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Abstract
In this work, a Minkowski difference-based advancing front approach is
proposed to generate convex and non-circular particles in a predefined compu-
tational domain. Two specific algorithms are developed to handle the contact
conformity of generated particles with the boundaries of the computational
domain. The first, called the open form, is used to handle the smooth contact of
generated particles with (external) boundaries, while the other, called the closed
form, is proposed to handle the internal boundaries of a computational domain
with a complex cavity. The Gilbert-Johnson-Keerthi (GJK) method is used to
efficiently solve the contact detection between the newly generated particle at
the front and existing particles. Furthermore, the problem of one-sided parti-
cle lifting, which can cause some defects in the packing structure in existing
advancing front methods during packing generation, is highlighted and an effec-
tive solution is developed. Several examples of increasing complexity are used
to demonstrate the efficiency and applicability of the proposed packing gener-
ation approach. The numerical results show that the generated packing is not
only more uniform, but also achieves a higher packing density than existing
advancing front methods.
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1 INTRODUCTION

Particle-based numerical methods, such as the discrete element method (DEM),1–4 discontinuous deformation analysis
(DDA)5–7 and non-smooth contact dynamics (NSCD) method,8–10 have been widely used to simulate complex partic-
ulate systems from atomic to crustal scale. The first and also an important step for such a simulation is to efficiently
generate a high quality particle assemblage that satisfies some pre-requisites in terms of size, shape and volume fraction
(or density).
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2 XIA et al.

In general, three different types of methods have been developed: the dynamical approach,11–13 the constructive
approach,14–20 and the coupled constructive-dynamic approach.21–23

In the dynamical approach, particles are first generated in a domain and then their positions and/or sizes are dynam-
ically changed under the applied compression/gravity force within the standard DEM framework. However, a large
number of numerical steps are often required to obtain a satisfactory packing density, making this approach very time
consuming. Additionally, there is a certain amount of overlap between particles due to external/internal forces during
packing, resulting in a physically unrealistic pre-stress within the particle assembly.

In the constructive approach for generating particle packings, particles are added sequentially to the domain in accor-
dance with certain geometric rules that are based on the existing particles already generated. This method ensures that
there is no overlap between particles. The constructive approach is very efficient, typically several orders of magnitude
faster than the dynamical approach. This is because the position of a particle is determined by only a few known geo-
metric constraints. In the coupled constructive-dynamical approach, the packing initially generated by the constructive
approach can be further densified by dynamic techniques to achieve a higher density. The efficiency of this coupled
approach lies between that of the dynamic approach and that of the constructive approach.

Due to the high efficiency, several constructive techniques have been developed in the last two decades: regular
arrangements, sequential inhibition, sedimentation techniques, mesh-based approach and advancing front approach.24

Among them, the advancing front approach (AFA), which is originally proposed in the seminal work by Feng et al.16 to
pack discs in 2D domains, is very efficient with a linear complexity. For example, on a PC with a single 1 GHz processor,
it takes only 3.77 s to pack 1 million discs. Another important advantage of AFA is that the particle size distribution can
be user defined, which is very versatile.

There are two versions of the AFA: the closed form and the open form. In the closed form, the initial front is formed
first by placing three touching discs in the centre of the domain. Then discs are generated in contact with the other two
previous discs in an outward direction. The final particle assembly is obtained by deleting those discs generated out-
side the external boundary (EB) of the domain. Thus, in the closed form, there may be some gaps between the assembly
and the boundaries. To overcome this problem, the open form is developed to include the EB in the generation of the
discs. However, the gaps at the top of the domains are not addressed. Alternatively, Bagi14 built the initial front near
the EB and then generated discs inwards. This is called the inward-AFA based on the closed form. However, the cen-
tral region cannot be completely filled. To reduce the gap near the EB, Dong et al.25 used the Newton-Raphson iteration
method to re-determine the radius and position of the new disc near the EB, which can guarantee that the disc is tan-
gent to the boundary and the other two discs simultaneously. Recently, Xu and Xia26 have extended the method to the
open form to eliminate the gaps at the upper boundary. Overviews of AFA can be found in Löhner and Oñate18 and
Morfa et al.27

Due to the simple geometric description of circular particles, it has been widely used in particle-based numerical mod-
elling. However, particle shape has some profound effects on the macro- and micromechanical behaviour of granular
materials,28,29 and particles are non-circular in reality. Therefore, how to efficiently generate convex non-circular parti-
cle assemblies has been a forefront topic in recent years. While the packing of convex non-circular particles has received
considerable attention, the ellipse, being the simplest such particle, has been the focus of much research. However,
non-elliptical particle packing remains challenging due to the complex geometry involved, making it difficult to achieve
efficient handling. Extending previous packing approaches from circular to non-circular particles is not straightforward.
Many existing approaches are based on either the dynamic approach or the coupled constructive-dynamic approach.

As mentioned above, these approaches are very time consuming. Therefore, some researchers have mainly used the
constructive approach to generate non-circular particles. For example, Feng et al.30 extended their closed-form AFA to
generate convex polygons and ellipses based on Minkowski Sum. Subsequently, the AFA has been modified and extended
to generate convex polygons.27,31 However, there are three shortcomings: (1) relatively large gaps can be generated near
EB, which reduces the quality of particle assemblies; (2) both interior boundary (IB) and EB cannot be well considered;
and (3) the one-sided lifting problem during packing (as will be detailed in Section 4.1) using the open form is not reported.

In this work, a Minkowski difference-based advancing front approach is developed to overcome the aforementioned
shortcomings of AFA in generating convex non-circular particle packings. Furthermore, careful consideration is given
to IB/EB to solve the gap problem between particles and domain boundaries. The fundamentals of the Minkowski dif-
ference and its application are described in detail in Section 2. Then, the closed form and the open form are proposed in
Sections 3 and 4, respectively. In particular, Section 4 highlights the one-sided lifting problem during packing using the
open form, and the corresponding treatment is proposed. Section 5 presents several examples to illustrate the performance
and effectiveness of the proposed approach. Finally, conclusions are drawn in Section 6.
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XIA et al. 3

It is worth noting that a convex polygon with a certain number of vertices can be used to approximate convex
non-circular particles of any shape. Therefore, this work focuses on the packing of convex polygons. In the case of ana-
lytically defined convex shapes, such as ellipses and super-quadrics, they can be first discretised into convex polygons,
and then the associated packing is reduced to the packing of convex polygons, which can be effectively handled by the
proposed procedures.

2 MINKOWSKI DIFFERENCE AND ITS APPLICATION

2.1 Minkowski difference and contact state

A geometric shape (2D or 3D) is considered to be the set of all individual points contained in the shape.4,32 Consider two
blocks A and B. Their Minkowski sum, denoted as A ⊕ B, is obtained by adding every point in A to every point in B:

A ⊕ B = {a + b ∶ a ∈ A,b ∈ B} (1)

The Minkowski difference of A and B, denoted as A ⊖ B, is defined here to be the Minkowski sum of A and (−B):

A ⊖ B = {a − b ∶ a ∈ A,b ∈ B} (2)

where (−B) can be viewed as the symmetric block of B with respect to the origin:

−B = {−b ∶ b ∈ B} (3)

The boundaries of A ⊕ B and A ⊖ B are denoted as 𝜕(A ⊕ B) and 𝜕(A ⊖ B), respectively.
Consider a hexagon A and a quadrilateral B as an example, and define the origin o to coincide with the centroid of

B (i.e., cb). Figure 1A shows the corresponding Minkowski sum and difference of these two blocks. We will focus on the
IB and EB in the present study. As a 2D domain can be considered as being formed by a number of connected lines, the
Minkowski sum/difference of a line W and the quadrilateral B is also illustrated in Figure 1B as the result of sliding B
along W . Both line and polygon vertices are stored in anti-clockwise order for easy visualisation. It can be seen that the

(A)

(B)

F I G U R E 1 Two blocks: (A) Minkowski sum; (B) Minkowski difference.
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4 XIA et al.

geometric meaning of 𝜕(A⊖B) and 𝜕(W ⊖B) are the locus of the centroid of block B (i.e., cb) sliding along the boundary of
block A and line W , respectively, while the boundary of B is kept in contact with the boundary of A or W . The procedures
to construct the Minkowski sum of two convex polygons or a polygon and a line are summarised in Algorithms 1 and 2,
respectively. Note that in Algorithms 1 and 2, the vertices of a polygon or a line are ordered anti-clockwise with the first
vertex having the lowest y coordinate.

Algorithm 1. Minkowski sum of two convex polygons

Algorithm 2. Minkowski sum of a line and a convex polygon

When two blocks A and B are in contact (in touch or overlap), there must exist at least one point p that is shared by the
two objects, p ∈ A;p ∈ B. Hence, the origin o must be enclosed in the Minkowski difference A ⊖ B:

o ∈ A ⊖ B, if A ∩ B ≠ Ø (4)

Consequently, the contact state of two blocks A and B is equivalent to the following statement:

Contact state between two blocks ∶
⎧
⎪
⎨
⎪
⎩

o ∉ A ⊖ B ≡ separation
o ∈ 𝜕(A ⊖ B) ≡ touch
o ∈ A ⊖ B ≡ overlap

(5)
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XIA et al. 5

Figure 2 demonstrates that the relationship between the Minkowski difference of a fixed hexagon A and a moving
quadrilateral B, and the origin of the Minkowski difference of the two shapes corresponds to the contact state of the two
shapes.4,33 Consequently, the contact state between the two blocks can be determined by whether or not the origin is
enclosed in the corresponding Minkowski difference of the two blocks.

The Minkowski difference of a line and a polygon can also be utilised to evaluate their contact state. However, deter-
mining the contact state between a polygon and a line can be done in a simpler manner. For example, if we consider a
convex polygon A with k vertices/edges and a line segment W with two vertices (as shown in Figure 3), there are three
contact states that can occur between them: separation, touch, and overlap.

The distance d(A, W) between A and W is defined as the minimum distance from the boundary of A to the line W :

d(A,W) = min
{(

vi
a − vs

W
)
⋅ nW

}
i ∈ (1, … , k) (6)

where vi
a is the ith vertex of the polygon A; vs

W is the start point of the line W (it can be any point in the line W); nW is the
unit vector normal to the line W and points inward towards the packing domain as shown in Figure 3.

Consequently, the contact state between block A and line W is simplified to the following statement:

Contact state between block and line ∶
⎧
⎪
⎨
⎪
⎩

d(A,W) > 0 ≡ separation
d(A,W) = 0 ≡ touch
d(A,W) < 0 ≡ overlap

(7)

If the EB is convex, the contact state between block A and line W can be determined using Equations (6) and (7).
However, if the EB is concave, the polygon should locate in the active area associated with the line before establishing the
contact state between block A and line W . As shown in Figure 3B, the active area is defined using two lines (W l and W r)
associated with the line W . Both W l and W r are vertical to W .

The distance d(A, W l) between A and W l is defined as the minimum distance from the boundary of A to the
left line W l:

d (A,Wl) = min
{(

vi
a − vs

W
)
⋅ nWl

}
i ∈ (1, … , k) (8)

where nWl is the unit vector normal to the line W l formed by rotating nW 90◦ anticlockwise as shown in Figure 3B.
The distance d(A, W r) between A and W r is defined as the minimum distance from the boundary of A to the right

line W r:

d (A,Wr) = min
{(

vi
a − ve

W
)
⋅ nWr

}
i ∈ (1, … , k) (9)

(A) (B) (C)

F I G U R E 2 Contact states between hexagon A and quadrilateral B and their Minkowski differences: (A) separation; (B) touch; (C)
overlap.
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6 XIA et al.

(A)

(B)

F I G U R E 3 Three contact states between polygon A and line W : (A) EB is convex; (B) EB is concave.

where ve
W is the end point of the line W ; nWl is the unit vector normal to the line W l formed by rotating nW 90◦ clockwise

as shown in Figure 3B.
The polygon A is located in the active area associated with the line W if the following condition is fulfilled:

{
d (A,Wl) ≤ 0
d (A,Wr) ≤ 0

(10)

If the polygon A is located in the active area, the contact state between block A and line W can be determined using
Equations (6) and (7). If a polygon is completely on the opposite side of the line, then this polygon is in overlap with the
line. In this case, this polygon should be excluded as it lies outside the packing domain. Thus, this situation is considered
in the present approach.

2.2 Placing a polygon in contact with other polygons/lines based on Minkowski
difference

Unlike discs, determining the position of a new polygon in contact with other polygons/lines is not straightforward. As
illustrated in Figure 4, there are three different cases of placing a convex polygon in contact with other convex polygons
or lines:
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XIA et al. 7

(A) (B)

(C)

F I G U R E 4 Three cases of placing polygon Pn: (A) in touch with two polygons Pd and Pe; (B) in touch with a polygon Pd and a line W ;
and (C) in touch with two lines W1 and W2.

(a) A convex polygon in contact with two convex polygons
In Figure 4A, Pd and Pe are two polygons and the position of a new polygon Pn needs to be determined so that it touches
polygons Pd and Pe simultaneously. The two loci of the polygon Pn with polygons Pd and Pe are 𝜕(Pd⊖Pn) and 𝜕(Pe⊖Pn),
respectively. The two possible centroids of polygon Pn are the intersection points of 𝜕(Pd⊖Pn) and 𝜕(Pe⊖Pn). This case is
used in determining convex particles during outwards-direction packing as discussed in Section 3.3 and associated with
the closed form.

(b) A convex polygon in contact with a convex polygon and a line
In Figure 4B, Pd and W are a polygon and a line respectively, and the position of a new polygon Pn needs to be found so
that it touches polygon Pd and line W simultaneously. The two loci of the polygon Pn with Pd and W are 𝜕(Pd⊖Pn) and
𝜕(W ⊖ Pn), respectively. The intersection points of 𝜕(Pd⊖Pn) and 𝜕(W ⊖ Pn) are the potential centroids of polygon Pn.
This case is often used for determining the second convex particle during the first layer packing or convex particles near
IB/EB as discussed in Section 4 and associated with an open form.

(c) A convex polygon in contact with two lines
In Figure 4C, W1 and W2 are two lines and the position of a new polygon Pn needs to be found so that it touches lines W1
and W2 simultaneously. The two loci of the polygon Pn with W1 and W2 are 𝜕(W1⊖Pn) and 𝜕(W2⊖Pn), respectively. The
intersection points of 𝜕(W1⊖Pn) and 𝜕(W2⊖Pn) are the possible centroids of polygon Pn. This case is often used for the
determination of the first convex particle during the first layer packing in Section 4 and associated with the open form.
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8 XIA et al.

Note that convex polygons/lines (i.e., Pd, Pe, W1 and W2) are fixed, while the new polygon Pn is movable (but only
its centroid is unknown). After the two loci of the polygon Pn with other polygons/lines are obtained, a linear algorithm
proposed by Han et al.34 is performed to search for convex polygon intersections. The determination of the centroid of a
new polygon is given in Algorithm 3.

Algorithm 3. Determination of the position of a new polygon that touches two polygons/lines

It should be noted that Du et al.31 constructed the Minkowski difference between a polygon and a line or two lines
in a more complex way. They first introduced an auxiliary point associated with the line to convert the line to a convex
polygon, and then constructed the corresponding Minkowski difference. However, as stated in Section 2.1, the Minkowski
difference between a polygon and a line or two lines can be easily and directly constructed. For this reason, the present
approach is much more efficient to place new polygons in contact with lines.

3 ADVANCING FRONT APPROACH: THE CLOSED FORM

3.1 Geometric description of convex polygons

Two approaches can be used to define the template or reference shape for generating convex polygons in a geometric
domain. The first approach involves random generation, while the second approach involves using realistic irregular par-
ticle images. In the latter approach, the boundary points are obtained from imaging and then made convex by extracting
the convex hull. Alternatively, a predefined reference polygon can be translated, scaled, and rotated to generate all convex
polygons, which can then be sequentially placed in a 2D domain.

Suppose that the reference polygon Pref has k vertices/edges. The coordinates of the ith vertex of the nth generated
polygon Pn (i.e., vi

n) (n= 1, … , NPmax) are computed by:

vi
n = RnUn

(
vi

ref − cref

)
(i = 1, … , k) (11)

Rn =

[
cos 𝛼n − sin 𝛼n

sin 𝛼n cos 𝛼n

]

,Un =

[
𝜆n1 0
0 𝜆n2

]

(12)

where Rn is the rotation matrix for polygon Pn; 𝛼n is the rotation angle in the interval [0, 2𝜋]; Un is the scaling matrix and
𝜆n1 and 𝜆n2 are two scaling factors; NPmax is the maximum number of polygons need to be generated in the domain; cref
is the centroid of the reference polygon Pref; and vi

ref is the coordinates of the ith vertex.
Initially, the centroids of all polygons Pn (n= 1, … , NPmax) generated from the reference shape are at the origin for two

reasons: (1) (−Pn) can be easily obtained for determining the corresponding Minkowski difference; (2) It is convenient
for implementation and programming.

After the centroid of polygon Pn (i.e., cn) is determined using the approach proposed in Section 2.2, all vertices of
polygon Pn (i.e., vi

n) can be updated as follows:

vi
n = cn + vi

n (i = 1, … , k) (13)
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XIA et al. 9

F I G U R E 5 New polygon generation based on a reference polygon.

In this study, the two scaling coefficients for the length and width of the generated polygons are set to be the same
within the interval [𝜆min, 𝜆max], that is, 𝜆n1 = 𝜆n2 = 𝜆n ∈ [𝜆min, 𝜆max]. As a result, all polygons have an identical aspect
ratio. Also assume that 𝛼n and 𝜆n can be determined from a desired probability distribution function (PDF), such as the
uniform, Gaussian or lognormal distribution.19

The process of generating a new polygon is illustrated using a triangle in Figure 5, where a circumscribed disc is also
assigned to the polygon (i.e., triangle). The radii of the circumscribed discs for the reference polygon Pref and the generated
polygon Pn are rref and 𝜆nrref, respectively.

Equations (11)–(13) show that a polygon Pn, denoted as Pn
(
cn, cref, vi

ref, 𝛼n, 𝜆n
)
, can be described by three spatial posi-

tion descriptors (cn, cref, vi
ref) and two shape descriptors (𝛼n, 𝜆n). As cref and vi

ref are pre-defined for the reference Pref,
and the rotation angle (𝛼n) and scaling factor (𝜆n) of the polygon Pn also follow a pre-defined PDF, only cn is unknown.
Therefore the polygon can be simply denoted as Pn (cn).

3.2 The initial front generation

The first step of AFA is to form an initial front, which is a group of polygons or lines in the 2D domain. Then, an active seg-
ment is selected, and a new polygon is placed to make contact with the polygons or lines associated with the active front,
aiming to achieve a high packing density. After placing the new polygon, the front is advanced, and the process is repeated
by selecting a new active front. This procedure continues until the entire 2D domain is filled with non-overlapping
polygons.16

In the present study, both IB and EB are considered (Figure 6), and the corresponding initial fronts are formed in dif-
ferent ways. The domain boundary is first decomposed into straight lines composed of one or more segments and arranged
in an anti-clockwise sense. When the shape of IB or EB is circular, elliptical or super-quadric, it can be approximated by
a convex polygon through an adaptive sampling algorithm proposed by Han et al.34 For an IB with super-quadric shape,
its surface is expressed as:

( x
a

)m
+
( y

b

)m
− 1 = 0 (14)

where a, b and m are three positive numbers, which determine the shape and size of the super-quadric. An ellipse is
obtained when m= 2. Many other shapes can be obtained by varying m. When m< 1, the super-quadric is concave, which
is not considered here.

3.2.1 Without consideration of IB

When IB is not considered, the first three polygons, denoted as P1, P2 and P3, are placed tangent to each other in the
centre of the 2D domain, as shown in Figure 7A. The position of the third polygon P3 can be determined using the method
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10 XIA et al.

(A) (B)

F I G U R E 6 The boundaries of a planar domain with an interior cavity: (A) before discretised; (B) after discretised.

(A) (B) (C)

F I G U R E 7 Initial front without IB: (A) first three polygons and initial front; (B) generation of polygon 4 and updated front; (C)
generation of polygon 5 and updated front.

shown in Figure 4A as explained in Section 2.2. However, polygons P1, P2 and P3 should form an anti-clockwise cycle, as
in the case with discs in Feng et al.16 Then P1 → P2 → P3 → P1 form the initial front (Figure 7A).

3.2.2 With consideration of IB

When IB is considered, the initial front is more complex. In this situation, the IB can be considered as a convex polygon. If
the IB is formed from a circular solid region as shown in Figure 8A, the region is first approximated as a convex polygon.

To initiate the AFA process with IB, we designate the IB and the first polygon as P0 and P1, respectively. The position of
the second polygon P2 is determined using the method outlined in Section 2.2 to establish an initial front P0 → P1 → P2 →
P0. Subsequently, the last segment P2 → P0 of the front is selected as the first active segment, as depicted in Figure 8A, to
determine the third polygon P3. It is worth noting that the third polygon P3 must be positioned on the right-hand side of the
segment, as shown in Figure 8B. As more polygons are generated, the front may be extended to P0 → P1 → P2 → · · ·→ P0,
as shown in Figure 8C. The initial front is considered complete when a polygon, such as P22, touches the first polygon P1.
At this point, the front becomes P1 → P2 → P3 → · · · → P22 → P1, and the IB P0 is removed from the front, as shown in
Figure 8C.

Because the generated polygons forming the initial front conform to the IB, the problem of tangency between the
generated convex non-circular particles and the IB is naturally resolved. This eliminates both the non-smoothness of
particle packings and the relatively large gaps that would have been present near the IB as shown in Figure 8C.
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XIA et al. 11

(A) (B) (C)

F I G U R E 8 Initial front with IB: (A) The first two polygons; (B) generation of polygon 3; (C) initial front.

3.3 New polygon generation and front update

Once the initial front has been formed, the domain can be filled by generating new polygons and incrementally advancing
the front outward. The directions of the frontal segments are defined to ensure that any newly generated polygon is placed
on the right-hand side when moving along the positive directions of the segments. This procedure of front update for
convex noncircular particles is similar to the method used for discs in Feng et al.16 For completeness, a brief summary of
the front update procedure is provided below.

The initial front is updated by incrementally advancing it in the outward direction to generate new polygons and
fill the domain. The first segment P1 → P2 in the initial front without IB is chosen as the current active front. Then,
a new polygon P4 is generated and placed in contact with both P1 and P2, while lying on the right-hand side of
the segment P1 → P2, as described in Section 2.2. The initial front is updated by deleting the segment P1 → P2 and
insert two new segments P1 → P4 and P4 → P2 to form a new front P1 → P4 → P2 → P3 → P1. The process is then
repeated by selecting the segment P2 → P3 as the next active front, and generating a new polygon P5, as shown in
Figure 7B,C.

However, it is possible that a newly generated polygon from an active segment may overlap with other existing poly-
gons, resulting in four different cases as illustrated in Figure 9. To address this issue, a set of front updating rules for discs
was proposed by Feng et al.16 A similar methodology is adopted here for packing convex particles. More details can be
found in Feng et al.16

3.4 Treatment of polygons near EB

During the outwards-direction packing, some generated polygons may overlap with the EB. Discarding such polygons can
result in large gaps near the EB, leading to non-smooth packing. To address this, the position and size of an overlapping
polygon should be adjusted so that it becomes tangent to the EB.

Figure 10A illustrates the distance dn between the centroid of the new polygon Pn (cn, 𝜆n) and the boundary line Bt. If
dn <𝜆u rref, then the new polygon may overlap with the boundary. To ensure tangency, a new polygon Pn(c, 𝜆) is generated
while maintaining the rotation angle 𝛼n, but with adjusted size 𝜆 and position c. The adjustment is achieved by solving
the following problem:

⎧
⎪
⎨
⎪
⎩

o ∈ 𝜕 (Pe ⊖ Pn(c, 𝜆)) ≡ Pn touch Pe

o ∈ 𝜕 (Pe ⊖ Pn(c, 𝜆)) ≡ Pn touch Pd, 𝜆 ∈ [𝜆l, 𝜆u]
d (Pn(c, 𝜆),Bt) = 0 ≡ Pn touch Bt

(15)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7318 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [12/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 XIA et al.

F I G U R E 9 Four possible cases after a new polygon Pn is generated from the current front segment: (A) No overlapping; (B)
Overlapping only with a polygon on the subsequent front; (C) Overlapping only with polygon on the preceding front; (D) Overlapping with
polygons both on the preceding and subsequent fronts.
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XIA et al. 13

(A)

(B)

F I G U R E 10 Treatment of polygons near EB: (A) single boundary; (B) corner.

However, there are two extremely cases that need to be considered: (1) If the largest polygon (its scaling coefficient is
𝜆u) is in separation with the boundary Bt, that is, d (Pn (c, 𝜆u) ,Bt) > 0, another same sized polygon Pn (c, 𝜆u) is generated
and placed near the boundary Bt; and (2) If the smallest polygon (its scaling coefficient is 𝜆l) overlaps with the boundary
Bt, that is, d (Pn (c, 𝜆l) ,Bt) < 0, the polygon is rejected and no polygon is placed at this place.

Except for the above two extremely cases, the contact state between a newly generated polygon Pn (with scal-
ing coefficient 𝜆n) and the EB line Bt can be used to further narrow the range for the lower and upper bounds
as follows:

𝜆 ∈
⎧
⎪
⎨
⎪
⎩

[𝜆n, 𝜆u] , d (Pn (cn, 𝜆n) ,Bt) > 0
𝜆n, d (Pn (cn, 𝜆n) ,Bt) = 0
[𝜆l, 𝜆n] , d (Pn (cn, 𝜆n) ,Bt) < 0

(16)

To solve Equations (15) and (16), a bisection method for determining the polygon size and position near the EB are
implemented in this work, and the algorithm is presented in Algorithm 4.
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14 XIA et al.

Algorithm 4. Bisection method for determining polygon size and position near EB
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XIA et al. 15

(A) (B)

F I G U R E 11 Inscribed and circumscribed IB/EB: (A) Without IB; (B) With IB.

When generating polygons near the boundary EB, it is important to check if the new polygon overlaps with other
boundary lines, especially at the corners. As shown in Figure 10B, the new polygon Pn

(
c′, 𝜆′

)
may be closest to one

boundary (e.g., Bl) before treatment. After determining the size and position of the polygon, it may be tangent to that
boundary but overlap with other boundaries (e.g., Bt), as shown in Figure 10B. In this case, a new polygon Pn (cn, 𝜆n)
should be re-generated based on the overlapping boundary. This check for overlapping boundaries should be repeated
until the new polygon does not overlap with any other boundaries.

After generating each new polygon, it is necessary to check whether it is near the EB or not. However, since most
of the polygons (maybe 90% or more) are not near the EB, a significant amount of computational time can be wasted in
this process. To address this issue, a simple yet effective scheme is proposed as shown in Figure 11. The scheme involves
introducing two circles: the inscribed circle of EB and the circumscribed circle of IB. If there is no IB, the point c0 is
selected as the geometric centre of the initial triangle ΔP1P2P3 (front). Otherwise, the point is chosen as the centre of the
circumscribed circle of the IB. The radius of the inscribed circle of EB (i.e., rEB) is defined as the minimum distance from
the point to the exterior boundary W :

rEB = min
{(

c0 − vs
Wi

)
⋅ nWi

}
(i = 1, … , k) (17)

where vs
Wi

is the start point of the boundary line W i (it also can be any point in the line W i); nWi is the unit vector normal
to the boundary line W i pointing to inner domain; k is the total number of the boundary lines associated with EB.

The treatment for a newly generated polygon near the EB is active if the following criterion is satisfied:

|c0cn| + 𝜆urref ≥ rEB (18)

where |c0cn| is the distance between the centroid of the new polygon Pn (i.e., cn) and the point c0.
Equation (18) reveals that a new polygon fully contained within the inscribed circle of the EB requires no further

checks for proximity to the EB. With this approach, the algorithm can rapidly determine if a polygon is near the EB
or not, without having to perform individual polygon checks. Consequently, this strategy significantly enhances the
computational efficiency of the algorithm.
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16 XIA et al.

3.5 Further issues

3.5.1 Overlap checking of two polygons

It is worth noting that checking for overlaps between polygons is a computationally intensive process, as it must be
conducted for each new polygon with respect to all the existing polygons on the front. Therefore, the overlap checking
algorithm must be as efficient as possible. In this study, we have utilised four different algorithms for this purpose:

1. The simplest algorithm is the direct search algorithm (DSA), which sequentially checks the intersection of each edge
of one polygon with each edge of the other polygon.

2. The linear algorithm (LA), initially proposed by O’Rourke et al.35 and further enhanced by Han et al.,34 uses two ‘bugs’
to chase each other for determining the intersection points of two convex polygons. The detailed introduction of the
linear algorithm can be found in Han et al.34

3. The Minkowski difference algorithm (MDA) constructs the Minkowski difference of two convex polygons explicitly
first, and then checks whether the origin is in the corresponding Minkowski difference or not. It is straightforward to
use MDA for conducting overlap detection between convex particles.31

4. The Gilbert-Johnson-Keerthi (GJK) proposed by Gilbert et al.36 does not need to construct Minkowski difference of
two convex polygons explicitly, but check if the origin is enclosed in the Minkowski difference through iterations using
support points of the polygons. The detail of the GJK algorithm can be found in Feng and Tan32,33 and is also outlined
in Algorithm 5 for the completeness.

Algorithm 5. The GJK algorithm

In order to compare the performance of these four overlap-checking algorithms, a large number of packing cases with up
to 5 million convex polygons of different shapes are employed to examine their computational costs and the results are
depicted in Figure 12. The efficiency of these four algorithms is in this order: GJK>DSA>LA>MDA when the number
of vertices is lower than 5, and GJK>LA>DSA>MDA when the number is greater than 5. Obviously, GJK is the most
efficient, while MDA, which is independent of polygonal shapes, is the worst. Most importantly, the packing speed using
GJK is about 2 times faster than that of MDA. Thus, GJK is used to speed up the overlapping checking for new generated
polygons with the existing polygons on the front. Also note that the actual computational efficiency of each algorithm is
sensitive to the number of vertices of polygons.
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XIA et al. 17
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F I G U R E 12 Performance comparison for packing 5 million polygons using four different overlap checking algorithms.

F I G U R E 13 Rough contact detection between convex polygons using circumscribed disk.

Furthermore, prior to any overlap checking using GJK, a broader contact detection can be used to exclude those newly
generated polygons that cannot be in contact with the existing polygons, thereby further improving the performance of the
overlap check. As described in Section 3.1, the circumscribed disc is assigned to each polygon. So if the distance between
the centroid of two polygons is greater than the sum of the two radii of their circumscribed discs (i.e., |c1c2| > r1 + r2),
they can be excluded from further overlap checking, as shown in Figure 13.

3.5.2 The value of 𝜆l and 𝜆u

𝜆l and 𝜆u are the lower and upper bounds of that variable 𝜆 that controls the size of polygons near the EB. Thus, the value
of 𝜆u should be moderate. On the other hand, to avoid unwanted small polygons generated near the EB, if the scaling
coefficient of a new polygon is less than 𝜆l, the polygon should be abandoned. In the present study, 𝜆l = 𝜆min, 𝜆u = 𝜆max.
In this situation, all generated polygons in the domain, including those generated near the EB, are within the range [𝜆min,
𝜆max]. Other lower and upper bounds can also be chosen by users.
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18 XIA et al.

The complete procedure for generating convex noncircular particles in a complex domain with IB/EB using the closed
form is given in Algorithm 6.

Algorithm 6. The complete procedure for closed form with IB/EB

the domain NPmax

Output: The total number of generated polygons NP, and their positions and sizes (i.e. Pn(cn, n)) (n=1,…,

NP) 

1: Compute all polygons Pn(o, n) (n=1,…, NPmax) based on the reference polygon Pref using Eqs. (11) and (12) 

2: Discretise IB/EB into a set of connected segments as shown in Fig.6 

3: Form the initial front 

if (IB is not considered) then

Generate three contacting polygons in the centre of the domain as shown in Fig.7(a)

else 

Generate a array of smoothly placed polygons which conforms to the IB shape using Algorithm 3 as 

shown in Fig. 8(c) 

end

4: loop the active segments of the present front 

a. Select an active front and generate a new polygon Pn which is in contact with other two 

polygons/lines in the front using Algorithm 3

b. Check if the polygon at this position is near EB 

i. Find the closest EB line to the new polygon Pn to be generated 

ii. Compute the distance dn between the centroid of the polygon and the closest EB line 

iii. if (dn< urref) then

 Re-determine this polygon size and position using Algorithm 4 

 Check if the new polygon overlaps with other EB lines, if (overlap): GOTO  using the 

present overlap boundary line 

end

c. Check if the polygon at this position overlaps with any existing polygon on the front using Algorithm

5

if (no overlap): Accept the new polygon, and GOTO 4.a 

else: Reject the new polygon, update front as shown in Fig. 9, and GOTO 4.a

end 

until all segments in the front are inactive 

4 ADVANCING FRONT APPROACH: THE OPEN FORM

4.1 Packing first layers of polygons

The open form is different from the closed form as it generates polygons from the bottom of the boundary layer by layer
and from the left to right corner. A rectangular domain with four boundaries (left Bl, bottom Bb, right Br and top Bt) is
considered in this section as an example. The initial front is Bl → Bb → Br, and Bl → Bb is selected as the first active front.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7318 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [12/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



XIA et al. 19

As Bl and Bb are two lines, the first polygon P1 can be generated using the approach shown in Figure 4C in Section 2.2.
After P1 is generated, the front becomes Bl → P1 → Bb → Br. Then P1 → Bb is chosen as the next active front. The second
polygon P2, which is tangent both to the first polygon Pl and the boundary line Bb, can be generated using the approach
shown in Figure 4B in Section 2.2. Accordingly, the front is now updated as Bl → P1 → P2 → Bb → Br.

The last polygon in the first layer, for instance, polygon Pi as marked in brown in Figure 14A, should be in contact
with a previous polygon Pn and the bottom wall Bb, but is in overlap with the right wall Br. In this case, the polygon Pi
should be placed to touch Pn and the left wall Br, as the one marked in yellow in Figure 14A, to complete the first layer
of polygons. The corresponding front becomes Bl → P1 → P2 → · · ·→ Pi → Br and the bottom wall Bb has been removed
from the front.

However, the first layer generated in this way can cause the one-sided lifting problem as shown in Figures 14A
and 15, with the following two issues: (1) the particles near the right boundary will continue to grow in the subse-
quent packing steps, as shown in Figure 9B, which further increases the computing cost and decreases the packing
density; and (2) a potential discontinuity from the bottom corner of one side to the top corner of the other side may be
encountered in the packing of mono-sized polygons without rotation. A similar phenomenon has been reported in disc
packings.26

To overcome the problem, the following scheme is proposed. If a polygon Pn (cn, 𝜆n) is near the right boundary Br (see
Figure 14B), its size 𝜆 and position c should be re-determined by satisfying the following conditions:

⎧
⎪
⎨
⎪
⎩

o ∈ 𝜕 (Pe ⊖ Pn(c, 𝜆)) ≡ Pn touch Pe

d (Pn(c, 𝜆),Br) = 0 ≡ Pn touch Br, 𝜆 ∈ [𝜆l, 𝜆u]
d (Pn(c, 𝜆),Bb) = 0 ≡ Pn touch Bb

(19)

Equation (19) is similar to Equation (15), except that the polygon Pd is replaced by the right wall Br. Then Algorithm 4
can be used to determine the size and position of the polygon near the right boundary. After this treatment, the right-sided
lifting problem can be resolved as shown in Figures 14B and 15.

4.2 Packing subsequent layers of polygons

The second and third layers can be built upon the first layer following a similar procedure, as shown in Figure 15B,C.
However, each newly generated polygon must be checked for possible overlap with all existing polygons on the front.

(A) (B)

F I G U R E 14 Treatment of polygons near right boundary: (A) before treatment; (B) after treatment.
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20 XIA et al.

(A)

(B)

(C)

(D)

F I G U R E 15 Advancing front-open form.

The same four cases as described in Section 3.3 can occur, and the same actions must be taken, as shown in Figure 9.
Figure 15B,C also demonstrate that the number of polygons on the front is nearly the same as when using the proposed
algorithm to solve the one-sided lifting issue.

Successive layers can be placed in a similar fashion. It should be noted that this study takes the top and right
boundaries into account. When a polygon is near either boundary, its size and position need to be re-determined using
Algorithm 4. Specifically, after treatment of polygons near the right boundary, the packing densities with the final
assembly (Figure 15D) increases from 0.72 to 0.74. This indicates that the packing density can be further improved
through treatment. The one-sided lifting issue can create a ‘void’ or ‘hole’ in the domain, which reduces the packing
density.

Algorithm 7 outlines the complete procedure for generating convex noncircular particles in complex domains using
the open form with EB.
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XIA et al. 21

Algorithm 7. The complete procedure of the open form with EB
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22 XIA et al.

(A) (B)

(C) (D)

(E) (F)

F I G U R E 16 Closed form packing of convex polygons: (A) triangle; (B) rectangle; (C) pentagon; (D) hexagon; (E) heptagon; (F) mixed.

5 EXAMPLES

To demonstrate the effectiveness and versatility of the proposed approach, various particle assemblies have been generated
using the closed form and the open form on an Intel Core i5-8300H CPU 2.3 GHz laptop. The approach is programmed
using Fortran95 in an in-house code.

Figures 16 and 17 illustrate the packing examples for different polygons generated using the closed form and open
form respectively. The proposed approach is capable of generating various convex non-circular particle shapes including
tri-, quad-, pen-, hex-, hept-agonal and mixed shapes. The packing assemblies show smoothness and minimal gaps near
the EB, indicating that the proposed approach is robust and able to handle any type of convex non-circular particles.
The IB includes triangular, rectangular, horseshoe and circular shapes, while the EB includes rectangular, circular and
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XIA et al. 23

(A) (B)

(C) (D)

(E) (F)

F I G U R E 17 Open form packing of convex polygons: (A) triangle; (B) rectangle; (C) pentagon; (D) hexagon; (E) heptagon; (F) mixed.
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F I G U R E 18 Performance comparison for packing 1 million polygons: (A) computational cost; (B) packing density.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7318 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [12/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 XIA et al.

(A)

(B)

(C)

(D)

F I G U R E 19 Rectangular particle packings and contact statistics in four square domains: (A) 2016 particles; (B) 4007 particles; (C) 6007
particles; (D) 8007 particles.
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(A) (B)

F I G U R E 20 Closed form advancing front-generated packings in a unit square for two different scaling coefficients: (A) scaling
coefficient= 1.2; (B) scaling coefficient= 5.0.

super-elliptical shapes, demonstrating the versatility of the proposed approach to handle different packing domains with
either convex or concave interior cavity.

To assess the computational efficiency of the proposed approach, we measured the time required to pack 1 million
convex non-circular particles of different shapes into a rectangular domain, taking into account EB. In these simulations,
we limited the number of front segments checked during polygon generation to a maximum value of 10 for both forward
and backward checks, and the scaling coefficient was uniformly distributed between 1.0 and 1.2, while the particle rotation
ranged from 0 to 2π.

The results, presented in Figure 18A, show that although the open form algorithm is generally more complex to
programme, it is more efficient than the closed form algorithm. For instance, the open form approach generated 1 mil-
lion convex rectangles, pentagons, hexagons, heptagons, octagons, and mixed polygons in 3.89, 5.14, 5.59, 6.86, 7.11,
and 7.42 s, respectively, using an Intel Core i5-8300H CPU 2.3 GHz laptop. In contrast, Du et al.31 required 1 s to gen-
erate 1101 rectangles with an aspect ratio of 1 using MATLAB on an Intel Core i7-6700k CPU with 16 GB of RAM.
Remarkably, our approach generated 1 million rectangles with an aspect ratio of 1 in only 3.89 s, highlighting its superior
performance.

We also found that the computational cost is linearly proportional to the number of edges/vertices in a planar domain,
provided the number of polygons to be generated is fixed. Notably, the open form algorithm only required 7.11 s to generate
1 million convex octagons, demonstrating its effectiveness. Furthermore, our approach produced a higher packing density
between 0.72 and 0.80, as shown in Figure 18B. As the surface of a convex particle becomes more circular, a higher density
is achieved.

Figure 19 shows the packings of rectangular particles and contact statistics in four square domains. The coordination
number is the average number of contacts per particle. It can be seen that the generated packing assembles have almost
the same average coordinate number around 4.07, indicating the homogeneity of the packing. There is also a similar
particle orientation distribution.

The proposed algorithms can also handle particles with a wide range of size ratios. Figure 20 shows the packings of
polygons generated in a square by the closed form algorithm for two different scaling coefficients: 1.2 and 5.0. Tests also
indicate that the computation cost increased for a greater size ratio is negligible.

6 CONCLUSIONS

This work presents a Minkowski difference-based advancing front approach, with both a closed form and an open form,
for generating convex noncircular particles with arbitrary shapes in complex domains. The approach places new polygons
in contact with existing polygons/lines using the Minkowski difference, which considers both interior and exterior bound-
aries. To ensure that polygons generated near exterior boundaries are strictly tangent to those boundaries, the bisection
method is introduced.
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The efficiency of overlap checking between new and existing polygons using four different algorithms is compared,
with the Gilbert-Johnson-Keerthi (GJK) algorithm being the most efficient and the explicit construct Minkowski differ-
ence being the slowest. The GJK is about two times faster than the explicit construct Minkowski difference. During the
packing process using the open form, the one-sided lifting problem is identified and addressed after treating polygons
near the right boundary, which further improves computational efficiency and packing density.

Several numerical examples with various interior and exterior boundaries demonstrate the effectiveness of the pro-
posed approach, which can generate 1 million rectangles and octagons in just 3.89 and 7.11 s, respectively, on a laptop
with a 2.3 GHz processor. The results show that the proposed approach is highly efficient and robust and can achieve a
packing density between 0.72 and 0.80.

It should be noted that the proposed computational framework is limited to generating arbitrary convex particles.
However, it can be extended to packings of concave particles with two modifications: (1) When concave particles can be
decomposed into convex components, their Minkowski difference can be obtained as the union of individual differences
of the convex components; (2) The GJK algorithm is no longer valid for detecting contact states for concave particles, so
the DSA contact detection algorithm can be used instead. Additionally, this work is limited to two dimensions, and future
work will explore the extension to 3D.
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