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A B S T R A C T   

Compound floods due to intense rainfall and storm surges in coastal areas have shown an increasing trend in 
some parts of the world, and many studies suggested a strong link with climate change. Yet, such link has not 
been fully explored and quantitively assessed. In this paper, we demonstrate the development and application of 
a nonstationary framework to determining different compound scenarios, where individual drivers and their 
interactions have altered under climate change. The framework has been applied to one of the most flood-prone 
areas: the Ho Chi Minh City of Vietnam, to help analyze the present and future compound flood risks in both the 
dry and wet seasons driven by the joint effect from heavy inland rainfall and high skew surge. Over the period of 
1980–2017, the two drivers are found to be significantly correlated in March and April, corresponding to the 
transition from dry-to-wet seasons. We also find that the commonly-used traditional multivariate statistical 
models underestimate the flood magnitudes for both the current (represented by 2020) and future (represented 
by 2050) scenarios, when compared with the results produced by the nonstationary methods. In addition, the 
results reveal that the dry season is expected to receive more floods triggered by the increased intensity and 
frequency of rainfall extremes, with the magnitude reaching a similar level to that of the wet season. This is in 
line with the climate projections under RCP4.5 and 8.5 scenarios although the duration of dry spells is expected 
to increase and the total annual rainfall to decrease in Vietnam. The simulated flood inundations indicate 
remarkable increases in flood magnitude and extension, especially at the locations identified as low risk by the 
stationary models.   

1. Introduction 

Coastal flooding is widely regarded as one of the most dangerous 
natural hazards in low-lying regions and often arises from various 
sources such as intense rainfall, storm surge, high sea level, and large 
river discharge either individually or in combination (Edmonds et al., 
2020; Tiggeloven et al., 2020). Specifically, the concurrence or close 
succession of these different source mechanisms can lead to compound 
flooding, resulting in greater damage than from separate events caused 
by the individual mechanism (Hendry et al., 2019; Thomas Wahl et al., 

2015). This is further exemplified by the occurrence of several recent 
events where floods were associated with hydrologic drivers (e.g., 
rainfall, river discharge) combined with oceanographic drivers (e.g., 
tides, surges, waves). Examples include the coastal compound floods on 
the North Carolina Coast of the USA (Gori et al., 2020); in the Shoal
haven estuary, Australia in June 2016 (Kumbier et al., 2018); the 
Noorderzijlvest, the Netherlands in 2015 (van den Hurk et al., 2015); 
and in Ravenna, Italy in 2015 (Bevacqua et al., 2020). 

One of the most widely-used approaches to estimating the features of 
such high-impact coastal compound events usually rely on multivariate 
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analysis that calculates the maximum system response associated with a 
given exceedance probability by considering the interdependence, 
interaction and associations among different drivers or factors. Since 
climate system in coastal regions is extremely complicated and usually 
triggered by more-than-one source and their uncertain correlations 
(Ewans and Jonathan, 2014), many studies focus on developing models 
or frameworks to cope with multivariate statistical analysis by using 
various copulas (Sklar, 1959) in coastal areas (Jalili Pirani and Najafi, 
2022; Jiang et al., 2021; Lucey and Gallien, 2022; Wahl et al., 2012). For 
example, Corbella and Stretch (2013) provided a multivariate statistical 
model by employing Archimedean copulas to quantify the dependencies 
between storm parameters i.e., wave height, wave period, storm dura
tion, water level and storm inter-arrival time and applied to the east 
coast of South Africa. Masina et al. (2015) presented a copula-based 
approach to model the joint distribution between sea levels and wave 
heights from six-year records at one site of the Ravenna coast of Italy, 
where a one-parameter extreme value copula was selected to the best fit 
for constructing the dependence structure of extreme events. Tanim and 
Goharian (2021) developed an integrated modelling and multivariate 
analysis framework to analyze urban coastal floods driven by runoff and 
storm surge in Chittagong City of Bangladesh, which involves a hydro
logic model and a coastal hydrodynamic model with the use of Gaussian 
copula. As the dependency between oceanographic and meteorological 
parameters is difficult to recognise (Ewans and Jonathan, 2014), some 
efforts have been made in exploring the realistic dependency in coastal 
studies, such as applying nonlinear dependency among sea states pa
rameters by using asymmetric copulas (Zhang et al., 2018), using en
tropy copula to avoid the procedures of copula selection (Li et al., 2018), 
or getting rid of the statistical methods but directly coupling the several 
hydrological or hydrodynamic models (Ikeuchi et al., 2017; Shi et al., 
2022; Zhang et al., 2020), which requires large computational time and 
capacity. 

However, global warming and anthropogenic climate change have 
led to significant changes in regional climate of coastal areas which 
bring changes to not only the single flood-driven factors separately, but 
also their interactions (Utsumi and Kim, 2022; Zscheischler et al., 2018). 
Notably, the multivariate probability analysis applied in most of the 
literature mentioned above has been performed under the assumption of 
constant parameters; their assumption of stationarity potentially leading 
to less accuracy in capturing features of compound events. In recent 
years, many attempts have been made for endeavouring to capture 
climate change to compound floods in low-laying coastal regions. Some 
publications concentrate on directly involving climate models or pro
jections of flood-drivers and implicitly considering their dependency 
(Bermúdez et al., 2021; Pasquier et al., 2019), while others focus on 
improving the multivariate statistical analysis by incorporating non
stationarity, and many have applied in hydrology-related studies like 
drought and inland floods (Feng et al., 2020; Kwon and Lall, 2016; 
Sarhadi et al., 2018). In coastal studies, for instance, Davies et al. (2017) 
developed a probabilistic framework to model the nonstationarity of 
univariate storm feature such as wave direction, height, duration, period 
which are tested to relate to El Niño-Southern Oscillation (ENSO) and 
seasonality, then make the nonstationary univariate distribution con
ditional on seasonal and climate covariates and finally employed a vine 
copula to generate the joint probability. Ghanbari et al. (2021) also 
incorporated nonstationarity in the marginal distribution of drivers and 
estimated the changes in compound coastal-riverine flooding hazard 
along the US coasts. 

Compared with incorporating climate change in physical-based 
modelling, the statistical method is more time-saving and cost- 
efficient, however, it needs to be recognised that the dependency 
among flood-drivers can be also changing due to climate besides the 
nonstationary change of drivers themselves. And the quantification of 
combined change of both drivers and their interaction in the view of 
nonstationarity especially at the level of extreme, has not yet been fully 
studied. Motivated by this, we developed a feasible nonstationary 

framework in modelling complex compound extreme events where the 
possible combinations of stationary and nonstationary flood-drivers and 
their interactions are concerned. The framework was then applied to a 
case study of Ho Chi Minh City (HCMC), Vietnam to evaluate the 
changes to seasonal compound floods at the extreme level driven by 
both meteorological and oceanographic factors (inland rainfall and skew 
surge) under climate change. As the characteristics of flood in HCMC 
have a strong seasonal dependency, the temporal changes of the 
monthly maxima of both factors and their correlation are quantified by 
the framework before the underlying reasons are discussed. A well- 
calibrated hydrodynamic model TELEMAC-2D (Hervouet, 2007) is 
employed to generate flood inundation maps of both current and future 
scenarios associated with sea level rise in both dry and wet seasons. The 
results are further compared with the climate projection (RCP4.5 and 
8.5 scenarios). Based on the proposed framework, this nonstationary 
compound flood modelling system is expected to be used by the National 
Centre for Hydro-Meteorological Forecasting (NCHMF) of Vietnam for 
prediction at the national level. 

The remainder of this paper is organized as follows: Section 2 de
scribes the development of the framework; The case study and results 
are described and discussed in Section 3 while concluding remarks on 
the framework and the case study are given in Section 4. 

2. Technical description of the framework 

Fig. 1 presents the framework we developed to analyze compound 
floods driven by both the hydrometeorological driver (e.g., monthly 
maximum rainfall, MMR) and oceanographic driver (e.g., monthly 
maximum skew surge, MMS) in view of both stationarity and non
stationarity, in turn, linked to climate change. It can be described as the 
four main steps which are further elaborated respectively in the 
following subsections. 

2.1. Step 1 trend and correlation analysis 

This step aims to detect whether the values of each flood driver, and 
their correlation structure change with other covariates, which will be 
the basis for copula parameterization. As the temporal nonstationarity of 
the drivers is the objective of the case study, time is chosen as the 
candidate covariate. The framework employs the Block Bootstrapping 
Mann-Kendall (BBS-MK) test (Kundzewicz and Robson, 2004, 2004n, 
2004zand Bayazit, 2012) to detect monotonic changes in a series of data 
at the significance level of 0.05 (R Package ‘modifiedmk’ Version 1.6). In 
addition, the Kendall’s tau and Spearman correlation alongside a Rolling 
window method are used to test the correlation between the series of 
data and its changes over time (De Winter et al., 2016; Zar, 2005). The 
correlation coefficients, i.e., τ and ρ, respectively, indicate the possible 
positive or negative correlation between the time series, while the cor
responding p-values are compared with the critical values at the sig
nificance level of 0.05 to decide whether to reject the null hypothesis 
that no correlation exists. The Rolling window method is employed to 
use a variety of predefined widths of the window and move forward to 
the end of the data (Inoue et al., 2017), which is carried out following 
the three steps presented in Supplementary Text S1. 

2.2. Step 2 modelling marginal distributions of the series of data 

To increase the flexibility of the framework for fitting the best 
marginal distribution of each driver, several widely used types of them 
are chosen as the marginal distribution candidates, which includes the 
Generalized Extreme Value (GEV) distribution, Generalized Pareto dis
tribution, Gamma distribution, Lognormal distribution and Exponential 
distribution. Following the outcomes from Step 1, as shown in Fig. 1, 
two assumptions are made: 
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• of stationarity, where the parameters of the marginal distribution 
remain constant and independent and can be estimated by employ
ing the Maximum Likelihood (ML) method.  

• of nonstationarity, where certain parameters are assumed to be 
changing over time and can be estimated by using both the ML and 
the Bayesian Markov-Chain Monte-Carlo (B-MCMC) methods. 

Table 1 presents a stationary and three nonstationary assumptions of 
these distributions. For those time series whose trend is determined to be 
insignificant, only the stationary assumption is applied, whereas both 
stationary and nonstationary distributions are applied. The best-fitted 
distribution is finally selected by evaluating the two criteria: Akaike’s 
information criterion (AIC) and Bayesian information criterion (BIC); 
and the one with the minimum value indicates the best fitness (see Text 
S2). 

Without losing generality, GEV distribution is exemplified below to 
demonstrate the procedure of building the stationary and nonstationary 
models. The same procedure is also followed in dealing with other types 
of distributions. The procedure of fitting a stationary model starts by 
defining the cumulative probability function F of the GEV: 

F(x; σ, μ, ξ)=Pr(X ≤ x)= exp
[

−
(

1 + ξ
(x − μ

σ

))− 1
ξ
]

. (1)  

F is defined for 1 + ξ(x − μ)/σ > 0, − ∞ < μ < ∞, σ > 0 and − ∞ < ξ <

∞, where μ is the location parameter, σ is the scale parameter, and ξ is 
the shape parameter which defines the three types of distribution in the 
GEV family: type I when ξ = 0, also known as the Gumbel distribution; 
types II and III are known as the Fréchet and the Weibull distributions, 
corresponding to ξ > 0 and ξ < 0, respectively. The ML method is 
employed to estimate these parameters by maximizing the likelihood 
function: 

L(x;θ)=
∏n1+N

n=n1

f (x;θ)=
(

1
σ

(
1+ξ

(x − μ
σ

))− 1
ξ− 1

exp
(

−
(

1+ξ
(x − μ

σ

))− 1/ξ
))N

(2)  

where n indicates the position from n1 to n1+N of the data series, N is the 
length of the time period and the parameter of the stationary model is 
denoted as θ = (σ,μ,ξ). 

The nonstationary model is built when the data series show a sig
nificant trend. In this case, the nonstationary cumulative probability can 
be calculated as: 

Ft(x; σt, μt, ξ)= exp

[

−

(

1 + ξ
(

x − μt

σt

))− 1
ξ
]

. (3)  

Ft follows the same form as the stationary one with an additional 
subscript t added to the location and scale parameters, which indicates 
that both parameters are time-dependent and controlled by several 
hyper-parameters, i.e., for MMS σt = (σS0, σS1) and μt = (μS0, μS1), and 
for MMR σt = (σR0, σR1) and μt = (μR0,μR1). The shape parameter, ξs and 
ξR, is assumed to be constant. Therefore, the parameters of nonsta
tionary models can be denoted as θt including θS = (σS0, σS1, μS0, μS1, ξS)

and θR = (σR0,σR1,μR0,μR1,ξR). 
Both ML and B-MCMC methods are used to estimate θt. The B-MCMC 

method makes use of Bayesian inference to estimate the posterior dis
tribution of the time-varying parameters where θ of the stationary model 
are used to define the initial prior values of the nonstationary model 
assuming a uniform distribution. The transformation from prior distri
bution to posterior distribution is done by multiplying its likelihood, 
which is given by (Rasmussen and Ghahramani, 2003): 

p(θ|x, t)∝ p(θ|t)× p(x|θ, t) = p(θ|t) ×
∏N

t=1
p(xt|θt, t) (4)  

where p(x|θ, t)∝L(x; θ, t) is the likelihood function and p(θ|t) is the prior 
probability distribution of the parameters θ; t indicates the state. Nu
merical iterations for processing the posterior distribution are carried 
out by using MCMC simulation (Manly, 2018; Metropolis and Ulam, 
1949; Murthy, 2004); more details can be found in Text S3. The final 
simulation results are compared with those estimated using the ML 
method. 

Fig. 1. The nonstationary framework of multivariate probability distribution analysis. MMR is the monthly maximum rainfall; MMS is the monthly maximum 
skew surge. 
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Table 1 
Stationary (S) and nonstationary (NS) candidate distributions for time series.  

Distribution Model Description Parameters (θ) 

Generalized extreme value 
distribution 

S 

F(x; σ, μ, ξ) =

⎧
⎪⎨

⎪⎩

exp
[

−
(

1 + ξ
(x − μ

σ

))− 1/ξ
]

, ξ ∕= 0

exp
[
− exp

(x − μ
σ

)]
, ξ = 0 

where 1 + ξ(x − μ)/σ > 0, − ∞ < μ < ∞, σ > 0 and 

− ∞ < ξ < ∞.

θ = {σ, μ, ξ} where 
σ, μ, ξ are all constant. 

NS1 Ft(x; σ,μt ,ξ) θt = {μ0 , μ1, σ, ξ} where 
μt = μ0 + μ1 × t 
σ, ξ are constant 

NS2 Ft(x; σt ,μt ,ξ) θt = {μ0 , μ1, σ0, σ1, ξ}
where 
μt = μ0 + μ1 × t 
σt = σ0 + σ1 × t 
ξ is constant 

NS3 Ft(x; σt ,μt ,ξ) θt = {μ0 , μ1, σ0, σ1, ξ}
where 
μt = μ0 + μ1 × t 
σt = exp (σ0 +σ1 ×t)
ξ is constant 

Generalized Pareto distribution S 

F(x; σ, μ, ξ) =

⎧
⎪⎨

⎪⎩

1 −
(

1 + ξ
(x − μ

σ

))− 1/ξ
, ξ ∕= 0

1 − exp
(
−

x − μ
σ

)
, ξ = 0 

where x ≥ μ when ξ ≥ 0 and μ ≤ x ≤ μ − σ/ξ when 

ξ < 0. 

θ = {σ, μ, ξ} where 
σ, μ, ξ are all constant 

NS1 Ft(x; σ,μt ,ξ) θt = {μ0 , μ1, σ, ξ} where 
μt = μ0 + μ1 × t 
σ, ξ are constant 

NS2 Ft(x; σt ,μt ,ξ) θt = {μ0 , μ1, σ0, σ1, ξ}
where 
μt = μ0 + μ1 × t 
σt = σ0 + σ1 × t 
ξ is constant 

NS3 Ft(x; σt ,μt ,ξ) θt = {μ0 , μ1, σ0, σ1, ξ}
where 
μt = μ0 + μ1 × t 
σt = exp (σ0 +σ1 ×t)
ξ is constant 

Gamma distribution S F(x; σ,ξ) =
1

Γ(ξ)
γ
(

k,
x
σ

)

Where x > 0, σ > 0,ξ > 0. 

θ = {σ, ξ} where 
σ, ξ are all constant 

NS1 Ft(x; σ, ξt) θt = {ξ0, ξ1, σ} where 
ξt = ξ0 + ξ1 × t 
σ is constant 

NS2 Ft(x; σt , ξt) θt = {ξ0, ξ1, σ0, σ1}

where<
ξt = ξ0 + ξ1 × t 
σt = σ0 + σ1 × t 

Lognormal distribution S 
F(x; σ,μ) = ∅

(ln x − μ
σ

)

Where ∅ is the cumulative distribution function of the standard normal distribution. 

θ = {σ, μ} where 
σ, μ are all constant 

NS1 Ft(x; σ,μt) θt = {μ0 , μ1, σ} where 
μt = μ0 + μ1 × t 
σ are constant 

NS2 Ft(x; σt ,μt) θt = {μ0 , μ1, σ0, σ1} where 
μt = μ0 + μ1 × t 
σt = σ0 + σ1 × t 

NS3 Ft(x; σt ,μt) θt = {μ0 , μ1, σ0, σ1, ξ}
where 
μt = μ0 + μ1 × t 
σt = exp (σ0 + σ1 × t)

Exponential distribution S 
F(x; σ) =

{1
σ exp

(
−

x
σ

)
, x > 0

0, x < 0 
Where the scale parameter σ = 1/λ and λ > 0 is the rate parameter of the exponential distribution. 

θ = {σ} where 
σ is constant 

NS2 Ft(x; σt) θt = {σ0, σ1} where 
σt = σ0 + σ1 × t 

NS3 Ft(x; σt) θt = {σ0, σ1} where 
σt = exp (σ0 + σ1 × t)

Noted that μ, σ and ξ indicate location, scale and shape parameter of distribution respectively; θ and θt are symbols to indicate the parameters for each model needing to 
be estimated and the subscript t is used for indicating the nonstationary model; S is short for “stationarity” case and NS1, NS2 and NS3 indicate three “nonstationarity” 
cases.  
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2.3. Step 3 building copulas and calculating the joint probability 

Let J denote the joint cumulative distribution of the two series of 
data, and C denote the copula parameterized by θC. Then, the basic joint 
probability can be calculated by: 

J(xS, xR|θC)=C(F1(x1|θ1),F2(x2|θ2)|θC)=C(u, v|θC) (5)  

where F1 and F2 indicate the marginal cumulative probability function 
of the two series of data x1 (in the case study, MMS) and x2 (MMR) with 
their estimated parameters θ1 and θ2 respectively, and θC indicates the 
set of parameters of the copula. u and v are the marginal probabilities of 
F1 and F2 in the unit hypercube with uniform marginal distributions 
U(0, 1). According to the trend analysis of the individual data series and 
their mutual correlation structure, four contexts are relevant in this 
framework:  

• Both marginal distributions (θ) are stationary, and the correlation 
structure (θC) is stationary.  

• Both marginal distributions (θ) are stationary, while the correlation 
structure (θt

C) is nonstationary.  
• At least one of the marginal distributions (θt) is nonstationary, while 

the correlation structure (θC) is stationary.  
• At least one of the marginal distributions (θt) is nonstationary, while 

the correlation structure (θC) is nonstationary. 

In this framework, several widely-used one-parameter copulas are 
selected as the candidates to characterize the dependence structure 
between two series of data, namely, Gaussian, Clayton, Frank, Gumbel, 
Joe, Plackett and Raftery copulas whose parameter θC is estimated by 
using both the local optimization method and MCMC method. However, 
if there is no significant correlation identified, an independent copula is 
also involved by simply reducing to the form of the product of two 
marginal probabilities. 

For the nonstationary copula whose parameter varies over time, we 
assume that the copula is controlled by a θt

C with two hyper-parameters 
θC0 and θC1 and the joint cumulative distribution can be written as the 
follows and estimated by modifying the MvCAT toolbox (Sadegh et al., 

2017) to incorporate the nonstationary terms (see the details in Text S4): 

Jt
(
x1t, x2t

⃒
⃒θt

C

)
=C

(
F1t(x1t|θ1t),F2t

(
x2(t)

⃒
⃒θ2t

)⃒
⃒θt

C

)
=C

(
ut, vt

⃒
⃒θt

C

)
(6a)  

θt
C = θC0 + θC1 × t (6b)  

where θ1t and θ2t indicate the time-varying parameters of the two mar
ginal distributions shown in Table 2 and ut , vt are the nonstationary 
marginal probabilities converting in the uniform U [0,1]. These pa
rameters are estimated by the B-MCMC method with the posterior joint 
distribution calculated as (Ausin et al., 2010): 

p(∅|x1t, x2t)∝ p(∅|t) ×
∏N

t=1
p(x1t, x2t|∅ , t) (7)  

where 
p(x1t , x2t |∅, t) = c(F1t(x1t |θ1t), F2t(x2(t)

⃒
⃒θ2t)

⃒
⃒θt

C) × f1t(x1t |θ1t) × f2t(x2t |θ2t)

is the copula density function, f1t and f2t are the marginal probability 
density functions and the parameters of the joint posterior are ∅ = (μS0,

μS1,σS0,σS1, ξS,μR0, μR1, σR0, σR1, ξ2, θC0, θC1). p(∅|t) is the prior distribu
tion of the parameters ∅ and according to the prior knowledge for which 
we assume a uniform distribution for all parameters with reference to 
their stationary estimations within the maximum and minimum limits 
subject to copula types. To reduce the computing time, the nonsta
tionary marginal parameters are firstly estimated by applying step 2 
before being transformed into ut and vt . The MCMC in this step is only 
used to estimate the time-varying copula parameter: 

p
(
θt

C

⃒
⃒ut, vt

)
∝ p

(
θt

C

⃒
⃒t
)
×
∏N

t=1
c
(
ut, vt

⃒
⃒θt

C, t
)

(8) 

Finally, the best copula is selected by evaluating the goodness of fit 
measure AIC and BIC. 

2.4. Step 4 generating the quantiles 

The final step is to calculate the corresponding quantiles of the joint 
exceedance probability with a given probability of p, where the sta
tionary context will lead to a single quantile and the nonstationary 

Table 2 
Test and estimation results of monthly maximum rainfall (MMR) and skew surge (MMS) in HCMC.  

Month Time series BBS-MK test Correlation test (with all datasets) Best-fitted marginal distribution Best-fitted copula 

Kendall’s tau p-value τ p-value ρ p-value Type θ Copula θC 

Jan MMS 0.34 0.003 0.10 0.379 0.13 0.427 GEV S Independence S 
MMR 0.11 0.326 Gamma S 

Feb MMS 0.45 0.000 0.09 0.445 0.14 0.403 GEV S Independence S 
MMR 0.08 0.491 Gamma S 

Mar MMS 0.35 0.002 0.21 0.062 0.34 0.038 GEV S Gaussian NS 
MMR 0.17 0.137 Gamma S 

Apr MMS 0.38 0.001 0.27 0.017 0.36 0.026 GEV NS1 Clayton NS 
MMR 0.47 0.000 GEV NS1 

May MMS 0.16 0.167 0.02 0.860 0.04 0.823 GEV S Independence S 
MMR − 0.01 0.940 GEV S 

Jun MMS 0.41 0.001 − 0.08 0.490 − 0.10 0.559 LogN S Plackett S 
MMR − 0.08 0.497 GEV S 

Jul MMS 0.49 0.000 − 0.08 0.469 − 0.10 0.562 GEV S Independence S 
MMR − 0.06 0.615 LogN S 

Aug MMS 0.49 0.000 0.09 0.453 0.14 0.392 GEV S Raftery S 
MMR − 0.04 0.763 LogN S 

Sep MMS 0.44 0.000 0.07 0.532 0.10 0.568 GEV S Raftery S 
MMR 0.20 0.083 GEV S 

Oct MMS 0.35 0.002 0.16 0.168 0.24 0.140 GEV S Joe S 
MMR 0.23 0.039 GEV NS1 

Nov MMS 0.25 0.031 0.13 0.257 0.18 0.276 GEV S Joe S 
MMR 0.22 0.050 GEV NS3 

Dec MMS 0.38 0.001 0.21 0.059 0.29 0.075 GEV S Raftery S 
MMR 0.22 0.053 GEV S 

Noted that GEV, Gamma, LogN are short for “Generalized extreme value distribution”, “Gamma distribution” and “Log-normal distribution” respectively while S 
indicates stationary (constant) assumption and NS indicates the nonstationary (time-varying) assumption. 
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context will obtain a series of quantiles changing over the covariate (i.e., 
time in the study): 

Q(p)=
(
x1 =F1t

− 1( u
⃒
⃒θt

1
)
, x2 =F2t

− 1( v
⃒
⃒θt

2
))

(9)  

where p = Ct(u, v
⃒
⃒θt

C) and t indicates that the parameters or variables are 
changing over time. If the context is stationary and the two variables are 
independent, Q(p) can be simply calculated by inverting the marginal 
distributions, i.e., x1 = F1

− 1(u|θ1) and x2 = F2
− 1(v|θ2). 

There are several approaches to selecting the cases of combination of 
the corresponding values of two variables and the most used of which is 
to get the most likely combined with the highest joint density level 
(Sadegh et al., 2018; Salvadori et al., 2014). Fig. 2 exemplifies all 
quantile curves corresponding to the probability from p = 0.01 to p =

0.99. The horizontal x-axis and vertical y-axis are two marginal vari
ables where all the combinations of these two variables along the same 
curve correspond to the same p. The most likely scenarios method is to 
peak up the combination where the joint density of this quantile curve is 
the highest. The z-axis of Fig. 2 indicates the joint density level uni
formed to the range of (0,1) and the blue circles indicate the location 
where the density level is 1.0 while the corresponding combination of 
MMS and MMR is the most likely one. The other commonly used 
approach is to sample all the combinations instead of selecting only one, 
however, this means the scenario selection has stochasticity which re
quires to be further analysed. Therefore, the most likely scenario 
approach is applied in the framework. 

3. Result and discussion 

3.1. Study domain and data analysis 

As a major economic centre of Vietnam, Ho Chi Minh City (HCMC) is 
located in the downstream reach of the Saigon and Dong Nai rivers 
(Fig. 3a) with nearly 10 million inhabitants, contributing more than 
20% of the GDP of the nation (Hallegatte et al., 2013; Kontgis et al., 
2014). Yet, due to its geographical location and the ageing infrastruc
ture, the city is vulnerable to frequent floods resulting from concurrent 
intense rainfall and strong surges, commonly known as compound 
flooding (Binh et al., 2019; Nguyen et al., 2019; Vachaud et al., 2019). 
The rising sea levels have been driving the threats of compound flooding 

to an even higher level with further complications. Therefore, it is 
imperative to apply a quantitative nonstationary framework to evaluate 
compound floods taking climate change into account. 

Two observed datasets are applied in this study, i.e., daily rainfall 
collected from six rain gauges in the vicinity of HCMC and hourly sea 
level at the estuary of the Vung Tau water level gauge (see Fig. 3a). Both 
datasets cover a period of 38 years from 01/01/1980 to 31/12/2017 and 
are provided by the Southern Regional Hydrometeorological Center, 
Vietnam. The gauged rainfall is firstly converted to areal rainfall by 
applying the Thiessen polygon method and the surge is calculated as the 
difference between the highest observed sea level and high tide within a 
tidal period, where the details of data processing are given in Couasnon 
et al. (2022). Finally, the monthly maxima from the series of daily areal 
rainfall (henceforth, MMR) and of daily surge (henceforth, MMS) are 
extracted before being used to estimate the dependence and risk, again, 
in a seasonal fashion. Boxplots of MMS and MMR are depicted in Fig. 3b 
where MMS shows much fewer variations compared with MMR which 
has a strong dry-wet season variation. As to the seasonal variation, the 
extreme cases in MMR (i.e., daily rainfall higher than 90 mm) occur 
frequently in the wet season (i.e., August, September, October); in 
comparison, the extreme cases of skew surge appear mainly in the three 
dry months (February, March, April) and one wet month (July which has 
the largest deviation (around 0.4m) from the 5th to 95th percentiles). 

3.2. Trend and time-varying correlation of MMS and MMR 

The first step in the application of the framework (see Fig. 1) is to 
detect whether the series of MMS and MMR and their correlation 
structure vary with time. This is achieved by using the Block Boot
strapping Mann-Kendall test, and the Rolling Window combined with 
Kendall and Spearman test respectively. The results (see Table 2) show 
that MMS of all months but May were detected to be increasing during 
the 38-year period at a significance level of 0.05 and there is a small 
difference in the magnitude of these positive trends between the dry and 
wet seasons of HCMC. For MMR, there are only one month of dry season 
and two out of the eight months of wet season (May–November), i.e., 
April, October and November showing a significant trend over time. 
Regarding the correlation between MMS and MMR, the two dry months 
March and April witnessed a significant, positive correlation and such 
correlation varies with time (see Fig. 4). 

The left panel of Fig. 4 presents the correlation test statistics (τ and ρ, 
left axis) and the corresponding p-values (right axis) which change over 
time with a window width of 30 years. The correlation between MMS 
and MMR in March (Fig. 4a) weakens continuously initially before 
getting strengthened during the period around 1983–2012 to 
1986–2015 and then decreases again in the final periods of 1987–2016 
and 1988–2017. In April (Fig. 4b), the correlation in the first period 
(1980–2009) is strong and becomes weak in the periods afterwards. As 
the correlation calculation can be sensitive to the selection of the time 
window width, different width setups are used to test the consistency of 
the results as presented in Fig. S1, which shows a general good consis
tency across the results. 

It is rather intriguing to see such a stronger and time-varying cor
relation between MMS and MMR in March and April. One of the most 
plausible reasons is that both MMS and MMR are directly affected by the 
easterly wind flow. This flow blows perpendicularly toward the coastal 
area in the South of Vietnam only in these two months such that it 
strongly stresses the surface layer water into the mainland. This leads to 
a higher surge as presented in the right panel of Fig. 4. In addition, 
rainfall in these two months comes mainly from the perturbation and 
moisture from the easterly wind that also facilitates convection. How
ever, in other dry months, the wind gradually moves from easterly to 
north-easterly and parallel to the coastal area; while in wet months, this 
easterly component retreats to the middle and the northeast of Viet
nam’s East Sea when the rainfall events in Vietnam are dominated by the 
summer monsoon from the Bay of Bengal. 

Fig. 2. Joint density level of quantile curves corresponding to the probability 
from 0.01 to 0.99. 
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3.3. Stationary and nonstationary joint probability analysis 

Following the rest three steps (steps 2–4 of Fig. 1) of the framework, 
the joint probability of MMS and MMR is estimated using the most 
suitable candidates of marginal distributions and copulas. For the case 
that both marginal distribution and copula can be best fitted by sta
tionary models, e.g., July, the result is shown to be the same as that from 
the traditional multivariate probability analysis. However, when either 
marginals or copula is best fitted nonstationarily, the features of quan
tiles corresponding to joint exceedance probabilities are different. For 
example, October is best estimated by a time-varying distribution of 
MMR but the correlation structure does change significantly over time. 
Fig. 5 demonstrates how the quantile curves change over time with only 
a single distribution varying with time where it can be observed that the 
time-varying marginal distribution can only cause an upward or 
downward movement of the quantile curves at each exceedance prob
ability, but the shape of these curves remains unchanged. However, the 
shape of the quantile curves can be affected by a time-varying copula, 
which is demonstrated by the case of March whose marginal distribu
tions are constant, but the correlation structure varies with time. The 
results show that the changes in shapes are more significant in the 
middle than in the tails. Furthermore, April has both time-varying 
marginals and correlation structure and the results show that the 
quantile curves twist over time where such change is translational at the 
lower tail of quantile curves (e.g., the combination of the same skew 
surge with higher rainfall) while at the middle, the angle of the curves 
shrinks (e.g., the combination of both lower skew surge and rainfall). 
The fitting results are presented in Tables S1 and S2 and more details 
about the parameter estimation and model selection are given in Text 
S5. 

3.4. Nonstationary compound flood simulations in HCMC 

To simulate the changes of compound flooding in HCMC that may be 
due to human factors or climate change, while mitigating the compu
tational overheads, we selected two typical months for simulations, i.e., 
March and October that represent the dry and wet seasons respectively 
in this study. Flood inundation maps are generated using the designed 
pair of high rainfall and skew surge at the return level of 1-in-50-years 
which are chosen based on the quantile curves presented in March 
and October of Fig. 5 by using the most likely scenario method. The 
designed pair is then used to drive the calibrated TELEMAC-2D model 
(see Text S6) by applying it with a 24-h profile. 

After examining the historical records over the 38-year study period 
(see Text S7), the maximum skew surge in most situations occurs near 
the second peak of the tide (around 63% happened at the second peak 
and in 80% of situations, there is no time difference between the water 
level peak and tide peak). Therefore, the designed skew surge is added to 
the second tide peak and then interpolated to the other time points (24 
h) to generate the profile of the water level. To consider the climate 
change impact, sea-level rise (SLR) is also added to water level to set the 
lower boundary condition of the TELEMAC-2D model simulation. The 
values of SLR are provided by the Ministry of Natural Resources and 
Environment, Vietnam, i.e., 0.12 m for 2020 and 0.33 m for 2050 
relative to the period of 1980–1999 of high CO2 emission (Pham, 2009). 

The block rainfall value is distributed temporally using a 3-h profile 
with reference to the designed hyetograph (an example displayed in 
Fig. S5) based on the extreme rainfall analysis conducted in HCMC 
(Couasnon et al., 2022; Scussolini et al., 2017). Besides, to obtain the 
worst compound floods, the starting time of the rainfall event is exper
imentally set, as described in detail in Text S7, and finally defined as 
about 2 h before the water level peak is observed in the city center, i.e., 
the Phu An station, in the study area for each TELEMAC-2D simulation. 

Fig. 3. (a) The study area (Ho Chi Minh City) where the six rain gauges for collecting the daily rainfall over the city centre are denoted by red circles and a water 
level gauge by a yellow rectangle and (b) boxplots of monthly maximum time series of surge and rainfall (1980–2017). In each box, the central mark indicates the 
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and the outliers are indicated by ’+’. 
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Fig. 4. Trend analysis of the correlation structure between MMS and MMR in (a) March and (b) April where the correlation coefficients τ of Kendall test and ρ of 
Spearman test are depicted by blue curves and the p-values are indicated by red bars with the significance level (0.05) is shown in dashed black line; the mean sea 
level pressure and wind velocity at 850 mb for (a) March and (b) April averaged from 1979 to 2020 using the ERA5 dataset (ECMWF, 2018). 
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To compare with what would have been produced following the 
traditional approach, i.e., that does not consider the nonstationarity nor 
climate change, we also generated the stationary cases for the two 
months, i.e., by re-fitting the marginal distributions and copula with 
constant parameters. Simulations of the 1-in-50-year compound flood 
using the traditional approach (stationary simulations) are then 
compared with those using the proposed nonstationary framework 
(nonstationary simulations), as seen in Fig. 6a and b. The nonstationary 
framework is also used to simulate the future 2050 scenario and 
compare it with the current (2020) scenario to reveal the possible 
changes (Fig. 6c). 

It can be observed that floods have more impact in the eastern re
gions of HCMC, especially in the confluent area of the Saigon and Dong 
Nai Rivers (southeast). Regarding the inundation areas simulated using 
the traditional stationary model (the top panel of Fig. 6a), floods are 
mainly driven by the inland rainfall and appear more severe in October 
over the northeast and away from the main river channels, which is due 
to the fact that the wet season receives more rainwater than the dry one. 
However, over the regions near rivers, e.g., the south part, the difference 
is small where flood water in March is even deeper than in October. This 

is because the surge in March is higher than in October although higher 
rainfall makes up the surge gap. 

To compare the traditional approach with the proposed nonsta
tionary simulation, we calculated the difference in flood depth between 
the stationary case and nonstationary for the current scenario 2020 
(Fig. 6b). Most regions in both months, especially those over the 
southeast and north are underestimated by the stationary simulation 
when referring to the flooded areas and magnitude compared with the 
scenario 2020 simulated by the nonstationary framework. In March, 
higher rainfall and slightly lower skew surge are estimated, as indicated 
by the nonstationary correlation between them. The consequence is that 
in the west and northeast, where floods are mainly driven by rainfall, the 
estimated flood by the nonstationary framework is higher, and over the 
eastern regions near the Dong Nai River, it is even higher due to the 
increased rainfall and sea level rise making up for the decrease of skew 
surge. In October, however, the underestimation is not as significant and 
there is very little difference in the flooded regions mainly driven by 
rainfall whose average level is expected to decrease by the nonstationary 
framework. The correlation between the rainfall and surge is not as 
significant nor does it change over time. Therefore, the underestimation 

Fig. 5. Quantiles corresponding to different joint cumulative probabilities (p = 0.1, 0.5 and 0.9) of the monthly maximum skew surge and rainfall in the selected four 
months where the best-fitted distributions of the two marginals (MMS and MMR) are shown in the left and lower panels of each sub-figure respectively: when the 
best-fitted distribution is stationary, the comparison between the empirical and best-fitted distribution is shown while it is nonstationary, only the best-fitted dis
tribution is plotted and colour of curves indicates the changes over time (year). 
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by the stationary model can be attributed only to sea level rise due to 
climate change. 

To reveal the temporal change of compound flood simulated by the 
nonstationary framework where the future case is generated by 
nonstationary extrapolation, we also generated the difference map be
tween the current and future scenarios (see Fig. 6c) and further 
compared it with the regional climate simulations to investigate 
whether the simulated tendency is consistent. Several regional climate 

simulations show an overall decreasing annual rainfall total with a 
significant increase in consecutive dry days over Vietnam that has the 
potential to be drier by the end of this century (2081–2 100). However, 
the intensity and frequency of annual rainfall extremes are projected to 
increase (Myhre et al., 2019; Tangang et al., 2020; Trinh-Tuan et al., 
2019). This finding agrees with our simulation that the flood driven by 
extreme rainfall and skew surge is expected to be higher (i.e., in the 
reddish regions in Fig. 6c while October has an even darker red colour). 

Fig. 6. (a) Flood inundation maps simulated using both the stationary model and nonstationary framework for the two scenarios (current: 2020 and future: 2050) in 
March and October; (b) the difference of nonstationary minus stationary for current scenario 2020 and (c) the difference between nonstationary for current and 
future scenario due to climate change. 
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The intensity of rainfall extremes in March shows an increase in our 
simulation which is in line with the projected increasing tendency under 
the RCP4.5 and RCP8.5 over Indochina including south Vietnam during 
March-April-May (Tangang et al., 2020). In October, rainfall at the 
average level is estimated to decrease, which is in line with the projected 
drying tendency over south Vietnam under the RCP8.5 during 
September-October-November-December (Trinh-Tuan et al., 2019). 
This is also revealed in the case of November where the rainfall esti
mated from the nonstationary framework increases at extreme fre
quency level but a slight decrease at the average level (see Table S1). 

Besides, the time-varying correlation between the rainfall and skew 
surge can as well affect the frequency and magnitude of the compound 
floods in this low-lying area, e.g., March shows a nonstationary corre
lation structure, resulting in a combination of increased rainfall ex
tremes and a slightly decreased high surge. Thus, the dry month of 
March is expected to get more floods triggered by rainfall extremes. 
These findings underpin the importance of incorporating non
stationarity into compound flood estimation because not only the 
drivers per se may change alongside the climate change, but their cor
relation can also vary due to many implicit factors which need further 
investigation. In Vietnam, although regional climate projection presents 
a drier tendency and less rainwater may be received in the future, it is 
important to focus on the floods driven by compound factors whose 
average values may decrease but the extreme level can increase. 

4. Conclusion 

This paper presents the seasonal changes of coastal compound floods 
in Ho Chi Minh City (HCMC) of Vietnam, which are driven by two 
nonstationary drivers (i.e., high rainfall and skew surge) and their time- 
varying interactions. To help the investigation, we developed a 
nonstationary multivariate modelling framework for quantifying the 
changes from the current to future cases (represented by 2020 and 2050) 
at the extreme level (i.e., 1-in-50-year), and further generated inunda
tion maps using a well-calibrated hydrodynamic model TELEMAC-2D. 
The results are compared with the traditional analysis and regional 
climate projections. Several points can be drawn from our study:  

1) The correlation between the monthly rainfall maxima and skew 
surges is independent except in March and April which are likely due 
to the direct effect of the easterly wind flow perpendicularly toward 
the coastal area in south Vietnam. The correlation in March becomes 
more significant in the last 10 years of the study period while in April 
it becomes less significant.  

2) The series of monthly maximum rainfall in October and November 
(the wet season) have been changing over time and their distribution 
can be best fitted by the nonstationary generalized extreme value 
(GEV) model where the average rainfall is slightly decreased but the 
frequency of extremes is increased (especially in November). 

3) The simulation results of the HCMC case study show that the tradi
tional stationary approach underestimates the compound flood 
depth in current (2020) scenarios. 

4) Compound flood simulated by the proposed nonstationary frame
work agrees with climate change estimated by the regional climate 
projections. March as a month of dry season, is expected to get more 
floods triggered by increased intensity and frequency of rainfall ex
tremes whose magnitude is similar to the wet month of October, 
which is in line with the climate projection under the RCP4.5 and 
RCP 8.5 scenarios, although the dry spell duration is expected to 
increase and the annual rainfall total to decrease in Vietnam which 
can be reflected by a decreasing average level of rainfall in wet 
season in this study. 

The nonstationary framework we developed offers flexibility in 
modelling complex compound extremes as far as the possible combi
nations of stationary and nonstationary marginals and their interactions 

are concerned. Besides, this paper presents the first application to 
evaluating compound flooding driven by extreme rainfall and skew 
surge from the perspective of nonstationarity in HCMC. Other low-lying 
coastal cities and countries may also confront a similar predicament 
where a comprehensive regional risk assessment of the compound 
flooding potential is currently missing. This modelling framework, with 
the flexibility it has, can find its many use cases in this regard. 

The study also underpins that climate change can affect not only the 
hydrometeorological or oceanographic extremes per se but also their 
interaction which tends to become either more correlated or indepen
dent. As far as managing compound flood risk is concerned, relevant 
authorities should carefully consider such consequences arising from 
climate change and evaluate their current strategies that may have been 
historically produced from a stationary perspective. 

Further work is recommended to investigate compound floods and 
the correlation between rainfall and surge with longer-term observa
tions which are likely to make the conclusions more robust. As to the 
multivariate nonstationary framework, more copulas and types of dis
tribution candidates can be involved alongside uncertainty quantifica
tions. Apparently, linking climate model projections into the framework 
will be another important and challenging area to explore. 
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