: 653 ± 60.06
days, n = 23; β = 0.613 ± 0.096, x21 ¼ 44:95, p = 2.022 × 10−11)
but there were no significant differences between PRE and
POST offspring (treatment group: x21 ¼ 0:143, p = 0.705; mar-
ginal/conditional R2 = 0.440/0.991, statistical power = 0.33),
nor between experimental and unmanipulated litters (litter
type: x21 ¼ 0:01, p = 0.919). Similarly, females started breeding
earlier (age at first successful reproduction: females 530 ± 29.4
days, n = 12, males 1011 ± 80.9 days, n = 13; β = 0.626 ± 0.094,
x21 ¼ 25:21, p < 0.00001) and there were no differences in the
onset of reproduction between PRE and POST offspring
(treatment group: x21 ¼ 0:000, p = 0.997; marginal/conditional
R2 = 0.653/0.991, statistical power = 0.05), nor between exper-
imental and unmanipulated litters (litter type: x21 ¼ 0:084, p =
0.772); but note that sample sizes are relatively low for these
analyses, as is statistical power.

(iii) Survival
Prenatal boost offspring had higher adult survival than both
POST offspring or those born in unmanipulated litters (treat-
ment group: x22 ¼ 8:16, p = 0.017, hazard ± s.e.: 0.43 ± 0.375,
z =−2.25, p = 0.024, n = 95; figure 2). Specifically, from
the age of 1 year (adulthood), PRE offspring survived at 2.3
times the rate of POST offspring. Median [maximum] lifespan
of PRE versus POST offspring was 60 [88] and 44 [67]
months, respectively. There was no difference in adult survi-
val between males and females (x21 ¼ 0:002, p = 0.96, hazard
± s.e.: 0.99 ± 0.258) nor sex-specific effects of treatment (sex:
treatment x22 ¼ 0:862, p = 0.65).

(iv) Lifetime reproductive success
Postnatal boost offspring had higher LRS than PRE offspring
(β =−0.618 ± 0.246, x21 ¼ 6:069+ 0:014; figure 3a). There was
no sex-specific effect of treatment (x21 ¼ 0:258, p = 0.611), but
overall females had higher LRS than males (β =−1.397 ±
0.259, x21 ¼ 29:38, p < 0.00001, here calculated based on
known offspring born in the monitored groups within the
study area; marginal/conditional R2= 0.300/0.357, analysis
power 0.98), which probably reflects absence of information
on male reproductive success gained outside the population
(offspring were more likely to have an unknown father than
a mother) [71]. Additionally, although the model did account
for unequal observation time, males tend to reproduce later
than females, and as some individuals were still alive and
reproducing at the last round of parentage analysis done on
the population, we probably have underestimated male repro-
ductive success. Overall, pups born in experimental litters had
higher LRS than pups born in unmanipulated litters (β = 1.55
± 0.48, x21 ¼ 10:69, p < 0.00001; figure 3b; marginal/conditional
R2= 0.309/0.397, analysis power=0.99).

(b) Physiological effects
(i) Telomere length
Offspring that were heavier at emergence from the den had
longer telomeres at first sampling point (β = 0.157 ± 0.065,
x21 ¼ 5:86, p = 0.019) but there were no effects of treatment
group, sex nor age on telomere length (treatment group:
x21 ¼ 1:29, p = 0.263; sex: x21 ¼ 0:885, p = 0.353, age at
sampling: x21 ¼ 1:45, p = 0.233; marginal/conditional R2 =
0.098 /0.643 and statistical power = 0.84). Across the lifespan,
individuals that had been heavier as pups still had longer tel-
omeres (β = 0.011 ± 0.048, x21 ¼ 2:28, p = 0.028), but there were
no effects of age, sex nor treatment group on telomere length
(all p > 0.09, marginal/conditional R2 = 0.044/0.834, statistical
power = 0.97).

(ii) Faecal glucocorticoid metabolites
During growth (less than six months), PRE offspring had
lower faecal glucocorticoid metabolite levels than POST
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offspring (β =−1.395 ± 0.431, x21 ¼ 10:47, p = 0.0038, statistical
power 0.88) and glucocorticoids decreased with increasing
social care (β =−3.916 ± 0.783, x21 ¼ 25:03, p = 0.00046) and
increasing emergence weight (β= −1.222 ± 0.394, x21 ¼ 9:596,
p = 0.005) but there were no differences between males and
females (x21 ¼ 1:578, p = 0.224; marginal/conditional R2 =
0.549/0.833). Across the rest of the lifespan (greater than six
months), PRE offspring still had lower levels of glucocorti-
coids as compared to POST offspring (β =−1.486 ± 0.346,
x21 ¼ 18:44, p = 0.00003), males had lower levels compared
to females (β =−1.110 ± 0.358, x21 ¼ 9:601, p = 0.0024), and
the more escorting care individual had received as a pup,
the lower its faecal glucocorticoid levels were across the life-
span (β =−2.723 ± 0.740, x21 ¼ 13:57, p = 0.0004; figure 4).
Glucocorticoid levels also increased with age (β = 0.724 ±
0.321, x21 ¼ 5:36, p = 0.023; marginal/conditional R2 = 0.199/
0.619; statistical power 0.99). When comparing individuals
born in experimental litters to unmanipulated litters, there
was a significant interaction between litter type and sex
(x21 ¼ 0:615, p = 0.0028): both males and females born in
experimental litters had higher cortisol levels than those in
unmanipulated litters (Tukey post hoc test, estimate ± s.e.:
females 2.24 ± 0.4, p < 0.001, males 0.92 ± 0.36, p = 0.046),
and whereas in experimental litters, males had lower gluco-
corticoids than females (estimate: −1.183 ± 0.390, p = 0.011),
there was no overall sex difference in unmanipulated litters
(estimate 0.350 ± 0.305, p = 0.632).
(iii) Oxidative stress markers
There were no significant differences between PRE and POST
offspring in any of the oxidative stress markers (SOD: β =
54.699 ± 39.365, x21 ¼ 1:930, p = 0.175, statistical power = 0.99;
PC: β = 0.722 ± 4.98, x21 ¼ 0:019, p = 0.890, power = 0.43;
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GSH: β =−0.077 ± 0.153, x21 ¼ 0:257, p = 0.616, power = 0.39;
MDA: β = 0.254 ± 0.175, x21 ¼ 2:12, p = 0.154, power = 0.87).
Males had lower levels of SOD (β =−130.96 ± 45.38,
x21 ¼ 8:32, p = 0.007) and borderline lower GSH (β =−0.344
± 0.172, x21 ¼ 3:97, p = 0.056) than females, but there were no
sex differences in MDA (x21 ¼ 0:899, p = 0.374) nor PC
(x21 ¼ 0:014, p = 0.908). Emergence weight was not associated
with any of the markers (all p > 0.372; see data tables in
the electronic supplementary material for detailed results).
When comparing experimental to unmanipulated litters,
there was an interaction between sex and litter type in SOD
(F = 4.799, p = 0.334); the only significant pairwise difference
was that experimental litter females had higher SOD than
those in unmanipulated litters (Tukey post hoc test z =−2.716,
p = 0.033). There were no differences between experimental
and unmanipulated litters in any of the other markers (all
p > 0.16).
(c) Power analyses
According to post hoc power analysis, our probability to detect
significant differences between treatment groups (i.e. actual
statistical power to detect an effect, based on the size of poten-
tial treatment group effect and sample size) varied between
0.05 and 0.99. Average achieved power was higher in those
analyses that yielded significant results (0.98 versus 0.62).
However, the power to detect a moderate-sized effect (d =
0.2) was similar for significant and non-significant results
(average power 0.822 for non-significant results, 0.854 for sig-
nificant results), suggesting that non-significant results
reported for the effect of treatment on certain life-history
traits, telomere length and oxidative stress were not primarily
a consequence of limited sample size. Nevertheless, the power
analyses suggest that sample size may have been an issue in
some analyses, for example, in our analysis of age at first
oestrus behaviour; see the electronic supplementary material.
4. Discussion
When our study was conceived, its initial aim was to test the
effect of manipulating maternal resources during pregnancy
on future offspring development and life history. However, as
a result of the remarkable ‘levelling’ behaviour of banded mon-
goose mothers—in which mothers that had been fed during
pregnancy subsequently provided additional care and resources
to the offspring of unfed mothers—our single experimental
manipulation resulted in two treatment categories of offspring,
both of which received greater levels of investment compared
to offspring in ummanipulated litters, but at different phases
ofdevelopment.Asaconsequenceour studyprovides rare longi-
tudinal experimental evidence that prenatal and postnatal
investmenthavedistinct long-termeffects on the survival, repro-
duction and physiology of offspring.

First, providing high quality food to pregnant mothers
had large effects on adult survival of their offspring. Maternal
provisioning increased the adult survival rate of offspring by
a factor of 2.3 compared to the offspring of unfed mothers,
and increased median adult lifespan by 36%. Second, off-
spring that received increased care and food during the
postnatal period had higher LRS than the PRE offspring in
the same litter, or offspring in ummanipulated litters. It is
also notable that these POST offspring had higher levels of
glucocorticoids across their lifetime than PRE offspring.
Third, both categories of experimental offspring had higher
LRS than offspring from unmanipulated breeding attempts.
Thus the extra resources that we provided to half of the preg-
nant females in each banded mongoose group resulted in
fitness benefits that were distributed across the whole
communal litter, as a consequence of the cooperative care
system of banded mongooses.

These results are consistent with the assumption of life-
history theory that individual banded mongooses face a
trade-off in the allocation of energy between survival and
reproductive functions [72–74], and that extra investment in
prenatal and postnatal periods can alter the shape and/or
slope of this trade-off. A graphical model helps to visualize
the nature of the shift in life-history strategy effected by the
experiment (figure 5). Extra investment in prenatal and post-
natal periods boosted the fitness of both types of offspring,
consistent with the life-history assumption that resources
limit the summed energy allocations between survival and
reproductive functions. However, the extended lifespan of
PRE offspring came with an associated reduction in reproduc-
tive output compared to POST offspring; the increased
reproductive success of POST offspring came at the expense
of lower survival in adulthood compared to PRE offspring.
The graphical model suggests that these patterns can be
explained if additional investment at prenatal and postnatal
phases of development has contrasting impacts on the slope
of the trade-off between survival and reproduction. Specifically,
increased prenatal investment may lessen the slope of this
trade-off, while increased postnatal investment may steepen
it. This pattern is similar to the effect of natural variation in
food availability during development on optimal scheduling
of reproduction and survival across the lifetime in banded
mongooses [76]. Males who experienced harsher (i.e. dryer)
conditions during postnatal development lived longer lives
but with reduced fertility; those who experienced more
benign (wetter) conditions postnatally exhibited increased ferti-
lity but a shorter adult lifespan [76].
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cation of resources to reproduction (e.g. reproductive effort) and survival
(adapted from [75] and [76]). Curved grey lines are fitness isoclines;
points along each isocline represent allocations to reproduction and survival
that yield equal fitness, with the fitness of isoclines increasing towards the
top right corner. The black dashed line is the trade-off faced by unmanipu-
lated offspring, assumed linear for simplicity. Given this trade-off, the optimal
life-history allocation for unmanipulated offspring (UNM; yellow dot) is the
point at which the trade-off is tangential to the fitness isocline. Offspring
whose mothers were fed during pregnancy (PRE offspring; blue dot) exhib-
ited higher survival than both UNM and POST offspring, higher fitness than
UNM offspring, and lower fitness than POST offspring. This shift is consistent
with prenatal provisioning attenuating the slope of the trade-off between
survival and reproduction (blue dashed line). Offspring whose mothers
were not fed, but who received additional care and resources during the post-
natal period (POST), exhibited similar adult surviviorship to UNM offspring,
but higher fitness than either UNM or PRE offspring (red dot). This shift is
consistent with increased postnatal investment and faster postnatal growth
steepening the slope of the trade-off between reproduction and survival.
Similar changes in the slope of the trade-off between survival and reproduc-
tion are observed in response to fluctuations in postnatal ecological conditions
in this species [76].
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The finding that feeding mothers during pregnancy had
dramatic impacts on the adult survival of her offspring rep-
resents rare experimental evidence for ‘foetal programming’
of adult health and fitness in a wild mammal. Fed mothers
gave birth to heavier offspring [45], a metric that is associated
with increased lifespan in humans [77]. Maternal under-
nutrition and low birth weight in both humans and animal
models is associated with negative health outcomes including
increased risk of cardiovascular and metaboloic diseases
[78,79]. On the other hand, maternal over-nutrition in the
form of maternal obesity and high fat/high sugar diets also
has deleterious effects on offspring health and lifelong sus-
ceptibility to obesity and cardiac disease [80,81]. It is
usually difficult to assess, however, how health outcomes in
humans and model laboratory organisms relate to impacts
of early life conditions on individual fitness. Assessing the fit-
ness consequences of early life effects is vital to understand
how natural selection can be expected to shape the genetic
and epigenetic developmental mechanisms underlying
these patterns of fetal programming and plasticity. Our
study shows that a relatively short perturbation in maternal
nutrition in pregnancy (supplemental provisioning with a
high value natural component of the diet, leading to a
short-lived increase in maternal body mass [45]) altered the
pattern of fetal growth in a manner that yielded very large
survival benefits in adulthood and increased LRS compared
to unmanipulated offspring. These results are strong evi-
dence that the observed pattern of fetal programming in
banded mongooses is adaptive, in the sense that offspring
were able to use the availability of extra maternal resources
to increase their lifetime fitness [30]. Moreover, the effect of
prenatal nutrition on adult survival emerged despite there
being no difference between treatment groups in body mass
at adulthood. Maternal feeding in the latter half of pregnancy
could potentially induce prenatal changes in organ growth,
physiology or the capacity for learning in a way that has
major survival impacts in adulthood without any detectable
impact on overall size or body mass at adulthood.

The second finding that POST offspring exhibited
increased LRS suggests that adult fitness is particularly sensi-
tive to the amount and quality of food and care received in
the postnatal period after emergence and up to nutritional
independence. Escorts carry, groom, and protect offspring,
help them to find food, teach them specialized foraging tech-
niques [82], and pass on food niche preferences [42]. The
increased postnatal investment received by the offspring of
unfed mothers was more than enough to overcome their
initial disadvantage in birth weight and translated into
higher LRS despite these individuals living shorter lives in
comparison to PRE offspring (but not unmanipulated off-
spring). These experimental findings add to previous
evidence from long-term data showing that offspring who
receive more escorting have higher LRS, over and above
any effect on body size [5]. Again we can speculate that post-
natal investment by escorts may change organ growth and
physiology of offspring, or provide cultural training [42] in
a way that increases the efficiency with which they are later
able to convert resources into surviving offspring.

The sensitivity of fitness to postnatal investment in
mammal societies highlights the inclusive fitness benefits
that escorts stand to gain from guarding and provisioning off-
spring to independence. In banded mongooses synchronous
birth appears to remove the ability of parents or helpers to dis-
criminate relatedness of pups in the communal litter, such that
in natural litters escort-pup pairs are no more closely related
than expected by chance [45]. Nevertheless, average related-
ness among group members is around 0.2, with almost no
migration between extant groups and strong genetic popu-
lation structuring (FST among groups = 0.13; [83]), meaning
that indiscriminate helping can in theory bring substantial
kin selection (and/or group selection; [84,85]) benefits. In
our experiment, helping was not indiscriminate, it was anti-
nepotistic, since fed mothers targeted their helping effort to off-
spring to whom they were related by median relatedness 0.09,
whereas mean relatedness of fed mothers to all offspring in
experimental litters was 0.18 [45]. Evolutionary game theory
models show that distributing care to those in most need can
be an inclusive fitness maximizing strategy from behind a
veil of ignorance about the genetic returns on investment
[45]. Targeting of investment according to need is further
strengthened if the developmental linkage between prenatal
and postnatal stages is such that postnatal investment can
compensate or overcompensate for early life disadvantage.
Our experiment shows that escorting behaviour can compen-
sate fully in terms of adult weight for early life disadvantage
in offspring birth weight, and indeed can result in elevated
LRS compared to offspring that receive less escorting.
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Our study failed to detect significant differences between
treatment groups in our measures of oxidative stress and telo-
mere length. Contrary to our expectation, mongoose pups that
faced early life disadvantage did not show increased oxidative
stress nor shorter telomere length, as would be expected if the
catch-up growth that they experienced came at a cost to cellu-
lar maintenance (e.g. [46]). Other studies in wild mammals
have found similar results (e.g. [86]), namely, that accelerated
growth was not associated with oxidative cost or telomere
loss, potentially owing to individual plasticity. The lack of sig-
nificant links between life-history patterns and oxidative stress
in our analyses may be owing to variety of factors, including
unaccounted for covariates, limited sample size, and selective
disappearance. Indeed, a previous study on our system
suggested that females selectively abort pups when faced
with a potentially harsh post-birth environment [87]. Such pat-
terns of early life mortality, long before we are able to
physiologically sample pups that emerge from the den, are
likely to further obscure any links between physiological
measures and life-history traits. Nevertheless a key finding
of our physiological investigation was that the elevated catch
up growth of POST offspring was associated with elevated
glucocorticoids across the lifespan. This finding adds to
evidence in wild vertebrates that glucocorticoids (and, poten-
tially, telomere lengths) play an important role in mediating
changes in the trade-off between survival and reproduction
[49], such as the trade-off shifts illustrated in figure 5. If repli-
cated in a population health or biomedical context, this effect
could have health and disease implications.

Our experiment did not provide evidence for the develop-
mental mismatch hypothesis [28,29,88,89], since both PRE
and POST offspring experienced a mismatch between the
quality of pre- and post-natal rearing environments, yet
both exhibited higher LRS than unmanipulated offspring.
However, an important caveat is that we were limited to
investigating only a ‘positive’ type of mismatch, involving a
boost to one stage of development, rather than a ‘negative’
mismatch involving particularly harsh conditions. Rather,
our prenatal and postnatal investments combined to shape
future fitness and life history in the manner modelled using
Heckman functions in skill formation theory [18,19,21]. Heck-
man functions are mathematical expressions in which
investment at one stage of development can influence off-
spring ‘capital’ (or fitness) in two ways, termed ‘self-
productivity’ and ‘complementarity’ [21]. Self-productivity
captures the idea that the effect of investments in offspring
persist over time: offspring who received more investment
at an early stage have a platform on which future investments
can build. Complementarity captures the idea that invest-
ment at an early stage increases the effectiveness of
investment at later stages in raising fitness: offspring that
have received more investment can make better or more effi-
cient use of investment at a later stage. Both types of
influence are closely related to what in the biological litera-
ture are called ‘silver spoon effects’ [90]. In humans,
patterns of self-productivity and complementarity are such
that attempts remediate in adolescence for early life disad-
vantage are very costly, whereas interventions targeted at
early childhood are much more effective [21]. Skill formation
studies [18,21] have focused on the nature of complementar-
ity between postnatal investments, whereas less is known
about the interacting effects of investments in prenatal and
postnatal stages (but see [25,91]). In an evolutionary context,
we might expect self-productivity and dynamic complemen-
tarity to coevolve with the amount of investment parents
(and alloparents) are able to provide at each stage of develop-
ment, and the degree of competition among offspring for
those investments, two aspects of the rearing environment
that may be very different in prenatal and postnatal periods.

The observed complementarity between prenatal and
postnatal stages of investment in banded mongooses is simi-
lar to that found in a cross-fostering experiment on wild great
tits (Parus major) in Sweden ([35]; see also [92] for a second
factorial experiment in burying beetles). In the great tit exper-
iment, some mothers received a food supplement in the
prenatal period, equivalent to a PRE treatment. After hatch-
ing, offspring were partially cross fostered with some
offspring receiving supplemental food as nestlings, equival-
ent to a POST treatment. Prenatal boost offspring were
heavier at hatching than control offspring, but postnatal feed-
ing of control offspring compensated for this initial size
disadvantage, so that there was no mass difference at fledg-
ling between those who had received either a PRE or a
POST. In this experiment there was no evidence that a mis-
match between prenatal and postnatal rearing conditions
had a deleterious impact on offspring development. Unlike
our experiment, however, this study could not follow long-
term or lifetime effects of manipulated prenatal and postnatal
investment, owing to low recruitment of offspring into the
adult population. Our findings suggest that provision of sup-
plementary resources during prenatal and postnatal periods
can have dramatic effects on life history and fitness that are
not detectable in measures of body mass or size at indepen-
dence, and which may remain hidden in shorter term studies.
5. Conclusion
Our experimental study on a wild social mammal shows that the
amount of resources and care received during prenatal and post-
natal periods combine to mould the lifetime trajectories of
survival, reproduction, and physiology of adults. As in humans
[23,26], the level of investment at an early stage of development
may influence the responsiveness of offspring to investment at
later stages, leading to variation in adult life history. Remediation
in thepostnatal period canmore than compensate, in fitness terms,
for prenatal inequality, most likely by altering the shape of the
trade-off between survival and reproduction in adulthood, albeit
with potentially adverse consequences for stress physiology. Our
results suggest that additional prenatal investment flattens this
trade-off, whereas additional postnatal investment steepens it.
To understand why prenatal and postnatal investments have dis-
tinctive impacts on development and life history may require
improved evolutionary models of social development, perhaps
adapted from models of skill formation [18,19], together with
fully factorial experimental designs (e.g. similar to [35] and [92])
to reveal the lifetime effects of prenatal and postnatal investment
and inequality.
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