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Abstract

In this paper, we derive an averaging principle for a fast-slow system of stochastic
differential equations (SDEs) involving distribution dependent coefficients driven by
both fractional Brownian motion (fBm) and standard Brownian motion (Bm). We
first establish the existence and uniqueness of solutions of the fast-slow system and the
corresponding averaging equation. Then, we show that the slow component strongly
converges to the solution of the associated averaged equation.
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1 Introduction

In the seminal papers [14, 15], Kac proposed the “propagation of chaos” of mean field particle
systems in order to study nonlinear PDEs in Vlasov’s kinetic theory. This motivated McKean
[20] to study nonlinear Fokker-Planck equations by utilising stochastic differential equations
with distribution dependent drift coefficients. In general, nonlinear Fokker-Planck equations
can be characterised by distribution dependent stochastic differential equations, which are
also named as McKean-Vlasov SDEs or mean field SDEs. A distinct feature of such systems
is the appearance of probability laws in the coefficients of the resulting equations (for more
comprehensive overview, the reader is referred to Wang [31], Huang and Wang [11], Mehri
and Stannat [21], Huang, Ren and Wang [13] and the references therein).

In this paper, we are concerned with the averaging principle for fast-slow systems of
distribution dependent stochastic differential equations (DDSDEs, for short) of the form

dX§ = b(t, X5, Lxe, Yi)dt + o(t, Lxe)dBl!, X§=1xe€R", 1
Y = Lf(t, X{, Lxe, Yo)dt + Jg(t, X, Ly, Y)dW,, Yy =y € R™, (1.1)
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where Zx. stands for the law of X;. The parameter e represents the ratio between the natural
time scales of X7 € R" and Y, € R™. We are concerned with situations where ¢ < 1, i.e.,
with a separation of scales, in such a case the vector X7 is called the “slow component” of
the systems, and the vector Y,© is called the “fast component” of the systems. The driving
process B and W, are independent d; dimensional fractional Brownian motions with Hurst
parameter H € (%, 1) and dy dimensional Wiener processes, respectively. The coefficients

b:[0,7] x R" x Z»(R") x R™ — R",

0 :[0,T] x Py(R") — R4,

f:]0,T] x R" x Zy(R") x R™ — R™,
g:[0,T] x R" x Zp(R") x R™ — R"™ %,

with
2ol = { e PE) ] ) = [ Jellutde) <o, 0 € o)

where P is the set of probability measure on (R™, B(R"™)). The space Zp(R™) is a Polish
space under the L-Wasserstein distance

1

7

WG(MLMZ) = }nf </ ‘Qf - y‘g/n(dxady)) y M1, 2 € @G(Rn%
TEE (p1,12) R™ xR

where € (1, p2) is the set of probability measures on R” x R" with marginals p; and puo,

respectively.

We recall that fractional Brownian motion with Hurst parameter H € (0, 1) is a centred
Gaussian process B = {B} t > 0} with covariance function

Ru(s, ) = %(S2H F2H e sPHY, st > 0.
For H = %, fBm B is the standard Brownian motion. For H # %, B is neither a
semimartingale nor a Markov process. As a consequence, classical techniques of stochastic
analysis are not applicable. In particular, an fBm with a Hurst parameter H € (%, 1)
possesses a property of long range memory, which roughly implies that the decay of stochastic
dependence with respect to the past is only subexponentially slow, what makes this kind
of noise a realistic choice for problems with long memory in the applied sciences including
hydrology, telecommunication, turbulence, image processing, and finance ([2], [22], [23],
[10]), and this is why this kind of noise is being used now very often.

The averaging principle, initiated by Khasminskii [16], is a very efficient and important
tool in study of stochastic differential equations for modeling problems arising in many prac-
tical research areas. It in fact provides a powerful tool for simplifying dynamical systems,
and obtains approximate solutions to differential equations. The averaging principle enables
us to study complex equations with related averaging equations, which paves a convenient
and easy way to study many important properties. To date, the stochastic averaging prin-
ciple has been developed for many more general types of stochastic differential equations
(see, for example, [8], [4], [24],[37],[38], [19], [28], [29],[30], [17], [9] just to mention a few).

A natural generalisation of the averaging principle, which will be carried out in this paper,
can be illustrated as follows. Assume that for every fixed z the rapid variables induce a



unique invariant measure vh®# Then, as € — 0, X£ converges on every finite interval [0, T
to the solution X which is the solution of the following averaged equation,

{ dX; = b(t, X;, ZLx,)dt + o(t, Zx,)dBE, (1.2)

X():l',

where

b(t,x, 1) = / b(t,x, u, 2)vHH(dz),

and v“®* is the unique invariant measure for the transition semigroup of the solution of the
following frozen equation,

{ dY, = f(t,z, 1, Y,)ds + g(t,z, 1, Y,)dW, (1.3)

YE):ya

where Wt is a dy-dimensional Brownian motion on another given complete probability space
(Q, Z,P) and {Jt,t > 0} is the natural filtration generated by W,. It is worth noting that,
for any initial data y € R™, Equation (1.3) has a unique strong solution {Y**¥} -, which
is a homogeneous Markov process, so its transition semigroup has a unique invariant mea-
sure %" under appropriate conditions. Hence, the definition of the averaged coefficient
b is meaningful. From mathematical point of view, it is possible to model systems with
different time-scales and then operate a rigorous dimensionality reduction, approximating
the behavior of the slow component Xf with X, and controlling the error of such approx-
imation. For this reason multi-scale stochastic systems are widely used in many areas of
physics, chemistry, biology, financial mathematics and many other applications areas (see,
for example, [6], [32]).

In the distribution independent case, there have been many fundamental studies address-
ing the averaging principle for two-time scale stochastic systems driven Brownian motion,
Lévy process and fractional Brownian motion. Xu, Liu and Miao [34] proved the L? con-
vergence for two-time-scales with special non-Lipschitz which extends the existing results
from Lipschitz to non-Lipschitz case. Liu et al. [18] used the techniques of time discreti-
sation and truncation to study the averaging principle for stochastic differential equations
with slow and fast time-scales, where the drift coefficients satisfied local Lipschitz condi-
tions with respect to the slow and fast variables. Givon [7] considered two-time-scale system
of jump-diffusion stochastic differential equations and studied the convergence rate of the
slow components to the effective dynamics. Xu and Liu [35] proved a stochastic averaging
principle for two time-scale jump-diffusion SDEs under the non-Lipschitz coefficients. Pei et
al. [25] studied the averaging principle for a fast-slow system of rough differential equations
driven by mixed fractional Brownian rough path. The fast component is driven by Brow-
nian motion, while the slow component is driven by fractional Brownian motion. Pei et
al. [26] considered averaging principle for fast-slow systems involving both fractional Brow-
nian motion and standard Brownian motion. More recently, there has been an increasing
interest to study the stochastic averaging principle for two time-scale distribution depen-
dent stochastic differential equations. Under some proper assumptions on the coefficients,
Réckner, Sun and Xie [27] proved that the slow component strongly converges to the solu-
tion of the corresponding averaged equation with convergence order % using the approach
of time discretisation. Furthermore, under stronger regularity conditions on the coefficients,



they used the technique of Poisson equation to improve the order to % Xu et al. [36] con-
sidered strong averaging principle for two-time-scale stochastic McKean-Vlasov equations.
Using the variational approach and classical Khasminskii time discretisation, Hong, Li and
Liu [12] studied the asymptotic behavior for a class of McKean-Vlasov stochastic partial
differential equations with slow and fast time-scales. The main results can be applied to
demonstrate the averaging principle for various McKean-Vlasov nonlinear SPDEs.

Although there exist many investigations in the literature devoted to studying stochastic
averaging principle for slow and fast time-scales stochastic McKean-Vlasov equations driven
by Brownian motion, or by Lévy processes, and so on, as we know, there is not any considera-
tion of averaging principle for slow and fast time-scales stochastic McKean-Vlasov equations
driven by fractional Brownian motion. Moreover, due to their distribution dependent na-
ture, they are potentially useful and important for modelling complex systems in diverse
areas of applications. Comparing to the classical two-time-scale stochastic McKean-Vlasov
equations driven by Brownian motion and Lévy processes, the two-time-scale distribution
dependent SDEs driven by fractional Brownian motion are much more complex, therefore, a
stochastic averaging principle for such SDEs is naturally interesting and would also be very
useful. This motivates us to carry out the present paper, aiming to establish a stochastic
averaging principle for the DDSDESs where the fast component is driven by Brownian motion
and the slow component is driven by fractional Brownian motion.

Throughout this paper, the letter C' will denote a positive constant, with or without
subscript, its value may change in different occasions. We will write the dependence of the
constant on parameters explicitly if it is essential.

The rest of the paper is organised as follows. In Section 2, we prove the existence and
uniqueness of solutions to the two-time-scale SDEs with distribution dependent coefficients
driven by fractional Brownian motion. In Section 3, we establish an approximation theorem
as an averaging principle for the solutions of the concerned DDSDEs.

2 Existence and uniqueness theorem

In this section, by utilising the Carathéodory approximation technique, we will establish the
existence and uniqueness theorem for solutions of fast-slow systems of distribution dependent
stochastic differential equations (1.1) driven by fBm and standard Brownian motion under
the following Assumption 2.1. It is worthwhile to mention that throughout this section the
parameter € > 0 is arbitrarily fixed. We would like to point out that this would not affect
the derivation of our averaging principle in the next section.

Assumption 2.1 There exists a non-decreasing function K(t), K(0) =1 such that for any

t,ti S [O,T],p > 0,$Z‘ S Rn,yl S Rm,ﬂl S ﬂg(Rn),Vi S y@(Rm),Z = 1,2
|b(t1, 21, p1, Y1) — b(ta, 22, pio, )|
< K([ty = tao|”)[k(|71 — 22|’ + [y1 — 2" + Wo (1, 12)")],

o (t, pa) — o (t, p)||” < K(#)x(Wo(pa, p12)"), (2.2)
|f(t1, $17M17y1) - f(t2, 36’2,M27y2)|p
< K([ty — tafP) [k(|71 — 22 + [y — 92f” + W (1, 12)")],

(2.1)

(2.3)
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lg(te, z1, 1, y1) — g(ta, w2, p2, y2) ||

2.4
< Kty — o) 511 — 22 + g1 — ol + Woluws )], 2D

and

[b(2,0, 00, 0)|” + [lo (¢, d0)[|” + [ £ (2, 0,00, 0)[ + [|g(2, 0, 00, 0) || < K (), (2.5)

where k : RT — RT is continuous and non-decreasing concave function with k(0) = 0,
k(v) > 0, for every v > 0 such that [, ﬁdv = 400.

Example 2.2 We can give a few concrete examples of the function k(). Let L > 0, and
let 6 € (0,1) be sufficiently small. Define
k1(u) = Lu,u > 0.

ulog(u™t), 0<u<od;
fio (1) = { 5108(5-1) + Ko (0—)(u — 8), u > 6.
s (1) = { ulog(u~') loglog(u=1), 0<u<y;

dlog(d1) loglog(671) + K'5(0—)(u —6), u >4,
where k' denotes the derivative of the function k. They are all concave nondecreasing func-
tions satisfying fo+ . u) = 00,1 = 1,2,3. Furthermore, we observed that the Lipschitz
condition 1s a special case of our proposed condition.

For any p > 1, let S”([0, T]; R™) be the space of R"-valued, continuous (ﬁt)te[oﬂ—adapted
process ¥ on [0,T] satisfying

1] se := (E sup |@/}t|p) < 00.

te[0,7)

Now, we define the Carathéodory approximation as follows. For any integer n > 1, define
X" =2,V " =yfor =1 <t <0 and

t t
0 0

5,7

and
Y=y 4 - /f X DY) d8+—/ 8 X Ly VI AW, (27)

for t € [0,T]. It is noted that comparing with Picard’s successive approximation technique,
the advantage of using Carathéodory approximation technique is that we do not need to
compute X' - X" (res. YO, - V") to compute X" (res. Y™ ). In fact, we
can compute X;™ (res. Y,°" ) directly over intervals of length £. Our results are new even
when the coefficients appeared in Assumption 2.1 satisfy Lipschitz condition. Observe that
o(s,Lxc) is a deterministic function, then f(f o(s,Lxe)dBE can be regarded as a Wiener
integral with respect to fractional Brownian motion. We need to prepare two lemmas in
order to establish the main result in this section.

Lemma 2.3 Suppose that Assumption 2.1 holds with p > 6 and p > % Then

E( sup | X;"P ) < CpeTHay

te[0,T
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and
]E( sup |Yf’n|p) < Cpel Hay-

t€[0,T]
Proof. For any n > 1. By the elementary inequality
|l’1 + To + 1’3|p S 3p—1<|x1‘p + |$2‘p + |$3‘p),

and Holder inequality, (2.6)—(2.7), we have

]E( sup |Xf’"]p) < 3p_1E|$|p+3p_1]E( sup

te[0,7) t€[0,7]

¢
b(s, X", Lxen Y )ds
0 ST s—% STm

p) )

)
+ 3p_1IE( sup
te[0,T

=: 3p_1E|:L‘|p + 3P + 377 s,

t
/ o(s, Lxen )dB?
0 S

n

and

e,n|P _ 3 _
E( sup [Ye" ) <3 Epp + Gy E( sup
€

te[0,7] t€[0,7]

t
/ g5, X, Len Y)WV,
0 n S

1
n n

3
+ (—= p_lE( sup
(\/E) te[0,T
3

t
/ f(S’XSETLv"?XS’"l ’Y;;nl)ds
0 n S—n n
)
BRIP4 (O g+ ()
€ Ve
For the term I;, owing to (2.1) in the Assumption 2.1, Hélder inequality, and the fact
Wo(Lx,, Lx,)P < E|X; — X5|P, we can obtain
)

t
< CP,TE( sup / b(s, X", Lxen Y1) = b(s,0, 00, 0) + b(s, 0, do, O)|pds>
0 n =

te[0,T] n

t
I = ]E( sup / b(s, X", Lxen Y1) = (s, 0,00,0) + b(s,0, 0, 0)ds
0 n S*ﬁ n

t€[0,T

t
< G sup [ (KX, V2P 4 Wl e, o)) + K (7))
0 n n =

t€[0,T]
T
<Cpr / (1+ £(2EJXE" P 4 B[V, 7))ds
O n n
T
<Cyr [ (L+EIX, P+ BV P)ds,
0 n n

where the last inequality is due to k(-) is concave and increasing, there must exist a positive
number a such that
r(u) < a(l+ u). (2.8)



For the term I;5, it comes from Alos and Nualart [1], Fan et al. [5] and (2.2), we have
)

T
< Corn / lo(s, Lo ) — o(5,80) + (5, 80) |Pds
0 STh

t
/ o(s, Lyen )dBY
: .

STw

I, = E( sup

te[0,T)

T
< Cyrn [ llo(s. Lyer, )IPds
0 5T

n

T
< CoanaaK(17) [ (R(EIX, )+ 1)ds
0 n

T
< Cyrn [ (14 BIXZ, )i
0 n
Hence,

T
E( sup |Xf’n|p> < CE|z|’ + Cp,T,H/ (1 + E|X§fl|p + IE|Y:fLL ]p) ds
O n n

t€[0,7)]
T
< CElz[" + Cp,T,H/ (1 + E( sup |Xﬁ’"|p> +E( sup |Yf’"|p)>ds.
0 r€(0,s] r€f0,s]
(2.9)

For the term I3, it follows from Hélder inequality and (2.3) in Assumption 2.1, we have
)

t
S Cp,TE< sup / Hf(S,X;Tl,gXeml 7Y:inl) - f<87 07 50a O) + f<87 07 50a O)”pdS)
1Jo no Tem ST
t

t
Lz = ]E( sSup / [f(saXzflagXe’"l 7Y:in1> — f(5,0,00,0) + f(s,0,0,0)]ds
0 n S—x n

t€[0,T]

telo, T

< o sup [ X P IV 4 Vo, ) + K (T

t€[0,7] J 0O n
T
<G [ (1 FEX P+ Ellgi”ll”>ds-
0 n n

For the term [4, it follows from the Burkholder-Davis-Gundy inequality, Holder inequality
and (2.4) in Assumption 2.1, we have
)

t
/ g(s>X;T;7$X€'"1 7}/:;71 )dWs
0 n 5=

1
n n

Ty = IE( sup

te(0,7

T
<Cyr|E / lg(s, X%, Byen YO0 ) |2ds
0 n s— n

n

IS

T 2
S Cp,T E/ ”g(S,X;Tl,gXeml 7Y:inl) - 9(57075070) +g(8a 075070)”2d8
0 n Ss— n

n

T
< Gy [ (KX, P+ V2L + Wal L, o)) + K(T7)ds
0 n n S—n

T
<Cpr [ (LI P 4+ BV P)ds
0 n n



Thus, we can get
T
B sup [V071P) < CEIYP + Gy [ (14 BIXZZ, P+ BV Pl
0 n n

te[0,T)
T
< Bl + Cpur [ (148 ( swp 135 4B ( swp e ) s
0

rel0,s] r€[0,s]
(2.10)
Combining (2.9) and (2.10), we have
B sup 1x07P) 4 B( sup ol
t€[0,T] t€[0,7]
T
< Cpray+ Cp,e,T/ (E( sup |Xﬁ’”|p) + IE( sup |Yf’"|p>)ds.
0 re(0,s] rel0,s]
It follows from the Gronwall’s inequality that
E( sup |Xf’"|p> +E( sup ]Yte’"|p> < Cpel Huy- (2.11)
t€[0,7] t€[0,T]
Therefore, this shows the boundedness of X;" and Y,"". u
Lemma 2.4 Suppose that Assumption 2.1 holds with p > 6 and p > % Then
E(|X7" = X"P) < Cpempay [t — s)P + (t — s)P7], (2.12)
and
E(Y;™" = Y"P) < Grerpay [t —8)" + (= 5)°]. (2.13)

Proof. By (2.6) and (2.7), we have

‘ t
Xte’n — X;’n = / b(ra X:fll7$Xe’n1 71/;-6Lnl>d/r + / 0'(71, $X67n1 )dBfI’

n n

and
Y;e,n _ }/;’n
1/t 1 [
= E/ f(ra X:ZL%WDgXiil ) Kfj%)dr + % / 9(7’7 X:iliug)(:fl ) Y:in%)dwr



By the elementary inequality |71 + xo[P < 2P71(|x1|P + |22[P) and Holder inequality, we have

E| X" — X¢mP
p
< o7 lE

t
/ b(r, X”l,gxen yen)

+2p 1E‘/ (r, Lxen )dB!

T_f

p
/ (T‘, gxﬁvnl )dB;{

<27t — s)P” 1E/ ‘brX”ﬂ,ern v )|Pdr + 2P7'E

< (- sy E / o, X7 s Lo V) = b0, 0,0) 4 b(1 0, 0, 0) Py

Tﬁi

p
+ 2P~ 11@‘/ (r, Lxen )dBY

t
<2 Ue— 5P B [ (WX P+ YLD+ Wl Ly, 80) + K (T

t p
+2p1E‘ / o(r, ZLxer VB!

t p
< Cp(t—s)plf (1+E\X:fl\p+E\Y€" P)dr + 2P~ 1]E‘/ o(r, Ly )dBY

T-,f

As for the term E| 1 o(r, Lxer, )dBH " using the methods from Alos and Nualart [1]

(see also Fan et al. [5], Shen et al [ 9]), we have

E "t — sy 1/ Io(r, Zxer, P

7«,7

t
/ o(r, Lyen )AB!

< Cpult — sy / K(T7) (s(Wo(Lxen00)) + V)
< Cpp(t—s)Pit / t(1 + ]E]X;f% P)dr
On the other hand,
E[Y, " —Yorp
/t f(r Xﬁf% , "%Xffl , Y:L"%)dr

p

IN

CrE

p

(s
2

. (%)NJ21 + (%)HJQQ.

t
/ o XE L, V)Y,




For the term J5;, by the Holder inequality, we have

p

t
Jo1 = E’ / f(s, X:Tg-iﬂx""l 7Y:in1 )dr

t
< (-9 E [ 176X Zrer V)P
t
< (t - 5)p1E/ Hf(sa X:T;agXe’"l aY:ini) - f(S, 0, do, O) + f(S, 0, do, O)]‘pdr
t
< (t— S)HE/ (R(IXCL P+ [V P+ Wo(Lxen |, 60)7) + K(T7))dr
t
< Cyrlt = 5Pt [ (BIX, P + BV + 1
For the term Jys, by the Burkholder-Davis-Gundy inequality, we have
t 5
i < CE| [ oo, X2 e, Y|P
t
<Cylt = 9B [ gl X2 L, V)P

t
<Cop(t—s)2 ' [ (E[X", [P +E|YS" P + 1)dr.
P T ™ n

Above all, by the Lemma 2.3 we can get that
E|X;™ - Xop
t ¢
<Cylt =9 [ (BT P 4 BV P+ Gt — 5P [ (14 BIX, P

< Cpemtiay- [t — s)P + (t — s)P7],

and
B - Yo
< Cparlt = o~ [ XS P 4BV P+ )i
FCperlt =) [ EIXC P4 BV 4 ar
< Cperray [(t — )P + (t — 5)2].
This completes the proof. -

Theorem 2.5 Suppose that Assumption 2.1 holds. For any e >0, p > 60 and p > %, there
exists a unique solution (X5,Y[),t >0 to system (1.1) with initial value v € R",y € R™
and for all T > 0,(X,Y*) € SP([0,T];R") x SP([0, T];R™),P — a.s and

{ Xi =+ [y b(s, X, Lx, Yo)ds + [ o(s, Zx;)dBY, (2.14)

Ye=y+ 1 f) fls, XS, Lxe, Vs + 32 [y 9(s, X5, Le, Y AW,

10



Proof. We split the proof in two steps.
Step one: Existence. We firstly prove that (X;"),>1, (Y;"").>1 are Cauchy sequences in
SP([0, 7).

Note that for n > m > 1, it is routine to obtain

]E( sup | X" — Xf’m\p)

t€[0,T]

t P
§2”‘1E< sup / [(b(s Xenl,zxm YI) = b, XU Lo, VI )] ds )
tefo,7] | Jo STm s—7 Tm
t p
+2p_1IE( sup /[a(s,fxsml)—a(s,gxeyml )|dBE )
te[0,7) i im

= 2P [y + 2P ]y,

and

o s i)

te[0,7)

2 ! €n €n €,m €,m
< (_)p_lE( sup / [f(S7XS7_l7$X€Tl7Y;;l) - f(SaXSLL7$X€‘_WL7YS;L)]dS

€ t€[0,T]

2
+ (— p_1E< sup
(\/E) te[0,7)

2 2
I:(E)p 1[[21+<\/_)p 1[[22

)

t
/ 95, X2, e, V) = (s X0 Ly Y)Y,
0 n S—n n

)
For the term I1;. By the Assumption 2.1, Holder inequality and Lemma 2.4, we have

t p
]IH S CT,pE( sup / dS)

te[0,7] J 0

[(b(s, j”ufxfn 1) = s, j_mufxfm Y

m

T
< Cr B / bls X2y L V) = b, X Lo, VP
0 n
£ Jb{s, XM, Lyem YE) (s, XEP Ly, Y

_5,7

T
< Cry [ IR, = XD 4V = YIUP 4 Wl Lier, Lo, )
O n n

F (X~ XET P Y Y B 4 Wy Ly | Lo VP)]ds
T n m
<Cr, / WE[X, — X9 P 4 B[YS", — Yo )
O n n n n
T R(2E|XE™ — XM P 4 YT YO P)]ds
T
<Cr, / RE|XE", — X9 [P L BV, — Y P)ds
0 n n n n

T 1 1
+Crp | 5| Crpeoliyl(
0

1 1 1
___>P+(___ —
m n m n m
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For the term 11,5, by Assumption 2.1, Holder inequality and Lemma 2.4, we have

5,7

T
I < CrynB [ lols, Zxer)) = ols, Ly )]s
0
T
< CT,p,H]E/ llo(s, Zxen, ) = ols, Lxem )" + [lo(s, Lxem ) = als, Ly, )|[Plds

<chH]E/ (T W(Wo(Lyer  Lrem V) + 5(Wo(Lyem , Lyem P)]ds

1
STn Sn n m

T
< Cryar [ WX, X7 )ds
0 n n

- G )

r 1
+CT,p,H/O H(CT,H,p,eJx?ly[(g
Using the same way of the proof of I1;;, we have

T
Iy < CT,pE/ |[f (s, X0, Lo Y ) — f(&XSﬁafxm Y )lPds
0 n S*ﬁ n m S— 2y
T
< CTypE/ [ f(s Xenl,fxen YG") f(s,Xzﬁ,er,mlyyiﬂi)‘P
0 n S*ﬁ n
F1f{s, XM Sem YEM) — s, XM Lrem Y |Plds
T n m
<Cr, [ WEEIX, - XEPLP 4BV, - YD)
0 n n n n
+RCEXT - X0 P+ BV Y [P)ds

T
<Cr, [ WEEIX, - XELP 4BV - YD)
0 n n n n
T
+Cry / %(CT,H,p,e,my[(
0

For the term [y, by the Assumption 2.1, Burkholder-Davis-Gundy inequality and
Lemma 2.4, we have

P T (- D as

1
m m n

P

T 2
[I22 < CPE(/ Hg(saXsz17°§/ﬂX5’"1 >Y;inl) - g(s,X:TL,.,E,ﬁXe,ml 7}/:””;)”2(18)
0 n STy n m S—m m
T
< CT,pE/ HQ(SaX;ngX"”l 7Y56Ln1) - g(s,X:fni,,ije,ml ,Y;f’i)”pds
0 n S*ﬁ n m S*m m

T
< Cr, [ oo, X2y S, V) = ol X7y Lo VEDIP
+ ”g( 7X§,ml7$X:f”L7 8,1) o ( >X§TL7$X:TL7Y::LZ)HP]dS

T
<Cr, / RE|XE", — X P 4 EYS" — YO P)ds
0 n n n n

T 11,
+Crp | K Crapeeyl(— — =)+ (
0 m



Above all, we can conclude

E( sup X0 — X:vmw)

te[0,7
T
< Cryun | REEIXT, = XV BV - Y2 P)ds
0 n n n n

1 1

T
1
+ CT,p/O K(CT,H,p,e,|x|,y|[(E - _)p + ( - ﬁ)pH + (

~—
S]]

|
S|

s

3=

1
n m
and

E( Sup |Y;/E,7"L . }/tE,m|p>

te[0,7]
T
< Cre / R(2E[X", — X7 P+ E[YS", — YO P)ds
0 n n n n

P T (- D s

1
m m n

T
+Crpe /O H(CzH,mw[(

Using the fact that x(0) = 0 and Fatou’s Lemma, we obtain for every ¢ > 0,
T
26) < Crpun [ w2Z(5)ds
0

T
<64 Crypen / k(27 (s))ds.
0

where

Z(T) = limsup [E( sup | X" — Xf’m|p) —l—E( sup |Y;" — Yt6’m|p>].

n,M—00 t€[0,T t€[0,7]

Hence, the Bihari inequality yields
1
Z(T) < 5G—1 {G(?é) + CT,p,QH] :

where G(20) + Crpn € Dom(G™1), G™' is the inverse function of G(-) and

G(v):/IU%, v > 0.

By Assumption 2.1, one sees that limsjo G(§) = —oo and Dom(G™') = (—o0, G(o0)). Let-
ting 6 — 0 gives

IE( sup |X;" —Xf’m]p) —i—E( sup |Y; " —Yf’m|p> =0.

te[0,T] te[0,7]

Consequently, (X;")n>1, (Y""),>1 are Cauchy sequences in SP([0,7]) withp > 6 and p > +,
and then the limit, denoted by Xf, Y} is a solution to (1.1).
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Step two: Uniqueness. Let (X{,Y)), (X{,Y)) be two solutions for (1.1) on the same
probability space with the same initial value, note that

t t
Xp = Xi = [ s L YO~ W, K L TN+ [ (s, ) — o, 2, B
0 0

and

- 1 ¢ - -
)/te - YtE :(E>/0 [f(st;gX;?Y:) - f(S’X§7$X§7Y€>]d8

S

1 t ~ ~
() / l9(s, X5, L, YE) — gls, Ko, Ly VW,

By the same ways of the proof of Iy, 15, we have

t
/ [b(s, X5, Zice, YE) = b(s, X, Ly, V)\ds
0

)

E( sup |Xt€—)~(f|p) < 27’_1E( sup

te[0,7T) t€[0,T

)
+ 2p_1IE( sup

te€[0,7

/0 lo(s5, L) — o5, 5. )|dB!

T
< Crpu / R(2E|XS — X<+ EJYS — Ve P)ds.
0

By the same ways of the proof of 115, I, we have

- 1 T - -

B sup v = V7)< B| (D) [0 2 V) = S0 K5 L Vs
te[0,7] € Jo °

1 T ~ ~ P

() [l 2 V) (s, X L T,
Ve Jo

T
< Cryen | KQEIXG = X + BJY; — T2P7)ds.
0

Hence, we have

E( sup |X:—5<:|p) +E< sup IYf—f/fV’)

te[0,T] te[0,T]

T
< Crpen / R(2E|XS — X< 4+ 2E|Y — Ve [?)ds.
0

Then, the Bihari inequality implies that (X¢,Y) = (X5, Yy), t € [0,7], P — a.s. This
completes the proof. [ ]
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3 Averaging principle

In this section, assume 6§ = 2, we will establish the convergence, under non-Lipschitz coef-
ficients, of X¢, the slow component in (1.1), to X, the solution of the averaged equations
(3.3) in the sense of convergence in mean square. We need the following conditions on the
coefficients f, g.

Assumption 3.1 There exist constants 5; > 0,1 = 1,2, such that the following hold

2(y1 — ya, f(t1, 21, 1, 1) — fta, 0o, pio, y2)) + |lg(tr, @1, i1, 1) — g(te, Ta, pa, yo)||?

3.1
Bl =l + Kty — tol)(ls — wof? + Walur, i)?), D

and

20y, f(t.x, 1, y)) + gt 2, )1 < =Balyl® + C(L+ |2 + p(] - ). (3.2)

Next, we state our main result.

Theorem 3.2 Suppose that Assumptions 2.1 and 3.1 hold, for any T > 0, t € [0,T], we
have B
ImE[X®— X[ =0

e—0

where X is the solition of the following averaged equation,

{ dX, = l_a(t,Xt,th)dt—i—U(t,g)Zt)dBtH 7 (3.3)

Xy =
here

bt) = [t 2o (),

and v»®* is the unique invariant measure for the transition semigroup of the following frozen
equation, 5
{ dY, = f(t,x, 1, Yy)ds + g(t, a, p, Yo)dW,,

3.4
YVO =Y, ( )

where W, is a do-dimensional Brownian motion on another complete probability space
(Q,.%,P) and {%,,t > 0} is natural filtration generated by ;. It is easy to prove for any
initial data y € R™ that equation (3.4) has a unique strong solution {Y**#¥} o, which is
a homogeneous Markov process. Moreover, sup,sq E[YA%#9(2 < Cp[1+ 2|2 + |y|2 + u(| - 7)),

for any t € [0, T], where E is the expectation on (,.7, P).

Noting that for any bounded measurable function ¢ : R™ — R, we have

Py™to(y) i= Ep(Y "), y € R™, s >0,

where { Ph%#} 50 be the transition semigroup of Y*H¥,

15



Lemma 3.3 Suppose that Assumptions 2.1 and 3.1 hold. Then for anyT > 0, t1,t2 € [0,T],
we have

R[[y oo — ylewnuzw 2] < =08y, — 0|2 4 Op(K (|t — to]*) (|21 — 22| + Wa(pr, 12)?)].
Proof.

S
D D S e e T / [f (b1, @y, oy, YI0P0ROUY) — (g, @, pig, Y2 2H282) | dr
0

S
+ / [9(t17$17 L1, YTthhul,m) _ g(tg, T, [l KtQ@Q,M’yZ)]dWr-
0

By 1to’s formula, we have

TVt 1,01,Y1 Vot T2,H2,y2 |2
E[Y; Y, |

- IE/S[2<f(1t1,flﬁla pa, YITI) — f (b, @, o, Y U0 ) YT Y Rt z)
0 + [lg(tr, 2y, pa, Y00 — g(by, g, g, V12721292 ||

By Assumptions 3.1, we have

iED/;tl,ml,m,yl . }/;gtg,mg,/.l,g,yg |2

ds .

< —Bi(E[Y o Y e 2) 4 CpR ([t — taf*)[m(|ar — 22f® + W, p2)?)]-

Hence, by Gronwall’s inequality([7].pp.584), we obtain
By s — e < ol g+ CoR (= ) el — a2 + Walja, )]
This completes the proof. [ ]

Remark 3.1 Under Assumptions 2.1 and 3.1, the averaged equation (3.3) has a unique
solution { Xy, t > 0}.

In fact, for any xq, 2 € R" 1,15 € [0, 7] and any initial value y € R™, by Assumption 2.1,
Lemmas 3.3 and

b(t1, 21, p11) — blta, 2, p2)|?

/b(tl,xly,ulyy)th’wl’m(dy)—/ b(tzﬁzamay)VtQ’IQ’M(d?/)

= lim [Eb(t2, a0, oy, Y070 0Y) — Bb(tg, g, o, Y2242

S§—00
1 " t t 2 (35)
< Tim BJb(ts, 00, i, YIRI) — bt 0y, i, V272050

5§—00

2

< K(Jtr = tof)[(jar — wof* + B[Y1o0m8 — Y2202 1 W 0y, p12)°)]

< K([ty = tao)[s(lz1 — @of* + Wa(p, p2)? + Crr(ly — wo* + Wa(pa, p12)°))]

< K([t — taf*) [ (|21 — @o]* + Wo(pa, p12)?)].
Next, notice that x : RT™ — R is a continuous and non-decreasing concave function fulfilling
k(0) = 0,k(v) >0, and [, ﬁdv = 400 for each v > 0, we then let k1 (v) := k(v+ Crr(v)),
then one can see that x; : RT — R* is also a continuous and non-decreasing concave
function satisfying #1(0) = 0, k1(v) > 0 and [, #(U)dv = +o00. Consequently, this indicates
that b satisfies (2.1). As we have already showed that there is a unique solution to (1.1), by
the same argument, we conclude that there is a unique solution to Equation (3.3).
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3.1 Some estimates for the solution (X, Y)

Firstly, we prove some uniform bounds for the solution (X7, Y))

Lemma 3.4 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t € [0,T],
we have

€€(0,1) te[0,T]
and

sup sup E[Yy|* < Or ol y) 0

€€(0,1) t[0,T]

where the positive constant Cr p g |y|.8, With subscripts dependents on T, H, |z|, |y|, Bo.

Proof. For any t € [0,T], it follows from Holder inequality and Assumption 2.1, we get

2

t t
E|X{|> =E|x +/ b(s, Xg, Lxe,YS)ds +/ o(s, Lxc)dBY
0 0

2

t 2 t
< 3E|z|* + BE‘ / b(s, X5, Lxe, Y)ds| + 3E‘ / o(s, Lxc)dBY
0 0

2

t t
< 3E|z|? +T]E/ b(s, X5, Lxe, Y)|Pds + 3E / o(s, Lxe)dBY
0 0

t
< 3E|z|* + T]E/ b(s, X5, Lxe, YS) — b(s,0,80,0) + b(s, 0,8, 0)]*ds
0

t 2
+ SE‘ / o(s, Lx)dBH (3.6)
0
t
< 3BJaf? + Cr | (R(IXC -+ [V + Wal i, 80)%) + K(T%)ds
0
t 2
+ 3E‘ / o(s, Lxc)dBY
0
t t
< 3E|z|* + CT/ (1+ 21E|X§|2 + E|Y;|2)ds + CT,H/ (1+E|X¢|?)ds
0 0
t
S OT,W + CT,H/ (E|X§|2 —|—E]Y;|2)ds
0
As for the Y, , using [t6’s formula and Assumption 3.1, we have
d 2 1
TBIVEP = “B{f( X7, L, Y, YE) + —Ellg(t, X, L, YO @
c )
< -Prpyep 4 C@xie )
Then by the comparison theorem, we have
t C t t—s
sup E|Yf|]* < |y|26_ﬁ% + —/ e~ )( sup E|X¢|* + 1)d$
te[0,T] € Jo s€[0,t] (3 8)

< |y|* + CT752< sup IE|X§|2 + 1).

s€[0,t]
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Combing (3.6) with (3.8), we have
t
sup E|X{|* < COpjay ) + C’T,H”gQ/ sup E|X¢|ds.
te[0,7) 0 s€[0,t]
So, Gronwall’s inequality yields

sup Ep(ﬂ2 S CT,H,|x\,|y\,[32- (39)
te[0,7

Hence, we have

€12 €12
sup E[X7|" < Crmjaiyl ., sup E|YS® < Crmjaljy6.-
te[0,T) t€[0,T]

This completes the proof. [ ]
Similar to the proof of Lemma 3.4, for 0 <t <t+ h < T, we have

EIX7,, — Xi[*
t+h t+h
{/ b(s, Xg, Zx:. Y. )ds+/ J(s,fxg)dBf]
¢ ¢
t+h t+h 2
/ b(s, X5, Lxe, Y )ds / (s, Lx:)dBY ]
t t

t+h t+h
< CyhE / (K(2ZE|XC[? + E|Y¥?) + K (T%))ds + Coh? 'K / k(B XE[2)ds
t t

2
=E

2

SCE[ +

t+h t+h
< CThE/ (2E| X2 + E|[YS]> 4+ 1)ds + CTh2H‘1E/ (1+E|X*)ds
t

t
S CT7H7‘$|1|y|162(h2 \/ h2H)

Hence, we have the following result.

Lemma 3.5 Suppose that Assumptions 2.1 and 3.1 hold. Then, for 0 <t <t+h <T, we
have
E[X{n — X1 < Onjol g o (0 V 221,

3.2 Some estimates for the auxiliary process (Xf,Yy)

The aim of this paper is to estimate the difference between Xf and X;. To this end we
introduce an auxiliary process (X¢,Y;) and divide [0,T] into intervals of size § < 1 (4 is a
fixed number depending on €). We will use the discretisation techniques from Khasminskii
n [16] (we can see, for example, Rockner, Sun and Xie [27], Pei, Inahama and Xu [26]) to
construct a process Y;¢ with initial value Y;f = Y§ = y such that for ¢ € [k&, min((k+1)8,T)),

}/; Y;{;é / f ]’C(S Xkd,gxéé, S dS + ——— k’5 Xkd,gxéé, S) WS'
k5
This can be rewritten as
1 [ .
}/;e = —I— g / f(S((S), X;(é)agXe Ye dS + _/ X;(5)7$X§(5)7 Y:)dWS,
0
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where s(0) := [5]0 is the nearest breakpoint preceding s, and [5] is the integer part of 3.
Similar, we can define the process Xf with initial value Xf =z by

t t
X;:x+/ b(s(5), §(5),$X§(6),Y:)ds+/ o(s, Lxe)dBM.
0 0

Remark 3.2 By the construction of Yf and use similar argument as in the proof of Lemma
3.4, it is easy to obtain

sup sup EYS > < Crp,jaf1y1,6,-
€€(0,1) t€[0,T

Lemma 3.6 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t € [0,T],
we have

sup sup E|Y; = Y < Crpjaliy60,6.5(027).
€€(0,1) t€[0,T

Proof. For any t € [0,T], we have

€

R 1 [t R
R / [f (5, X5, Lxe, ) = f((0) XS5y, Lxce, » Yo)ds
0
L
Ve

Using It6’s formula, we have

t
[ lots. X2 2 Y2) = 500). X VNI

ElY; - Y|

€

2 t N N
< 2B [ (7 X0 2 Y2) = F(50), X L VIV = Vs
0

1 t N
+ EE/ g(s, X5, Lxe, YY) — g(s(é),Xg(é),gxg(é),Y;)||2ds.
0

By Assumption 3.1, we have

d € AE /81 € AG CT € €
SRV - VP < —PEIY - Ve 4+ “LR(2E|X; - X )
N C .
S _&E|Y;E _ }/’te|2 + T7H1| ‘7|y‘762 /{(2521‘[)
€ €

Hence, by comparison theorem and Lemma 3.5, we can get

. C b s
E’}/te _}/tﬁ|2 S TszlxMy‘aBQ / e—ﬁl%ﬁ/(52H)d8
0

€

S CT7H1|$‘7|y‘761162li((SQH)‘
This completes the proof. [ ]
Lemma 3.7 Suppose that Assumptions 2.1 and 3.1 hold. Then, for any T > 0, t € [0,T],

we have

sup EIXE = X < Crngy (5 4 5(57).
€0,
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Proof. For any t € [0,T],
t
Xe— Xe = / b5, X5 L YE) = b(s(8), Xy Lxe,y V).
0

By Lemma 3.5 and 3.6, we obtain

2

T
sup BIX; X < | [ 105, X5 £, Y2) = 60, X g Y5l

t€[0,T]

T
< Or [ b5, X5 Ly YY) = (s(0), X Ly VO
0

T
< CrE /O K (0%)[k(1X5 = Xio)I* + Wa(Lxe, Lxe )+ [V = YP))ds
S CTvH’|m|7‘y|:61:B2KZ(52H _'_ K(52H))

This completes the proof. [ ]

3.3 The estimate for |X§ — X{|

Lemma 3.8 Suppose that Assumptions 2.1 and 3.1 hold. Then for any T > 0, t € [0,T],
we have

2

€
< Crm,jal vl (5

E
sup 5

te[0,T

+4).

t
[ 06060, X V) = B5(0). K 2, s

Proof. By elementary inequality, estimate (3.5) and Lemma 3.4, we have

2
sup E‘ / Xﬁ((s),fxgwﬂe) - b(3<5) "%X (5)))ds
te[0,T]
[t/8]-1  (k+1)s . - 2
<C sup E / b(ko, Xis, Lxe,, Yi) — b(kd, Xis, Lxe,)ds
te[0,T k=g YKo
t R - 2
te(0,7) t(5)
" [t/0]-1 (k+1) _ 2
< C sup E([g] > / b(kd, Xf5, Lxe,, YS) — b(k, Xi5, L, )ds )
te[0,T] PR k&

t
+Crd sup B [ (14 Xig P+ (VP + B Xy P)ds
te[0,T7] ()
k+1)6 R B 2
max ’ / b(kd, Xfs, Lxe,, YE) — b(kd, Xi5, Ly, )ds
kd

=02 0<k<[L]-1 s

+ Cr o) Jy),8,0°

<CT_ max //cbk C)dsdC + Cr p ja y1,6,0°

0<k<[T]-1
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vvhereO§C§3<é and

_67

on(s, Q) = B[ (b(kd, Xi5. L, Veerns) — bk, X5, L),

] (3.10)
b<k5 Xk57$X5573/45+k5) b<k5an57$X,§5)>|]'

Now, we consider the process Y;"*""¥ t > s defined as follows
- 1 [t - 1 g -
Ve —y o [ s Veermar 22 [ gt Teor e,
€ S € S

By the construction of Yte, for any k£ € IN, we have

N ~ k8, X5, Lxe Y
€ VO, AL s Xké’ ko
V=¥, .

Moreover, by the time shift transformation, for any fixed k£ and s € [0, ] we have

Yekéxpy 1 Rose k5 Yekéxuy d R k,(s Ysk&a:uy dW
se+kd _y_‘_g L5 f( €T, [, )T+_ €, [, )

1
=y+— [ Sk Y dr + — / (kd, 2, 1, Y500 aw
0

—y+ / FkS, @, 1, Y05 dr + / g(kd, z, p, Y000 dwy
0 0

where W} := Wiiks — Wis is the shift version of W, W = ﬁW;‘; Recall that

r

YOy — g / F(kS, , p, Y0019 ) dr + / g(ks, z, 1, Y"1 )W,
0 0

Hence, we have
&k0,2, 1,y kd,x,p,y
Yo ~ Y, : (3.11)

where ~ denotes coincidence in the sense of distribution.
P (s, ¢) = E{E[(b(kd, kasagXﬂ;? se+k5) b(ké XZ&XX;(;)’
b(kd, Xig, Lxiys Yerns) — bk, Xig, Lxg )| Fisl}
:E{E[< (7“5 XkéaZXi;, se+k6) b(k5 Xk&gX;a):
b(k5= Xkangi;u Y<e+k5) - b(k5 Xkéng,i(;))]}'
= E[E<b(k5 Xisr Lxe,r Yo

kéX Lxe Y -
k§ L X550 k5> — b(/{:5,X;§5,$Xzé), (3.12)
k6, X5 L xe Vs

b(k;é X5 Lxi,. Y, . ) - E(ké,Xza,ngé)H
. k6 Dxe Y < -
= |:]E< |: <k5 Xk;57$X€ s Xk6 6Y6)‘¢g§:| _b(k(S;le;dvchzé))

1«5 X Zxe s Y,jg)

b(ké Xis, ZLxs, Y, - b(ké,X§57$X;5)>}
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Therefore, by Cauchy-Schwarz’s inequality

k6, X5 Lxcg Vi

~ , % _
Pr(s,C) < E[E’b<k6 Xigr Lxe,n Yy ¢ & ’“5) — bk, Xf5-Lxs,)

| i
|

ol

1«5 XisrZxe VS 7 .
+E|E|b( ks, X5y, Lxe,, Y, b(kd, Xis, Lxc,)

which, (2.1) and (3.5) imply that

2

0. fe Y
Bb( ko, Xg5, Ly Ve — bk, XE5, e,
132) 132)

WXt Lxe Vi |

< CE(l + | X551 + ‘

+ IE|X,§5|2).
Thus, exist o > 0 , we have

WX 5 Zxe Vs |

Pr(s,¢) < CTIE{ {1+ | X552+ ‘

i (1) e 0
< o1+ X5+ 75 + BIXG P ) 300 (313)

< CT7H,|:c|,\y|7526_T(S_C)'

Therefore, by equation (3.13) and choosing § = d(¢) such that g is sufficiently large, we
have

sup E
te[0,7

t
| 0600, X5 Ly V) = B0, X, 2, s

: s
< CT(GS— max / / qbk(s, C)deC + CT,H,|gc\,|y|,5252

0<k<[L]-1

< CTH Jzllyl.B2 5 (52 max / / ez (s=C deC + CTH Jzl.lyl, 52(5

0<k<[L]-1
20 4
<CTH|1‘IIy|6252( —@Jrg@ K >+OTHI$IIy|625

< CT7H,|:C|,|?J|,62(S +9).

This completes the proof.

Lemma 3.9 Suppose that Assumptions 2.1 and 3.1 hold. Then for any T > 0, t € [0,T],
we have

lim sup E|Xf — X;>=0.

040,17
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Proof. Recall that
t
X;—Xt—/ [b(5(8), X5(a Lxey s Vo) = bls, Ko, Ly, )]ds
0
t
n / o(s, Zxe) — ols, Zx,)|AB
0
t
_ /O (b(3(8), X5, L, V) = b(s(8), X5, L, s
t
+/ [6(5(5),)(;(5),.,%)(;(5))—b(S,XS,gxg)]dS
0

+/0 [B(s, X5, Zx:) — b(s, Ko Zx.)]ds

t
+ [ ot %) = ols. 2 JaBl
0
For any ¢ € [0, 7], by the simple inequality

|x1+x2—|—---+xk|pSk”_l(\x1|p+|x2|p+-"+|9Ck|p),

and Holder inequality, we have

2
sup E|X — X,|? <C sup E‘/ X§(5)’$X§(5)7Y;) — b(s(0), X5 fxe(é))]d
te[0,7) te[0,7T]

+ B _ 2
+C sup B| [ [B(s(6). X, 2, ) — B Xos 2l
te[0,7) 0
t B B B 2
0 sup B [ s X5 L) — 0o, X 2 s
te[0,7) 0
t 2
+C sup E / (o(s, Zxe) — o(s, Ly )|dBY
t€[0,7] 0
t . 2
<C s B [ B60) X, e ¥5) = Bls(8), X i s
te

2ds

+CT sup ]E/ |b X 6)7$X (5)) E(SJX;D%X;)

t€[0,T]

+ Cr sup ]E/ b(s, X$, Lxe) — b(s, Xs, L. )*ds
te[0,T)

2

+ C sup ]E‘/ (s, Lxe) — o(s, Lx.))dBY

te[O T]

=: sup Ji(t).
te[0,T] ;

For the term J;(¢), by Lemma 3.8 we have

€
Ji(t) < Or mjaf jyl.6 (5

S+ 0).
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For the terms Jy(t) and J;(¢), by the equation (3.5), Lemma 3.5 and Lemma 3.7, we have
t
Jo(t) < CT/ K (6*)k(2E| X5 — X<V ds < Crpjafl.p1,505(027),
0

and

t
Jy(t) < Cr / R(2E|XE — X°[2) + k(2E|X* — X,[2)ds
0
t
< O7 i a1, K (02 + k(%)) + CT/ K(E|XS — Xi|?)ds.
0

For the term J4(t), thanks to the result from the proof of ([5], Theorem 3.1) and J5(t),
we have

t
Iilt) < CrnE [ llols,Zx) — ols, 25, |[ds
0
t
< ConK(T?) [ R(BIX: — X3P) + w(EX - X,P)ds
0
t
< Croarjal ol 15587 + £(87)) + Cm/ R(E[XS = Xo[")ds.
0

Above all, we have

sup E|X¢ — X,|?
te[0,7)

T
§ CT,H,|z|,\y|,Bl,62 |:§ -+ 0 + /ﬁ((SQH) + K((S2H + K((SZH))] -+ CT,H/O /i( SGI[,})p} ]E’X: — XTP) ds.

With the aid of taking § = /e and letting ¢ — 0, yields
lim sup E|X; — X,|?

€—=04¢(0,1)

T
< C’T,H/ /i(lim sup E|X¢ — XT|2>d5.
0 e—0

r€(0,s]

Hence, by the result of [[3],Lemma 3.7], we have

lim sup E|Xf — X;>=0.

=04ej0,1]

This completes the proof. [ ]

3.4 The estimate for | X{ — X;|

Suppose Assumption 2.1 and 3.1 hold. Taking § = /€, by Lemma 3.7 and 3.9, any 7" > 0,
initial values x € R" and y € R™, we have

lim | sup E|X; — Xt|2] < lim { sup E(|X — X7 + | Xf — X, )| = 0.
=0 | 4ef0,7) =0 | e0,1]
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This completes the proof of Theorem 3.2.
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