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Abstract

In this paper, we derive an averaging principle for a fast-slow system of stochastic
differential equations (SDEs) involving distribution dependent coefficients driven by
both fractional Brownian motion (fBm) and standard Brownian motion (Bm). We
first establish the existence and uniqueness of solutions of the fast-slow system and the
corresponding averaging equation. Then, we show that the slow component strongly
converges to the solution of the associated averaged equation.
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1 Introduction

In the seminal papers [14, 15], Kac proposed the “propagation of chaos” of mean field particle
systems in order to study nonlinear PDEs in Vlasov’s kinetic theory. This motivated McKean
[20] to study nonlinear Fokker-Planck equations by utilising stochastic differential equations
with distribution dependent drift coefficients. In general, nonlinear Fokker-Planck equations
can be characterised by distribution dependent stochastic differential equations, which are
also named as McKean-Vlasov SDEs or mean field SDEs. A distinct feature of such systems
is the appearance of probability laws in the coefficients of the resulting equations (for more
comprehensive overview, the reader is referred to Wang [31], Huang and Wang [11], Mehri
and Stannat [21], Huang, Ren and Wang [13] and the references therein).

In this paper, we are concerned with the averaging principle for fast-slow systems of
distribution dependent stochastic differential equations (DDSDEs, for short) of the form{

dXε
t = b(t,Xε

t ,LXε
t
, Y ε

t )dt+ σ(t,LXε
t
)dBH

t , X
ε
0 = x ∈ Rn,

dY ε
t = 1

ε
f(t,Xε

t ,LXε
t
, Y ε

t )dt+ 1√
ε
g(t,Xε

t ,LXε
t
, Y ε

t )dWt, Y
ε

0 = y ∈ Rm,
(1.1)
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where LXε
t

stands for the law ofXε
t . The parameter ε represents the ratio between the natural

time scales of Xε
t ∈ Rn and Y ε

t ∈ Rm. We are concerned with situations where ε � 1, i.e.,
with a separation of scales, in such a case the vector Xε

t is called the “slow component” of
the systems, and the vector Y ε

t is called the “fast component” of the systems. The driving
process BH

t and Wt are independent d1 dimensional fractional Brownian motions with Hurst
parameter H ∈ (1

2
, 1) and d2 dimensional Wiener processes, respectively. The coefficients

b : [0, T ]× Rn ×Pθ(Rn)× Rm → Rn,

σ : [0, T ]×Pθ(Rn)→ Rn×d1 ,

f : [0, T ]× Rn ×Pθ(Rn)× Rm → Rm,

g : [0, T ]× Rn ×Pθ(Rn)× Rm → Rm×d2 ,

with

Pθ(Rn) :=

{
µ ∈ P(Rn) : µ(| · |θ) :=

∫
Rn
|x|θµ(dx) <∞

}
, θ ∈ [2,∞),

where P is the set of probability measure on (Rn,B(Rn)). The space Pθ(Rn) is a Polish
space under the Lθ-Wasserstein distance

Wθ(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
Rn×Rn

|x− y|θπ(dx, dy)

) 1
θ

, µ1, µ2 ∈Pθ(Rn),

where C (µ1, µ2) is the set of probability measures on Rn × Rn with marginals µ1 and µ2,
respectively.

We recall that fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a centred
Gaussian process BH = {BH

t , t ≥ 0} with covariance function

RH(s, t) :=
1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0.

For H = 1
2
, fBm BH is the standard Brownian motion. For H 6= 1

2
, BH is neither a

semimartingale nor a Markov process. As a consequence, classical techniques of stochastic
analysis are not applicable. In particular, an fBm with a Hurst parameter H ∈ (1

2
, 1)

possesses a property of long range memory, which roughly implies that the decay of stochastic
dependence with respect to the past is only subexponentially slow, what makes this kind
of noise a realistic choice for problems with long memory in the applied sciences including
hydrology, telecommunication, turbulence, image processing, and finance ([2], [22], [23],
[10]), and this is why this kind of noise is being used now very often.

The averaging principle, initiated by Khasminskii [16], is a very efficient and important
tool in study of stochastic differential equations for modeling problems arising in many prac-
tical research areas. It in fact provides a powerful tool for simplifying dynamical systems,
and obtains approximate solutions to differential equations. The averaging principle enables
us to study complex equations with related averaging equations, which paves a convenient
and easy way to study many important properties. To date, the stochastic averaging prin-
ciple has been developed for many more general types of stochastic differential equations
(see, for example, [8], [4], [24],[37],[38], [19], [28], [29],[30], [17], [9] just to mention a few).

A natural generalisation of the averaging principle, which will be carried out in this paper,
can be illustrated as follows. Assume that for every fixed x the rapid variables induce a
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unique invariant measure νt,x,µ. Then, as ε→ 0, Xε
t converges on every finite interval [0, T ]

to the solution X̄ which is the solution of the following averaged equation,{
dX̄t = b̄(t, X̄t,LX̄t)dt+ σ(t,LX̄t)dB

H
t ,

X̄0 = x,
(1.2)

where

b̄(t, x, µ) =

∫
Rm

b(t, x, µ, z)νt,x,µ(dz),

and νt,x,µ is the unique invariant measure for the transition semigroup of the solution of the
following frozen equation,{

dYs = f(t, x, µ, Ys)ds+ g(t, x, µ, Ys)dW̃s,
Y0 = y,

(1.3)

where W̃t is a d2-dimensional Brownian motion on another given complete probability space
(Ω̃, F̃ , P̃) and {F̃t, t ≥ 0} is the natural filtration generated by W̃t. It is worth noting that,
for any initial data y ∈ Rm, Equation (1.3) has a unique strong solution {Y t,x,µ,y

s }s≥0, which
is a homogeneous Markov process, so its transition semigroup has a unique invariant mea-
sure νt,x,µ under appropriate conditions. Hence, the definition of the averaged coefficient
b̄ is meaningful. From mathematical point of view, it is possible to model systems with
different time-scales and then operate a rigorous dimensionality reduction, approximating
the behavior of the slow component Xε

t with X̄t and controlling the error of such approx-
imation. For this reason multi-scale stochastic systems are widely used in many areas of
physics, chemistry, biology, financial mathematics and many other applications areas (see,
for example, [6], [32]).

In the distribution independent case, there have been many fundamental studies address-
ing the averaging principle for two-time scale stochastic systems driven Brownian motion,
Lévy process and fractional Brownian motion. Xu, Liu and Miao [34] proved the L2 con-
vergence for two-time-scales with special non-Lipschitz which extends the existing results
from Lipschitz to non-Lipschitz case. Liu et al. [18] used the techniques of time discreti-
sation and truncation to study the averaging principle for stochastic differential equations
with slow and fast time-scales, where the drift coefficients satisfied local Lipschitz condi-
tions with respect to the slow and fast variables. Givon [7] considered two-time-scale system
of jump-diffusion stochastic differential equations and studied the convergence rate of the
slow components to the effective dynamics. Xu and Liu [35] proved a stochastic averaging
principle for two time-scale jump-diffusion SDEs under the non-Lipschitz coefficients. Pei et
al. [25] studied the averaging principle for a fast-slow system of rough differential equations
driven by mixed fractional Brownian rough path. The fast component is driven by Brow-
nian motion, while the slow component is driven by fractional Brownian motion. Pei et
al. [26] considered averaging principle for fast-slow systems involving both fractional Brow-
nian motion and standard Brownian motion. More recently, there has been an increasing
interest to study the stochastic averaging principle for two time-scale distribution depen-
dent stochastic differential equations. Under some proper assumptions on the coefficients,
Röckner, Sun and Xie [27] proved that the slow component strongly converges to the solu-
tion of the corresponding averaged equation with convergence order 1

3
using the approach

of time discretisation. Furthermore, under stronger regularity conditions on the coefficients,
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they used the technique of Poisson equation to improve the order to 1
2
. Xu et al. [36] con-

sidered strong averaging principle for two-time-scale stochastic McKean-Vlasov equations.
Using the variational approach and classical Khasminskii time discretisation, Hong, Li and
Liu [12] studied the asymptotic behavior for a class of McKean-Vlasov stochastic partial
differential equations with slow and fast time-scales. The main results can be applied to
demonstrate the averaging principle for various McKean-Vlasov nonlinear SPDEs.

Although there exist many investigations in the literature devoted to studying stochastic
averaging principle for slow and fast time-scales stochastic McKean-Vlasov equations driven
by Brownian motion, or by Lévy processes, and so on, as we know, there is not any considera-
tion of averaging principle for slow and fast time-scales stochastic McKean-Vlasov equations
driven by fractional Brownian motion. Moreover, due to their distribution dependent na-
ture, they are potentially useful and important for modelling complex systems in diverse
areas of applications. Comparing to the classical two-time-scale stochastic McKean-Vlasov
equations driven by Brownian motion and Lévy processes, the two-time-scale distribution
dependent SDEs driven by fractional Brownian motion are much more complex, therefore, a
stochastic averaging principle for such SDEs is naturally interesting and would also be very
useful. This motivates us to carry out the present paper, aiming to establish a stochastic
averaging principle for the DDSDEs where the fast component is driven by Brownian motion
and the slow component is driven by fractional Brownian motion.

Throughout this paper, the letter C will denote a positive constant, with or without
subscript, its value may change in different occasions. We will write the dependence of the
constant on parameters explicitly if it is essential.

The rest of the paper is organised as follows. In Section 2, we prove the existence and
uniqueness of solutions to the two-time-scale SDEs with distribution dependent coefficients
driven by fractional Brownian motion. In Section 3, we establish an approximation theorem
as an averaging principle for the solutions of the concerned DDSDEs.

2 Existence and uniqueness theorem

In this section, by utilising the Carathéodory approximation technique, we will establish the
existence and uniqueness theorem for solutions of fast-slow systems of distribution dependent
stochastic differential equations (1.1) driven by fBm and standard Brownian motion under
the following Assumption 2.1. It is worthwhile to mention that throughout this section the
parameter ε > 0 is arbitrarily fixed. We would like to point out that this would not affect
the derivation of our averaging principle in the next section.

Assumption 2.1 There exists a non-decreasing function K(t), K(0) = 1 such that for any
t, ti ∈ [0, T ], p > 0, xi ∈ Rn, yi ∈ Rm, µi ∈Pθ(Rn), νi ∈Pθ(Rm), i = 1, 2.

|b(t1, x1, µ1, y1)− b(t2, x2, µ2, y2)|p

≤ K(|t1 − t2|p)[κ(|x1 − x2|p + |y1 − y2|p + Wθ(µ1, µ2)p)],
(2.1)

‖σ(t, µ1)− σ(t, µ2)‖p ≤ K(tp)κ(Wθ(µ1, µ2)p), (2.2)

|f(t1, x1, µ1, y1)− f(t2, x2, µ2, y2)|p

≤ K(|t1 − t2|p)[κ(|x1 − x2|p + |y1 − y2|p + Wθ(µ1, µ2)p)],
(2.3)
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‖g(t1, x1, µ1, y1)− g(t2, x2, µ2, y2)‖p

≤ K(|t1 − t2|p)[κ(|x1 − x2|p + |y1 − y2|p + Wθ(µ1, µ2)p)],
(2.4)

and
|b(t, 0, δ0, 0)|p + ‖σ(t, δ0)‖p + |f(t, 0, δ0, 0)|p + ‖g(t, 0, δ0, 0)‖p ≤ K(tp), (2.5)

where κ : R+ → R+ is continuous and non-decreasing concave function with κ(0) = 0,
κ(v) > 0, for every v > 0 such that

∫
0+

1
κ(v)

dv = +∞.

Example 2.2 We can give a few concrete examples of the function κ(·). Let L > 0, and
let δ ∈ (0, 1) be sufficiently small. Define
κ1(u) = Lu, u ≥ 0.

κ2(u) =

{
u log(u−1), 0 ≤ u ≤ δ;
δ log(δ−1) + κ′2(δ−)(u− δ), u > δ.

κ3(u) =

{
u log(u−1) log log(u−1), 0 ≤ u ≤ δ;
δ log(δ−1) log log(δ−1) + κ′3(δ−)(u− δ), u > δ,

where κ′ denotes the derivative of the function κ. They are all concave nondecreasing func-
tions satisfying

∫
0+

du
κi(u)

= ∞, i = 1, 2, 3. Furthermore, we observed that the Lipschitz
condition is a special case of our proposed condition.

For any p ≥ 1, let Sp([0, T ];Rn) be the space of Rn-valued, continuous (Ft)t∈[0,T ]-adapted
process ψ on [0,T] satisfying

‖ψ‖Sp :=

(
E sup
t∈[0,T ]

|ψt|p
) 1

p

<∞.

Now, we define the Carathéodory approximation as follows. For any integer n ≥ 1, define
Xε,n
t = x, Y ε,n

t = y for −1 ≤ t ≤ 0 and

Xε,n
t = x+

∫ t

0

b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)ds+

∫ t

0

σ(s,LXε,n

s− 1
n

)dBH
s , (2.6)

and

Y ε,n
t = y +

1

ε

∫ t

0

f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)ds+
1√
ε

∫ t

0

g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)dWs. (2.7)

for t ∈ [0, T ]. It is noted that comparing with Picard’s successive approximation technique,
the advantage of using Carathéodory approximation technique is that we do not need to
compute Xε,1

t , · · ·, Xε,n−1
t (res. Y ε,1

t , · · ·, Y ε,n−1
t ) to compute Xε,n

t (res. Y ε,n
t ). In fact, we

can compute Xε,n
t (res. Y ε,n

t ) directly over intervals of length 1
n
. Our results are new even

when the coefficients appeared in Assumption 2.1 satisfy Lipschitz condition. Observe that
σ(s,LXε

s
) is a deterministic function, then

∫ t
0
σ(s,LXε

s
)dBH

s can be regarded as a Wiener
integral with respect to fractional Brownian motion. We need to prepare two lemmas in
order to establish the main result in this section.

Lemma 2.3 Suppose that Assumption 2.1 holds with p ≥ θ and p > 1
H

. Then

E
(

sup
t∈[0,T ]

|Xε,n
t |p

)
≤ Cp,ε,T,H,x,y,
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and

E
(

sup
t∈[0,T ]

|Y ε,n
t |p

)
≤ Cp,ε,T,H,x,y.

Proof. For any n ≥ 1. By the elementary inequality

|x1 + x2 + x3|p ≤ 3p−1(|x1|p + |x2|p + |x3|p),

and Hölder inequality, (2.6)–(2.7), we have

E
(

sup
t∈[0,T ]

|Xε,n
t |p

)
≤ 3p−1E|x|p + 3p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)ds

∣∣∣∣p)
+ 3p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

σ(s,LXε,n

s− 1
n

)dBH
s

∣∣∣∣p)
=: 3p−1E|x|p + 3p−1I11 + 3p−1I12,

and

E
(

sup
t∈[0,T ]

|Y ε,n|p
t

)
≤ 3p−1E|y|p + (

3

ε
)p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)ds

∣∣∣∣p)
+ (

3√
ε
)p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)dWs

∣∣∣∣p)
=: 3p−1E|y|p + (

3

ε
)p−1I13 + (

3√
ε
)p−1I14.

For the term I11, owing to (2.1) in the Assumption 2.1, Hölder inequality, and the fact
Wθ(LX1 ,LX2)

p ≤ E|X1 −X2|p, we can obtain

I11 = E
(

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− b(s, 0, δ0, 0) + b(s, 0, δ0, 0)ds

∣∣∣∣p)
≤ Cp,TE

(
sup
t∈[0,T ]

∫ t

0

|b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− b(s, 0, δ0, 0) + b(s, 0, δ0, 0)|pds
)

≤ Cp,TE
(

sup
t∈[0,T ]

∫ t

0

(κ(|Xε,n

s− 1
n

|p + |Y ε,n

s− 1
n

|p + Wθ(LXε,n

s− 1
n

, δ0)p) +K(T p))ds

)
≤ Cp,T

∫ T

0

(1 + κ(2E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p))ds

≤ Cp,T

∫ T

0

(1 + E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p)ds,

where the last inequality is due to κ(·) is concave and increasing, there must exist a positive
number a such that

κ(u) ≤ a(1 + u). (2.8)
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For the term I12, it comes from Alòs and Nualart [1], Fan et al. [5] and (2.2), we have

I12 = E
(

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

σ(s,LXε,n

s− 1
n

)dBH
s

∣∣∣∣p)
≤ Cp,T,H

∫ T

0

‖σ(s,LXε,n

s− 1
n

)‖pds

≤ Cp,T,H

∫ T

0

‖σ(s,LXε,n

s− 1
n

)− σ(s, δ0) + σ(s, δ0)‖pds

≤ Cp,T,HK(T p)

∫ T

0

(κ(E|Xε,n

s− 1
n

|p) + 1)ds

≤ Cp,T,H

∫ T

0

(1 + E|Xε,n

s− 1
n

|p)ds.

Hence,

E
(

sup
t∈[0,T ]

|Xε,n
t |p

)
≤ CE|x|p + Cp,T,H

∫ T

0

(
1 + E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p
)
ds

≤ CE|x|p + Cp,T,H

∫ T

0

(
1 + E

(
sup
r∈[0,s]

|Xε,n
r |p

)
+ E

(
sup
r∈[0,s]

|Y ε,n
r |p

))
ds.

(2.9)

For the term I13, it follows from Hölder inequality and (2.3) in Assumption 2.1, we have

I13 = E
(

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− f(s, 0, δ0, 0) + f(s, 0, δ0, 0)]ds

∣∣∣∣p)
≤ Cp,TE

(
sup
t∈[0,T ]

∫ t

0

|[f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− f(s, 0, δ0, 0) + f(s, 0, δ0, 0)]|pds
)

≤ Cp,TE
(

sup
t∈[0,T ]

∫ t

0

[κ(|Xε,n

s− 1
n

|p + |Y ε,n

s− 1
n

|p + Wθ(LXε,n

s− 1
n

, δ0)p) +K(T p)]ds

)
≤ Cp,T

∫ T

0

(
1 + E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p
)
ds.

For the term I14, it follows from the Burkholder-Davis-Gundy inequality, Hölder inequality
and (2.4) in Assumption 2.1, we have

I14 = E
(

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)dWs

∣∣∣∣p)
≤ Cp,T

∣∣∣∣E∫ T

0

‖g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)‖2ds

∣∣∣∣ p2
≤ Cp,T

∣∣∣∣E∫ T

0

‖g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− g(s, 0, δ0, 0) + g(s, 0, δ0, 0)‖2ds

∣∣∣∣ p2
≤ Cp,TE

∫ T

0

(κ(|Xε,n

s− 1
n

|p + |Y ε,n

s− 1
n

|p + Wθ(LXε,n

s− 1
n

, δ0)p) +K(T p))ds

≤ Cp,T

∫ T

0

(1 + E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p)ds.
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Thus, we can get

E
(

sup
t∈[0,T ]

|Y ε,n
t |p

)
≤ CE|y|p + Cp,ε,T

∫ T

0

(1 + E|Xε,n

s− 1
n

|p + E|Y ε,n

s− 1
n

|p)ds

≤ CE|y|p + Cp,ε,T

∫ T

0

(
1 + E

(
sup
r∈[0,s]

|Xε,n
r |p

)
+ E

(
sup
r∈[0,s]

|Y ε,n
r |p

))
ds.

(2.10)

Combining (2.9) and (2.10), we have

E
(

sup
t∈[0,T ]

|Xε,n
t |p

)
+ E

(
sup
t∈[0,T ]

|Y ε,n
t |p

)
≤ Cp,T,x,y + Cp,ε,T

∫ T

0

(
E
(

sup
r∈[0,s]

|Xε,n
r |p

)
+ E

(
sup
r∈[0,s]

|Y ε,n
r |p

))
ds.

It follows from the Gronwall’s inequality that

E
(

sup
t∈[0,T ]

|Xε,n
t |p

)
+ E

(
sup
t∈[0,T ]

|Y ε,n
t |p

)
≤ Cp,ε,T,H,x,y. (2.11)

Therefore, this shows the boundedness of Xε,n
t and Y ε,n

t .

Lemma 2.4 Suppose that Assumption 2.1 holds with p ≥ θ and p > 1
H

. Then

E(|Xε,n
t −Xε,n

s |p) ≤ Cp,ε,T,H,x,y.[(t− s)p + (t− s)pH ], (2.12)

and
E(|Y ε,n

t − Y ε,n
s |p) ≤ Cp,ε,T,H,x,y.[(t− s)p + (t− s)

p
2 ]. (2.13)

Proof. By (2.6) and (2.7), we have

Xε,n
t −Xε,n

s =

∫ t

s

b(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dr +

∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r ,

and

Y ε,n
t − Y ε,n

s

=
1

ε

∫ t

s

f(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dr +
1√
ε

∫ t

s

g(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dWr.
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By the elementary inequality |x1 + x2|p ≤ 2p−1(|x1|p + |x2|p) and Hölder inequality, we have

E|Xε,n
t −Xε,n

s |p

≤ 2p−1E
∣∣∣∣ ∫ t

s

b(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dr

∣∣∣∣p + 2p−1E
∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p
≤ 2p−1(t− s)p−1E

∫ t

s

∣∣b(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)
∣∣pdr + 2p−1E

∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p
≤ 2p−1(t− s)p−1E

∫ t

s

|b(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)− b(r, 0, δ0, 0) + b(r, 0, δ0, 0)|pdr

+ 2p−1E
∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p
≤ 2p−1(t− s)p−1E

∫ t

s

(κ(|Xε,n

r− 1
n

|p + |Y ε,n

r− 1
n

|p + Wθ(LXε,n

r− 1
n

, δ0)p) +K(T p))dr

+ 2p−1E
∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p
≤ Cp(t− s)p−1

∫ t

s

(1 + E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p)dr + 2p−1E
∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p.
As for the term E

∣∣ ∫ t
s
σ(r,LXε,n

r− 1
n

)dBH
r

∣∣p, using the methods from Alòs and Nualart [1]

(see also Fan et al. [5], Shen et al. [29]), we have

E
∣∣∣∣ ∫ t

s

σ(r,LXε,n

r− 1
n

)dBH
r

∣∣∣∣p ≤ Cp,H(t− s)pH−1

∫ t

s

‖σ(r,LXε,n

r− 1
n

)‖pdr

≤ Cp,H(t− s)pH−1

∫ t

s

K(T p)(κ(Wθ(LXε,n

r− 1
n

, δ0)p) + 1)dr

≤ Cp,H(t− s)pH−1

∫ t

s

(1 + E|Xε,n

r− 1
n

|p)dr.

On the other hand,

E|Y ε,n
t − Y ε,n

s |p

≤ (
2

ε
)p−1E

∣∣∣∣ ∫ t

s

f(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dr

∣∣∣∣p
+ (

2√
ε
)p−1E

∣∣∣∣ ∫ t

s

g(r,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dWr

∣∣∣∣p
=: (

2

ε
)p−1J21 + (

2√
ε
)p−1J22.
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For the term J21, by the Hölder inequality, we have

J21 = E
∣∣∣∣ ∫ t

s

f(s,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)dr

∣∣∣∣p
≤ (t− s)p−1E

∫ t

s

|f(s,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)|pdr

≤ (t− s)p−1E
∫ t

s

|[f(s,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)− f(s, 0, δ0, 0) + f(s, 0, δ0, 0)]|pdr

≤ (t− s)p−1E
∫ t

s

(κ(|Xε,n

r− 1
n

|p + |Y ε,n

r− 1
n

|p + Wθ(LXε,n

r− 1
n

, δ0)p) +K(T p))dr

≤ Cp,T (t− s)p−1

∫ t

s

(E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p + 1)dr.

For the term J22, by the Burkholder-Davis-Gundy inequality, we have

J22 ≤ CpE
[ ∫ t

s

‖g(s,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)‖2dr

] p
2

≤ Cp(t− s)
p
2
−1E

∫ t

s

‖g(s,Xε,n

r− 1
n

,LXε,n

r− 1
n

, Y ε,n

r− 1
n

)‖pdr

≤ Cp,T (t− s)
p
2
−1

∫ t

s

(E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p + 1)dr.

Above all, by the Lemma 2.3 we can get that

E|Xε,n
t −Xε,n

s |p

≤ Cp(t− s)p−1

∫ t

s

(1 + E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p)dr + Cp,H(t− s)pH−1

∫ t

s

(1 + E|Xε,n

r− 1
n

|p)dr

≤ Cp,ε,T,H,x,y.[(t− s)p + (t− s)pH ],

and

E|Y ε,n
t − Y ε,n

s |p

≤ Cp,ε,T (t− s)p−1

∫ t

s

(E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p + 1)dr

+ Cp,ε,T (t− s)
p
2
−1

∫ t

s

(E|Xε,n

r− 1
n

|p + E|Y ε,n

r− 1
n

|p + 1)dr

≤ Cp,ε,T,H,x,y.[(t− s)p + (t− s)
p
2 ].

This completes the proof.

Theorem 2.5 Suppose that Assumption 2.1 holds. For any ε > 0, p ≥ θ and p > 1
H

, there
exists a unique solution (Xε

t , Y
ε
t ), t ≥ 0 to system (1.1) with initial value x ∈ Rn, y ∈ Rm

and for all T > 0, (Xε, Y ε) ∈ Sp([0, T ];Rn)× Sp([0, T ];Rm),P− a.s and{
Xε
t = x+

∫ t
0
b(s,Xε

s,LXε
s
, Y ε

s )ds+
∫ t

0
σ(s,LXε

s
)dBH

s ,

Y ε
t = y + 1

ε

∫ t
0
f(s,Xε

s,LXε
s
, Y ε

s )ds+ 1√
ε

∫ t
0
g(s,Xε

s,LXε
s
, Y ε

s )dWs.
(2.14)
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Proof. We split the proof in two steps.
Step one: Existence. We firstly prove that (Xε,n

t )n≥1, (Y ε,n
t )n≥1 are Cauchy sequences in

Sp([0, T ]).

Note that for n > m ≥ 1, it is routine to obtain

E
(

sup
t∈[0,T ]

|Xε,n
t −X

ε,m
t |p

)
≤ 2p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[(b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− b(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)]ds

∣∣∣∣p)
+ 2p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[σ(s,LXε,n

s− 1
n

)− σ(s,LXε,m

s− 1
m

)]dBH
s

∣∣∣∣p)
:= 2p−1II11 + 2p−1II12,

and

E
(

sup
t∈[0,T ]

|Y ε,n
t − Y ε,m

t |p
)

≤ (
2

ε
)p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− f(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)]ds

∣∣∣∣p)
+ (

2√
ε
)p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− g(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)]dWs

∣∣∣∣p)
:= (

2

ε
)p−1II21 + (

2√
ε
)p−1II22.

For the term II11. By the Assumption 2.1, Hölder inequality and Lemma 2.4, we have

II11 ≤ CT,pE
(

sup
t∈[0,T ]

∫ t

0

∣∣∣∣[(b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− b(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)]

∣∣∣∣pds)
≤ CT,pE

∫ T

0

[|(b(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− b(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)|p

+ |b(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)− b(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)|p]ds

≤ CT,pE
∫ T

0

[κ(|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + |Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p + Wθ(LXε,n

s− 1
n

,LXε,m

s− 1
n

)p)

+ κ(|Xε,m

s− 1
n

−Xε,m

s− 1
m

|p + |Y ε,m

s− 1
n

− Y ε,m

s− 1
m

|p) + Wθ(LXε,m

s− 1
n

,LXε,m

s− 1
m

)p)]ds

≤ CT,p

∫ T

0

[κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)

+ κ(2E|Xε,m

s− 1
n

−Xε,m

s− 1
m

|p + E|Y ε,m

s− 1
n

− Y ε,m

s− 1
m

|p)]ds

≤ CT,p

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)ds

+ CT,p

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH + (

1

m
− 1

n
)
p
2 ]

)
ds.
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For the term II12, by Assumption 2.1, Hölder inequality and Lemma 2.4, we have

II12 ≤ CT,p,HE
∫ T

0

‖[σ(s,LXε,n

s− 1
n

)− σ(s,LXε,m

s− 1
m

)]‖pds

≤ CT,p,HE
∫ T

0

[‖σ(s,LXε,n

s− 1
n

)− σ(s,LXε,m

s− 1
n

)‖p + ‖σ(s,LXε,m

s− 1
n

)− σ(s,LXε,m

s− 1
m

)‖p]ds

≤ CT,p,HE
∫ T

0

K(T )[κ(Wθ(LXε,n

s− 1
n

,LXε,m

s− 1
n

)p) + κ(Wθ(LXε,m

s− 1
n

,LXε,m

s− 1
m

)p)]ds

≤ CT,p,H

∫ T

0

κ(E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p)ds

+ CT,p,H

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH ]

)
ds.

Using the same way of the proof of II11, we have

II21 ≤ CT,pE
∫ T

0

|[f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− f(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)]|pds

≤ CT,pE
∫ T

0

[|f(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− f(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)|p

+ |f(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)− f(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)|p]ds

≤ CT,p

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)

+ κ(2E|Xε,m

s− 1
n

−Xε,m

s− 1
m

|p + E|Y ε,m

s− 1
n

− Y ε,m

s− 1
m

|p)ds

≤ CT,p

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)

+ CT,p

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH + (

1

m
− 1

n
)
p
2 ]

)
ds.

For the term II22, by the Assumption 2.1, Burkholder-Davis-Gundy inequality and
Lemma 2.4, we have

II22 ≤ CpE
(∫ T

0

‖g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− g(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)‖2ds

) p
2

≤ CT,pE
∫ T

0

‖g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− g(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)‖pds

≤ CT,pE
∫ T

0

[‖g(s,Xε,n

s− 1
n

,LXε,n

s− 1
n

, Y ε,n

s− 1
n

)− g(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)‖p

+ ‖g(s,Xε,m

s− 1
n

,LXε,m

s− 1
n

, Y ε,m

s− 1
n

)− g(s,Xε,m

s− 1
m

,LXε,m

s− 1
m

, Y ε,m

s− 1
m

)‖p]ds

≤ CT,p

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)ds

+ CT,p

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH + (

1

m
− 1

n
)
p
2 ]

)
ds.
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Above all, we can conclude

E
(

sup
t∈[0,T ]

|Xε,n
t −X

ε,m
t |p

)
≤ CT,p,H

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)ds

+ CT,p

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH + (

1

m
− 1

n
)
p
2 ]

)
ds,

and

E
(

sup
t∈[0,T ]

|Y ε,n
t − Y ε,m

t |p
)

≤ CT,p,ε

∫ T

0

κ(2E|Xε,n

s− 1
n

−Xε,m

s− 1
n

|p + E|Y ε,n

s− 1
n

− Y ε,m

s− 1
n

|p)ds

+ CT,p,ε

∫ T

0

κ

(
CT,H,p,ε,|x|,|y|[(

1

m
− 1

n
)p + (

1

m
− 1

n
)pH + (

1

m
− 1

n
)
p
2 ]

)
ds.

Using the fact that κ(0) = 0 and Fatou’s Lemma, we obtain for every δ > 0,

Z(t) ≤ CT,p,ε,H

∫ T

0

κ(2Z(s))ds

≤ δ + CT,p,ε,H

∫ T

0

κ(2Z(s))ds.

where

Z(T ) = lim sup
n,m→∞

[
E
(

sup
t∈[0,T ]

|Xε,n
t −X

ε,m
t |p

)
+ E

(
sup
t∈[0,T ]

|Y ε,n
t − Y ε,m

t |p
)]
.

Hence, the Bihari inequality yields

Z(T ) ≤ 1

2
G−1

[
G(2δ) + CT,p,ε,H

]
.

where G(2δ) + CT,p,H ∈ Dom(G−1), G−1 is the inverse function of G(·) and

G(v) =

∫ v

1

ds

κ(s)
, v > 0.

By Assumption 2.1, one sees that limδ↓0G(δ) = −∞ and Dom(G−1) = (−∞, G(∞)). Let-
ting δ → 0 gives

E
(

sup
t∈[0,T ]

|Xε,n
t −X

ε,m
t |p

)
+ E

(
sup
t∈[0,T ]

|Y ε,n
t − Y ε,m

t |p
)

= 0.

Consequently, (Xε,n
t )n≥1, (Y ε,n

t )n≥1 are Cauchy sequences in Sp([0, T ]) with p ≥ θ and p > 1
H

,
and then the limit, denoted by Xε

t , Y
ε
t is a solution to (1.1).
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Step two: Uniqueness. Let (Xε
t , Y

ε
t ), (X̃ε

t , Ỹ
ε
t ) be two solutions for (1.1) on the same

probability space with the same initial value, note that

Xε
t − X̃ε

t =

∫ t

0

[b(s,Xε
s,LXε

s
, Y ε

s )− b(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )]ds+

∫ t

0

[σ(s,LXε
s
)− σ(s,LX̃ε

s
)]dBH

s ,

and

Y ε
t − Ỹ ε

t =(
1

ε
)

∫ t

0

[f(s,Xε
s,LXε

s
, Y ε

s )− f(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )]ds

+ (
1√
ε
)

∫ t

0

[g(s,Xε
s,LXε

s
, Y ε

s )− g(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )]dWs.

By the same ways of the proof of II11, II12, we have

E
(

sup
t∈[0,T ]

|Xε
t − X̃ε

t |p
)
≤ 2p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[b(s,Xε
s,LXε

s
, Y ε

s )− b(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )]ds

∣∣∣∣p)
+ 2p−1E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

[σ(s,LXε
s
)− σ(s,LX̃ε

s
)]dBH

s

∣∣∣∣p)
≤ CT,p,H

∫ T

0

κ(2E|Xε
s − X̃ε

s|p + E|Y ε
s − Ỹ ε

s |p)ds.

By the same ways of the proof of II21, II22, we have

E
(

sup
t∈[0,T ]

|Y ε
t − Ỹ ε

t |p
)
≤ E

[
(
1

ε
)

∫ T

0

|f(s,Xε
s,LXε

s
, Y ε

s )− f(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )|ds

+ (
1√
ε
)

∫ T

0

‖g(s,Xε
s,LXε

s
, Y ε

s )− g(s, X̃ε
s,LX̃ε

s
, Ỹ ε

s )‖dWs

]p
≤ CT,p,ε,H

∫ T

0

κ(2E|Xε
s − X̃ε

s|p + E|Y ε
s − Ỹ ε

s |p)ds.

Hence, we have

E
(

sup
t∈[0,T ]

|Xε
t − X̃ε

t |p
)

+ E
(

sup
t∈[0,T ]

|Y ε
t − Ỹ ε

t |p
)

≤ CT,p,ε,H

∫ T

0

κ(2E|Xε
s − X̃ε

s|p + 2E|Y ε
s − Ỹ ε

s |p)ds.

Then, the Bihari inequality implies that (Xε
t , Y

ε
t ) = (X̃ε

t , Ỹ
ε
t ), t ∈ [0, T ], P − a.s. This

completes the proof.
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3 Averaging principle

In this section, assume θ = 2, we will establish the convergence, under non-Lipschitz coef-
ficients, of Xε

t , the slow component in (1.1), to X̄t, the solution of the averaged equations
(3.3) in the sense of convergence in mean square. We need the following conditions on the
coefficients f, g.

Assumption 3.1 There exist constants βi > 0, i = 1, 2, such that the following hold

2〈y1 − y2, f(t1, x1, µ1, y1)− f(t2, x2, µ2, y2)〉+ ‖g(t1, x1, µ1, y1)− g(t2, x2, µ2, y2)‖2

≤ −β1|y1 − y2|2 +K(|t1 − t2|2)κ(|x1 − x2|2 + W2(µ1, µ2)2),
(3.1)

and

2〈y, f(t, x, µ, y)〉+ ‖g(t, x, µ, y)‖2 ≤ −β2|y|2 + C(1 + |x|2 + µ(| · |2)). (3.2)

Next, we state our main result.

Theorem 3.2 Suppose that Assumptions 2.1 and 3.1 hold, for any T > 0, t ∈ [0, T ], we
have

lim
ε→0

E|Xε − X̄|2 = 0,

where X̄ is the solition of the following averaged equation,{
dX̄t = b̄(t, X̄t,LX̄t)dt+ σ(t,LX̄t)dB

H
t ,

X̄0 = x.
(3.3)

here

b̄(t, x, µ) =

∫
Rm

b(t, x, µ, z)νt,x,µ(dz),

and νt,x,µ is the unique invariant measure for the transition semigroup of the following frozen
equation, {

dYs = f(t, x, µ, Ys)ds+ g(t, x, µ, Ys)dW̃s,
Y0 = y,

(3.4)

where W̃t is a d2-dimensional Brownian motion on another complete probability space
(Ω̃, F̃ , P̃) and {F̃t, t ≥ 0} is natural filtration generated by W̃t. It is easy to prove for any
initial data y ∈ Rm that equation (3.4) has a unique strong solution {Y t,x,µ,y

s }s≥0, which is
a homogeneous Markov process. Moreover, sups≥0 Ẽ|Y t,x,µ,y

s |2 ≤ CT [1 + |x|2 + |y|2 +µ(| · |2)],

for any t ∈ [0, T ], where Ẽ is the expectation on (Ω̃, F̃ , P̃).

Noting that for any bounded measurable function ϕ : Rm → R, we have

P t,x,µ
s ϕ(y) := Ẽϕ(Y t,x,µ,y

s ), y ∈ Rm, s ≥ 0,

where {P t,x,µ
s }s≥0 be the transition semigroup of Y t,x,µ,y

s .
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Lemma 3.3 Suppose that Assumptions 2.1 and 3.1 hold. Then for any T > 0, t1, t2 ∈ [0, T ],
we have

Ẽ[|Y t1,x1,µ1,y1
s −Y t2,x2,µ2,y2

s |2] ≤ e−β1s|y1− y2|2 +CT (K(|t1− t2|2)[κ(|x1−x2|2 +W2(µ1, µ2)2)].

Proof.

Y t1,x1,µ1,y1
s − Y t2,x2,µ2,y2

s =y1 − y2 +

∫ s

0

[f(t1, x1, µ1, Y
t1,x1,µ1,y1
r )− f(t2, x2, µ2, Y

t2,x2,µ2,y2
r )]dr

+

∫ s

0

[g(t1, x1, µ1, Y
t1,x1,µ1,y1
r )− g(t2, x2, µ2, Y

t2,x2,µ2,y2
r )]dW̃r.

By Itô’s formula, we have

Ẽ|Y t1,x1,µ1,y1
s − Y t2,x2,µ2,y2

s |2

= Ẽ
∫ s

0

[2〈f(t1, x1, µ1, Y
t1,x1,µ1,y1
r )− f(t2, x2, µ2, Y

t2,x2,µ2,y2
r ), Y t1,x1,µ1,y1

r − Y t2,x2,µ2,y2
r 〉

+ ||g(t1, x1, µ1, Y
t1,x1,µ1,y1
r )− g(t2, x2, µ2, Y

t2,x2,µ2,y2
r )||2]dr.

By Assumptions 3.1, we have

d

ds
Ẽ|Y t1,x1,µ1,y1

s − Y t2,x2,µ2,y2
s |2

≤ −β1(Ẽ|Y t1,x1,µ1,y1
s − Y t2,x2,µ2,y2

s |2) + CTK(|t1 − t2|2)[κ(|x1 − x2|2 + W2(µ1, µ2)2)].

Hence, by Gronwall’s inequality([7].pp.584), we obtain

Ẽ|Y t1,x1,µ1,y1
s − Y t2,x2,µ2,y2

s |2 ≤ e−β1s|y1 − y2|2 + CTK(|t1 − t2|2)[κ(|x1 − x2|2 + W2(µ1, µ2)2)].

This completes the proof.

Remark 3.1 Under Assumptions 2.1 and 3.1, the averaged equation (3.3) has a unique
solution {X̄t, t ≥ 0}.

In fact, for any x1, x2 ∈ Rn, t1, t2 ∈ [0, T ] and any initial value y ∈ Rm, by Assumption 2.1,
Lemmas 3.3 and

|b̄(t1, x1, µ1)− b̄(t2, x2, µ2)|2

=

∣∣∣∣ ∫
Rm

b(t1, x1, µ1, y)νt1,x1,µ1(dy)−
∫
Rm

b(t2, x2, µ2, y)νt2,x2,µ2(dy)

∣∣∣∣2
= lim

s→∞
|Ẽb(t1, x1, µ1, Y

t1,x1,µ1,y
s )− Ẽb(t2, x2, µ2, Y

t2,x2,µ2,y
s )|2

≤ lim
s→∞

Ẽ|b(t1, x1, µ1, Y
t1,x1,µ1,y
s )− b(t2, x2, µ2, Y

t2,x2,µ2,y
s )|2

≤ K(|t1 − t2|2)[κ(|x1 − x2|2 + Ẽ|Y t1,x1,µ1,y
s − Y t2,x2,µ2,y

s |+ W2(µ1, µ2)2)]

≤ K(|t1 − t2|2)[κ(|x1 − x2|2 + W2(µ1, µ2)2 + CTκ(|x1 − x2|2 + W2(µ1, µ2)2))]

≤ K(|t1 − t2|2)[κ1(|x1 − x2|2 + W2(µ1, µ2)2)].

(3.5)

Next, notice that κ : R+ → R+ is a continuous and non-decreasing concave function fulfilling
κ(0) = 0, κ(v) > 0, and

∫
0+

1
κ(v)

dv = +∞ for each v > 0, we then let κ1(v) := κ(v+CTκ(v)),

then one can see that κ1 : R+ → R+ is also a continuous and non-decreasing concave
function satisfying κ1(0) = 0, κ1(v) > 0 and

∫
0+

1
κ1(v)

dv = +∞. Consequently, this indicates

that b̄ satisfies (2.1). As we have already showed that there is a unique solution to (1.1), by
the same argument, we conclude that there is a unique solution to Equation (3.3).
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3.1 Some estimates for the solution (Xε
t , Y

ε
t )

Firstly, we prove some uniform bounds for the solution (Xε
t , Y

ε
t )

Lemma 3.4 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t ∈ [0, T ],
we have

sup
ε∈(0,1)

sup
t∈[0,T ]

E|Xε
t |2 ≤ CT,H,|x|,|y|,β2 ,

and
sup
ε∈(0,1)

sup
t∈[0,T ]

E|Y ε
t |2 ≤ CT,H,|x|,|y|,β2 ,

where the positive constant CT,H,|x|,|y|.β2 with subscripts dependents on T,H, |x|, |y|, β2.

Proof. For any t ∈ [0, T ], it follows from Hölder inequality and Assumption 2.1, we get

E|Xε
t |2 = E

∣∣∣∣x+

∫ t

0

b(s,Xε
s,LXε

s
, Y ε

s )ds+

∫ t

0

σ(s,LXε
s
)dBH

s

∣∣∣∣2
≤ 3E|x|2 + 3E

∣∣∣∣ ∫ t

0

b(s,Xε
s,LXε

s
, Y ε

s )ds

∣∣∣∣2 + 3E
∣∣∣∣ ∫ t

0

σ(s,LXε
s
)dBH

s

∣∣∣∣2
≤ 3E|x|2 + TE

∫ t

0

|b(s,Xε
s,LXε

s
, Y ε

s )|2ds+ 3E
∣∣∣∣ ∫ t

0

σ(s,LXε
s
)dBH

s

∣∣∣∣2
≤ 3E|x|2 + TE

∫ t

0

|b(s,Xε
s,LXε

s
, Y ε

s )− b(s, 0, δ0, 0) + b(s, 0, δ0, 0)|2ds

+ 3E
∣∣∣∣ ∫ t

0

σ(s,LXε
s
)dBH

s

∣∣∣∣2
≤ 3E|x|2 + CTE

∫ t

0

(κ(|Xε
s|2 + |Y ε

s |2 + W2(LXε
s
, δ0)2) +K(T 2))ds

+ 3E
∣∣∣∣ ∫ t

0

σ(s,LXε
s
)dBH

s

∣∣∣∣2
≤ 3E|x|2 + CT

∫ t

0

(1 + 2E|Xε
s|

2 + E|Y ε
s |

2)ds+ CT,H

∫ t

0

(1 + E|Xε
s|2)ds

≤ CT,|x| + CT,H

∫ t

0

(E|Xε
s|

2 + E|Y ε
s |

2)ds.

(3.6)

As for the Y ε
t , using Itô’s formula and Assumption 3.1, we have

d

dt
E|Y ε

t |2 =
2

ε
E〈f(t,Xε

t ,LXε
t
, Y ε

t ), Y ε
t 〉+

1

ε
E||g(t,Xε

t ,LXε
t
, Y ε

t )||2

≤ −β2

ε
E|Y ε

t |
2 +

C

ε
(E|Xε

t |
2 + 1).

(3.7)

Then by the comparison theorem, we have

sup
t∈[0,T ]

E|Y ε
t |2 ≤ |y|2e−

β2t
ε +

C

ε

∫ t

0

e−
β2(t−s)

ε

(
sup
s∈[0,t]

E|Xε
s|

2 + 1

)
ds

≤ |y|2 + CT,β2

(
sup
s∈[0,t]

E|Xε
s|

2 + 1

)
.

(3.8)
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Combing (3.6) with (3.8), we have

sup
t∈[0,T ]

E|Xε
t |2 ≤ CT,|x|,|y| + CT,H,β2

∫ t

0

sup
s∈[0,t]

E|Xε
s|

2ds.

So, Gronwall’s inequality yields

sup
t∈[0,T ]

E|Xε
t |2 ≤ CT,H,|x|,|y|,β2 . (3.9)

Hence, we have

sup
t∈[0,T ]

E|Xε
t |2 ≤ CT,H,|x|,|y|,β2 , sup

t∈[0,T ]

E|Y ε
t |2 ≤ CT,H,|x|,|y|,β2 .

This completes the proof.

Similar to the proof of Lemma 3.4, for 0 ≤ t ≤ t+ h ≤ T , we have

E|Xε
t+h −Xε

t |2

= E
∣∣∣∣[ ∫ t+h

t

b(s,Xε
s,LXε

s
, Y ε

s )ds+

∫ t+h

t

σ(s,LXε
s
)dBH

s

]∣∣∣∣2
≤ CE

[∣∣∣∣ ∫ t+h

t

b(s,Xε
s,LXε

s
, Y ε

s )ds

∣∣∣∣2 +

∣∣∣∣ ∫ t+h

t

σ(s,LXε
s
)dBH

s

∣∣∣∣2]
≤ CThE

∫ t+h

t

(κ(2E|Xε
s|2 + E|Y ε

s |2) +K(T 2))ds+ CTh
2H−1E

∫ t+h

t

κ(E|Xε
s|2)ds

≤ CThE
∫ t+h

t

(2E|Xε
s|2 + E|Y ε

s |2 + 1)ds+ CTh
2H−1E

∫ t+h

t

(1 + E|Xε
s|2)ds

≤ CT,H,|x|,|y|,β2(h
2 ∨ h2H).

Hence, we have the following result.

Lemma 3.5 Suppose that Assumptions 2.1 and 3.1 hold. Then, for 0 ≤ t ≤ t+ h ≤ T , we
have

E|Xε
t+h −Xε

t |2 ≤ CT,H,|x|,|y|,β2(h
2 ∨ h2H).

3.2 Some estimates for the auxiliary process (X̂ε
t , Ŷ

ε
t )

The aim of this paper is to estimate the difference between Xε
t and X̄t. To this end we

introduce an auxiliary process (X̂ε
t , Ŷ

ε
t ) and divide [0,T] into intervals of size δ < 1 (δ is a

fixed number depending on ε). We will use the discretisation techniques from Khasminskii
in [16] (we can see, for example, Röckner, Sun and Xie [27], Pei, Inahama and Xu [26]) to
construct a process Ŷ ε

t with initial value Ŷ ε
0 = Y ε

0 = y such that for t ∈ [kδ,min((k+1)δ, T )],

Ŷ ε
t = Ŷ ε

kδ +
1

ε

∫ t

kδ

f(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

s )ds+
1√
ε

∫ t

kδ

g(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

s )dWs.

This can be rewritten as

Ŷ ε
t = y +

1

ε

∫ t

0

f(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )ds+
1√
ε

∫ t

0

g(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )dWs,
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where s(δ) := [ s
δ
]δ is the nearest breakpoint preceding s, and [ s

δ
] is the integer part of s

δ
.

Similar, we can define the process X̂ε
t with initial value X̂ε

t = x by

X̂ε
t = x+

∫ t

0

b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )ds+

∫ t

0

σ(s,LXε
s
)dBH

s .

Remark 3.2 By the construction of Ŷ ε
t and use similar argument as in the proof of Lemma

3.4, it is easy to obtain
sup
ε∈(0,1)

sup
t∈[0,T ]

E|Ŷ ε
t |2 ≤ CT,H,|x|,|y|,β2 .

Lemma 3.6 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t ∈ [0, T ],
we have

sup
ε∈(0,1)

sup
t∈[0,T ]

E|Y ε
t − Ŷ ε

t |2 ≤ CT,H,|x|,|y|,β1,β2κ(δ2H).

Proof. For any t ∈ [0, T ], we have

Y ε
t − Ŷ ε

t =
1

ε

∫ t

0

[f(s,Xε
s,LXε

s
, Y ε

s )− f(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )]ds

+
1√
ε

∫ t

0

[g(s,Xε
s,LXε

s
, Y ε

s )− g(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )]dWs.

Using Itô’s formula, we have

E|Y ε
t − Ŷ ε

t |2

≤ 2

ε
E
∫ t

0

〈f(s,Xε
s,LXε

s
, Y ε

s )− f(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s ), |Y ε
t − Ŷ ε

t |〉ds

+
1

ε
E
∫ t

0

||g(s,Xε
s,LXε

s
, Y ε

s )− g(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )||2ds.

By Assumption 3.1, we have

d

dt
E|Y ε

t − Ŷ ε
t |2 ≤ −

β1

ε
E|Y ε

t − Ŷ ε
t |2 +

CT
ε
κ(2E|Xε

t −Xε
t(δ)|2)

≤ −β1

ε
E|Y ε

t − Ŷ ε
t |2 +

CT,H,|x|,|y|,β2
ε

κ(2δ2H).

Hence, by comparison theorem and Lemma 3.5, we can get

E|Y ε
t − Ŷ ε

t |2 ≤
CT,H,|x|,|y|,β2

ε

∫ t

0

e−
β1(t−s)

ε κ(δ2H)ds

≤ CT,H,|x|,|y|,β1,β2κ(δ2H).

This completes the proof.

Lemma 3.7 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t ∈ [0, T ],
we have

sup
t∈[0,T ]

E|Xε
t − X̂ε

t |2 ≤ CT,H,|x|,|y|,β1,β2κ(δ2H + κ(δ2H)).
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Proof. For any t ∈ [0, T ],

Xε
t − X̂ε

t =

∫ t

0

b(s,Xε
s,LXε

s
, Y ε

s )− b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )ds.

By Lemma 3.5 and 3.6, we obtain

sup
t∈[0,T ]

E|Xε
t − X̂ε

t |2 ≤ E
[ ∫ T

0

|b(s,Xε
s,LXε

s
, Y ε

s )− b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )|ds
]2

≤ CTE
∫ T

0

|b(s,Xε
s,LXε

s
, Y ε

s )− b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )|2ds

≤ CTE
∫ T

0

K(δ2)[κ(|Xε
s −Xε

s(δ)|2 + W2(LXε
s
,LXε

s(δ)
)2 + |Y ε

s − Ŷ ε
s |2)]ds

≤ CT,H,|x|,|y|,β1,β2κ(δ2H + κ(δ2H)).

This completes the proof.

3.3 The estimate for |X̂ε
t − X̄ε

t |

Lemma 3.8 Suppose that Assumptions 2.1 and 3.1 hold. Then for any T > 0, t ∈ [0, T ],
we have

sup
t∈[0,T ]

E
∣∣∣∣ ∫ t

0

(b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
))ds

∣∣∣∣2 ≤ CT,H,|x|,|y|(
ε

δ
+ δ).

Proof. By elementary inequality, estimate (3.5) and Lemma 3.4, we have

sup
t∈[0,T ]

E
∣∣∣∣ ∫ t

0

(b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
))ds

∣∣∣∣2
≤ C sup

t∈[0,T ]

E
∣∣∣∣ [t/δ]−1∑

k=0

∫ (k+1)δ

kδ

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

s )− b̄(kδ,Xε
kδ,LXε

kδ
)ds

∣∣∣∣2
+ C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

t(δ)

b(t(δ), Xε
t(δ),LXε

t(δ)
, Ŷ ε

s )− b̄(t(δ), Xε
t(δ),LXε

t(δ)
)ds

∣∣∣∣2
≤ C sup

t∈[0,T ]

E
(

[
t

δ
]

[t/δ]−1∑
k=0

∣∣∣∣ ∫ (k+1)δ

kδ

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

s )− b̄(kδ,Xε
kδ,LXε

kδ
)ds

∣∣∣∣2)
+ CT δ sup

t∈[0,T ]

E
∫ t

t(δ)

(1 + |Xε
t(δ)|2 + |Ŷ ε

s |2 + E|Xε
t(δ)|2)ds

≤ CT
δ2

max
0≤k≤[T

δ
]−1

E
∣∣∣∣ ∫ (k+1)δ

kδ

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

s )− b̄(kδ,Xε
kδ,LXε

kδ
)ds

∣∣∣∣2
+ CT,H,|x|,|y|,β2δ

2

≤ CT
ε2

δ2
max

0≤k≤[T
δ

]−1

∫ δ
ε

0

∫ δ
ε

ζ

φk(s, ζ)dsdζ + CT,H,|x|,|y|,β2δ
2,
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where 0 ≤ ζ ≤ s ≤ δ
ε
, and

φk(s, ζ) = E[|〈b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

sε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
),

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

ζε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
)〉|].

(3.10)

Now, we consider the process Ỹ ε,s,x,µ,y
t , t ≥ s, defined as follows

Ỹ ε,s,x,µ,y
t = y +

1

ε

∫ t

s

f(s, x, µ, Ỹ ε,s,x,µ,y
r )dr +

1√
ε

∫ t

s

g(s, x, µ, Ỹ ε,s,x,µ,y
r )dWr.

By the construction of Ŷ ε
t , for any k ∈ N, we have

Ŷ ε
t = Ỹ

ε,kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

t .

Moreover, by the time shift transformation, for any fixed k and s ∈ [0, δ
ε
], we have

Ỹ ε,kδ,x,µ,y
sε+kδ = y +

1

ε

∫ kδ+sε

kδ

f(kδ, x, µ, Ỹ ε,kδ,x,µ,y
r )dr +

1√
ε

∫ kδ+sε

kδ

g(kδ, x, µ, Ỹ ε,kδ,x,µ,y
r )dWr

= y +
1

ε

∫ sε

0

f(kδ, x, µ, Ỹ ε,kδ,x,µ,y
r+kδ )dr +

1√
ε

∫ sε

0

g(kδ, x, µ, Ỹ ε,kδ,x,µ,y
r+kδ )dW ∗

r

= y +

∫ s

0

f(kδ, x, µ, Ỹ ε,kδ,x,µ,y
rε+kδ )dr +

∫ s

0

g(kδ, x, µ, Ỹ ε,kδ,x,µ,y
rε+kδ )dŴ ∗

r ,

where W ∗
t := Wt+kδ −Wkδ is the shift version of Wt, Ŵ

∗
r = 1√

ε
W ∗
rε. Recall that

Y kδ,x,µ,y
s = y +

∫ s

0

f(kδ, x, µ, Y kδ,x,µ,y
r )dr +

∫ s

0

g(kδ, x, µ, Y kδ,x,µ,y
r )dW̃r.

Hence, we have
Ỹ ε,kδ,x,µ,y
sε+kδ ∼ Y kδ,x,µ,y

s , (3.11)

where ∼ denotes coincidence in the sense of distribution.

φk(s, ζ) = E{E[〈b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

sε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
),

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

ζε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
)〉|Fkδ]}

= E{E[〈b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

sε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
),

b(kδ,Xε
kδ,LXε

kδ
, Ŷ ε

ζε+kδ)− b̄(kδ,Xε
kδ,LXε

kδ
)〉]}.

= E
[
Ẽ
〈
b

(
kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

s

)
− b̄(kδ,Xε

kδ,LXε
kδ

),

b

(
kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

)
− b̄(kδ,Xε

kδ,LXε
kδ

)

〉]
= E

[
Ẽ
〈
Ẽ
[
b

(
kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

s

)∣∣∣∣F̃ζ

]
− b̄(kδ,Xε

kδ,LXε
kδ

),

b

(
kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

)
− b̄(kδ,Xε

kδ,LXε
kδ

)

〉]
.

(3.12)
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Therefore, by Cauchy-Schwarz’s inequality

φk(s, ζ) ≤ E
[
Ẽ
∣∣∣∣b(kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

s−ζ

)
− b̄(kδ,Xε

kδLXε
kδ

)

∣∣∣∣2] 1
2

+ E
[
Ẽ
∣∣∣∣b(kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

)
− b̄(kδ,Xε

kδ,LXε
kδ

)

∣∣∣∣2] 1
2

,

which, (2.1) and (3.5) imply that

Ẽ
∣∣∣∣b(kδ,Xε

kδ,LXε
kδ
, Y

kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

)
− b̄(kδ,Xε

kδ,LXε
kδ

)

∣∣∣∣2
≤ CẼ

(
1 + |Xε

kδ|2 +

∣∣∣∣Y kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

∣∣∣∣2 + E|Xε
kδ|2
)
.

Thus, exist α > 0 , we have

φk(s, ζ) ≤ CTE
{
Ẽ
[
1 + |Xε

kδ|2 +

∣∣∣∣Y kδ,Xε
kδ,LXε

kδ
,Ŷ εkδ

ζ

∣∣∣∣2 + LXε
kδ

(| · |2)

]
e

−α
2

(s−ζ)
}

≤ CTE
(

1 + |Xε
kδ|2 + |Ŷ ε

kδ|2 + E|Xε
kδ|2
)
e

−α
2

(s−ζ)

≤ CT,H,|x|,|y|,β2e
−α
2

(s−ζ).

(3.13)

Therefore, by equation (3.13) and choosing δ = δ(ε) such that δ
ε

is sufficiently large, we
have

sup
t∈[0,T ]

E
∣∣∣∣ ∫ t

0

(b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
))ds

∣∣∣∣2
≤ CT

ε2

δ2
max

0≤k≤[T
δ

]−1

∫ δ
ε

0

∫ δ
ε

ζ

φk(s, ζ)dsdζ + CT,H,|x|,|y|,β2δ
2

≤ CT,H,|x|,|y|,β2
ε2

δ2
max

0≤k≤[T
δ

]−1

∫ δ
ε

0

∫ δ
ε

ζ

e
−α
2

(s−ζ)dsdζ + CT,H,|x|,|y|,β2δ
2

≤ CT,H,|x|,|y|,β2
ε2

δ2

(
2

α

δ

ε
− 4

α2
+

4

α2
e

−αδ
2ε

)
+ CT,H,|x|,|y|,β2δ

2

≤ CT,H,|x|,|y|,β2(
ε

δ
+ δ).

This completes the proof.

Lemma 3.9 Suppose that Assumptions 2.1 and 3.1 hold. Then for any T > 0, t ∈ [0, T ],
we have

lim
ε→0

sup
t∈[0,T ]

E|X̂ε
t − X̄t|2 = 0.
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Proof. Recall that

X̂ε
t − X̄t =

∫ t

0

[b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s, X̄s,LX̄s)]ds

+

∫ t

0

[σ(s,LXε
s
)− σ(s,LX̄s)]dB

H
s

=

∫ t

0

[b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
)]ds

+

∫ t

0

[b̄(s(δ), Xε
s(δ),LXε

s(δ)
)− b̄(s,Xε

s,LXε
s
)]ds

+

∫ t

0

[b̄(s,Xε
s,LXε

s
)− b̄(s, X̄s,LX̄s)]ds

+

∫ t

0

[σ(s,LXε
s
)− σ(s,LX̄s)]dB

H
s .

For any t ∈ [0, T ], by the simple inequality

|x1 + x2 + · · ·+ xk|p ≤ kp−1(|x1|p + |x2|p + · · ·+ |xk|p),

and Hölder inequality, we have

sup
t∈[0,T ]

E|X̂ε
t − X̄t|2 ≤C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
)]ds

∣∣∣∣2
+ C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[b̄(s(δ), Xε
s(δ),LXε

s(δ)
)− b̄(s,Xε

s,LXε
s
)]ds

∣∣∣∣2
+ C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[b̄(s,Xε
s,LXε

s
)− b̄(s, X̄s,LX̄s)]ds

∣∣∣∣2
+ C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[σ(s,LXε
s
)− σ(s,LX̄s)]dB

H
s

∣∣∣∣2
≤C sup

t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[b(s(δ), Xε
s(δ),LXε

s(δ)
, Ŷ ε

s )− b̄(s(δ), Xε
s(δ),LXε

s(δ)
)]ds

∣∣∣∣2
+ CT sup

t∈[0,T ]

E
∫ t

0

|b̄(s(δ), Xε
s(δ),LXε

s(δ)
)− b̄(s,Xε

s,LXε
s
)|2ds

+ CT sup
t∈[0,T ]

E
∫ t

0

|b̄(s,Xε
s,LXε

s
)− b̄(s, X̄s,LX̄s)|

2ds

+ C sup
t∈[0,T ]

E
∣∣∣∣ ∫ t

0

[σ(s,LXε
s
)− σ(s,LX̄s)]dB

H
s

∣∣∣∣2
=: sup

t∈[0,T ]

4∑
i=1

Ji(t).

For the term J1(t), by Lemma 3.8 we have

J1(t) ≤ CT,H,|x|,|y|,β2(
ε

δ
+ δ).
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For the terms J2(t) and J3(t), by the equation (3.5), Lemma 3.5 and Lemma 3.7, we have

J2(t) ≤ CT

∫ t

0

K(δ2)κ(2E|Xε
s(δ) −Xε

s|2)ds ≤ CT,H,|x|,|y|,β1,β2κ(δ2H),

and

J3(t) ≤ CT

∫ t

0

κ(2E|Xε
s − X̂ε

s|2) + κ(2E|X̂ε
s − X̄s|2)ds

≤ CT,H,|x|,|y|,β1,β2κ(δ2H + κ(δ2H)) + CT

∫ t

0

κ(E|X̂ε
s − X̄s|2)ds.

For the term J4(t), thanks to the result from the proof of ([5], Theorem 3.1) and J3(t),
we have

J4(t) ≤ CT,HE
∫ t

0

||σ(s,LXε
s
)− σ(s,LX̄s)||

2ds

≤ CT,HK(T 2)

∫ t

0

κ(E|Xε
s − X̂ε

s|2) + κ(E|X̂ε
s − X̄s|2)ds

≤ CT,H,|x|,|y|,β1,β2κ(δ2H + κ(δ2H)) + CT,H

∫ t

0

κ(E|X̂ε
s − X̄s|2)ds.

Above all, we have

sup
t∈[0,T ]

E|X̂ε
t − X̄t|2

≤ CT,H,|x|,|y|,β1,β2

[
ε

δ
+ δ + κ(δ2H) + κ(δ2H + κ(δ2H))

]
+ CT,H

∫ T

0

κ

(
sup
r∈[0,s]

E|X̂ε
r − X̄r|2

)
ds.

With the aid of taking δ =
√
ε and letting ε→ 0, yields

lim
ε→0

sup
t∈[0,T ]

E|X̂ε
t − X̄t|2

≤ CT,H

∫ T

0

κ

(
lim
ε→0

sup
r∈[0,s]

E|X̂ε
r − X̄r|2

)
ds.

Hence, by the result of [[3],Lemma 3.7], we have

lim
ε→0

sup
t∈[0,T ]

E|X̂ε
t − X̄t|2 = 0.

This completes the proof.

3.4 The estimate for |Xε
t − X̄t|

Suppose Assumption 2.1 and 3.1 hold. Taking δ =
√
ε, by Lemma 3.7 and 3.9, any T > 0,

initial values x ∈ Rn and y ∈ Rm, we have

lim
ε→0

[
sup
t∈[0,T ]

E|Xε
t − X̄t|2

]
≤ lim

ε→0

[
sup
t∈[0,T ]

E(|Xε
t − X̂ε

t |2 + |X̂ε
t − X̄t|2)

]
= 0.
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This completes the proof of Theorem 3.2.
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