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Abstract
A new face-centered finite volume method (FCFV) for Stokes problems involv-
ing sharp interfaces is proposed. Two formulations, based on two strong forms
of the Stokes problem, and using different mixed variables, are presented. Par-
ticular attention is paid to the symmetry of the resulting system of global
equations, and a simple rewriting of the interface boundary condition is pro-
posed to ensure that one of the formulations preserves the symmetry of the
linear system that is usually lost when considering material interfaces. Four
numerical examples are considered to test the implementation numerically by
performing mesh convergence studies, in two and three dimensions. The exam-
ples account for discontinuous viscosity as well as the effect of surface tension.
The results show that one of the formulations is less sensitive to the numer-
ical stabilization used in FCFV methods but does not preserve the symmetry
of the global system, whereas the other formulation is more sensitive to the
stabilization, but preserves the symmetry of the resulting system of equations.
The FCFV method appears as a promising alternative for the simulation of vis-
cous flow involving internal boundaries on conformal meshes. The potential
application of the FCFV method for the purpose of geodynamic modeling is
discussed.
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1 INTRODUCTION

The face-centered finite volume (FCFV) method was introduced for elliptic problems,1 including the Poisson and the
Stokes problems. The method can be seen as a particular case of the hybridisable discontinuous Galerkin (HDG) method,
originally developed by Cockburn and co-workers,2-5 using the lowest order of approximation for all the variables. As
such, the method inherits a number of desirable properties from HDG methods. In the context of Stokes flow problems
one of the most attractive properties is the ability to use the same approximation space for the velocity and the pressure,
whilst circumventing the so-called Ladyzhenskaya–Babuška–Brezzi (LBB) condition.

The application of the FCFV method to Stokes flows has been considered for the so-called isoviscous case,1 that is,
without spatial variations in the viscosity field. Results on the lowest order HDG method have been also reported, com-
paring three different formulations of the Stokes problem, but again only for the isoviscous case.6 Work on HDG for
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2 SEVILLA and DURETZ

Stokes flow involving material interfaces is substantially more reduced. For instance, Wang and Khoo7 derived an HDG
formulation for Stokes flows involving sharp discontinuities in the viscosity field. However, the work of Wang and
Khoo7 does not consider the lowest order approximation that leads to the FCFV scheme. The current work presents,
for the first time, the derivation of the FCFV method for Stokes flows involving material interfaces. Two formu-
lations, studied for the isoviscous case,6 are developed and compared using numerical examples. Particular atten-
tion is paid to the effect of the interface condition on the symmetry of the global system of equations. This work
shows that a simple rewriting of the interface condition ensures that the resulting system of equations for one
of the FCFV formulations presented remains symmetric, even in the presence of material interfaces. The exam-
ples include test cases that involve viscosity jumps of up to 12 orders of magnitude, which are particularly rele-
vant to geodynamic modeling, as simulations typically involve heterogeneous materials characterized by large spatial
viscosity variations. The optimal convergence properties of the method are demonstrated by means of numerical
experiments. In addition, examples in two and three dimensions are used to demonstrate the performance of the
method when the interface jump condition accounts for the effects of surface tension. Finally, a numerical exper-
iment is performed to study the influence of the stabilization parameter on the accuracy of the considered FCFV
methods.

The remaining of the article is structured as follows. In Section 2 two variants of the Stokes flow problem are
considered and a simple rewriting of the material interface condition is proposed. Section 3 derives two weak FCFV
formulations for the Stokes flow problem with material interfaces and the discrete systems are presented in Section 4.
A set of numerical examples are presented in Section 5, including mesh convergence studies and experiments to illus-
trate the effect of the stabilization parameter. Finally, Section 7 summarizes the conclusions of the work that has been
presented.

2 GOVERNING EQUATIONS

Let us consider an open bounded domain Ω ∈ Rnsd , where nsd is the number of spatial dimensions. The boundary of
the domain, 𝜕Ω is partitioned into the disjoint Dirichlet and Neumann boundaries ΓD and ΓN respectively. In addition,
a material interface ΓI is assumed to split the domain into two disjoint subdomains Ω1 and Ω2, with different material
properties.

Two different formulations are considered in this work, namely a formulation based on the gradient of the veloc-
ity tensor and a formulation based on the symmetric gradient of the velocity tensor.8 They are briefly recalled in
this section.

2.1 Formulation in terms of the gradient tensor

The strong form of the Stokes equation in terms of the gradient tensor can be written as

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

−𝛁 ⋅ (𝜈𝛁u − pInsd) = s in Ωl, for l = 1, 2,
𝛁 ⋅ u = 0 in Ωl, for l = 1, 2,

u = f on ΓD,

n(𝜈𝛁u − pInsd) = g on ΓN ,

⟦⟦−n
(
2𝜈𝛁su − pInsd

)
E⟧⟧ = h on ΓI ,

(1)

where u is the velocity vector, p is the pressure, 𝜈 > 0 is the viscosity, s is the volumetric source term, f is the imposed
velocity on the Dirichlet boundary, g is the imposed pseudo-traction on the Neumann boundary and h is the interface
jump condition due to the effect of surface tension. The matrix E = [nT

, tT
1 , … , tT

nsd−1] contains the outward unit normal
vector n and the tangential vectors tk, for k = 1, … ,nsd − 1, such that {n, t1, … , tnsd−1} form an orthonormal system
of vectors. The interface jump ⟦⟦⋅⟧⟧ operator is defined as the difference between the values to the left and right of the
interface, namely ΩL and ΩR, that is

⟦⟦⊙⟧⟧ = ⊙L −⊙R. (2)
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SEVILLA and DURETZ 3

This formulation is sometimes referred to as the velocity-pressure formulation of the Stokes problem.8

2.2 Formulation in terms of the symmetric gradient tensor

The strong form of the Stokes equation in terms of symmetric gradient tensor can be written as

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

−𝛁 ⋅
(
2𝜈𝛁su − pInsd

)
= s in Ωl, for l = 1, 2,

𝛁 ⋅ u = 0 in Ωl, for l = 1, 2,
u = f on ΓD,

n
(
2𝜈𝛁su − pInsd

)
= g on ΓN ,

⟦⟦−n
(
2𝜈𝛁su − pInsd

)
E⟧⟧ = h on ΓI ,

(3)

where g denotes now the imposed traction in the Neumann boundary. This formulation is sometimes referred to as the
Cauchy stress formulation of the Stokes problem.8

It is worth noting that two main differences are observed between the two formulations of the Stokes problem con-
sidered, namely the momentum equation and the Neumann boundary condition. The numerical examples considered
in this work will only feature Dirichlet boundary conditions, and therefore the differences observed between the two
formulations are only due to the difference in the momentum equation.

2.3 Interface condition

The interface boundary condition in Equations (1) and (3) imposes a net zero stress on the interface.9 As it will be
shown, the discretization of the problem with the interface boundary condition written as in Equations (1) and (3) leads
to a nonsymmetric linear system of equations for both formulations of the Stokes problem. Here a simple rewriting,
not usually considered in the literature,9,10 is proposed to ensure that, after the spatial discretization is performed, the
resulting linear system of equations, corresponding to the Stokes formulation in terms of the symmetric gradient tensor,
is symmetric.

As the matrix E is orthonormal, the interface condition can be rewritten as

⟦−n
(
2𝜈𝛁su − pInsd

)
⟧ = h̃, (4)

where h̃ ∶= hET
L , and the jump operator ⟦⋅⟧ is defined as the sum between the values to the left and right of the interface,

namely ΩL and ΩR, that is

⟦⊙⟧ = ⊙L +⊙R. (5)

3 FCFV WEAK FORMULATIONS

This section details the FCFV weak forms for the Stokes formulations in terms of the gradient tensor and the symmetric
gradient tensor. In the remaining of the article, the two FCFV methods are referred to as the gradient-based FCFV and
the symmetric gradient-based FCFV, respectively.

3.1 Gradient-based FCFV weak formulation

3.1.1 Mixed formulation

The domain is partitioned intonel disjoint subdomains and the strong form is written in the broken domain after splitting
the momentum equation in two first-order equations, leading to the mixed strong form
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4 SEVILLA and DURETZ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Le + 𝛁ue = 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(
𝜈Le + peInsd

)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(
𝜈Le + peInsd

)
= −g on 𝜕Ωe ∩ ΓN ,

⟦n
[
𝜈(Le + LT

e ) + peInsd
]
⟧ = h̃ on 𝜕Ωe ∩ ΓI ,

⟦u ⊗ n⟧ = 0 on Γ ⧵ ΓI ,

⟦n
(
𝜈L + pInsd

)
⟧ = 0 on Γ ⧵ ΓI .

(6)

The last two equations are introduced to enforce the continuity of the velocity and the normal flux across Γ ⧵ ΓI , where Γ
denotes the so-called mesh skeleton, that is, the set of internal faces (edges in two dimensions).

3.1.2 Local and global problems

Following the rationale of previous work on FCFV1,11-14 and HDG,6,15-17 the problem is split into a set ofnel local problems
with Dirichlet boundary conditions and a global problem to compute the hybrid velocity defined on the mesh skeleton
and the mean value of the pressure in each element.

In the local problems, for e = 1, … ,nel, the solution (Le,ue, pe) is written in terms of the unknown hybrid variable
û, namely

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Le + 𝛁ue = 0 in Ωe,

𝛁 ⋅
(
𝜈Le + peInsd

)
= s in Ωe,

𝛁 ⋅ ue = 0 in Ωe

ue = f on 𝜕Ωe ∩ ΓD,

ue = û on 𝜕Ωe ⧵ ΓD.

(7)

As only Dirichlet boundary conditions are considered in the local problems, an extra condition is required to ensure that
the pressure is completely determined. In this work the extra condition

1
|𝜕Ωe|

⟨pe, 1⟩𝜕Ωe = 𝜌e, (8)

is used, where 𝜌e denotes the mean pressure on the boundary of element Ωe and ⟨p, q⟩𝜕Ωe ∶= ∫𝜕Ωe
pq dΓ.

The global problem is introduced to compute the velocity on the mesh skeleton, û, and the mean value of the pressure
in each element, 𝜌e, namely

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⟦u ⊗ n⟧ = 0 on Γ ⧵ ΓI ,

⟦n
(
𝜈L + pInsd

)
⟧ = 0 on Γ ⧵ ΓI .

n
(
𝜈L + pInsd

)
= −g on ΓN ,

⟦n
[
𝜈(L + LT) + pInsd

]
⟧ = h̃ on ΓI ,

(9)

It is worth noting that the first continuity condition in Equation (9) is satisfied automatically because the hybrid variable,
û, is unique on each face and the Dirichlet boundary condition u = û is imposed in the local problems.

In addition, the free divergence condition in Equation (7) induces the compatibility condition

⟨n ⋅ û, 1⟩𝜕Ωe⧵ΓD + ⟨n ⋅ f, 1⟩𝜕Ωe∩ΓD = 0. (10)
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SEVILLA and DURETZ 5

3.1.3 Weak form of the local and global problems

The discrete weak formulation of the local problems reads: for e = 1, … ,nel, find (Lh
e ,uh

e , ph
e ) ∈ [h(Ωe)]nsd×nsd ×

[h(Ωe)]nsd × h(Ωe) such that

−(G,Lh
e )Ωe + (𝛁 ⋅ G,uh

e )Ωe = ⟨nG, f ⟩𝜕Ωe∩ΓD + ⟨nG, ûh
⟩𝜕Ωe⧵ΓD , (11a)

−(𝛁w, 𝜈Lh
e )Ωe − (𝛁 ⋅w, ph

e )Ωe + ⟨w,n
(

̂
𝜈Lh

e + ph
e Insd

)

⟩𝜕Ωe = (w, s)Ωe , (11b)

(𝛁q,uh
e )Ωe = ⟨q,n ⋅ f ⟩𝜕Ωe∩ΓD + ⟨q,n ⋅ ûh

⟩𝜕Ωe⧵ΓD , (11c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (11d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe). In the above expressions, h(Ωe) denote the space of constant
functions in each element and

(p, q)Ωe ∶= ∫
Ωe

pq dΩ (p,q)Ωe ∶= ∫
Ωe

p ⋅ q dΩ, (P,Q)Ωe ∶= ∫
Ωe

P ∶ Q dΩ (12)

denote the inner 2(Ωe) products for scalar, vector and tensor valued functions, respectively.
After integrating by parts Equation (11b), a second time, and by introducing the trace of the numerical normal flux

n
(

̂
𝜈Lh

e + ph
e Insd

)

∶=

{
n
(
𝜈Lh

e + ph
e Insd

)
+ 𝜏e(uh

e − f ) on 𝜕Ωe ∩ ΓD,

n
(
𝜈Lh

e + ph
e Insd

)
+ 𝜏e(uh

e − ûh) elsewhere.
(13)

the weak form of the local problems is: for e = 1, … nel, find (Lh
e ,uh

e , ph
e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe)

such that

−(G,Lh
e )Ωe + (𝛁 ⋅ G,uh

e )Ωe = ⟨nG, f ⟩𝜕Ωe∩ΓD + ⟨nG, ûh
⟩𝜕Ωe⧵ΓD , (14a)

(w,𝛁 ⋅ [𝜈Lh
e ])Ωe + ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef ⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (14b)

(𝛁q,uh
e )Ωe = ⟨q,n ⋅ f ⟩𝜕Ωe∩ΓD + ⟨q,n ⋅ ûh

⟩𝜕Ωe⧵ΓD , (14c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (14d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe).
In a similar fashion, the following global problem accounting for the transmission conditions, the Neumann boundary

condition and the interface condition, given in Equation (9) is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel

nel∑

e=1

{
⟨ŵ,n[𝜈Lh

e ]⟩𝜕Ωe⧵ΓD + ⟨ŵ,n[𝜈(Lh
e )T]⟩𝜕Ωe∩ΓI + ⟨ŵ, ph

e n⟩𝜕Ωe⧵ΓD

+ ⟨ŵ, 𝜏euh
e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh

⟩𝜕Ωe⧵ΓD

}
=

nel∑

e=1

{
−⟨ŵ, g⟩𝜕Ωe∩ΓN + ⟨ŵ, h̃⟩𝜕Ωe∩ΓI

}
,

⟨n ⋅ ûh
, 1⟩𝜕Ωe⧵ΓD = −⟨n ⋅ f, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (15b)

for all ŵ ∈ [̂h(Γ ∪ ΓN)]nsd . In the above expressions, ̂h(S) denote the space of constant functions in S ⊂ Γ ∪ 𝜕Ω and

⟨p̂, q̂⟩𝜕Ωe ∶=
∑

Γi⊂𝜕Ωe
∫
Γi

p̂q̂ dΓ ⟨p̂, q̂⟩𝜕Ωe ∶=
∑

Γi⊂𝜕Ωe
∫
Γi

p̂ ⋅ q̂ dΓ (16)

denote the inner 2(Γi) products for scalar and vector valued functions respectively.
To simplify the notation in the next sections, the super-index h, denoting discrete approximations, is omitted.
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6 SEVILLA and DURETZ

3.2 Symmetric gradient-based FCFV weak formulation

The process to obtain the weak form of the symmetric gradient-based formulation is very similar to the one described
above for the gradient-based FCFV formulation. First, the mixed form for the symmetric gradient-based formulation is
written in the broken domain as

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Le +
(
𝛁ue + 𝛁uT

e
)
= 0 in Ωe, and for e = 1, … ,nel,

𝛁 ⋅
(
𝜈Le + peInsd

)
= s in Ωe, and for e = 1, … ,nel,

𝛁 ⋅ ue = 0 in Ωe, and for e = 1, … ,nel,

ue = f on 𝜕Ωe ∩ ΓD,

n
(
𝜈Le + peInsd

)
= −g on 𝜕Ωe ∩ ΓN ,

⟦n
(
𝜈Le + peInsd

)
⟧ = h̃ on 𝜕Ωe ∩ ΓI ,

⟦u ⊗ n⟧ = 0 on Γ ⧵ ΓI ,

⟦n
(
𝜈L + pInsd

)
⟧ = 0 on Γ ⧵ ΓI .

(17)

Without detailing all the intermediate steps, the resulting weak form of the local problems is: for e = 1, … ,nel, find
(Lh

e ,uh
e , ph

e ) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe) such that

−(G,Lh
e )Ωe + (𝛁 ⋅ [G + GT],uh

e )Ωe = ⟨n[G + GT], f ⟩𝜕Ωe∩ΓD + ⟨n[G + GT], ûh
⟩𝜕Ωe⧵ΓD , (18a)

(w,𝛁 ⋅ [𝜈Lh
e ])Ωe + ⟨w, 𝜏euh

e ⟩𝜕Ωe + (w,𝛁ph
e )Ωe = (w, s)Ωe + ⟨w, 𝜏ef ⟩𝜕Ωe∩ΓD + ⟨w, 𝜏eûh

⟩𝜕Ωe⧵ΓD , (18b)

(𝛁q,uh
e )Ωe = ⟨q, f ⋅ n⟩𝜕Ωe∩ΓD + ⟨q, ûh ⋅ n⟩𝜕Ωe⧵ΓD , (18c)

1
|𝜕Ωe|

⟨ph
e , 1⟩𝜕Ωe = 𝜌e, (18d)

for all (G,w, q) ∈ [h(Ωe)]nsd×nsd × [h(Ωe)]nsd × h(Ωe).
In a similar fashion, the following global problem accounting for the transmission conditions, the Neumann boundary

condition and the interface condition is: find ûh ∈ [̂h(Γ ∪ ΓN)]nsd and 𝜌 ∈ Rnel

nel∑

e=1

{
⟨ŵ,n[𝜈Lh

e ]⟩𝜕Ωe⧵ΓD + ⟨ŵ, ph
e n⟩𝜕Ωe⧵ΓD + ⟨ŵ, 𝜏euh

e ⟩𝜕Ωe⧵ΓD − ⟨ŵ, 𝜏eûh
⟩𝜕Ωe⧵ΓD

}
=

nel∑

e=1

{
−⟨ŵ, g⟩𝜕Ωe∩ΓN + ⟨ŵ, h̃⟩𝜕Ωe∩ΓI

}
,

(19a)
⟨ûh ⋅ n, 1⟩𝜕Ωe⧵ΓD = −⟨ f ⋅ n, 1⟩𝜕Ωe∩ΓD for e = 1, … ,nel, (19b)

for all ŵ ∈ [̂h(Γ ∪ ΓN)]nsd .

4 FCFV DISCRETIZATION

To simplify the presentation, let us introduce the following notation for different sets of faces:e ∶= {1, … ,ne
fa} is the

set of indices for all the faces of elementΩe;e ∶= {j ∈ e | Γe,j ∩ ΓD ≠ ∅} is the set of indices for all the faces of element
Ωe on the Dirichlet boundary ΓD; e ∶= {j ∈ e | Γe,j ∩ ΓN ≠ ∅} is the set of indices for all the faces of element Ωe on
the Neumann boundary ΓN ; e ∶= e ⧵e = {j ∈ e | Γe,j ∩ ΓD = ∅} is the set of indices for all the faces of element Ωe
not on the Dirichlet boundary ΓD; e ∶= {j ∈ e | Γe,j ∩ ΓI ≠ ∅} is the set of indices for all the faces of element Ωe on the
interface ΓI .

4.1 Gradient-based formulation

Assuming a constant degree of approximation for all the variables in Equation (14), that is for Le, ue and pe in each element
and for û in each face (edge in two dimensions), the discrete local problems are
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SEVILLA and DURETZ 7

− |Ωe|Le =
∑

j∈e

|Γe,j|nj ⊗ fj +
∑

j∈e

|Γe,j|nj ⊗ ûj, (20a)

∑

j∈e

|Γe,j|𝜏eue = |Ωe|se +
∑

j∈e

|Γe,j|𝜏e fj +
∑

j∈e

|Γe,j|𝜏eûj, (20b)

0 =
∑

j∈e

|Γe,j|nj ⋅ fj +
∑

j∈e

|Γe,j|nj ⋅ ûj, (20c)

pe = 𝜌e, (20d)

for e = 1, … ,nel.
It is worth noting that Equation (20c) becomes redundant when using a constant approximation. First, it does not

contain any of the unknowns of the local problem and, second, it coincides with the discrete version of Equation (15b).
The local problem leads to three uncoupled equations that express Le, ue and pe as functions of the global unknowns

û and 𝜌e, namely

Le = −|Ωe|
−1Ze − |Ωe|

−1
∑

j∈e

|Γe,j|nj ⊗ ûj, (21a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|𝜏eûj, (21b)

pe = 𝜌e, (21c)

where the following auxiliary quantities can be precomputed as they only depend on the data, the stabilization parameter
and the mesh

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (22a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏e fj, (22b)

Ze ∶=
∑

j∈e

|Γe,j|nj ⊗ fj. (22c)

Similarly the global problem of Equation (15) becomes

∑nel
e=1|Γe,i|

{
ni[𝜈Le] + peni + 𝜏eue − 𝜏eûi + ni

[
𝜈LT

e
]
𝜒e (i)

}
=
∑nel

e=1|Γe,i|
{
−gi𝜒e

(i) + h̃i𝜒e(i)
}

for i ∈ e, (23a)

∑

j∈e

|Γe,j|nj ⋅ ûj = −
∑

j∈e

|Γe,j|nj ⋅ fj for e = 1, … ,nel, (23b)

where 𝜒e
is the indicator function of the sete, that is,

𝜒e
(i) =

{
1 if i ∈e

0 otherwise
. (24)

By inserting the expressions of Equation (21) into Equation (23), the global problem, only in terms of the global
unknowns û and 𝜌, is obtained, namely

[
K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

. (25)

The vector û contains the value of the hybrid variable on Γ ∪ ΓN and the vector 𝝆 contains the values of the mean pressure
on each element Ωe. The blocks composing the matrix and vector of the global linear system are obtained by assembling
the elemental contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
{
𝛼
−1
e 𝜏e𝜏e|Γe,j|Insd − 𝜈|Ωe|

−1|Γe,j|
[
(ni ⋅ nj)Insd + nj ⊗ ni𝜒e(i)

]
− 𝜏e𝛿ijInsd

}
, (26a)

(K̂û𝜌)ei ∶= |Γe,i|ni, (26b)
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8 SEVILLA and DURETZ

(f̂û)ei ∶= |Γe,i|
{
−𝛼−1

e 𝜏e𝜷e + 𝜈|Ωe|
−1ni

[
Ze + ZT

e 𝜒e (i)
]}
+ |Γe,i|

{
−gi𝜒e

(i) + h̃i𝜒e (i)
}
, (26c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj, (26d)

for i, j ∈ e.
With the gradient-based formulation, the occurrence of an interface with discontinuous viscosity requires specific

modifications of both the left and right-hand sides of the discretized momentum equations (Equation (26a) and (26c)). It
is worth emphasizing that for a pure Dirichlet problem, an extra condition must be imposed in order to remove the inde-
terminacy of the pressure. Following the work of Cockburn et al.,6,16 the usual strategy of imposing mean zero pressure
on the whole domain, that is,

nel∑

e=1
|Ωe|𝜌e = 0 (27)

is considered here.

4.2 Symmetric gradient-based formulation

Following the same procedure described above for the gradient-based formulation, the local problem of the symmet-
ric gradient-based formulation leads to three uncoupled equations that express Le, ue and pe as functions of the global
unknowns û and 𝜌e, namely

Le = −|Ωe|
−1Ze − |Ωe|

−1
∑

j∈e

|Γe,j|(nj ⊗ ûj + ûj ⊗ nj), (28a)

ue = 𝛼−1
e 𝜷e + 𝛼−1

e
∑

j∈e

|Γe,j|𝜏eûj, (28b)

pe = 𝜌e, (28c)

where the following auxiliary quantities can be precomputed as they only depend on the data, the stabilization parameter
and the mesh

𝛼e ∶=
∑

j∈e

|Γe,j|𝜏e, (29a)

𝜷e ∶= |Ωe|se +
∑

j∈e

|Γe,j|𝜏e fj, (29b)

Ze ∶=
∑

j∈e

|Γe,j|(nj ⊗ fj + fj ⊗ nj). (29c)

Similarly, the global problem leads to a system of equations
[

K̂ûû K̂û𝜌

K̂
T
û𝜌 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

, (30)

where the vector û contains the value of the hybrid variable on Γ ∪ ΓN and the vector 𝝆 contains the values of the mean
pressure on each elementΩe. The blocks composing the matrix and vector of the of the global linear system are obtained
by assembling the elemental contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
{
𝛼
−1
e 𝜏e𝜏e|Γe,j|Insd − 𝜈|Ωe|

−1|Γe,j|
[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− 𝜏e𝛿ijInsd

}
(31a)

(K̂û𝜌)ei ∶= |Γe,i|ni (31b)

(f̂û)ei ∶= |Γe,i|
{
−𝛼−1

e 𝜏e𝜷e + 𝜈|Ωe|
−1niZe

}
+ |Γe,i|

{
−gi𝜒e

(i) + h̃i𝜒e (i)
}

(31c)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj. (31d)
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SEVILLA and DURETZ 9

A notable difference with the gradient-based formulation is the occurrence of interface contributions only on the
right-hand side of the discretized momentum equations, as shown in Equation (31c).

4.3 Solution algorithm and symmetry of the global system

For both FCFV approaches, the solution algorithm can be summarized in three stages. First, the global system is built
by assembling the elemental contributions given by Equations (26) and (31), respectively. Second, the global system is
solved to obtain the hybrid velocity on each face, û, and the mean pressure on each element, 𝝆. Finally, the local prob-
lems of Equations (21) and (28) are used to obtain the velocity, the velocity gradient or symmetric velocity gradient and
the pressure, Le, ue and pe on each elementΩe. Both FCFV approaches were implemented into an open source Julia pack-
age (https://github.com/tduretz/FCFV_NME23), which provides useful details on the practical implementation of the
considered FCFV schemes.

The resulting global system of equations for the gradient-based FCFV is nonsymmetric, due to the term containing
the exterior product nj ⊗ ni, in Equation (26a), only for faces that belong to the material interface. The reason for the loss
of symmetry is due to the original formulation of the Stokes problem in Equation (1) that features the gradient tensor on
the momentum equation but the Cauchy stress tensor on the interface condition.

In contrast, the symmetric gradient-based formulation leads to a symmetric system of linear equations due to two
main reasons. First, the momentum equation and the interface condition in Equation (3) both feature the Cauchy stress
tensor. Second, the simple rewriting of the interface condition, proposed in Section 2.3, ensures that the contribution to
the left-hand side of the system of equations for faces on the interface is the same as for all the other faces of the mesh
skeleton.

Without this simple rewriting, the resulting global system of equations for the symmetric gradient-based FCFV
formulation is

[
K̂ûû K̂û𝜌

K̂𝜌û 0nel

]{
û
𝝆

}

=

{
f̂û

f̂𝜌

}

, (32)

where the blocks composing the matrix and vector are obtained by assembling the elemental contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
{
𝛼
−1
e 𝜏e𝜏e|Γe,j|Insd − 𝜈|Ωe|

−1|Γe,j|
[
(ni ⋅ nj)Insd + nj ⊗ ni

]
− 𝜏e𝛿ijInsd

}
Gi, (33a)

(K̂û𝜌)ei ∶= |Γe,i|niGi, (33b)

(K̂𝜌û)ei ∶= |Γe,i|ni, (33c)

(f̂û)ei ∶= |Γe,i|
{
−𝛼−1

e 𝜏e𝜷e + 𝜈|Ωe|
−1niZe

}
Gi + |Γe,i|

{
−gi𝜒e

(i) + hi𝜒e (i)
}
, (33d)

(f̂𝜌)e ∶= −
∑

j∈e

|Γe,j|nj ⋅ fj, (33e)

for i, j ∈ e, where Gi = Insd𝜒e (i) + Ei[1 − 𝜒e (i)].
It is worth noting that without the rewriting of the interface condition, not only is the diagonal block of the global

system K̂ûû nonsymmetric but also, the off diagonal blocks K̂û𝜌 and K̂𝜌û do not satisfy that K̂û𝜌 = K̂
T
𝜌û.

To further analyze the difference between the gradient-based and symmetric gradient-based FCFV formulations, let
us consider the sparsity pattern of the global matrices in Equations (25) and (30), respectively. For the gradient-based
formulation, the number of nonzero entries in the block K̂ûû is

ngnz(K̂ûû) = (2ne
fa − 1)nsd(nΓfa − n

I
fa) + (2n

e
fa − 1)n2

sdn
I
fa + n

e
fansdn

𝜕

fa, (34)

where nΓfa is the number of interior faces (i.e., not on the boundary), nI
fa is the number of faces on a material interface

and n𝜕fa is the number of boundary faces. Similarly, for the symmetric gradient-based formulation, the number of nonzero
entries in the block K̂ûû is

nsgnz(K̂ûû) = (2ne
fa − 1)n2

sdn
Γ
fa + n

e
fan

2
sdn

𝜕

fa. (35)

To better compare both formulations, let us assume that the number of boundary faces and the number of faces on a
material interface are negligible, when compared to the number of interior faces. In addition, let us consider the case of
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10 SEVILLA and DURETZ

simplicial meshes, where the number of element faces is ne
fa = nsd + 1. Under these assumptions, the number of nonzero

entries in the block K̂ûû is approximately

ngnz(K̂ûû) ≈ (2nsd + 1)nsdnΓfa, (36)

and

nsgnz(K̂ûû) ≈ (2nsd + 1)n2
sdn

Γ
fa∕2, (37)

for the gradient-based and symmetric-gradient based formulations, respectively. It is worth noting that for the symmetric
gradient formulation, only half of the entries are required due to the symmetry of the block K̂ûû, hence the two in the
denominator in Equation (37).

The ratio between the nonzero entries of the block K̂ûû corresponding to the symmetric gradient and gradient formu-
lations is approximately nsd∕2. Therefore, in two dimensions, both formulations lead to a block K̂ûû with approximately
the same number of nonzero entries, whereas in three dimensions, the block K̂ûû of the symmetric formulation contains
1.5 more nonzero entries. Despite the extra nonzero entries in the block K̂ûû, the symmetric gradient formulation only
requires to store one of the off-diagonal blocks of the global matrix and more efficient solution algorithms can be applied.
The numerical examples in the next section will also compare the accuracy provided by both schemes for the same spatial
discretization.

5 NUMERICAL EXAMPLES

Two examples usually employed by the geodynamic community are presented here, namely the SolCx and SolVi bench-
marks.18-22 Both tests provide an exact full flow-field solution of 2D Stokes flow in the presence of a discontinuous viscosity
field. In the case of SolCx, the flow is driven by buoyancy and the viscosity jump occurs along a linear segment. In the
SolVi case, the flow is driven by far field kinematics and the viscosity jump occurs along a circular or elliptical interface.
The examples are used to verify the implementation of the proposed FCFV scheme and to compare the gradient-based
and symmetric gradient-based formulations of the FCFV methods described above. Two further numerical examples in
two and three dimensions are used to show the ability of the approach to handle problems that involve a nonvanishing
surface tension.

Unless otherwise stated, the stabilization parameter 𝜏 is selected as

𝜏e = 𝜅𝜈(x̄e), (38)

where x̄e denotes the barycentre of the element Ωe and 𝜅 is a numerical parameter selected as 𝜅 = 10 in two dimensions
and 𝜅 = 1 in three dimensions. Numerical experiments are included to demonstrate the suitability of this choice for a
variety of problems and for different viscosity contrasts.

The accuracy of the numerical solution is assessed by measuring the relative error of the velocity, pressure, gradient
tensor in the 2(Ω) norm and the hybrid velocity in the 2(Γ) norm, namely

𝜖
h
u =

||uh − u⋆||2(Ω)

||u⋆||2(Ω)
, 𝜖

h
p =

||ph − p⋆||2(Ω)

||p⋆||2(Ω)
, 𝜖

h
L =

||Lh − L⋆||2(Ω)

||L⋆||2(Ω)
, 𝜖ûh =

||ûh − u⋆||2(Γ)

||u⋆||2(Γ)
, (39)

where the superscript h denotes the numerical solution, the superscript ⋆ denotes the analytical solution and the 2(Ω)
norm for scalar, vector and tensor valued functions is the norm induced by the scalar products in Equation (12).

To further assess the implementation of the methods proposed, the rate of convergence for the error of all the
variables is also included in the numerical examples. The rate of convergence of the error for the velocity u is
defined as

ru ∶=
log

(
𝜖

h2
u ∕𝜖

h1
u

)

log(h2∕h1)
, (40)
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SEVILLA and DURETZ 11

where hi denotes the characteristic mesh size of i-th mesh employed in the convergence study. In a similar fashion the rate
of convergence for the errors of the pressure, the velocity gradient and the hybrid velocity are denoted by rp, rL, and rû.

To compute the domain integrals that are involved in the evaluation of 𝜖u, 𝜖p, and 𝜖L, a quadrature with six integration
points in each triangle is employed. Similarly, to compute the integrals on the mesh skeleton that are involved in the eval-
uation of 𝜖û, a quadrature with three integration points is used. This is done to ensure that the variation of the analytical
solutions is properly captured.

The presented results were obtained using an in-house code based on the open-source HDGlab,23 which is a MATLAB
serial implementation of the HDG method. An open-source Julia implementation of the FCFV method applied to the
viscous inclusion benchmark is provided online (https://github.com/tduretz/FCFV_NME23).

5.1 The SolCx test: Discontinuous viscous profile in a square

The first example considers the domain Ω = [0, 1]2 and the viscosity given by

𝜈(x) =

{
𝜈1 if x1 ≤ 0.5
𝜈2 if x1 > 0.5

. (41)

The flow is driven by a source term s(x) = 𝜌(x)g, with 𝜌(x) = cos(𝜋x1) sin(𝜋x2) and g = (0,−1)T . Dirichlet boundary
conditions, corresponding to the analytical solution, derived by Zhong,18 are imposed in whole boundary of Ω.

Four triangular meshes, shown in Figure 1, are considered to perform a convergence study. The meshes are generated
by splitting into four triangles a Cartesian grid of quadrilateral elements. The number of elements in the four meshes is
1024, 4,096, 16,384, and 65,536 respectively, leading to a global system of equations of dimension 4032, 16,256, 65,280,
and 261,632, respectively. It is worth noting that further numerical examples, not reported here for brevity, demonstrated
that the mesh is insensitive to mesh distortion, so the errors vary only marginally when nonregular meshes are used. This
confirms the conclusions reported in previous works on FCFV.1,11-14

The numerical solution computed with the symmetric gradient-based FCFV formulation is shown in Figures 2 and
3 for the first and last mesh, respectively. The results, corresponding to a discontinuous viscosity field with 𝜈1 = 1 and
𝜈2 = 106, clearly show the increased resolution of the complex features, induced by the large viscosity jump, as the mesh
is refined. It can be clearly observed how the strong jump in the viscosity field induces a disparate behavior of the velocity
and pressure fields in the two regions. The discontinuous character of the FCFV approximation and the alignment of
the mesh with the interface results in a sharp resolution of the pressure discontinuity, with no artifacts or oscillations
displayed in the numerical solution.

The results of the mesh convergence study are displayed in Table 1. The error and rate of convergence for the veloc-
ity, pressure, gradient tensor and hybrid velocity are reported for both the gradient-based FCFV and the symmetric
gradient-based FCFV formulations. The results show the optimal,(h), rate of convergence for both FCFV formulations.
The most accurate results are obtained for the pressure field, followed by the hybrid velocity, the gradient tensor and the
velocity.

F I G U R E 1 Four triangular meshes used for the SolCx test case. (A) Mesh 1, (B) Mesh 2, (C) Mesh 3, (D) Mesh 4.
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12 SEVILLA and DURETZ

F I G U R E 2 SolCx: numerical solution with 𝜈1 = 1 and 𝜈2 = 106 on the first mesh of Figure 1 using the symmetric gradient-based FCFV
formulation. (A) 𝜈1, (B) 𝜈2, (C) ||u||, (D) p.

F I G U R E 3 SolCx: numerical solution with 𝜈1 = 1 and 𝜈2 = 106 on the fourth mesh of Figure 1 using the symmetric gradient-based
FCFV formulation. (A) 𝜈1, (B) 𝜈2, (C) ||u||, (D) p.

T A B L E 1 SolCx: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence for the two FCFV
formulations with 𝜈1 = 1 and 𝜈2 = 106.

Gradient-based FCFV

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.2322 – 0.0989 – 0.3665 – 0.1350 –

2 0.1083 1.1 0.0547 0.9 0.1959 0.9 0.0658 1.0

3 0.0521 1.1 0.0289 0.9 0.1012 1.0 0.0330 1.0

4 0.0255 1.0 0.0149 1.0 0.0514 1.0 0.0167 1.0

Symmetric gradient-based FCFV

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.2160 – 0.0729 – 0.2861 – 0.1280 –

2 0.1040 1.1 0.0370 1.0 0.1491 0.9 0.0650 1.0

3 0.0510 1.0 0.0187 1.0 0.0761 1.0 0.0330 1.0

4 0.0252 1.0 0.0094 1.0 0.0384 1.0 0.0166 1.0
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SEVILLA and DURETZ 13

T A B L E 2 SolCx: Wall clock (in seconds) for the solution of the linear system. CPUg and CPUsg denote the wall clock for the
gradient-based and symmetric gradient-based formulations, respectively. The ratio is also reported.

Mesh CPUg CPUsg CPUg/CPUsg

1 0.06 0.01 6

1 1.15 0.07 16

1 18.51 0.32 58

1 669.03 2.66 251

T A B L E 3 SolCx: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence, computed on the finest
mesh, for the two FCFV formulations with 𝜈1 = 1 and an increasing value of 𝜈2.

Gradient-based FCFV

𝝂2 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

100 0.0090 1.0 0.0101 1.0 0.0174 1.0 0.0100 1.0

101 0.0095 1.0 0.0144 1.0 0.0289 1.0 0.0087 1.0

102 0.0223 1.0 0.0148 1.0 0.0499 1.0 0.0146 1.0

103 0.0252 1.0 0.0149 1.0 0.0513 1.0 0.0165 1.0

104 0.0255 1.0 0.0149 1.0 0.0514 1.0 0.0166 1.0

105 0.0255 1.0 0.0149 1.0 0.0514 1.0 0.0166 1.0

106 0.0255 1.0 0.0149 1.0 0.0514 1.0 0.0167 1.0

Symmetric gradient-based FCFV

𝝂2 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

100 0.0077 1.0 0.0101 1.0 0.0142 1.0 0.0086 1.0

101 0.0092 1.0 0.0093 1.0 0.0226 1.0 0.0087 1.0

102 0.0220 1.0 0.0094 1.0 0.0374 1.0 0.0148 1.0

103 0.0249 1.0 0.0094 1.0 0.0383 1.0 0.0165 1.0

104 0.0252 1.0 0.0094 1.0 0.0384 1.0 0.0166 1.0

105 0.0252 1.0 0.0094 1.0 0.0384 1.0 0.0166 1.0

106 0.0252 1.0 0.0094 1.0 0.0384 1.0 0.0166 1.0

When comparing the two FCFV formulations, it is observed that they produce almost identical results for the velocity
and hybrid velocity. However, the symmetric gradient-based formulation provides a lower error for the pressure and
gradient tensor. To provide a comparison of the computational cost of the two formulations, Table 2 shows the wall clock,
in seconds, required to solve the global system of equations for the two FCFV methods. Only the time required to solve
the linear system is reported as this is the dominant cost, especially for fine meshes. For the gradient-based formulation
the multifrontal LU factorization algorithm in UMFPACK24 is applied for solving the global system, whereas for the
symmetric-gradient formulation the multi-frontal MA5725 algorithm is employed. The computations were performed in
an Intel® Core CPU @ 3.70GHz and 32GB main memory available.

The results clearly show the superior performance of the symmetric gradient-based formulation. For a given mesh,
not only the time required to solve the linear system is lower, but also the accuracy obtained is higher. The superior
performance is significantly more evident as the mesh is refined.

To further analyze the behavior of the FCFV formulations considered, Table 3 shows the error on the last mesh and
the rate of convergence for an increasing value of the viscosity contrast. In all cases, the optimal rate of convergence is
exhibited, but the value of the viscosity contrast influences the accuracy of some of the computed quantities. For both
FCFV methods, the errors on the velocity and gradient tensor show the greatest dependence with respect to the viscos-
ity contrast, with an error approximately three times higher when the viscosity contrast exceeds 102, compared to the
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14 SEVILLA and DURETZ

F I G U R E 4 SolCx with 𝜈1 = 1 and 𝜈2 = 1: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale as a
function of the stabilization parameter for the gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

F I G U R E 5 SolCx with 𝜈1 = 1 and 𝜈2 = 106: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale as a
function of the stabilisation parameter for the gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

isoviscous case. It is worth noting that the error in all the variables with 𝜈2 = 103 is almost identical to the error in
velocity with 𝜈 = 106, showing the robustness of the proposed schemes for high contrast problems. The error of the hybrid
velocity and pressure are less influenced by the values of the viscosity contrast. For the gradient-based FCFV, the error
on the pressure for high values of the viscosity contrast is less than two times higher than the error of the isoviscous case,
whereas for the symmetric gradient-based approach a marginally lower error is actually observed for high contrast cases.
The error on the hybrid velocity for high values of the viscosity contrast is approximately two times higher than the error
of the isoviscous case for both the gradient-based and the symmetric gradient-based FCFVs. Overall, the error of the sym-
metric gradient-based formulation seems to be always lower or the same provided by the gradient-based formulation.
When combined with the fact that the symmetric gradient-based approach requires the solution of a symmetric linear
system of equations, indicates that the symmetric gradient-based FCFV is the most efficient alternative.

To conclude with this example, the effect of the stabilization parameter is studied. Figure 4 shows the error of velocity,
pressure, gradient tensor and hybrid velocity as a function of the stabilization parameter, which is selected independently
in the two subdomains Ω1 and Ω2, in the range [10−2

, 102]. This study considers the case with equal viscosity 𝜈1 = 𝜈2 = 1
and the gradient-based FCFV. The results show that low values of the stabilization parameter destroy the accuracy of
the velocity field, whereas a high value destroys the accuracy of the other variables. The results indicate that choosing
𝜏 = 10 provides the most accurate results for all the variables. Further simulations, not reported here, for the symmetric
gradient-based formulation are almost identical.

The case with a high contrast is considered in Figure 5, corresponding to 𝜈1 = 1 and 𝜈2 = 106 and by using the
gradient-based FCFV. The behavior in this example is completely different, when compared to the isoviscous case. The
most accurate results correspond to a value of 𝜏 = 10 in Ω1 and are almost independent of the stabilization parameter
used in the second subdomain, except for the velocity field. The velocity error shows a higher dependence on the selected
value of the stabilization and very low values of the stabilization also induce a higher error. The optimal value of the stabi-
lization in the first subdomain is again 𝜏 = 10 whereas in the second subdomain a value of 𝜏 between 10 and 108 does not
produce a visible change in the accuracy obtained. Once more, further experiments, not reported here, for the symmetric
gradient-based formulation are almost identical.
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SEVILLA and DURETZ 15

This study also confirms that the choice adopted here for the stabilization parameter, given in Equation (38), provides
the most accurate results for both FCFV formulations. This factor 10, appearing in Equation (38), was also identified in
previous FCFV studies1 as an optimal value of the stabilization for isoviscous cases.

5.2 The SolVi test: Circular inclusion

The second example considers the domain Ω = [−3, 3]2 with a circular inclusion of radius 1. The viscosity is given by

𝜈(x) =

{
𝜈1 if ||x||2 ≤ 1
𝜈2 if ||x||2 > 1

. (42)

Dirichlet boundary conditions, corresponding to the analytical solution, derived by Schmid and Podladchikov,19 are
imposed in whole boundary of Ω.

Four triangular meshes generated using the advancing front method, shown in Figure 6, are considered to perform a
convergence study. The number of elements in the four meshes is 2004, 8130, 32,840, and 132,022 respectively, leading to
a global system of equations of dimension 7896, 32,280, 130,880, and 527,128, respectively.

Two cases with different viscosity contrast are considered, namely 𝜈1 = 1 and 𝜈2 = 106 and 𝜈1 = 106 and 𝜈2 = 10−6.
The numerical solution with 𝜈1 = 1 and 𝜈2 = 106 computed with the symmetric gradient-based formulation on the finest
mesh is shown in Figure 7. This case exhibits a moderate jump in the pressure, with a maximum absolute value jump
of the pressure of approximately 4 outside the inclusion and a constant value of the pressure equals to zero inside the
circular inclusion.

The numerical solution with 𝜈1 = 106 and 𝜈2 = 10−6 computed with the symmetric gradient-based formulation on the
finest mesh is shown in Figure 8. This case exhibits a much larger jump in the pressure, six order of magnitude higher

F I G U R E 6 Four triangular meshes used for the SolVi test case. (A) Mesh 1, (B) Mesh 2, (C) Mesh 3, (D) Mesh 4.

F I G U R E 7 SolVi: numerical solution with 𝜈1 = 1 and 𝜈2 = 106 on the fourth mesh of Figure 6 using the symmetric gradient-based
FCFV formulation. (A) 𝜈1, (B) 𝜈2, (C) ||𝜈||, (D) p.
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16 SEVILLA and DURETZ

F I G U R E 8 SolVi: numerical solution with 𝜈1 = 106 and 𝜈2 = 10−6 on the fourth mesh of Figure 6 using the symmetric gradient-based
FCFV formulation. (A) 𝜈1, (B) 𝜈2, (C) ||𝜈||, (D) p.

than in the previous case, due to the much larger jump in the viscosity across the interface, of 12 orders of magnitude in
this example.

The results of the mesh convergence study are displayed in Table 4. As in the previous test case, optimal convergence
is observed for all the variables, for both high contrast values considered and for both FCFV formulations. The accuracy of
both FCFV formulations is comparable, with minor differences observed on the pressure and gradient tensor for the case
with lower viscosity contrast and on all the variables for the case with higher viscosity contrast. The results also show that
for higher viscosity contrasts the accuracy of the velocity decreases, whereas the FCFV methods considered offer higher
accuracy for the pressure field. This was also observed in the previous example.

To corroborate the conclusions of the previous example, a comparison of the computational cost of the two formula-
tions is also performed. Table 5 shows the wall clock, in seconds, required to solve the global system of equations for the
two FCFV methods. Similar to the previous example, the symmetric gradient-based formulation clearly shows the supe-
riority when compared to the gradient-based formulation. For the same number of degrees of freedom the accuracy is
slightly better and the wall clock is more than two orders of magnitude lower.

As in the previous example, a further experiment is performed to study the effect of the viscosity contrast on the
accuracy and convergence rate of the FCFV formulations considered here. Table 6 shows the error on the last mesh
and the rate of convergence for an increasing value of the viscosity contrast. The conclusions are slightly different when
compared to the previous example. Here, an increase in the viscosity contrast results in a less accurate computation of
the pressure and the gradient tensor, whereas the velocity error seems to be independent on the viscosity contrast. It is
worth noting that optimal rates of convergence are exhibited by both FCFV formulations for all the viscosity contrasts
considered.

Further computations, not reported here for brevity, show that the errors reported in Table 4 are almost identical if an
exact description of the interface is adopted, for instance using the NEFEM rationale.26 Given that the error is expected
to converge with (h), the geometric error is lower than the spatial discretization error. This shows that the different
behavior observed in both examples is not due to the curvature of the interface.

As in the previous example, the effect of the stabilization parameter is studied. Figure 9 shows the error of velocity,
pressure, gradient tensor and hybrid velocity as a function of the stabilization parameter, which is selected indepen-
dently in the two subdomains Ω1 and Ω2. This study considers the case with 𝜈1 = 1 and 𝜈2 = 106 and the gradient-based
FCFV. The results are qualitatively similar to the ones reported in the SolCx test with the same jump in viscosity.
However, there are some important differences. The errors on all variables show that a low value of the stabilization
parameter in the first subdomain offers the most accurate results, whereas almost no influence is observed by the
selected value of the stabilization in the second subdomain. A low value of the stabilization parameter does not destroy
the accuracy of the velocity field as it was observed in the previous test case. It is worth noting that, as in the pre-
vious example, the pressure is the variable that shows the larger variation of the error in terms of the stabilization
parameter.

The results for the same study applied to the symmetric gradient-based FCFV formulation are displayed in Figure 10.
Similar to the previous example, the error seems to be not influenced by the choice of the stabilization in the second
subdomain. However, in this case a low value of the stabilization parameter in the first subdomain seems to be not the
optimal choice. The results indicate that a value of 𝜏 = 10 in the first subdomain is required to obtain the maximum
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SEVILLA and DURETZ 17

T A B L E 4 SolVi: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence for the two FCFV
formulations and for different viscosity contrasts.

Gradient-based FCFV; 𝝂1 = 1 𝝂2 = 106

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0297 – 0.5524 – 0.1104 – 0.0301 –

2 0.0143 0.9 0.2880 0.8 0.0512 1.0 0.0144 0.9

3 0.0072 1.2 0.1534 1.1 0.0271 1.1 0.0072 1.2

4 0.0035 1.0 0.0779 1.0 0.0130 1.1 0.0035 1.0

Symmetric gradient-based FCFV; 𝝂1 = 1 𝝂2 = 106

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0297 – 0.5173 – 0.0810 – 0.0303 –

2 0.0144 0.9 0.2665 0.8 0.0360 1.0 0.0145 0.9

3 0.0072 1.2 0.1418 1.1 0.0202 1.0 0.0072 1.2

4 0.0035 1.0 0.0730 1.0 0.0108 0.9 0.0036 1.0

Gradient-based FCFV; 𝝂1 = 106 𝝂2 = 10−6

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0456 – 0.2333 – 0.1494 – 0.0458 –

2 0.0266 0.7 0.1011 1.1 0.0897 0.6 0.0267 0.7

3 0.0152 1.0 0.0534 1.1 0.0526 0.9 0.0153 1.0

4 0.0085 0.9 0.0301 0.8 0.0295 0.8 0.0085 0.9

Symmetric gradient-based FCFV; 𝝂1 = 106 𝝂2 = 10−6

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0385 – 0.2418 – 0.0936 – 0.0387 –

2 0.0220 0.7 0.1000 1.1 0.0550 0.7 0.0221 0.7

3 0.0120 1.0 0.0529 1.1 0.0317 0.9 0.0120 1.0

4 0.0064 0.9 0.0277 0.9 0.0173 0.9 0.0064 0.9

T A B L E 5 SolVi: Wall clock (in seconds) for the solution of the linear system. CPUg and CPUsg denote the wall clock for the
gradient-based and symmetric gradient-based formulations, respectively. The ratio is also reported.

Mesh CPUg CPUsg CPUg/CPUsg

1 0.26 0.04 6

1 6.07 0.27 22

1 117.18 1.37 86

1 5821.72 17.71 329

accuracy. Despite that the results suggest that a value of 𝜏 = 10 in the first subdomain might lead to better results, the
error on the pressure is again highly influenced by an increase in the stabilization, whereas the other variables only show
a minor improvement.

Finally the case with higher viscosity contrast is considered. Figure 11 shows the error of velocity, pressure, gradient
tensor and hybrid velocity as a function of the stabilization parameter, for the gradient-based FCFV. The results show that
the gradient tensor is the variable most affected by the choice of the stabilization parameter, specially the stabilization used
in the second subdomain. The other variables show that a value of the stabilization below 107 provides little differences
in the results.
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18 SEVILLA and DURETZ

T A B L E 6 SolVi: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence, computed on the finest
mesh, for the two FCFV formulations with 𝜈1 = 1 and an increasing value of 𝜈2.

Gradient-based FCFV

𝝂2 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

100 0.0030 1.0 0.0289 1.7 0.0035 1.6 0.0030 1.0

102 0.0035 1.0 0.0763 1.0 0.0129 1.1 0.0035 1.0

104 0.0035 1.0 0.0779 1.0 0.0130 1.1 0.0035 1.0

106 0.0035 1.0 0.0779 1.0 0.0130 1.1 0.0035 1.0

Symmetric gradient-based FCFV

𝝂2 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

100 0.0030 1.0 0.0398 1.4 0.0031 1.4 0.0030 1.0

102 0.0035 1.0 0.0718 1.0 0.0106 0.9 0.0036 1.0

104 0.0035 1.0 0.0730 1.0 0.0108 0.9 0.0036 1.0

106 0.0035 1.0 0.0730 1.0 0.0108 0.9 0.0036 1.0

F I G U R E 9 SolVi with 𝜈1 = 1 and 𝜈2 = 106: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale as a
function of the stabilization parameter for the gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

F I G U R E 10 SolVi with 𝜈1 = 1 and 𝜈2 = 106: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale as a
function of the stabilization parameter for the symmetric gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

The results for the same study applied to the symmetric gradient-based FCFV formulation are displayed in Figure 12.
The results confirm the higher dependency of the accuracy on the stabilization parameter, previously observed for this
FCFV formulation. A value of the stabilization parameter equal to 107 in the first subdomain is crucial to obtain accurate
results, whereas the results are less influenced by the choice of the stabilization in the second subdomain.

It is worth noting that the choice recommended in this work, given in Equation (38) provides the maximum
accuracy and the optimal rate of convergence in all the examples studied and for all the different viscosity contrasts
studied.
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SEVILLA and DURETZ 19

F I G U R E 11 SolVi with 𝜈1 = 106 and 𝜈2 = 10−6: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale
as a function of the stabilization parameter for the gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

F I G U R E 12 SolVi with 𝜈1 = 106 and 𝜈2 = 10−6: Error of the velocity, pressure, gradient tensor and hybrid velocity in logarithmic scale
as a function of the stabilization parameter for the symmetric gradient-based FCFV formulation. (A) 𝜈, (B) p, (C) L, (D) �̂�.

5.3 Manufactured 2D solution with nontrivial interface jump

The last example, taken from Wang and Khoo,7 considers the domain Ω = [0, 2] × [−0.5, 1, 5] and the viscosity given by

𝜈(x) =

{
𝜈1 if x2 ≤ 0.5,
𝜈2 if x2 > 0.5.

(43)

The analytical solution is given by

u = (1 − exp(𝜆) sin(2𝜋x2), 0) , p = 1
2

exp(2𝜆x1), (44)

where 𝜆 = 1
2𝜈
−
√

1
4𝜈2 + 4𝜋2.

As in previous examples, the pressure and the gradient tensor exhibit a discontinuity across the interface, but contrary
to the previous examples, the right hand side of the interface condition is nonzero, that is, h ≠ 0. Therefore, this test is
selected to show that ability of the proposed FCFV scheme to deal with problems in which surface tension is taken into
account.

Dirichlet boundary conditions are imposed in the whole boundary and the meshes considered for this example are the
same used in the SolCx test, but scaled and translated to the domain of interest, here [0, 2] × [−0.5, 1, 5], instead of [0, 1]2.

The numerical solution with 𝜈1 = 1 and 𝜈2 = 10−4, computed with the symmetric gradient-based FCFV formulation
on the finest mesh is shown in Figure 13. The different variation of the pressure field in the horizontal direction, due to
the different value of the viscosity, is clearly observed. For 𝜈 = 1, the pressure presents a sharp gradient near the left part
of the boundary, whereas for 𝜈 = 10−4 the variation is almost not noticeable. For x1 = 0 the pressure is continuous across
the interface, whereas the jump in pressure across the interface grows as x1 grows. For the velocity, the higher variations
are observed in the region with lower viscosity, whereas in the region with 𝜈 = 1, the velocity is almost constant. The
results also show that the maximum error in the second component of the velocity is observed in the region where the
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20 SEVILLA and DURETZ

F I G U R E 13 Manufactured 2D solution: numerical solution with 𝜈1 = 1 and 𝜈2 = 10−4 on the fourth mesh of Figure 6 using the
symmetric gradient-based FCFV formulation. (A) 𝜈1, (B) 𝜈2, (C) ||𝜈||, (D) p.

T A B L E 7 Manufactured 2D solution: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence for the
two FCFV formulations with 𝜈1 = 1 and 𝜈2 = 10−4.

Gradient-based FCFV

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0961 – 0.0346 – 0.2888 – 0.1010 –

2 0.0512 0.9 0.0183 0.9 0.1610 0.8 0.0550 0.9

3 0.0267 0.9 0.0093 1.0 0.0858 0.9 0.0290 0.9

4 0.0137 1.0 0.0047 1.0 0.0445 0.9 0.0150 1.0

Symmetric gradient-based FCFV

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.0924 – 0.0350 – 0.2632 – 0.0985 –

2 0.0489 0.9 0.0185 0.9 0.1429 0.9 0.0532 0.9

3 0.0253 0.9 0.0094 1.0 0.0750 0.9 0.0279 0.9

4 0.0129 1.0 0.0047 1.0 0.0385 1.0 0.0143 1.0

horizontal velocity presents a sizeable variation. It is worth remarking that the numerical approximation of the second
component of the velocity is purely numerical error as the analytical value is zero in this example.

The results of the mesh convergence study are displayed in Table 7. Both formulations, the gradient-based and the
symmetric gradient-based FCFV, show an optimal rate of convergence in all the variables. In addition, it can be observed
that both methods provide almost identical accuracy for the velocity and pressure whereas the stress based formulation
seems to offer some marginal extra accuracy on the gradient tensor. As mentioned earlier, when combined with the fact
that the symmetric gradient-based approach leads to a symmetric linear system of equations, indicates that the symmetric
gradient-based FCFV is the most efficient alternative.

5.4 Manufactured 3D solution with nontrivial interface jump

The last example, taken from Kirchhart et al.,27 considers a three dimensional problem in [−1, 1]3 and the viscosity
given by

𝜈(x) =

{
𝜈1 if r ≤ rI

𝜈2 if r > rI
, (45)

where r = ||x||2 and the interface is located at r = rI with rI = 2∕3. The analytical solution is given by

u = 𝛼(r) exp(−r2) (−x2, x1, 0) , p = x3
1 + 𝜆(r), (46)
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SEVILLA and DURETZ 21

F I G U R E 14 Four tetrahedral meshes used for the manufactured solution in three dimensions. (A) Mesh 1, (B) Mesh 2, (C) Mesh 3, (D)
Mesh 4.

F I G U R E 15 Manufactured 3D solution: numerical solution with 𝜈1 = 1 and 𝜈2 = 102 on the fourth mesh of Figure 14 using the
symmetric gradient-based FCFV formulation. (A) 𝜈1, (B) 𝜈2, (C) 𝜈3, (D) ||𝜈||, (E) p.

where

𝛼(r) ∶=

{
1∕𝜈1 if r ≤ rI

1∕𝜈2 + (1∕𝜈1 − 1∕𝜈2) exp(r2 − r2
I ) if r > rI

, 𝜆(r) ∶=

{
10 if r ≤ rI

0 if r > rI
. (47)

Dirichlet boundary conditions, corresponding to the analytical solution, are imposed in whole boundary of Ω.
As in the previous example, not only do the pressure and gradient tensor exhibit a discontinuity across the interface,

but also h ≠ 0.
Four tetrahedral meshes, shown in Figure 14, are considered to perform a convergence study. The number of elements

in the four meshes is 5025, 40,660, 326,589, and 2,626,862 respectively, leading to a global system of equations of dimension
34,005, 279,598, 2,265,387, and 18,304,694, respectively.

The numerical solution with 𝜈1 = 1 and 𝜈2 = 102, computed with the gradient-based FCFV formulation on the finest
mesh is shown in Figure 15. The continuity of the velocity field is clearly observed, with the first and second component
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22 SEVILLA and DURETZ

T A B L E 8 Manufactured 3D solution: Error of the velocity, pressure, gradient tensor and hybrid velocity and rate of convergence for the
symmetric gradient-based FCFV formulation with 𝜈1 = 1 and 𝜈2 = 102.

Mesh 𝝐u ru 𝝐p rp 𝝐L rL 𝝐û rû

1 0.1661 – 0.1557 – 2.9813 – 0.1928 –

2 0.1174 0.5 0.0188 2.9 2.1625 0.4 0.1300 0.5

3 0.0774 0.7 0.0055 2.1 1.4167 0.7 0.0831 0.8

4 0.0453 1.0 0.0029 1.1 0.8299 1.0 0.0480 1.0

exhibiting the main variation in the vertical and horizontal directions respectively. The third component mainly shows
the discretization error, as the exact solution is exactly zero. The norm of the velocity field, shows the dependency on the
radial position. Finally, the pressure shows the dependency on the horizontal direction only, which is different in the two
subdomains. To better appreciate the discontinuity of the pressure on the interface and the variation of the pressure in
the two subdomains, a nonlinear color scale is used for the pressure plot. Inside the sphere, the pressure varies between
9.7 and 10.3, whereas outside, the pressure varies between −1 and 1. It is worth noting that the values used to display the
solution on the interface are taken from the adjacent elements in the first subdomain, that is, inside the sphere.

The results of the mesh convergence study are displayed in Table 8. The optimal rate of convergence is observed in all
variables, confirming the correct implementation of the FCFV for three dimensional problems with nontrivial interface
jumps that account for surface tension.

6 PERSPECTIVES

The presented results demonstrate that the FCFV method may readily be used to simulate viscous flow with internal
viscosity discontinuities and surface tension. The occurrence of discontinuous viscosity interfaces is a common feature
in geodynamic models which involves lithological heterogeneities (e.g., layers, inclusions) characterized by large and
sharp effective viscosity jumps. Additionally, the effect of interfacial tension can be important for the simulation of flows
involving multiple phases (solid, liquid, gas) or microstructural processes (e.g., grain boundary migration). Geodynamic
modeling tools are often based on Cartesian representations which fail at precisely capturing interfaces21 and, more partic-
ularly, viscosity jumps. The resolution of viscosity discontinuities has been addressed by using either immersed interface
or ghost-fluid methods10 or boundary-fitted finite-element (FE) method.28 Nevertheless, due to LBB requirements, robust
FE solutions generally require high-order elements (e.g., Crouzeix–Raviart elements22,28). By providing robust Stokes flow
solution on conformal meshes while circumventing LBB requirements, the FCFV method could represent an attractive
low-order alternative to typical FE. By preserving the symmetry of the velocity block, the symmetric gradient-based FCFV
formulation render possible the use of efficient solving strategies based on Schur-complement reduction29 and Cholesky
factorizations.28 After carefully addressing the issue of discontinuous viscosity, the next development step of the FCFV
will be to address other prototypical geodynamic problems which should account for smooth and large spatial variations
of viscosity,29 free surface flow,30 material nonlinearities and compressibility.31

7 CONCLUDING REMARKS

A new FCFV method for the solution of Stokes problems with sharp interfaces have been presented. Two FCFV formula-
tions, based on two different strong forms of the Stokes problems and using different mixed variables, were presented. The
first formulation is based on the Stokes problem written in terms of the gradient tensor, whereas the second formulation
is based on the Stokes problem written in terms of the symmetric gradient tensor. In addition, a simple rewriting of the
interface condition was used to ensure that the symmetric gradient-based FCFV formulation led to a global symmetric
system of equations. The proposed approach, inherits a number of attractive properties from the hybridisable discontinu-
ous Galerkin method, including the ability to use the same approximation space for the velocity and the pressure, whilst
circumventing the LBB condition.

Four numerical examples were presented, including two and three dimensional examples, problems of interest to the
geodynamics community, problems with nontrivial interface jumps accounting for surface tension and viscosity contrasts
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SEVILLA and DURETZ 23

of up to 12 orders of magnitude. In all the examples considered, the two FCFV formulations showed the optimal rate
of convergence under mesh refinement. A comparison of both formulation in terms of accuracy was also presented,
showing that the accuracy of both methods was similar, with the error in pressure and gradient tensor being smaller for the
gradient-based formulation. Together with the fact that the symmetric gradient-based formulation leads to a symmetric
system of equations, results in this formulation being the preferred choice in this work. Numerical experiments were also
presented to show the suitability of the recommended stabilization parameter for the FCFV methods.
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