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Abstract

Modelling the nonlinear dynamics of rotors supported by finite length journal bearings is of great im-

portance in various engineering applications. In this study, four-dimensional polynomial functions are

evaluated to represent the nonlinear hydrodynamic force based on a previously evaluated database.

These functions are then used to model the dynamics of flexible rotor/bearing systems. The quasi

statics and dynamics of rotor-bearing systems are investigated, and the results are compared with

the numerical solution obtained by solving the Reynolds equation at each time step. The findings

indicate that the current analysis yields favorable agreement with the direct solution of Reynolds

equation in both perturbation analysis from the equilibrium position and dynamic analysis. More-

over, the analysis reveals that the computational time required to solve the dynamics of rotor-bearing

systems is significantly lower than that of solving Reynolds equation at each time step to acquire the

bearing forces.
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1. Nomenclature

c Radial clearance in meters
ch Housing damping coefficient in Newton-seconds per meter
C̄H Dimensionless damping coefficient for bearing housing, C̄H = ch Ω c

W

e Eccentricity between the bearing and journal centers in meters
eu Eccentricity of the unbalance mass in meters
Fx, Fy Journal bearing forces in the directions of x and y respectively, in Newtons

F̄X , F̄Y The dimensionless components of bearing forces F̄X = Fx

W
= FX

W̄
, F̄Y = Fy

W
= FY

W̄

F̄U Dimensionless unbalance force amplitude defined as F̄U = mu eu Ω2

W

h Thickness of the oil-film in meters
H Dimensionless oil-film thickness, H = h

c

ki Housing and shaft stiffness constants i = h, s in Newtons per meter
K̄I Dimensionless housing and shaft stiffness K̄I =

ki c
W

m Total mass of the rotor m = md + 2mj in kilograms
mi Housing mass, disc mass and journal mass, i = h, d, j in kilograms
mu Unbalance mass in kilograms

M̄ The dimensionless rotor mass, given by M̄ = m c Ω2

W

p The pressure of the lubricating fluid film in Pascals

P Dimensionless fluid film pressure, given by P = p
6µΩ

(
c
R

)2
Pn Normalized dimensionless pressure defined as Pn = P√

(X+2Y ′)2+(2X′−Y )2

r The radius of the rotor in meters
R The radius of the bearing in meters

S Sommerfeld number, defined as S = µΩrL
πW

(
r
c

)2
t Time in seconds.
W Static load in Newtons.

W̄ Dimensionless static load, defined as W̄ = L/D
3π S

x, y Displacements of the journal center with respect to bearing housing
xi, yi Displacements of housing, disc, and journal centers i = h, d, j in meters

X, Y, X ′, Y ′ Dimensionless displacements and velocities of the journal center
with respect to bearing housing

XI , YI Dimensionless position of the housing, disc and journal centers I = H, D, J

X ′
I , Y

′
I , X

′′
I , Y

′′
I

Bearing housing disc and journal centers dimensionless velocities
and accelerations respectively, I = H,D, J .

z Axial coordinate in meters
Z Dimensionless location in axial direction Z = z

R

ε The ratio between the eccentricity and radial clearance ε = e/c
θ Attitude angle of the journal bearing, expressed in radians
µ Viscosity of the fluid film in the bearing, measured in Pa·s
ρ The density of the bearing fluid film in kg per cubic meter
τ Dimensionless time, defined as τ = Ωt
ϕ Circumferential coordinate in radians
Ω Rotational velocity of the journal, expressed in radians per second

Introduction

Bearing are essential machine components that used to minimize the friction between moving

parts and support loads, typically from a rotating shaft. The two broad categories of bearings are
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sliding contact bearings and rolling contact bearings. The selection of a specific type depends on the

application and design requirements. Rolling contact bearings can be categorized as either spherical

bearings or roller bearings, while sliding contact bearings can be classified into journal and thrust

bearings. Rolling bearings are commonly utilized in industrial applications due to their low starting

friction, smaller axial space requirement, lower maintenance and gradual failure. In contrast, journal

bearings are better suited for managing shocks and overloads compared to ball bearing.

In addition, journal bearings operate effectively at relatively high rotational speeds with low levels

of noise due to the lubricating fluid film that separates the rotating shaft and the journal bearing,

see for example, [1]. Another advantage of journal bearings is that the working fluid media may

acts as a lubricant, which makes it commonly used in pumps and hydraulic turbochargers for water

desalination plants [2, 3]. The scope of this study is on the dynamics of systems that involve journal

bearings.

In journal bearings, a radial clearance exists between the journal and the bearing, which is filled

with a thin layer of oil or other fluid, depending on the design. The pressure distribution in this

layer can be accurately described by a partial differential equation known as Reynolds equation [4].

However, finding an exact solution for this equation is challenging, as shown in previous studies [5].

To simplify the equation, some assumptions are made, and it can be reduced to a form that can

be analytically solved. The most common forms after this reduction are the short bearing form, as

shown in previous studies [6–9] and the long bearing form, as shown in previous studies [10, 11].

However, for finite length bearings, these simplifications are no longer valid, and numerical methods

such as finite difference and finite element methods [12–14], finite volume method [15], perturbation

methods [16], and meshless methods [17] are used to solve the Reynolds equation. Moreover, some

research has used computational fluid dynamics to model the fluid film between the rotor and the

journal bearing and to evaluate the bearing forces.

Accurate modelling the dynamics of a rotor supported by journal bearings requires the evaluation

of bearing forces at each timestep. Analytical solutions are available for the bearing forces of both

short and long bearings, enabling quick dynamic analysis. However, in the case of finite length

bearings or bearings with internal grooves, no analytical solution exists, and numerical methods such

as the finite element method (FEM) or finite difference method (FDM) must be used to evaluate

bearing forces at each dynamic timestep. This can be computationally expensive and memory-
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intensive, particularly when using fine meshes to solve the Reynolds equation. Moreover, if the

shaft is supported by unsymmetric bearing arrangements, bearing forces must be evaluated for each

bearing at each timestep, increasing the complexity. Hence, finding an accurate and efficient method

for evaluating journal bearing forces remains a challenging task, and is the main focus of this study.

The method of representing the journal bearing as equivalent stiffness and damping coefficients

is commonly used to simplify the problem for rotor bearing systems. This approach dates back

to the mid-twentieth century and is still used today, see studies (e.g., [18–22]). The process of

evaluating the bearing coefficients is challenging and requires solving the Reynolds equation, which

can be achieved through various techniques such as analytical [23, 24], finite difference [25–27], finite

element [28, 29], computational fluid dynamics [30], and experimental methods [31]. Someya, et

al. [32] even introduced data tables to simplify the process of evaluating bearing coefficients.

The dynamic analysis of rotor-bearing systems based on these coefficients is appropriate for speeds

below the threshold speed, beyond which a Hopf bifurcation occurs. At this point, the linear bearing

coefficient solution shows unstable responses that do not agree with experimental findings reported

by researchers such as Muszynska [33] and Deepak and Noah [34]. These studies demonstrated that

above the threshold speed, stable whirling is observed. As a result, researchers were motivated to

develop more accurate models that enable the evaluation of bearing responses at speeds above the

threshold.

Efforts to extend the validity of bearing solutions beyond the threshold speed have included

evaluating second order bearing coefficients [35–37]. Further analysis based on higher order bearing

coefficients was developed, see [24, 38, 39]. It has been found that solutions obtained using sec-

ond and higher order bearing coefficients have very similar responses to those derived using linear

bearing coefficients up to the threshold speed. At this speed, Hopf bifurcation occurs. Beyond the

critical speed, the solution does not exhibit divergence but instead manifests as a limit cycle solu-

tion. Furthermore, the classification of the Hopf bifurcation as either supercritical or subcritical can

be determined. However, this solution has limitations. The bearing coefficients are obtained using

perturbation methods and are accurate only in the proximity of the journal static equilibrium point.

When the rotor whirls in larger limit cycles, the bearing coefficients become inaccurate for evalu-

ating the bearing forces. In addition, it has been proved that the stiffness and damping equivalent

coefficients of a bearing undergo alterations when the applied static load undergoes variations. This
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factor restricts the comprehensive dynamic analysis of the system, confining it to specific static loads

and necessitating the consideration of multiple coefficients for each load scenario.

There have been numerous attempts to evaluate an approximate analytical methods for assessing

the hydrodynamic forces in journal bearings with finite length. As early as 1963, Fedor [40, 41]

developed an approximate analytical solution to evaluate the pressure distribution in journal bearing

while considering the finiteness of the bearing with incomplete oil film boundary conditions. In 1980,

Barrett, et al. [42] introduced a quick approximate method to evaluate the nonlinear response of

journal bearing, considering the finiteness of the bearing, by using correction factors based on the

analytical solution obtained from the short bearing theory. Hirani, et al. [43] combined the short and

long bearing theories to introduce an approximate closed-form pressure distribution for finite-length

bearings. Bastani and de Queiroz [44] developed a correction function for the infinitely short bearing

model and the infinitely long bearing model to represent the forces of finite-length bearings.

Wang, et al. [45] utilized the principle of variable separation to propose an approximate analytical

solution for journal bearings with finite length. They found that their model results agreed well with

those from the finite difference method. Zhang, et al. [46] introduced a semi-analytical solution to

evaluate the nonlinear fluid film forces of hydrodynamic journal bearings with two axial grooves.

Vignolo, et al. [47] used a perturbation analysis to evaluate an approximate analytical solution for

Reynolds equation. They proposed that the zero-order analysis is valid for short bearings and the

first-order analysis is valid for finite length bearing up to L/D ∈ [1/8− 1/4].

Gong, et al. [48] obtained an approximate analytical solution for the pressure distribution in the

bearing clearance using a regular perturbation method, and they showed the range of applicability

of their results compared with the numerical results. Zhang, et al. [49] introduced a method for

evaluating the oil film pressure distribution for finite length journal bearings based on the variational

principle. Dyk, et al. [21] used approximate analytical solutions to Reynolds equation to explore the

stability of finite-length journal bearings.

In the last two decades, another approach for evaluating bearing forces has gained attention,

which involves using a database. This technique has been investigated by several researchers, in-

cluding Chasalevris, et al. [50], Chen and Tseng [51], and Wang and Khonsari [52]. The method

involves generating a database of bearing forces corresponding to various ranges of bearing parame-

ters. The resulting database can be used to quickly and accurately predict the bearing forces using
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an interpolation method.

Obtaining a function that accurately fits a large set of response data is a fundamental task in

dynamical analysis. Linear or polynomial regressions are commonly used to achieve this goal, where

a single dependent variable is considered [53, 54]. However, when the number of dependent variables

increases, the problem becomes more complex and is referred to as a multivariate regression problem

[55].

Higher-order multivariate polynomial regression has been successfully employed in various ap-

plications, such as predicting human affective states from facial, physiological, and central nervous

system data [56]. Experimental results have shown that the multivariate polynomial regression

method is efficient and can achieve prediction accuracies with RMS error 2%. In another applica-

tion, Su, et al. [57] utilized multivariate polynomial regression to estimate the compressive strength

of ground granulated blast furnace slag. Their results showed that the multivariate polynomial re-

gression model accurately predicted the compressive strength with an error rate of less than 10%.

To construct a high-order polynomial surrogate model, Jinglai, et al. [58] proposed an incremental

modeling approach that employs the zeros of Chebyshev polynomials. Their method uses a space-

filling scheme to generate an initial set of samples and incrementally selects additional samples while

updating the polynomial order. This approach has been applied to two engineering applications. In

summary, multivariate polynomial regression is a powerful tool that can be used to accurately model

complex relationships between multiple predictor variables and a response variable in various fields.

The stability of rotors supported by journal bearings is a critical consideration in many mechanical

applications. Friswell, et al. [59] employed a univariate polynomial fitting approach to directly esti-

mate critical speeds. The aforementioned approach involves determining the polynomial coefficients

by minimizing the residual discrepancies between the bearing dynamic stiffness obtained through hy-

drodynamic theory or experimental procedures and the polynomial expression. Miraskari, et al. [35]

conducted a study on the dynamics of flexible rotors mounted on two identical journal bearings. The

loading conditions in their study allowed for symmetric force distributions in both bearings. The au-

thors employed four different methods to obtain the rotor-bearing solution, including direct solution

of Reynolds equation using finite difference, short bearing analysis, linear first-order bearing stiffness

and damping coefficients, and second-order stiffness and damping bearing coefficients. Their results

showed that below the threshold speed, the four methods produced well-matched results, which is
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consistent with the findings of Sayed and El-Sayed [36]. El-Sayed and Sayed [38] studied the nonlin-

ear dynamics and continuation analysis of flexible rotors based on third-order bearing stiffness and

damping coefficients. They developed a method to allow the use of continuation analysis while using

bearing coefficients.

The stability of the rotor-bearing model was analyzed by Smoĺık, et al. [60] using four different

methods to evaluate the nonlinear hydrodynamic forces: the finite element method, finite difference

method, infinitely short bearing, and an approximate solution derived by modifying the short bearing

theory. Sayed and El-Sayed [61] employed the MATCONT toolbox to investigate the stability,

bifurcation, and limit cycle continuation of rotor bearing systems. Anastasopoulos and Chasalevris

[62] investigated the bifurcation analysis of rotor bearing systems with a more realistic geometry

profile for the journal bearings. They used numerical continuation of the solution branches employing

both MATCONT and AUTO-07P continuation codes.

Recent research in the field of journal bearings has explored various factors that affect their per-

formance, including bearing misalignment, fluid turbulence, magnetorheological fluids, and surface

irregularities. Feng et al. [63] conducted a study on water lubricated journal bearings, investigat-

ing both the static and dynamic behavior. They considered the impact of fluid turbulence, bearing

thermohydrodynamics, and misalignment effects. Perturbation analysis was employed to evaluate

the bearing coefficients in their study. Sahu et al.[64] focused on the influence of misalignment

and surface irregularities in magnetorheological fluid journal bearings. They utilized the modified

Reynolds equation to evaluate the bearing coefficients in their analysis. Xiang et al.[65] investigated

the performance of water lubricated journal bearings under the coupling of fluid, solid, and ther-

mal conditions. They proposed a method to enhance the wear resistance and improve the contact

performance of the bearing. Their numerical results indicated that the profile modification method

is strongly influenced by design parameters and operating conditions. Cai et al. [66] introduced

a mathematical model for coupled thrust and journal bearings lubricated with low viscosity fluids.

They developed a five-degree-of-freedom rotor model to describe the dynamic behavior of the coupled

bearing system. They validated the steady-state response under different operating conditions using

published experimental data. In the current research, our focus is solely on traditional bearings with-

out complicating factors. This allows for the clear introduction of the present method that utilizes

polynomial functions to represent the nonlinear bearing forces.
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The precise and rapid evaluation of the nonlinear pressure distribution within journal bearings is

essential, particularly for the dynamic analysis of mechanical systems incorporating such bearings.

Numerous methodologies have been proposed to approximate the bearing forces; however, several of

these methods exhibit noteworthy limitations. While certain approaches exhibit satisfactory approx-

imation capabilities under both static and dynamic load conditions, others have solely been validated

in static scenarios. Among the various techniques, the Database method emerges as one that yields

favorable outcomes for dynamic analyses, as presented by Chasalevris et al. [50]. To this end, the

present study aims to improve the database method by utilizing a multivariable regression to convert

the database into a four-dimensional polynomial space [67]. The resulting four-dimensional poly-

nomial functions can be seamlessly integrated into the equations of motion for dynamical systems.

This facilitates the application of dynamical analysis tools such as Hopf bifurcation analysis and

numerical continuation, thereby enabling a better understanding of the dynamical system. The eval-

uated functions are tested by investigating the nonlinear dynamics of a rotor supported in journal

bearings. After this introduction, Section 2 provides a detailed outline of the methodology employed

to solve the Reynolds equation. Following this, Section 3 presents the proposed dynamical model.

The verification results are then presented in Section 4, followed by a comprehensive discussion of

the proposed model in Section 5. Finally, Section 6 summarizes the key findings obtained from the

analysis and presents the concluding remarks.

2. Analysis of Finite Length Journal Bearing

The forces generated by rotor dynamics are transmitted from the rotor to the structure via the

bearings. In the case of journal bearings, the pressure distribution of the fluid film between the rotor

and the bearings is influenced by both the rotational speed and the applied forces. The evaluation

of bearing forces involves integrating the pressure distribution in the fluid film over the surface. The

equation that describes the pressure distribution in journal bearings is known as Reynolds equation,

which is shown in Eq. (1). Figure 1 depicts the schematic for a full circular journal bearing model,

where OB, OJ , and e represent the bearing and journal centers and eccentricity between them,

respectively. The dynamic bearing forces are obtained by utilizing a full circular journal bearing

model. R and r are the bearing and journal radii, and the radial clearance between the journal and

bearing is c. ϕ and θ represent the circumference coordinate and the journal bearing angle of attitude

respectively. Ω denotes the rotational velocity of the journal, while h signifies the thickness of the
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oil film.

Figure 1: Full circular journal bearing model (a) Coordinates of the journal bearing (b) mesh of journal bearing.

The fluid film Reynolds equation Eq. (1) describes the pressure distribution in the fluid film

between a rotating journal and its surrounding bearing. The fluid is assumed to be incompressible,

isoviscous, and Newtonian.

1

r2
∂

∂ϕ

(
ρh3

12µ

∂p

∂ϕ

)
+

∂

∂z

(
ρh3

12µ

∂p

∂z

)
=

Ω

2

∂ (ρh)

∂ϕ
+ ρ

∂h

∂t
, (1)

where the symbols p, µ, ρ denote the pressure function, viscosity, and density, respectively, while z

and t represent the axial coordinate and time, respectively.

The dimensionless form of Eq. (1) is expressed as follows,

∂

∂ϕ

(
H3∂P

∂ϕ

)
+

∂

∂Z

(
H3∂P

∂Z

)
=

∂H

∂ϕ
+ 2

∂H

∂τ
, (2)

where H represents the dimensionless oil-film thickness, P represents the dimensionless pressure, Z

represents the dimensionless axial location, and τ represents the dimensionless time. These variables

are related to the original physical variables as follows:
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H = h
c
, P = p

6µΩ

(
c
R

)2
, Z = z

R
and τ = Ωt .

Assuming no misalignment in the journal bearing, the oil-film thickness in dimensionless form H

can be defined as

H = 1 + ε cos (ϕ− θ) = 1 +X sinϕ+ Y cosϕ, (3)

where the dimensionless displacements of the journal center with respect to the bearing housing are

denoted asX = x
c
, Y = y

c
. The derivatives of the oil film thickness with respect to the circumferential

coordinate ϕ and the dimensionless time τ can be expressed as follows,

∂H

∂ϕ
= X cosϕ− Y sinϕ, (4)

∂H

∂τ
= X ′ sinϕ+ Y ′ cosϕ. (5)

The Reynolds equation can be written by substituting Eqs. (4) and (5) into Eq. (2) as follows:

∂

∂ϕ

(
H3∂P

∂ϕ

)
+

∂

∂Z

(
H3∂P

∂Z

)
= (X + 2Y ′) cosϕ+ (2X ′ − Y ) sinϕ. (6)

Equation (6) reveals that the pressure distribution is dependent on the position of the journal

center, represented by X and Y , as well as its velocity, denoted as (X ′, Y ′). While the dimensionless

journal center positions X and Y are theoretically bounded to a range between -1 and 1, the velocity

components X ′ and Y ′ are unrestricted and can take values between −∞ and ∞. However, to

construct a comprehensive database for bearing forces, defining velocity subdivisions for X ′ and Y ′

is not feasible because their maximum values are undefined. In order to address this issue, Eq. (6)

is divided by the magnitude of the right-hand side of Eq. (6), given by

√
(X + 2Y ′)2 + (2X ′ − Y )

2
.

By doing so, Eq. (6) can be expressed as:

∂

∂ϕ

(
H3∂Pn

∂ϕ

)
+

∂

∂Z

(
H3∂Pn

∂Z

)
= A3 cosϕ+ A4 sinϕ. (7)

10



and

Pn =
P√

(X + 2Y ′)2 + (2X ′ − Y )
2

A1 = X,

A2 = Y,

A3 =
X + 2Y ′√

(X + 2Y ′)2 + (2X ′ − Y )
2
,

A4 =
2X ′ − Y√

(X + 2Y ′)2 + (2X ′ − Y )
2
,

(8)

The finite difference method (FDM) is utilized to numerically solve Eq. (7) by discretizing the

bearing surface into M×N elements, as depicted in Figure 1-b. At this point it should be noted that

the Reynolds boundary conditions are considered. In Eq. (7), Pn depends on , A1 = X, A2 = Y ,

A3, and A4, all of which fall within the interval [−1, 1]. From Equation (8), it is evident that there

exists a relationship between A3 and A4, which can be expressed as follows:

A4 = ±(1− A2
3)

0.5 (9)

The nonlinear bearing force terms FnX
and FnY

can be calculated by integrating the pressure

distribution function Pn over the journal bearing surface as follows:

FnX
=

∫ L
R

0

∫ ϕ2

ϕ0

−Pn sinϕ dϕ dZ, (10)

FnY
=

∫ L
R

0

∫ ϕ2

ϕ0

−Pn cosϕ dϕ dZ, (11)

where ϕ0 and ϕ2 are the integration limits as shown in Fig. 1(b).

A discretized four-dimensional (4D) database is constructed utilizing the finite difference method

(FDM) to solve Equation (7) and evaluate the bearing force terms FnX
and FnY

. The construction of

the database involves the discretization of the eccentricity ratio range, denoted as ε ∈ [0 : 0.85], into

43 points with a step size of 0.02. Additionally, the bearing center angle, represented by θ ∈ [0 : 2π],

is discretized into 40 points. Moreover, the parameter A3 ∈ [−1 : 1] is divided into 21 points. For

each value of A3, the corresponding two values of A4 are obtained using Equation (9). This procedure

yields a total of 43× 40× 21× 2 = 72,240 data points within the database. The parameters A1 = X
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and A2 = Y can be determined through coordinate transformation, employing the variables ε and θ.

A multivariable polynomial regression is used to fit an equation to the present database. Then,

the force components can be expressed in the following form:

FnX℘
(A1, A2, A3, A4) =β0 +

4∑
j1=1

βj1Aj1 +
4∑

j1=1

4∑
j2=j1

βj1j2Aj1Aj2+

. . .+
4∑

j1=1

4∑
j2=j1

· · ·
4∑

j℘=j℘−1

βj1j2···j℘Aj1Aj2 · · ·Aj℘

(12)

FnY ℘
(A1, A2, A3, A4) =β0 +

4∑
j1=1

βj1Aj1 +
4∑

j1=1

4∑
j2=j1

βj1j2Aj1Aj2+

. . .+
4∑

j1=1

4∑
j2=j1

· · ·
4∑

j℘=j℘−1

βj1j2···j℘Aj1Aj2 · · ·Aj℘

(13)

where, ℘ represents the highest polynomial order. The polynomial constants β of Eqs.(12) and (13)

depend on the supplied data.

Assuming that Ai1, Ai2, Ai3, Ai4 are the inputs for the database test points i, and zi is the

corresponding response, the obtained data can be written as

zi = FnX
(Ai1, Ai2, Ai3, Ai4) + εi, i = 1, · · · , N, (14)

where the notation εi represents the uncertainty in evaluating a given point. In order to present the

current data in matrix form as A which can be presented as follows

A(i, :) = (1, Ai1, Ai2, Ai3, Ai4;A
2
i1, Ai1Ai2, · · · , A2

i4; · · · ;A
℘
i1, A

℘−1
i1 Ai2, · · · , A℘

i4) (15)

where the number of rows in A matrix is N and the corresponding β vector can be written as

βT = (β0, β1, β2, β3, β4; β11, β12, · · · , β44; · · · ; β1[℘]
, β1[℘−1]2, · · · , β4[℘]

), (16)

where the subscript β1[℘]
at ℘ = 3 refers to β111 and β4[℘]

at ℘ = 5 indicates β44444. It is worth

mentioning that the semicolons used in Eqs. (15) and (16) are merely for organizational purposes

and do not have any mathematical significance.
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The proposed approach employs a matrix equation that establishes a relationship between the

previously calculated data points and the corresponding estimated points obtained through a poly-

nomial function,

z = Aβ + ε, (17)

the vector z denotes the force data values for different inputs, presented in the form of a matrix A.

The least square method is utilized to obtain a particular vector b of β that minimizes the sum

of squared deviations. This is achieved by minimizing the following equation:

N∑
i=1

[zi − FnX
(Ai1, Ai2, Ai3, Ai4)]

2 = (z−Aβ)T(z−Aβ). (18)

By differentiating the right-hand side of Equation (18) with respect to β and equating the result

with zero, a vector b can be obtained as a sufficient condition using the following equation:

b = (ATA)−1ATz (19)

During the present work, multiple polynomial powers were tested to process the data and evaluate

a 4D polynomial fit function. It was observed that degrees higher than 16 provide accurate results,

as demonstrated in Section 4.3. However, it should be noted that the resulting polynomial equations

can be quite large, and in this case, the size of the vector b is (4845 × 1), which translates to

approximately tens of pages of written material.

The resulting 4D polynomial fit equation is utilized to evaluate the bearing forces as a function of

the parameters A1, A2, A3, and A4. Specifically, the bearing forces in terms of the four-dimensional

fit functions FX and FY are evaluated as follows.

FX = FnX

√
(X + 2Y ′)2 + (2X ′ − Y )

2
, (20)

FY = FnY

√
(X + 2Y ′)2 + (2X ′ − Y )

2
, (21)

A flowchart outlining the algorithm used to obtain the journal bearing nonlinear forces is presented

in Figure 2. In this study, the algorithm is referred to as the Four-Variable Polynomial Fit (FVP)

method, and it involves fitting a four-dimensional polynomial function to the data obtained through

the discretization of the bearing forces.
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Define input bearing data such as L/D,
groove angle and mesh size M ×N .

The bearing 4D domain is descritized to cover the full range
of journal center position (A1 = X, A2 = Y ) and the terms
A3(X, Y, X ′, Y ′), A4(X, Y, X ′, Y ′) , considering that the
range of each of these variables A1 = X, A2 = Y, A3, A4 ∈
[−1, 1].

Make the following calculations at each point:
• Discretize the bearing surface into M ×N elements.
• Calculate H using Eq. (3), then integrate Eq. (7) until satisf-

ing
∑

M

∑
N(Pn

k
i,j−Pn

k−1
i,j )

Pn
k
i,j

< ϵ.

• During the iteration if Pn < 0, set Pn = 0.
• Calculate the normalized bearing forces FnX

(A1, A2, A3, A4)
and FnY

(A1, A2, A3, A4) using Eqs. (10), (11).

Construct a database for the journal normalized bearing forces
FnX

and FnY
as a function of bearing center locations X,Y , and

the terms A3(X,Y,X ′, Y ′), A4(X, Y, X ′, Y ′). The size of the
database = No. of points for journal center locations × No. of
A3 points × 2.

Four-variable regression algorithm is used to construct
polynomial functions for the normalized bearing forces
FnX

(A1, A2, A3, A4) and FnY
(A1, A2, A3, A4) .

Evaluate the bearing forces using Eqs. (20), (21).

Figure 2: Flowchart outlining the steps used in the evaluation of the journal bearing nonlinear forces using the FVP
method

3. The dynamical model of the example machine

This section examines the dynamic behavior of an elastic rotor supported on elastic bearing hous-

ings, as illustrated in Figure 3. The system comprises housing mass mh, disc mass md, unbalanced

mass of the disc mu, and journal mass mj. The total mass of the rotor is m = md+2mj. The housing

and shaft stiffness constants are denoted by kh and ks, respectively. The unbalanced mass radius is

represented by eu, and ch is the housing damping coefficient. The center of the journal is denoted as

oj (xj, yj), while xh and yh are the housing displacements and xd and yd are the disc displacements.

The journal bearing forces in Cartesian coordinates are Fx and Fy. The static load applied on the

disc is 2W , and unbalanced dynamic force is also considered. Gyroscopic effects are neglected in the
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current model. The governing equations for the current rotor bearing model can be expressed as:

Figure 3: (a) Flexible rotor and disc model which is mounted on a couple of symmetrically loaded journal bearings. (b)
Section view through the journal bearings. (c) Local view for the rotating disc. (d) representation for the coordinates
used in the present Rotor-bearing system.

2 mj ẍj − ks (xd − xj) + 2Fx = 0,

2 mj ÿj − ks (yd − yj) + 2Fy = 0,

md ẍd + ks (xd − xj) = −mueuΩ
2 sin (ωt),

mdÿd + ks (yd − yj) = 2W −mueuΩ
2 cos (ωt),

mhẍh + chẋh + kh xh = Fx,

mh ÿh + chẏh + kh yh = Fy.

(22)
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Table 1: Dimensionless parameters for the machine example

Parameter M̄J M̄D M̄H K̄H C̄H

0.1 M̄ 0.8M̄ M̄ 100 2

The relatively simple rotor model in this study serves to emphasize the effectiveness of the pro-

posed bearing model. However, it should be noted that the approach can be readily applied to more

complex shaft models, such as those modeled using finite element analysis.

To facilitate analysis, the governing equations in Eq. (22) can be transformed into a dimensionless

form using the following conversions: XI = xi

c
, YI = yi

c
, X ′

I = ẋI

Ωc
, Y ′

I = ẏI
Ωc
, X ′′

I = ẍI

Ω2c
, Y ′′

I =

ÿI
Ω2c

, M̄I =
mi c Ω2

W
, where i = h, j, d represents the housing, journal, and disc, respectively. The

dimensionless stiffness constants are given by K̄I = ki c
W

, where i = s, h for the shaft and housing,

respectively. The dimensionless damping coefficient is denoted by C̄H = ch Ω c
W

, and the dimensionless

unbalance force is represented by F̄u = mu eu Ω2

W
. The rotor dynamic equations can then be expressed

in dimensionless form as follows:

2M̄JX
′′
J + K̄S (XJ −XD) = −2F̄X ,

2M̄JY
′′
J + K̄S (YJ − YD) = −2F̄Y ,

M̄DX
′′
D + K̄S (XD −XJ) = −F̄u sin (τ),

M̄DY
′′
D + K̄S (YD −XJ) = 2− F̄u cos (τ),

M̄HX
′′
H + C̄HX

′
H + K̄HXH = F̄X ,

M̄HY
′′
H + C̄HY

′
H + K̄HYH = F̄Y ,

(23)

The dimensionless bearing forces in the x and y directions are defined as F̄X = Fx

W
= FX

W̄
and

F̄Y = Fy

W
= FY

W̄
, respectively, where FX and FY are computed using Eqs. (20) and (21), with

X = XJ −XH , Y = YJ − YH , X
′ = X ′

J −X ′
H , and Y ′ = Y ′

J − Y ′
H . The load on the bearing and the

dimensionless load are denoted by W and W̄ , respectively, with W̄ = L/D
3π S

. The dimensionless mass

of the rotor (disc and shaft) is defined as M̄ = m c Ω2

W
= M̄D + 2M̄J . Table 1 shows the parameters

utilized in this model.

Equation (23) can be written in vector form

x′ = f
(
x, M̄

)
, (24)
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where the detailed equations are given by

x′
1 = x2 ,

x′
2 = −K̄S (x1 − x5)

2M̄J

− F̄X

M̄J

,

x′
3 = x4 ,

x′
4 = −K̄S (x3 − x7)

2M̄J

− F̄Y

M̄J

,

x′
5 = x6,

x′
6 =

K̄S (x1 − x5)− F̄u sin (τ)

M̄D

,

x′
7 = x8,

x′
8 =

2 + K̄S (x3 − x7)− F̄u cos (τ)

M̄D

,

x′
9 = x10,

x′
10 =

F̄X−C̄Hx10 − K̄Hx9

M̄H

,

x′
11 = x12,

x′
12 =

F̄Y−C̄Hx12 − K̄Hx11

M̄H

.

(25)

where

[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

]
=[

XJ X ′
J YJ Y ′

J XD X ′
D YD Y ′

D XH X ′
H YH Y ′

H

]
.

4. Model validation

This section aims to validate the model and present the corresponding results. The model valida-

tion includes comparisons with previous literature, an examination of the accuracy of the nonlinear

bearing forces obtained using the FVP analysis, and an investigation of the optimal FVP polynomial

degree to accurately predict the nonlinear bearing forces.

4.1. FVP results comparison with previous literature

In this section, we present a validation of the FVP method used to evaluate the pressure and forces

by comparing our results with those of previous literature. The model validation is divided into four

parts. Firstly, we compare our results with those of Qiu [68] and Lund and Thomsen [69] by selecting
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Figure 4: Comparison between the present FVP method in evaluating the equilibrium point with the work of both
Qiu[68] and Lund and Thomsen [69], for 20◦ grooved journal bearing and slenderness ratio of 1.

the model parameters as (K̄S = 10000, K̄H = 10000, C̄H = 0, M̄H = 0.001M̄, M̄J = 0.001M̄, and

M̄ is the selected small value M̄ = 1) to simulate a rigid rotor model. Additionally, FVP functions

are prepared for 20◦ grooved journal bearing and slenderness ratio of 1. The dynamical model is

allowed to run until reaching the equilibrium point at several values of the Sommerfeld number.

The results are plotted against those of Qiu and Lund and Thomsen in Figure 4. Moreover, the

equilibrium point can be obtained by equating Fx = 0 and Fy = W at several Sommerfeld numbers

without using the dynamic model.

Secondly, the present threshold dimesionless mass results are compared with those of Tieu and

Qiu [70] and Lund [69] for 20◦ grooved journal bearing and slenderness ratio of 1 by selecting the

model parameters to represent a rigid rotor model using (K̄S = 10000, K̄H = 10000, C̄H = 0, M̄H =

0.001 M̄, M̄J = 0.001 M̄). It should be noted that the threshold dimensionless mass M̄th =
m c Ω2

th

W

is corresponding to the threshold speed Ωth. The threshold dimensionless mass obtained using the

FVP analysis is compared with that of Lund and Thomsen [69] and Tieu and Qiu [70], and excellent

matching results are obtained as shown in Figure 5.

Thirdly, the results obtained from the FVP analysis are used to recreate the trajectory of journal

motion as presented by Tieu and Qiu [70]. This is accomplished by considering three dimensionless

masses M̄ of 2×1.232 , 2×2.692, and 2×3.282, as depicted in Figure 6(a), (b) and (c) respectively.

The first case is below the threshold speed, and the trajectory reaches the equilibrium point, while the
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Figure 5: Comparison between the present FVP method in evaluating the threshold dimensionless mass with the work
of Tieu and Qiu [70] Lund and Thomsen [69], for 20◦ grooved journal bearing and slenderness ratio of 1.

other two cases are above the threshold speed, and the rotor trajectory ends up in a limit cycle. The

reference model parameters (K̄S = 10000, K̄H = 10000, C̄H = 0; M̄H = 0.001 M̄, M̄J = 0.001 M̄);

are used to represent the model, and the initial conditions of XJ = XD = XH = YJ = YD = YH = 0

are set. The present rotor trajectories are in excellent agreement with those of Tieu and Qiu, as

illustrated in Figure 6.

Finally, the obtained nonlinear polynomial force functions from the FVP equations (20-21) are

utilized directly to determine the bearing stiffness and damping coefficients. The bearing coefficients

Figure 6: Rotor trajectory using the present FVP method to recreate the results of Tieu and Qiu [70], for ungrooved
journal bearing and slenderness ratio of 1, at three different dimensionless mass M̄ (a)2×1.232,(b) 2×2.692, (c)2×3.282
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Figure 7: (color online) Variation of journal bearing stiffness and damping coefficients with Sommerfeld number.
The solid lines depict the results obtained by differentiating equations (20-21), while the filled markers represent the
findings of Qiu [68], and the unfilled markers correspond to the results of Lund and Thomson [69].

are calculated by differentiating the nonlinear forces of the bearing described in equations (20-21).

Subsequently, these computed values are compared to the results obtained from the prior works of

Qiu [68] and Lund and Thomson [69]. The comparison results are presented in Figure 7, which serves

as an indicator of the accuracy achieved by the FVP polynomial function in determining the bearing

stiffness and damping coefficients.

4.2. FVP results validation using perturbation analysis

In this section, the validity of the proposed approach is investigated by examining its ability to

accurately evaluate nonlinear bearing forces resulting from perturbations in the rotor bearing system.

Three cases of perturbations with increasing magnitudes are considered, and the resulting nonlinear

forces are evaluated using three different approaches: integrating the Reynolds nonlinear equation

(FRe), third order bearing coefficients (FC3), and four variable polynomial fitting (FVP).

At this particular point in the discussion, it is crucial to clarify that the process of determining

perturbed forces using the Reynolds nonlinear equation (FRe) involves the application of perturba-

tions, followed by the evaluation of the pressure distribution in the oil film based on the updated

position. This pressure is then integrated over the bearing area to obtain the updated force due to the

perturbation. In contrast, evaluating the bearing force using third order bearing coefficients (FC3)
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necessitates the use of infinitesimal perturbations to initially calculate the bearing’s first, second,

and third order coefficients in the vicinity of the equilibrium point. Once the bearing coefficients

have been determined, they can be used to calculate the force resulting from any perturbation from

the equilibrium point. For further elaboration, please refer to [38].

The magnitudes of the perturbations applied in the considered cases are as follows: case I involves

small perturbations, with magnitudes of δX = δY = 0.01 and δX ′ = δY ′ = 0.01. In case II, the

perturbations are of larger magnitude, with δX = δY = 0.1 and δX ′ = δY ′ = 0.01. Finally, case III

involves the largest perturbations among the considered cases, with magnitudes of δX = δY = 0.1

and δX ′ = δY ′ = 0.2. The x and y force components are obtained for each approach, and the results

are plotted in Figure 8 over the possible range of Sommerfeld numbers.

For small perturbations (case I), the three methods yield similar results in evaluating the bearing

force components. However, as the perturbation values increase in cases II and III (shown in the

second and third rows of Figure 8), the FVP results closely match the FRe solution. In contrast, the

FC3 approach shows significant differences in the evaluated forces compared to both the FVP and

FRe methods for cases II and III.

The results also indicate a slight deviation between the FVP and FRe solutions at small values of

Sommerfeld number less than 0.1. In conclusion, the proposed FVP method is found to be accurate

in evaluating the bearing nonlinear forces even for large perturbations, and may be considered as a

suitable replacement to the FRe method.
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Figure 8: Components of perturbed nonlinear bearing forces F̄X , F̄Y from the equilibrium position versus Sommerfeld
number. The forces are evaluated using the direct solution of Reynolds equation (solid line), the proposed FVP method
(dashed line) and the third order bearing coefficient FC3 method (dotted line). The perturbation values are I (top
row): (δX = δY = 0.01, δX ′ = δY ′ = 0.01), II (middle row): (δX = δY = 0.1, δX ′ = δY ′ = 0.01) and III (bottom
row): (δX = δY = 0.1, δX ′ = δY ′ = 0.2)

4.3. Effect of the order of multivariate polynomial

This section investigates the efficacy of multivariate polynomial fitting functions in estimating

nonlinear bearing forces. To this end, the bearing forces resulting from three distinct perturbations

are evaluated using the FRe method and compared with the forces obtained from the correspond-

ing FVP functions. Five different polynomial function powers of order 8, 12, 16, 18 and 20 are

employed for the FVP functions, as illustrated in Fig. 9. Furthermore, three different perturba-
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tions, labeled (I)(δX = δY = 0.01, δX ′ = δY ′ = 0.01) , (II)(δX = δY = 0.1, δX ′ = δY ′ = 0.01), and

(III)(δX = δY = 0.1, δX ′ = δY ′ = 0.2), are utilized for the comparison, with varying magnitudes of

perturbation.

Our findings indicate that, in all investigated cases, the multivariate polynomial fitting function

of order 16 and higher yields accurate estimates of nonlinear forces in comparison with the force

results from solving Reynolds equation. Therefore, we adopt the use of the multivariate polynomial

of power 16 to estimate bearing forces in the subsequent analyses of this work.
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Figure 9: (color online) Effect of polynomial orders on the estimated polynomials forces resulted
from a perturbations of (I)(δX = δY = 0.01, δX ′ = δY ′ = 0.01), (II)(δX = δY = 0.1, δX ′ = δY ′ = 0.01), (III)
(δX = δY = 0.1, δX ′ = δY ′ = 0.2).
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4.4. Effect of database density

Increasing the density of the database generally leads to an increase in fitting accuracy. However,

this also results in an increase in the time required to build the database as well as the memory and

time required for the regression analysis to construct the polynomial fitting function. In this section,

we investigate the effect of database density on multivariate polynomial regression by utilizing three

different densities, namely (43 × 40 × 21 × 2), (22 × 20 × 21 × 2), and (22 × 20 × 11 × 2), to

evaluate the polynomial function. The obtained functions from the different databases are used

in perturbation analysis to compare with the results obtained directly from the Reynolds function.

Figure 10 illustrates the accuracy of the obtained functions in evaluating bearing forces for three

different perturbation ranges, namely small perturbation (I) (δX = δY = 0.01, δX ′ = δY ′ = 0.01) to

large perturbation (III) (δX = δY = 0.1, δX ′ = δY ′ = 0.2).
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Figure 10: (color online) Effect of database density on the estimated polynomials forces resulted
from a perturbations of (I)(δX = δY = 0.01, δX ′ = δY ′ = 0.01), (II)(δX = δY = 0.1, δX ′ = δY ′ = 0.01), (III)
(δX = δY = 0.1, δX ′ = δY ′ = 0.2).

The findings depicted in the figure demonstrate the significant impact of database density on the

resulting polynomial function. As can be observed from the figure, the function derived from the

sparser mesh density of (22× 20× 11× 2) yields the worst results. On the other hand, the function

derived from mesh density (22× 20× 21× 2) shows an improvement in the results compared to the

sparser function. Notably, the results derived from the highest density mesh of (43 × 40 × 21 × 2)

closely resemble those obtained from Reynolds equation. Therefore, it is worth mentioning that

throughout the remainder of this paper, the database is constructed based on a mesh density of

(43× 40× 21× 2).
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5. Present Model results

This section utilizes the FVP-derived forces to determine the threshold speed of the example

rotor bearing model. Continuation analysis is then performed to investigate the dynamics of the

rotor bearing model and the bifurcations that arise from changes in system parameters. Several

time response cases are presented to verify the model results, and the effect of unbalanced forces is

analyzed.

5.1. Analysis of the stability of the rotor bearing system

This section aims to analyze the stability of the rotor bearing system by obtaining the dimen-

sionless threshold speeds. To achieve this, an ungrooved journal bearing with a slenderness ratio of 1

is used in the analysis. The dimensionless threshold speeds are determined for various rotor dimen-

sionless stiffness values, namely K̄S ∈ [0.5, 1, 2, 4, 8, 16, 10000], using the MATCONT toolbox.

This toolbox, which is coded using the MATLAB interface, allows the coding and analyzing of Eq.

(25).

The analysis begins by selecting an operating condition corresponding to a specific Sommerfeld

number S. A small dimensionless mass M̄ is then chosen to lie below the Hopf bifurcation condi-

tions, and the dynamic equations are solved using Runge-Kutta direct numerical integration until

an equilibrium point is reached. Then one parameter continuation in M̄ is used to reach the Hopf

bifurcation point, which is also known as the threshold speed. The type of bifurcation can be de-

termined based on the sign of the largest Lyapunov exponent at this point, which can be either a

supercritical or a subcritical Hopf bifurcation.

Next, a two-parameter continuation (M̄, S) is utilized to evaluate the threshold speed line, as

shown in Figure 11-a. This process is repeated for several values of the rotor dimensionless stiffness

K̄s, which are plotted in Figure 11-a using different colors to represent each stiffness case. The

solid segments in each line represent supercritical bifurcations, while the dashed segments indicate

subcritical bifurcations. The results show a clear increase in the threshold speed as the rotor stiffness

increases.

To evaluate the accuracy of the FVP method in determining the threshold speed, we consider

the rotor dimensionless stiffness K̄s = 8 and compare the results obtained using both FVP and FRe

methods. The results, as depicted in Figure 11-b, affirm that the proposed FVP method is accurate

in determining the threshold speed.
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FVP
FRe

Figure 11: (color online) (a) Bearing threshold speed at several shaft stiffnesses. (b) Bearing threshold speed at shaft
stiffness ratio of K̄s = 8 using both the FRe and proposed FVP methods. (Solid lines denote supercritical Hopf
bifurcations and dash lines denote subcritical Hopf bifurcations).

5.2. Continuation analysis of limit cycles using FVP

Here, the continuation of limit cycles beyond the Hopf bifurcation point is investigated. Specif-

ically, three loading conditions are considered : (a) (K̄S = 8, S = 0.4), (b) (K̄S = 8, S = 0.2), and

(c) (K̄S = 8, S = 0.12). These cases are represented by the three vertically dotted lines in Figure

11-b. Figure 12 shows the continuation analyses for these cases where the first row provides a three-
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dimensional representation of the limit cycle continuation. In the second row, a cross-section of the

limit cycle plot is displayed, while the third row presents an orthogonal plan projection of the limit

cycle continuation.

From Figure 11-b, it can be observed case (a) represents supercritical Hopf bifurcation, whereas

cases (b) and (c) correspond to a subcritical Hopf bifurcation. For case (a), the supercritical Hopf

bifurcation occurs at M̄ = 9.8. Further increase of M̄ results in stable limit cycles growing until

reaching a cycle known as limit point cycle at M̄ = 9.974. At this limit point cycle, the status of the

limit cycle changes from stable to unstable and vice versa. Then, at M̄ = 9.954, another limit point

cycle occurs, which is followed by stable limit cycles. For case (b), the subcritical Hopf bifurcation

occurs at M̄ = 10.185. This is followed by a limit point cycle at M̄ = 9.9 where the unstable limit

cycle becomes a stable limit cycle. Finally, for case (c), the subcritical Hopf bifurcation occurs at

M̄ = 11.514. This is followed by another limit point cycles at M̄ = 9.963. Then, the system presents

a stable limit cycle, as shown in the last column of Figure 12.

Figure 13 shows the limit cycle continuation for three cases having the same loading condition

S = 0.06 in Figure 11-a and these cases are recorded as (d), (e) and (f). For these cases three

different dimensionless shaft stiffnesses are used (d) K̄S = 8 , (e) K̄S = 16 , (f) K̄S = 10000 . From

Figure 11-a, it can be inferred that case (d) has a subcritical Hopf bifurcation while cases (e) and (f)

have supercritical Hopf bifurcations. From Figure 11-a, it can be realized that increasing the shaft

rigidity results in an increased M̄ at the Hopf bifurcation point, as can be seen for cases (d, e and f)

where the corresponding critical dimensionless mass equals M̄ = (28.87, 32.062, 35.86) respectively.

For the flexible rotor case (d), a limit cycle point is observed at M̄ = 10.197. In cases (e) and

(f), which are supercritical Hopf bifurcations, two limit cycle points are observed. The first limit

cycle point occurs at M̄ = 37.216 and 67.56 for cases (e) and (f), respectively, followed by a second

limit cycle point at M̄ = 13.334 and 17.87 for cases (e) and (f), respectively. It is important to note

that each limit cycle point is accompanied by a transition from a stable/unstable limit cycle to an

unstable/stable limit cycle, respectively. These results demonstrate the impact of rotor stiffness on

the stability of the rotor-bearing system.

5.2.1. Rotor bearing response neglecting unbalance force

To further investigate the accuracy and effectiveness of the presented FVP method in obtaining

nonlinear dynamics forces in the bearing, a trajectory plot for the current rotor-bearing system is
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Figure 12: (color online) Rotor axis trajectory limit cycle continuation beyond the Hopf bifurcation. Three loading
cases are considered: (a) K̄S = 8, S = 0.4 (b) K̄S = 8, S = 0.2 (c) K̄S = 8, S = 0.12. Solid lines indicate stable limit
cycles, while dotted lines indicate unstable limit cycles.

analyzed using three different methods: FVP, FRe, and FC3 approaches [38]. The FRe approach

is solved with a mesh size of 30 × 180. Four different cases are considered, denoted as I, II, III,

and IV, as shown in Figure 11-b. The orbit plots for these cases are presented in Figure 14, where

the first row (I) corresponds to (K̄S = 8, S = 0.4, M̄ = 9), the second row (II) corresponds to

(K̄S = 8, S = 0.4, M̄ = 9.9), the third row (III) corresponds to (K̄S = 8, S = 0.2, M̄ = 9.5), and the

fourth row (IV) corresponds to (K̄S = 8, S = 0.2, M̄ = 10.3). The first two rows show supercritical
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Figure 13: (color online) Rotor axis trajectory limit cycle continuation beyond the Hopf bifurcation. Three loading
cases are considered at (d) K̄S = 8, S = 0.06 (e) K̄S = 16, S = 0.06 (f) K̄S = 10000, S = 0.06. Solid lines are used to
represent stable limit cycle and dotted lines are used to represent the unstable ones.

conditions with the same Sommerfeld number, where the first row results are just below the Hopf

bifurcation condition, and the second row results are just above the Hopf bifurcation condition. The

last two rows of Figure 14 have the same Sommerfeld number and show subcritical conditions. The

third row is just below the Hopf bifurcation, and the last row is above the Hopf bifurcation.

Figure 14 shows that for cases I and III, which are both below the Hopf bifurcation, the system

responses obtained using the three methods are consistent. However, for case II, which is supercritical
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Table 2: Computational time required for solving the cases I, II, III and IV which are shown in Figure 8

Case S M̄ τ Computational time (S)
FVP FRe FC3

I 0.4 9 500 12.21 445.492 0.171
II 0.4 9.9 2500 90.666 2510.652 0.368
III 0.2 9.5 800 20.948 663.16 0.283
IV 0.2 10.3 1700 83.429 4701.24 0.247

and above the Hopf bifurcation limit, the trajectory plot shows a small deviation between the response

based on the FRe method and both the proposed FVP and FC3 methods.

Case IV represents an operating condition above the Hopf bifurcation and it is subcritical, for

which the response evaluated using the FRe and FVP bearing forces are similar. However, the

response based on the FC3 method is significantly different, as shown in the last row of Figure 14.

These results suggest that the FVP method is an accurate and reliable approach to evaluate the

nonlinear bearing forces in the rotor-bearing system.

Table 2 presents the computational time for the cases analyzed in Figure 14. The computational

analysis was conducted on a computer system with an Intel(R) Core(TM) i7-6820HQ CPU, which has

a clock speed of 2.70 GHz, and 16.0 GB of RAM. The computations were executed using MATLAB

software in a single-core configuration. The results reveal that the fastest computational time is

achieved by the solution based on evaluating bearing forces using the FC3 method. Nevertheless, the

results demonstrate that there is a significant discrepancy in the simulated responses at speeds higher

than the subcritical Hopf bifurcation when using the FC3 method. Moreover, the table indicates that

the computational time for the FVP results is significantly shorter than that for the FRe solution.

However, the computational time for the FVP method is longer than that for FC3. It can, therefore,

be concluded that the proposed FVP method shows a significant reduction in computational time

compared to the FRe method while maintaining computational accuracy.

5.3. Rotor bearing response considering unbalance force

Here, the effects of unbalance forces on the rotor-bearing system are investigated. The dimen-

sionless stiffness of the shaft is set to K̄S = 8 and the Sommerfeld number is set to S = 0.4. The

amplitude of the unbalance mass is set to F̄u = 0.2M̄D. The bifurcation diagram is analyzed over a

dimensionless mass range of M̄ = m c ω2

W
∈ [1, 13].

The bifurcation diagram results are plotted in Figure 15 and shows that period doubling occurs

at M̄ = 7.7. With further increases in the dimensionless mass M̄ , a single limit cycle occurs at
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M̄ = 9.5. Four cases are selected for further analysis, which are (a) M̄ = 6, (b) M̄ = 8, (c) M̄ = 9,

and (d)M̄ = 12, identified by the four dotted lines in Figure 15. The orbit plots for these cases are

then calculated using both the FRe and FVP methods, and the results are plotted in Figure 16. The

first and second rows of Figure 16 correspond to the FVP and FRe analysis, respectively, and the

bottom row shows the response FFT analysis. Each column in the figure represents one of the four

cases (a, b, c, and d).

The results clearly demonstrate that the proposed FVP bearing forces analysis yields results

similar to those obtained using the FRe solution. The FFT analysis for case (a) indicates a large am-

plitude at the frequency ratio of one (corresponding to the rotational speed of the rotor) and smaller

amplitudes for superharmonic frequencies. Cases (b-d), which are above the critical dimensionless

mass (M̄ = 7.7), exhibit high amplitudes at subharmonic frequencies (frequency ratio 0.5), high

amplitude at the rotational speed of the rotor, and low amplitudes at superharmonic frequencies.

It is important to note that while the proposed method offers several advantages, it also has certain

limitations. Specifically, the method requires a high number of data points in the four-dimensional

space. Additionally, due to the significant increase in the fluid film stiffness near the clearance circle,

the slope of the bearing forces in that region is very high. This presents a significant challenge when

attempting to use a single polynomial function to represent the full bearing domain. In this study,

a single polynomial function was utilized to cover the range of ε ∈ [0 : 0.85]. Moreover, it should be

noted that the current analysis did not incorporate a cavitation model, which is an important factor

and may affect the evaluation of bearing forces throughout the entire domain of the journal bearing.
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Figure 14: (color online) Orbit plots for the rotor used in the example dynamical model. The first column represents
the FVP results, the middle column represents the FRe results and the last column represents the third order bearing
coefficient results. The four rows represent four different operating conditions which are shown in Figure 11 b.
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Figure 15: (color online) Bifurcation diagram for the rotor bearing system model. The vertical axis represents both
the maximum and minimum X = XJ − XH displacement. The horizontal axis represents the nondimensional mass
M̄ .
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Figure 16: (color online) Orbit plots for cases a, b, c and d shown by dotted lines in Figure 15. These cases are shown
in the four columns of this figure. The first row is obtained using the FVP solution and the second row is obtained
using the FRe solution. The last row is the FFT for the four cases based on FVP.
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Conclusions

This study proposes a novel method for the assessment of nonlinear forces arising from journal

bearings. The proposed approach involves constructing a four-dimensional database for the bearing

forces components in Cartesian coordinates, as a function of rotor center dimensionless displacement

and velocity. Subsequently, a four-dimensional multivariable polynomial function is employed to

approximate the nonlinear bearing force distribution.

The efficacy of the proposed method, termed FVP, is evaluated through a comparison with results

from the literature. The results demonstrate that the FVP method yields a favorable agreement with

literature values. Furthermore, the FVP method is compared with two other methods, namely the

direct solution of the Reynolds equation (FRe) and the third-order bearing coefficient method (FC3),

to assess system responses. The findings suggest that the bearing forces obtained through the FVP

method are more accurate compared to those obtained via the FC3 method. Additionally, the

computational time required for the FVP approach is found to be shorter than that of the FRe

method, though longer than the FC3 method.

In conclusion, the FVP method offers an efficient and accurate approach for evaluating nonlinear

forces in complex mechanical systems such as pumps and hydraulic turbochargers. This approach

can be instrumental in the design and optimization of such systems.
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