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Abstract: Reinforcement Learning (RL) is an effective method for adaptive traffic 

signals control. As one type of RL, the teacher-student framework has been found 

helpful in improving the model performance for different application fields (such as 

robot control, game, hybrid intelligence), but it is rarely applied for traffic control due 

to that the hyper-parameters and the number of state-action pairs experienced are 

difficult to determine. In this work, the teacher-student framework is used for traffic 

signal control, where only a single reward function is designed to guide the student 

agent and by using this method the number of hyper-parameters and the model 

complexity are reduced. Specifically, the teacher agent uses an importance function to 

evaluate and guide the student, where the importance function combines with 

environment reward to form a synthetic reward for the student agent. Experimental 

results under different traffic environments show that the proposed method achieves the 

expected performance enhancement and is better than most of the state-of-the-art RL- 

based traffic signal control methods. 

 

Keywords: reinforcement learning; adaptive traffic signal control; teacher-student 

framework 

 

1. Introduction 

 

Adaptive Traffic Signal Control (ATSC) is a useful method for reducing traffic 

congestion. Previous studies had tried many methods for ATSC, such as heuristics 

(Cools et al., 2013; Wunderlich et al., 2008), fuzzy logic (Gokulan & Srinivasan, 2010; 

Qiao et al., 2011), and Reinforcement Learning (RL) (Liu et al., 2018; Mousavi et al., 

2017a; Wei et al., 2018; Zheng, Xiong, et al., 2019). In particular, the performance of 

RL had been found superior to traditional transportation methods (Wei, Chen, et al., 

2019), due to that RL is able to learn the knowledge of the traffic by interacting with 

the environment. In the approach of (Hester et al., 2018), an RL approach, namely Deep 

Q-learning from Demonstrations (DQfD), that can learn from demonstration data was 

proposed in the gaming field. The DQfD can use small sets of demonstration data to 

massively accelerate the learning process. Based on the DQfD, a method of learning to 

control light by demonstrations was proposed by (Xiong et al., 2019), in which 

demonstration data were collected by a traditional transportation method. However, 

many RL methods outperform traditional transportation methods (Wei et al., 2018; 

Zheng, Xiong, et al., 2019; Zheng, Zang, et al., 2019). In intuition, an RL agent is 

guided by a pre-trained RL agent that may be better than a traditional transportation 

method, which can be realized by the teacher-student framework (Torrey & Taylor, 

2013). 

In (Torrey & Taylor, 2013), the teacher agent (i.e., the pre-trained RL agent) gives 

action advices to the student agent (i.e., the new RL agent) on a budget, which 

introduced four methods, including early advising, importance advising, mistake 

correcting and predictive advising. These four methods are heuristic. The approach of 

(Zimmer et al., 2016) built a sequential decision-making problem to describe the 

teacher-student framework. In the hybrid intelligence systems, teachers always give 

advice to students on a budget, leading to unrealistic attentions and communication 



3 

 

 

demands. Thus, an interactive teaching strategy is introduced in (Kamar, 2016), which 

does not require teacher continuously monitor students, but needs to verify students' 

decisions when students seek advice. These methods used the teacher-student 

framework with single teacher model, and furthermore the approach of (Zhan et al., 

2016) introduced a multiple teacher advice model. In order to reduce communication 

requirements, an ad hoc advisor-advisee model was proposed in a multi-agent 

environment. The ad hoc advisor-advisee relations were set according to the confidence 

between each agent (Da Silva et al., 2017). 
 

Methods proposed by (Cruz et al., 2018; Torrey & Taylor, 2013; Zimmer et al., 

2016) depend on a state importance function  𝐼 = 𝑚𝑎𝑥 𝑄(𝑠, 𝑎) ― 𝑚𝑖𝑛 𝑄(𝑠, 𝑎). If  

𝐼 
𝑎 𝑎 

reaches a threshold value (a hyper-parameter), the teacher gives advice to the student. 

Note that this hyper-parameter of threshold value is set manually. The value of the 

hyper-parameter is difficult to determine through stable and credible methods, as it 

requires lots of experience or experimental verification. According to function  𝐼, the 

hyper-parameter 

hyper-parameter 

𝑖 is dependent on the scale of the value function. In other words, the 

𝑖  is  dependent  on  the  scale  of  the  reward,  which  increases the 

difficulty of determining the hyper-parameter, especially in an environment with a 

complex reward function. In addition, the models proposed by (Da Silva et al., 2017; 

Zimmer et al., 2016) depend on the number of state-action pairs, which makes the 

model inapplicable in large state space environments, such as traffic signal control 

system. 
 

In order to avoid cumbersome determination of the hyper-parameter  𝑖  and count 

of the number of state-action pairs, an RL approach based on the teacher-student 

framework is proposed and applied to the ATSC in this work. The proposed approach 

does not limit the number of guidance (i.e., without any budget). The teacher agent 

guides the student agent by evaluating the importance of its action, rather than 

providing suggested actions. Specifically, the teacher agent is considered as a senior 

expert on the controlled system (i.e., the ATSC). The teacher agent evaluates the action 

of the student agent by an importance function, which is a part of the reward function 

of the student agent. The advantage of this approach is that it is no longer troubled by 

the hyper-parameter  𝑖. The proposed approach is evaluated in a traffic network, by 

using datasets with a certain difficulty level of the traffic environment. Numerical 

experiments confirm that the proposed approach outperforms several RL-based ATSC 

approaches. The main contributions of this work are: (1) A teacher-student framework 

with an importance function is applied to the ATSC, which can effectively reduce the 

traffic congestion. (2) The reward setting of proposed approach is explored and results 

show a better performance is obtained by using different reward setting rather than the 

same reward setting. (3) The performances of the proposed approach are evaluated by 

comparing with other traffic light control methods, and the results show that the 

proposed approach achieves a better performance. 

 

The rest of this paper is organised as follows. Section 2 provides related works in 

the field of traffic light control. Section 3 presents the background of the teacher-student 

framework and RL. The proposed approach is introduced in Section 4 . The 

experimental results for evaluating and analyzing the performance of the proposed 
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approach is provided in Section 5. Finally, this work is concluded in Section 0. 

 

 

 

 

2. Related Works 

 

2.1. The teacher-student framework 

 

A teacher-student framework for reinforcement learning was introduced in (Torrey 

& Taylor, 2013), which studies how the teacher suggests actions to the student. Based 

on this approach, the study of (Zimmer et al., 2016) further improved the performance, 

where the teacher learns how to teach the student by fitting a teaching policy, and the 

student uses an approach called max update to estimate the value function. The work 

of (Cruz et al., 2018) introduced the teacher-student framework to the robotic control 

filed, and summarized that a good teacher should have a fairly distributed experience. 

It shows that a pre-trained agent obtained high accumulative reward maybe is not a 

good teacher. An interactive teaching strategy was introduced by (Kamar, 2016) in 

hybrid intelligence systems, where the teacher does not suggest action to students 

proactively, but answer students when students consult. Furthermore, a multiagent 

advising framework was proposed in a shared environment (Da Silva et al., 2017), 

which allows agents advise each other. The advantage of this multiagent advising 

framework is that agents can accelerate learning, even if all agents do not have prior 

knowledge at the beginning. 

 

2.2. Traffic signal control based on reinforcement learning 

 

Traditionally, traffic signal control approaches can be classified into different 

categories, such as the fixed-time method (Miller, 1963), longest-queue-first method 

(Wunderlich et al., 2008), and self-organizing method (Cools et al., 2013). The fixed- 

time method controls the traffic signals by a fixed cycle that is about the green, red, and 

yellow light, in which the light duration of each colour is pre-set. The longest-queue- 

first method allows the directions with the longest queue length to have a green signal. 

The self-organising method needs a professional and experienced operator to set the 

parameters of the control program, which is inconvenient. According to the results in 

the approach of (Wei et al., 2018), these methods have better performance in the traffic 

environments with low traffic dynamics than the highly dynamic and complex traffic 

environments. 

 

Given the shortcoming of the traditional methods, RL is applied to ATSC to deal 

with dynamic and complex traffic scenarios. RL learns to control the traffic signals by 

interacting with the traffic environment. The tabular Q-learning method was used to 

control traffic signals on isolated intersections in early works (Abdulhai et al., 2003; 

Balaji et al., 2010). However, the curse of dimensionality is an unavoidable defect of 

the tabular Q-learning. In recent years, the deep neural network is used to approximate 
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the value-function or the policy of the RL agent (Mnih et al., 2015), thereby eliminating 

this defect. The performances of deep policy-gradient methods and value-function- 

based methods on traffic environments were verified in (Mousavi et al., 2017b). The 

control logic of the DRL model was analyzed in literature (Wei et al., 2018), and several 

synthetic datasets and real-world datasets were used to verify the performances of the 

DRL model on static and dynamic traffic scenarios. In addition, multi-agent RL 

methods were used to control large-scale traffic signals. The shortcoming of multi- 

agent RL methods is the action space grows exponentially with the number of 

intersections (Tan et al., 2020a). Thus, decentralized training, limited communication, 

and hierarchical structure were used to overcome this shortcoming. An actor-critic 

model combines with long-short term memory, neighborhood fingerprints and a 

distance factor showed good performance when controlling large-scale traffic signals 

(Chu et al., 2020). A novel structure that combines graph attention network and 

communication was proposed in (Wei, Xu, et al., 2019), which used the attention 

mechanism to understand the importance of different parts of the communication 

message and realize cooperation between neighboring agents. The Nash-A2C and A3C 

were proposed by (Wu et al., 2022), which were used to construct the distributed 

internet of things computing architecture of urban traffic. Results showed that this 

computing architecture can effectively reduce the congestion of urban traffic. 

 

All these RL methods learn traffic signals control from zero, which is inefficient. 

In (Hester et al., 2018), an RL approach learned from demonstration data was proposed 

in the game field. Another work (Xiong et al., 2019) based on (Hester et al., 2018) 

further learned the traffic signals control by using demonstration data obtained by a 

traditional traffic signals control method. The performance of the RL model was 

improved by using a traditional method to demonstrate. Previous work (Chen et al., 

2020; Liu et al., 2018; Mousavi et al., 2017a; Tan et al., 2020a; Wei et al., 2018; Zheng, 

Xiong, et al., 2019; Zheng, Zang, et al., 2019) presented that the performance of the RL 

model is better than traditional methods. Thus, this work explores that using a well- 

trained RL agent to guide a new one. 

 

 

Table I. Typical works of the RL-based TSC methods. 

 

 

Ref Scale Model State Action Reward 
 
 

(Abdulhai 

et al., 2003) 
Single Q-learning 

Queue length,
 

phase time 

Binary 

phase 

 

Total delay 

 

 

(Balaji et 

al., 2010) 
Multiple Q-learning 

Occupancy,
 

queue length, 

 

Green 

time 

 

History 

value, 
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vehicle count Q value 
 
 

 
(Mousavi et 

al., 2017a) 

 

Single 

Deep Q- 

network, 

 

policy-gradient 

 
Image 

representation 

 
Green 

phase 

 

Delay 

 
 

 

 

 

 

 

 

(Wei et al., 
Single 

2018) 

 

 

 

 

 

 
Deep Q- 

network 

 

 

 

Queue length, 

 

number of 

vehicles, 

 

waiting time, 

vehicles’ 

position 

 

 

 

 

 

 
Binary 

phase 

Queue 

length, 

 

delay, 

 

waiting 

time, 

 

light 

switches, 

 

vehicle 

number, 

 

travel time 
 
 

 

 
(Tan et al., 

2020a) 

 

 
 

Multiple 

 

Deep Q- 

network, 

 

Wolpertinger 

Architecture 

 

 

Queue length 
Green 

phase 

Queue 

length, 

 

moving 

vehicle 

number 

 

 

(Chu et al., 

2020) 

 

 
Multiple Actor-critic 

 

Vehicle number, 

 

cumulative 

delay 

 

Green 

phase 

 

Queue 

length, 

 

delay 

 

 

(Wei, Xu, 
Multiple CoLight 

et al., 2019) 

 

Vehicle number, 

phase 

 
Green 

phase 

 
Queue 

length 

 

(Wu et al., 
Multiple 

2022) 

Nash-A2C, 

Nash-A3C 

 
Vehicle queue 

Traffic 

phases 

Waiting 

time 
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3. Background 

3.1. Double Deep Q-Network 

 

RL  is  always  presented  as  a  markov  decision  process,  which  is   completely 

described by a 4-tuple  (𝑆,𝐴,𝑃,𝑅). Suppose that an RL agent performs a task in an 

environment 𝐸. In this 4-tuple, 𝑆 is a state set representing the situation of the 

environment 𝐸, 𝐴 is an action set included the RL agent can execute, 

𝑃 
is a dynamic 

transition distribution, and  𝑅  is a reward set that is used to illustrate the quality of the 

student’s  executed  action.  At  each  time  step   𝑡,  an  RL  agent  interacts  with  the 

environment 𝐸. The agent observes a state 𝑠𝑡 ∈ 𝑆, and then executes an action 𝑎𝑡 

according to a policy 𝜋. The policy 𝜋 is a rule, which maps 𝑠𝑡 to 𝑎𝑡. The 

environment transfers the state 𝑠𝑡 to a next state 𝑠𝑡 + 1 under the effect of action 𝑎𝑡, 

feeds a reward 𝑟𝑡 ∈ 𝑅 to the agent. The goal of the agent is to maximize a long-term 

return 𝑅  = ∑
𝑇 
𝛾𝑡 ― 𝜏𝑟 , where 𝛾 ∈ [0, 

1] 
is a discount factor. The expected total 

𝑡 𝑡 = 𝜏 𝑡 

return is represented as its value function 𝑄(𝑠𝑡,𝑎𝑡) = 𝔼[𝑅𝑡|𝑠 = 𝑠𝑡, 𝑎 = 𝑎𝑡], 

which 

estimates the value of action 𝑎𝑡 under a given state 𝑠𝑡. 
 

Deep Q-Network (DQN) is a classical RL algorithm, which approximates the value 

function 𝑄(𝑠𝑡,𝑎𝑡
) 

by an evaluated network and a target network (Mnih et al., 2015). 

The DQN is based on the Q-learning algorithm, which estimates the value function as 

 

 

 

𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑚𝑎𝑥 𝑄(𝑠𝑡 + 1,𝑎) ― 𝑄(𝑠𝑡,𝑎𝑡)), (1) 
𝑎 

 

 

 

 

 

where 𝑚𝑎𝑥𝑄 (𝑠𝑡 + 

1,𝑎) 
𝑎 

 

represents the maximal value under the state 𝑠𝑡 + 1. The loss 

function of the DQN updated the parameters of the evaluated network can be presented 

as 

 

 

 

𝐿(Θ) = 𝔼 (𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑄𝑡 (𝑠𝑡 + 1,𝑎|Θ ― ) ― 𝑄𝑒(𝑠𝑡,𝑎𝑡|Θ))2  
, (2) 

𝑎 
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where 𝑄𝑡(𝑠𝑡 + 1,𝑎|Θ 
― ) 

represents the estimated value by the target network, 𝑄𝑒 

(𝑠𝑡,𝑎𝑡|Θ
) 

represents the estimated value by the evaluated network, Θ 
― 

and Θ are the 

parameters of the target network and the evaluated network, respectively. The 

parameters Θ 
― 

are only updated with the parameters Θ every 𝐶 trained cycles, 

where 𝐶 is constant. 
 

Another key technique of the DQN is the experience replay. The experience replay 

collects the transition [𝑠𝑡,𝑎𝑡, 𝑟𝑡, 𝑠𝑡 + 1] into a replay buffer 𝑀, where 𝑑 indicates 

whether an episode ends (if the episode ends, 𝑑 = 1; the episode does not 

end, 

𝑑 = 0). 

A mini-batch of experiences is randomly sampled from the buffer 

evaluated network is trained. 

𝑀 when the 

 

A possible issue of DQN is that it may overestimate the action values, and the 

Double DQN (DDQN) can overcome this problem (Durugkar et al., 2016). In double 

Q-learning, the overestimation is reduced by using two Q functions (𝑄𝐴 

estimate the action values (Van Hasselt, 2010). It can be presented as 

 

 

 

 

 

𝑄𝐴(𝑠𝑡,𝑎𝑡) = 𝑄𝐴(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑚𝑎𝑥 𝑄𝐵(𝑠𝑡 + 1,𝑎) ― 

𝑄𝐴(𝑠𝑡,𝑎𝑡)), 
𝑎 

and 𝑄𝐵) to 

 

(3) 
 
 

𝑄𝐵(𝑠𝑡,𝑎𝑡) = 𝑄𝐵(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑚𝑎𝑥 𝑄𝐴(𝑠𝑡 + 1,𝑎) ― 𝑄𝐵(𝑠𝑡,𝑎𝑡)), 
𝑎 

 

 

 

 

One of the 𝑄𝐵(𝑠𝑡,𝑎𝑡
) 

and 𝑄𝐴(𝑠𝑡,𝑎𝑡
) 

is randomly selected to estimate the action 

value at time 𝑡. The DDQN uses a novel method to implement double Q-learning, i.e., 

it skillfully uses the target network to estimate action values. The function that estimates 

the action values only uses a network (i.e., the evaluated network). When the  network 

is updated, the action selected on 𝑠𝑡 + 1 is the greedy action of the evaluated network, 

rather than the 

as 

𝑄
𝐵 

or the target network. The loss function of the DDQN can be written 
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𝑡 𝑡 

 

𝐿(Θ) = 𝔼[(𝑌𝐷𝐷 ― 𝑄𝑒(𝑠 ,𝑎 |Θ))2], (4) 
 

 

 

 

 
where 𝑌𝐷𝐷 = 𝑟𝑡 + 𝛾𝑄𝑡 (𝑠𝑡 + 1,𝑎𝑟𝑔𝑚𝑎𝑥 𝑄𝑒(𝑠𝑡 + 

1,𝑎|Θ)|Θ ― ) 
𝑎 

 
is a target value. 

 

3.2. The teacher-student framework on a budget 

 

In (Torrey & Taylor, 2013), a pre-trained RL agent is considered as a teacher with 

a fixed policy π𝑡, and a new RL agent with the same task as the teacher is considered 

as a student. The student learns a policy to complete the task with teacher’s advice on 

a budget  𝑛. Based on the different way for teaching student, four algorithms were 

proposed, which are early advising, importance advising, mistake correcting and 

predictive advising, respectively. The early advising algorithm as shown in Algorithm 

1, the teacher observes student’s state, and advises an action according to π𝑡 in first 𝑛 

states (i.e., the budget 𝑛). The Algorithm 2 describes the importance advising 

algorithm, which uses an importance function (Clouse, 1996) to identify the states 

needed advice. The importance function can be presented as 

 

 

 

 

𝐼(𝑠) = 𝑚𝑎𝑥 𝑄(𝑠, 𝑎) ― 𝑚𝑖𝑛 
𝑄(𝑠, 𝑎). 

(5) 

𝑎 𝑎 

 

 

 

 

The function 𝐼(𝑠) is computed by the value function of the teacher rather than the 

value function of the student, and is used to approximate a student’s confidence in the 

state  𝑠. The mistake correcting algorithm (see Algorithm 3) adds a process of judging 

mistakes by comparing the student’s announced action and the teacher’s action. The 

predictive advising algorithm further improves model by using a prediction model, and 

the prediction model is trained using the states a student encounters and the actions it 

takes. 

 

 

 

Algorithm 1. Early Advising 
 
 

teacher’s policy π𝑡, a budget 𝑛; 
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for each student state 𝑠 do 

 

Observe student’s announced action 𝑎; 
 

if 𝑛 > 0 and 𝐼(𝑠) ≥ 𝑡 and 𝑎 ≠ π𝑡(𝑠) then 

teacher’s policy π𝑡, a budget 𝑛, importance threshold 𝑡; 

Algorithm 3. Mistake Correcting 

for each student state 𝑠 do 

 

if 𝑛 > 0 and 𝐼(𝑠) ≥ 𝑡 then 

𝑛←𝑛 ― 1; 

Advise 

π𝑡(𝑠); 

teacher’s policy π𝑡, a budget 𝑛, importance threshold 𝑡; 

Algorithm 2. Importance Advising 

 

for each student state 𝑠 do 
 

if 𝑛 > 0 then 
 

𝑛←𝑛 ― 1; 
 

Advise π𝑡(𝑠); 
 

 

 

 

𝑛←𝑛 ― 1; 
 

Advise π𝑡(𝑠); 
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Algorithm 4.Predictive Advising 
 
 

teacher’s policy π𝑡, a budget 𝑛, importance threshold 𝑡; 
 
 

for each student state 𝑠 do 
 

Predict student’s intended action 𝑎; 
 

if 𝑛 > 

0 

and 𝐼(𝑠) ≥ 𝑡 and 𝑎 ≠ 

π𝑡(𝑠) 

then 

 

𝑛←𝑛 ― 1; 
 

Advise π𝑡(𝑠); 
 

 

 

4. Proposed framework 

4.1. Problem definition 

 

The ATSC problem can be presented as a Markov Game (Tan et al., 2020b). Each 

intersection in a traffic environment is controlled by an RL agent in a discrete-time 

system. A group of phases is defined to control the movement of traffic flow, which is 

shown in Figure 1. The information of the intersection can be observed by the 

corresponding agent at time 𝑡, which is a state 𝑠𝑡. Then the agent executes an action 

𝑎𝑡 under the state 𝑠𝑡. A transition dynamic happens 𝑠𝑡 + 1 ∽ 𝑝( ⋅ |𝑠𝑡, 
𝑎𝑡) 

and a reward 

𝑟𝑡 is received. In this work, the state 𝑠𝑡 contains the number of vehicles on entering 

lanes, the queue length of entering lanes, and a one-hot vector about the current phase. 

The action 𝑎𝑡 is a phase. The reward 𝑟𝑒𝑛𝑣 comes from the environment, which is 

defined as the sum of all queue lengths in all entering lanes. 
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(a) Intersection (b)Four phases 

 
Figure 1. The illustration of an intersection with four phases. 

 
4.2. Importance function and guidance reward function 

 

In the teacher-student framework, the hyper-parameter  𝑛  is used to limit the 

number of states that need guidance, and another threshold hyper-parameter  𝑖 is used 

to indicate that an advice action can be given by the teacher (Torrey & Taylor, 2013). 

As it was pointed out in Section 1, the thresholds 𝑛 and 𝑖 increase the complexity of 

the teacher-student framework. In addition, the models proposed by (Da Silva et al., 

2017; Zimmer et al., 2016) need to count the number of state-action pairs, which makes 

the model inapplicable in large state space environments. In order to avoid these 

troubles, a method is suggested to reduce this difficulty in this work. The importance 

of the action that is selected by the student (the student action) is measured by using an 

importance function. The importance function can be represented as 

 

 

 

 

𝑄𝑒 (𝑠 , 𝑎𝑠𝑡𝑢) ― 𝔼[𝑄𝑒 ] 
𝐼(𝑎𝑠𝑡𝑢) 
= 

𝑡𝑒𝑎 𝑡 𝑡 𝑡𝑒𝑎 , 
 

 𝑡 𝑚𝑎𝑥 𝑄𝑒 (𝑠 , 𝑎) ― 𝔼[𝑄𝑒 
] 

(6) 

𝑡𝑒𝑎 𝑡 
𝑎 

𝑡𝑒𝑎 

 

 

 

 

where 
𝑠𝑡𝑢 
𝑡 is the student action, and 

𝑒 
𝑡𝑒𝑎 represents the action values of the teacher 

that is estimated by the evaluated network of the teacher model. The numerator and 

denominator of the equation are the advantage function (Wang et al., 2016) of the 

student action 𝑠𝑡𝑢 
𝑡 and the greedy action of the teacher, respectively. The advantage 

function means a relative measure of the importance of each action. The denominator 

  
 

 

 

 

 

𝑎 𝑄 

𝑎 
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𝑡 

presents the relative measure of the most important action of the teacher, which is a 

baseline to measure the importance of the student action. The numerator presents the 

relative measure of the importance of the student action, which is based on the teacher 

action value. 
 

After the importance of the action is obtained, a guidance reward function is given 

by 
 

 

 

 

𝑟𝑔𝑢𝑖 = 𝐼(𝑎𝑠𝑡𝑢) + 

𝑟 

 
. (7) 

 

 

 

 
 

The first part of this equation is the importance of the student action, it is used to guide 

the agent when the guidance reward 𝑟𝑔𝑢𝑖 is fed to the agent. The second part is the 

external reward, which is used to reflect the information of the traffic environment. 

 

4.3. Methodology 

 

The proposed approach is based on the teacher-student framework, which is shown 

in Figure 2. To elaborate the process, a state 𝑠𝑡 is observed by the teacher and student 

at time 𝑡. The action applied to the environment is selected by the student. Meanwhile, 

the action selected is sent to the teacher. An external reward 𝑟𝑒𝑛𝑣 is provided by the 

traffic environment, and a teacher reward 𝐼 is calculated by the importance function. 

A synthetic reward 𝑟𝑔𝑢𝑖 is fed to the student finally. 
 

The teacher is firstly pre-trained in a separate traffic scenario, it is then reused in 

other traffic scenarios. The student with randomly initialized parameters is guided by 

the pre-trained teacher. The policies of the student and teacher are not the same. In the 

pre-train stage, the policy of the teacher is the  𝜀-greedy policy (Watkins, 1989). In the 

reuse stage, the teacher adopts the greedy policy, as the teacher in this case is considered 

an expert. The policy of the student is also the  𝜀-greedy policy. The major difference 

between the 𝜀-greedy policy and the greedy policy is that the 𝜀-greedy policy can 

explore by random action with a certain probability. The different traffic scenarios have 

different transition dynamics, although the teacher is considered an expert, it is 

necessary for the teacher to be further trained to improve the teaching effect. Thus, the 

teacher is further trained based on the experiences of the student in the guidance process. 

𝑒𝑛𝑣 
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Figure 2. The interaction system of teacher and student. 

 
Both the student and teacher are re-trained/trained by the DDQN model, the overall 

architecture of the model is shown in Figure 3. As introduced in Section 4.1, as the state 

is a vector, the adopted evaluation network is a multilayer perceptron with an input 

layer, two hidden layers, and an output layer. The number of neurons in the input layer 

is the same as the length of the state vector. The number of neurons in the two hidden 

layers is 100 and 50, respectively. The number of neurons in the output layers is the 

same as the size of the action space, i.e., it is 4 in this work. The parameters of the 

evaluated network are optimized by the Adam method (Kingma & Ba, 2014). The 

updated way of the target network is soft-update (Lillicrap et al., 2015), which can be 

given by 

 

 

 
Θ ― = (1 ― 𝜏)Θ ― + 𝜏𝛩, (8) 

 

 

 

 

where 𝜏 is a constant coefficient, and 𝜏 ≪ 1. 

Teacher Student 
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… … 

Evaluated network 

… … 

Target network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The evaluated network and target network. 

 

 

 

5. Results 

 

5.1. Simulation platform, datasets and parameters setting 

 

The proposed approach is tested and verified in a traffic grid. The traffic grid is 

constructed by CityFlow (Zhang et al., 2019). CityFlow is an open-source traffic 

simulation platform, and it supports large-scale city traffic signal control. The traffic 

grid consists of 4 × 

4 

intersections. Each intersection is set to be a four-way 

intersection, with four 300-meters long road segments. Four synthetic traffic datasets 

are applied to the traffic grid, as shown in Table II. In the synthetic datasets, two types 

of vehicles’ arrival rates are provided, i.e. Flat (0.3 variances) and Peak (0.6 variances) 

patterns. Furthermore, the proposed approach is tested and verified in three real-world 

traffic datasets and corresponding traffic grids, including Jinan, Hangzhou, and New 

York (Wei, Xu, et al., 2019b). The details about three real-world traffic datasets are 

listed in Table III. The parameters of each agent are shown in Table IV. The following 

subsections show explore the impacts of the reward toward the student and teacher 

agents to the proposed system (Section 5.2 & 5.3), as well as a comprehensive 

comparison with the state-of-the-arts works (Section 5.4). 

 

Table II. The synthetic traffic datasets (Chen et al., 2020). 

 

 
Config Demand pattern Arrival rate (vehicles/s) 

 
 

1 Flat 

 

2 Peak 

 

0.388 

 
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
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3 Flat 

 

4 Peak 

 

0.416 

 
 

 

 

 

Table III. Data statistics of three real-world traffic datasets (Wei, Xu, et al., 2019b). 
 

 

 
 

Dataset intersections  
Mean 

 
Std 

 
Max 

 
Min 

 

𝐷𝑁𝑒𝑤𝑌𝑜𝑟
𝑘 

 

196 

 

240.79 

 

10.08 

 

274 

 

216 

 

𝐷𝐻𝑎𝑛𝑔𝑧ℎ𝑜
𝑢 

 

16 

 

526.63 

 

86.70 

 

676 

 

256 

 

𝐷𝐽𝑖𝑛𝑎𝑛 

 

12 
 

250.70 
 

38.21 
 

335 
 

208 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Memory length 3600 

𝜖  for exploration (student) 0.01 

Target network update 𝜏 0.05 
 

0.001 Learning rate 

64 Batch size 

Value Parameter 

Table IV. The parameters of each RL agent. 

Arrival rate (vehicles/300s) 
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5.2. Impact of the same external rewards 

 

In this experiment, the teacher and student have the same way to understand the 

knowledge of the traffic environment. Under this setting, the teacher and student have 

the same external reward 𝑟𝑒𝑛𝑣, which shows the effect of RL policy. The difference is 

that the real reward of the student is 𝑟𝑔𝑢𝑖. The 𝑟𝑒𝑛𝑣 is the average queue length in this 

experiment. The teacher is pre-trained on Config 3 when it is applied to Config 1, 2, 

and 4, and it is pre-trained on Config 2 when it is applied to Config 3. The average 

travel time of the proposed approach and DDQN is listed in Table V. The standard 

deviation (std) of the average travel time is listed in Table VI. The proposed approach 

is trained 100 episodes. DDQN-100 represents that the training time of the DDQN agent 

is 100 episodes, and DDQN-200 represents that the training time of the DDQN agent 

is 200 episodes, which simulate that an agent is pre-trained and is loaded to continue 

train. For the DDQN-200, the teacher is also trained during guiding the student. 

 

The results of the average travel time show that the proposed approach has a lower 

average travel time than DDQN when both approaches are trained same time, i.e., the 

proposed approach is better than DDQN without guidance. Due to that the teacher is 

also trained when it guides the student, the training time of DDQN increases to 200 

episodes. Although the gap between the proposed approach and DDQN reduces from 

3.6% to 1.2% when the DDQN is trained with more episodes, the average travel time 

of the proposed approach is smaller than DDQN. This result illustrates that an agent 

with expert guidance and self-exploration can reduce training time compared with an 

agent with only self-exploration. In addition, the results of the std show that the 

proposed approach is more stable than DDQN no matter how long DDQN training is 

under most scenes. The average waiting times of the proposed approach and DDQN on 

four configurations are provided in Table VII. As same as the average travel times, the 

average waiting times of the proposed approach is smaller than that of DDQN-100. As 

discussion in (Pol & Oliehoek, 2016), the average waiting time is a proxy for the 

average travel time. Thus, the same conclusion can be obtained from both, i.e. the 

proposed approach is more effective than DQN to reduce travel time for the same 

training episodes. Although the average travel time and waiting time are not part of 

reward function, the queue length is also a proxy for the average travel time (Zheng, 

Zang, et al., 2019). Figure 4 shows the convergence speed of the proposed approach 

and DDQN, where the performance improvement of the student model is limited when 

teachers and students understand the traffic environment in the same way. This is due 

to that the final reward of student agent varies linearly in most scenes, while the teacher 

agent has different policies comparing to student agent when encountering some special 

scenes after pre-trained. 

 

Table V. The average travel time of the proposed approach and the DDQN method 

under the same external reward. DDQN-100 represents that a DDQN agent is trained 100 
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episodes, DDQN-200 represents that a DDQN agent is trained 200 episodes. (unit: second) 
 

 

Method Config1 Config2 Config3 Config4 

 

This work 
 

279.78 

 

294.33 

 

297.01 

 

322.35 

 

DDQN-100 
 

297.05 
 

305.07 
 

313.12 
 

340.54 

 

DDQN-200 
 

285.19 
 

298.04 
 

303.05 
 

329.53 
 

 

 

 

 

 

 

 

 

 

Method Config1 Config2 Config3 Config4 

 

This work 

 

1.03 

 

1.08 

 

6.23 

 

2.27 

 

DDQN -100 
 

1.71 
 

1.47 
 

1.07 

 

4.13 

 

DDQN -200 
 

1.91 
 

1.63 
 

1.99 
 

3.34 
 

 

 

 

 

 

 

 

 
Method Config1 Config2 Config3 Config4 

 

This work 
 

162.64 

 

179.79 

 

180.19 

 

198.13 

 

DDQN -100 
 

181.57 
 

191.83 
 

198.27 
 

206.99 
 

Table VII. The average waiting time of the proposed approach and the DDQN method 

under the same external reward. (unit: second) 

Table VI. The std of the travel time of the proposed approach and the DDQN method 

under the same external reward. DDQN-100 represents that a DDQN agent is trained 100 

episodes, DDQN-200 represents that a DDQN agent is trained 200 episodes. (unit: second) 
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Figure 4. Convergence speed of the proposed approach and DDQN during training. 
 

5.3. Impact of the different external rewards 
 

In this experiment, the teacher and student have different external reward 

 
 

𝑟𝑒𝑛𝑣. The 

𝑟𝑒𝑛𝑣 of the student is the pressure reward (Wei, Chen, et al., 2019), and the 𝑟𝑒𝑛𝑣 of the 

teacher is the queue length reward (Zheng, Zang, et al., 2019). Different external 

rewards for teachers and students means that they have different ways to understand 

the knowledge of the traffic environment. This also means that teachers guide students 

from a novel perspective. The average travel time of the proposed approach and DDQN 

is listed in Table VIII. The proposed approach is trained 100 episodes in this experiment. 

The implication of the DDQN-100 and DDQN-200 are the same as Section 5.2. 

 

The proposed approach has a lower average travel time than DDQN in all four 

traffic scenarios. Specifically, compared with DDQN-100, the proposed approach 

reduces the average travel time by 27.91%, 16.97%, 24.99%, and 15.73% in Config 1, 

2, 3 and 4, respectively. Compared with DDQN-200, the proposed approach reduces 

the average travel time by 16.61%, 10.26%, 14.43%, and 8.21% in Config 1, 2, 3 and 

4, respectively. Although the DDQN is trained more times, its performance is still 

worse than the proposed approach. The std of the average travel time is listed in Table 

IX, and the proposed approach has a lower std than DDQN. The result shows that the 

proposed approach can improve the stability of the system. The average waiting times 

is listed in Table X. Compared with the DDQN-100, the proposed approach reduces the 

average waiting time from 39.83% to 60.72%. In Figure 5, the convergence speed of 

the proposed approach and DDQN is shown, where the proposed approach has a faster 

convergence speed (the curve of the proposed method is below DDQN) and is more 
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stable than the DDQN under four traffic scenarios (the proposed approach has fewer 

spikes than DDQN). The DDQN and the student have the same 𝑟𝑒𝑛𝑣, but the student 

has a teacher guiding which shows the importance of the teacher. Compared with the 

coverage speed of experiment 1, the coverage speed gap between the proposed 

approach and DDQN increases. This result shows that the use of different external 

rewards for teachers and students can improve the coverage speed of the student. 

 

Table VIII. The average travel time of the proposed approach and the DDQN method 

under the different external reward. DDQN-100 represents that a DDQN agent is trained 100 

episodes, DDQN-200 represents that a DDQN agent is trained 200 episodes. (unit: second) 
 

 

Method Config1 Config2 Config3 Config4 

 

This work 
 

281.75 

 

291.71 

 

293.60 

 

314.74 

 

DDQN-100 
 

360.38 
 

341.26 
 

366.98 
 

364.25 

 

DDQN-200 
 

328.55 
 

321.64 
 

335.97 
 

340.59 
 
 

Table IX. The std of the travel time of the proposed approach and the DDQN method 

under the different external reward. DDQN-100 represents that a DDQN agent is trained 100 

episodes, DDQN-200 represents that a DDQN agent is trained 200 episodes. (unit: second) 
 

 

Method Config1 Config2 Config3 Config4 

 

This work 

 

1.13 

 

0.97 

 

1.04 

 

1.51 

 

DDQN-100 
 

2.64 
 

3.48 
 

4.65 
 

4.39 

 

DDQN-200 
 

1.53 
 

2.28 
 

1.61 
 

1.58 
 

 

 

 

Table X. The average waiting time of the proposed approach and the DDQN method 

under the different external reward. (unit: second) 
 

 

Method Config1 Config2 Config3 Config4 
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Figure 5. Convergence speed of the proposed approach and DDQN during training. 

 

5.4. Performance comparison with existing methods 

 

In this experiment, the reward of the teacher and student is the same as the Section 

5.3. The baseline methods are as follows: 

 

⚫ the FixedTime method (F, 2008): This method controls traffic signals by a 

fixed cycle with a preset green ratio split among all phases. 

 
 

 

This work 169.52 174.18 174.11 191.25 

 

DDQN -100 
 

272.46 
 

243.55 
 

278.05 
 

268.14 
 

 

 

 

 

⚫ the MaxPressure method (Varaiya, 2013): A concept, named pressure, is 

defined as the difference in the number of vehicles between incoming lanes 

and outcoming lanes. The maxPressure method selects a phase with the max 

pressure to ensure the throughput. 

⚫ the GRL method (Pol & Oliehoek, 2016): The GRL method based on deep Q- 

learning is a coordinated deep reinforcement algorithm, which combines with 

transfer planning and max-plus coordination algorithm. 
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⚫ the GCN method (Nishi et al., 2018): This method uses a graph convolutional 

neural network to generate geometric features about traffic information, and it 

also is an RL-based model. 

 

⚫ the NeighborRL method (Arel et al., 2010): This model uses its own and its 

neighbors’ observation as a state, which is a multi-agent deep q-learning 

algorithm. 

 

⚫ the PressLight method (Wei, Chen, et al., 2019): The PressLight is an RL- 

based method, which uses pressure as its reward to unite its neighbors. 

 

⚫ the FRAP method (Zheng, Xiong, et al., 2019): A state-of-the-art RL-based 

traffic signal control method, which uses a novel network structure to capture 

the phase competition relation between different traffic movements. 

 

⚫ the MPLight method (Chen et al., 2020): It is based on the FRAP model and 

PressLight model, and is a decentralized deep RL method for large-scale traffic 

signal control. 

 

In all baseline methods, FixedTime and MaxPressure are conventional 

transportation methods, and others are RL-based methods. The average travel time of 

the proposed approach and other baseline methods is listed in Table XI. The FixedTime 

uses a pre-determined plan for cycle length and phase time to control traffic signals, 

which lacks flexibility. Thus, it has a higher average travel time than the proposed 

approach. The MaxPressure controls larger-scale traffic signals by selecting the phase 

with maximal pressure. As discussed in (Wei, Chen, et al., 2019), The MaxPressure is 

often implemented in a greedy manner, which leads to a local optimum. Due to it, the 

performance of MaxPressure is much worse than the proposed approach. 

 

These results show that the proposed approach is better than conventional 

transportation methods. Compared with the existing RL methods, the proposed 

approach has been found more effective than GRL, GCN, NeighborRL, and PressLight 

in all traffic scenarios. The reward function of PressLight is as same as the 𝑟𝑒𝑛𝑣 of the 

proposed approach. The difference between PressLight and the proposed approach is 

that the proposed approach has a teacher agent and a student agent with pressure reward, 

but PressLight only has an agent with pressure reward. These results show that the 

teacher’s guidance can effectively improve the performance of the RL model. 

Compared to the MPLight, the performance of the proposed approach is more robust. 

In other words, the proposed approach has smaller performance changes in different 

traffic environments than the MPLight (the maximal performance gap of MPLight is 

34.5%, the maximal performance gap of the proposed approach is 11.6%). This result 

illustrates that the proposed approach has wider traffic environment applicability than 

MPLight. Similar conclusions can be drawn when it is compared to FRAP (the maximal 

performance gap of FRAP exceeds 100%). 

 

Table XI. The average travel time of the proposed approach and other baseline methods. 
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 (unit: second)  

 

Method 
 

Config1 
 

Config2 
 

Config3 
 

Config4 

 

FixedTime (F, 2008) 

 

573.13 

 

564.02 

 

536.04 

 

563.06 

 

MaxPressure (Varaiya, 2013) 
 

361.17 
 

402.72 
 

360.05 
 

406.45 

 

GRL (Pol & Oliehoek, 2016) 
 

735.38 
 

758.58 
 

771.05 
 

721.37 

 

GCN (Nishi et al., 2018) 
 

516.65 
 

523.79 
 

646.24 
 

585.91 

 

NeighborRL (Arel et al., 2010) 
 

690.87 
 

687.27 
 

781.24 
 

791.44 

 

PressLight (Wei, Chen, et al., 2019) 
 

354.94 
 

353.46 
 

348.21 
 

398.21 

 

FRAP (Zheng, Xiong, et al., 2019) 
 

340.44 
 

298.55 
 

361.36 
 

598.52 

 

MPLight (Chen et al., 2020) 
 

309.33 
 

262.50 
 

281.34 
 

353.13 

 

This work 
 

281.75 
 

291.71 
 

293.60 
 

314.74 
 

 

 

 

5.5. Performance comparison with existing methods in real-world traffic data 

 

In this experiment, all approaches are tested in three real-world traffic datasets. 

Some of these approaches are introduced in Section 5.4, and others are introduced as 

follows: 

 

CoLight-node (Wei, Xu, et al., 2019b): This approach uses graph attentional 

networks to facilitate communication, and the neighbourhood scope of an agent is 

constructed through the smallest hop count between two nodes (i.e. node distance). 

 

CoLight (Wei, Xu, et al., 2019b): This approach is similar to the CoLight-node, but 

the neighbourhood scope of an agent is constructed through the geo-distance between 

two intersections’ geo-locations. 

 

Individual RL (Wei et al., 2018): This approach is based on DQN algorithm, which 
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uses a phase-gated model and memory palace structure to improve the performance of 

model. 

 

OneModel (Chu et al., 2020b): This approach is an actor-critic algorithm, which 

uses a long-short term memory network to memorize short history. It obtains neighbor 

policies to extend the knowledge of an agent. 

 

All experimental results are listed in Table XII. On the real-world traffic dataset 

𝐷𝑁𝑒𝑤𝑌𝑜𝑟𝑘, the proposed approach has a better performance than other methods. The 

best one of the conventional transportation methods is MaxPressure, whose average 

travel time is 1633.41 seconds. Compared with the MaxPressure, the proposed 

approach reduces the average travel time by 39.5%. The Individual RL cannot scale 

up to 196 intersections in New York’s road network. The CoLight has a higher travel 

time than 

the proposed approach. For the datasets 𝐷𝐻𝑎𝑛𝑔𝑧ℎ𝑜

𝑢 

and 𝐷𝐽𝑖𝑛𝑎𝑛, the CoLight has lower 

travel times than the proposed approach. From the analysis of the data statistics of three 

real-world traffic datasets, the 𝐷𝑁𝑒𝑤𝑌𝑜𝑟
𝑘 

has a lower std than other traffic datasets, 

which makes the proposed approach better than CoLight. In other words, the proposed 

approach is more suitable for handling a gentler traffic environment. While the CoLight 

uses the node distance to construct the neighbourhood scope of an agent, it has a higher 

travel time than the proposed approach for some travel patterns. Compared with other 

RL approaches (except CoLight and CoLight-node), the proposed approach reduces the 

average travel time by at least 6.2%. The reason behind this result is that the teacher- 

student framework gives the proposed method more experiences for dealing with traffic 

scenarios. 

 

Table XII. The average travel time of the proposed approach and other methods in three 

real-world traffic data (Wei, Xu, et al., 2019b). (unit: second) 

 

 
Method 𝐷𝑁𝑒𝑤𝑌𝑜𝑟𝑘 𝐷𝐻𝑎𝑛𝑔𝑧ℎ𝑜

𝑢 

𝐷𝐽𝑖𝑛𝑎𝑛 

 

FixedTime (F, 2008) 
 

1950.27 
 

728.79 
 

869.85 

 

MaxPressure (Varaiya, 2013) 
 

1633.41 
 

422.15 
 

361.33 

 

GRL (Pol & Oliehoek, 2016) 
 

2187.12 
 

1582.26 
 

1210.70 

 

GCN (Nishi et al., 2018) 
 

1876.37 
 

768.43 
 

625.32 

 

NeighborRL (Arel et al., 2010) 
 

2280.92 
 

1053.45 
 

1168.32 
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Individual RL (Wei et al., 2018) - 345.00 325.56 

 

OneModel (Chu et al., 2020b) 
 

1973.11 
 

394.56 
 

728.63 

 

CoLight-node (Wei, Xu, et al., 2019b) 
 

1493.37 
 

331.50 
 

340.70 

 

CoLight (Wei, Xu, et al., 2019b) 
 

1459.28 
 

297.26 
 

291.14 

 

This work 
 

987.92 
 

319.40 
 

305.48 
 

 

 

 

5.6. Discussion 

 

In Section 5.2, 5.3 and 5.4, results show the teacher’s guidance can improve the 

performance of student, even if the teacher and student have same external rewards. 

The effect of the teacher’s guidance is obvious when the teacher and student have 

different external rewards. The DDQN has been trained for more episodes, but its 

performance is not better than the proposed approach. These results show that the 

importance function can guide the student to learn a more effective policy on traffic 

signal control. Compared to the studies of (Cruz et al., 2018; Torrey & Taylor, 2013; 

Zimmer et al., 2016), the proposed approach does not need additional hyper-parameters 

or to count the number of state-action pairs, which makes it very easy to use. 

Furthermore, for teacher-student framework the student has more perspectives to 

understand the world. The difference between the proposed method and a linear reward 

function is that the linear reward function is extremely sensitive to coefficients 

according to (Wei, Chen, et al., 2019). 

 

As Table XIII shown, the average travel time of the proposed approach under the 

same external reward is lower than the one under the different external reward in Config 

2, Config 3, and Config 4. This result illustrates that the teacher and student with the 

different external reward is better for the teacher to guide student. For different external 

reward setting, the teacher provides a novel view to the student, and the student may 

explore other policy space. Compared with transfer learning, the proposed approach 

has lower average travel times (see Table XIII). Transfer learning makes the agent keep 

its knowledge about other traffic scenarios at the beginning, but the knowledge is 

covered after being trained for many times. The proposed approach keeps the 

knowledge about other traffic scenarios by using a teacher agent and improves its ability 

through further training. 

 

Table XIII. The average travel time of the proposed approach and transfer learning. 
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(unit: second) 
 

 

Method Config1 Config2 Config3 Config4 

 

Same external reward 
 

279.78 

 

294.33 
 

297.01 
 

322.35 

 

Different external reward 
 

281.75 
 

291.71 

 

293.60 

 

314.74 

 

Transfer learning 
 

283.66 
 

297.01 
 

296.31 
 

317.46 
 

 

 

 

In addition, the acceleration of training is not obvious at the beginning, as the 

student is initialized randomly. Another limitation (Cruz et al., 2018; Kamar, 2016; 

Torrey & Taylor, 2013; Zhan et al., 2016; Zimmer et al., 2016) is that the teacher needs 

to communicate with the student in every interaction, which leads to high 

communication costs. 

 

6. Conclusion and Future Work 

 

In this work, a novel RL approach based on the teacher-student framework is introduced 

to reduce the complexities caused by the additional parameters of the importance 

advising model (e.g., determining key parameter values empirically), hence further to 

improving its robustness. The proposed approach is based on the DDQN model, which 

uses an importance function to represent the guidance of the teacher agent. The 

importance function is combined with the external rewards from the environment to 

improve the performance of the proposed approach. The effect of the synthetic reward 

is verified in different external reward settings. Results show that the proposed 

approach has a greater improvement than the based model when the teacher and student 

have different external rewards. In different external rewards settings, the proposed 

approach reduces the average travel time by at least 5.53% compared with baseline 

DDQN. Results also show that the proposed approach is more suitable for traffic signal 

control than conventional transportation methods and most of RL-based methods. The 

proposed approach has a ~11.5% reduction in the average travel time compared with 

the MaxPressure, and ~8.5% reduction in the average travel time compared with the 

PressLight which has the same reward function as the external reward of the student 

agent. It is worth to note that the proposed approach only discusses the performance 

impact of different external reward settings within the teacher-student framework, 

which only improves the performance and learning speed of the student agent. 

 

As described in Section 5.6, the random initialization of student agent constrains 

the training time reduction. In the future, the efficiency of the interactive experience 
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between the agents and environment can be further improved to help reduce the training 

time. In addition, the coordination of multi-agents in the teacher-student framework is 

also a direction of further study. 
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