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Abstract
This work presents a novel approach capable of predicting an appropriate spacing function that can be used to generate a 
near-optimal mesh suitable for simulation. The main objective is to make use of the large number of simulations that are 
nowadays available, and to alleviate the time-consuming mesh generation stage by minimising human intervention. For a 
given simulation, a technique to produce a set of point sources that leads to a mesh capable of capturing all the features of 
the solution is proposed. In addition, a method to combine all sets of sources for the simulations available is devised. The 
global set of sources is used to train a neural network that, for some design parameters (e.g., flow conditions, geometry), 
predicts the characteristics of the sources. Numerical examples, in the context of three dimensional inviscid compressible 
flows, are considered to demonstrate the potential of the proposed approach. It is shown that accurate predictions of the 
required spacing function can be produced, even with reduced training datasets. In addition, the predicted near-optimal 
meshes are utilised to compute flow solutions, and the results show that the computed aerodynamic coefficients are within 
the required accuracy for the aerospace industry. An analysis is also presented to demonstrate that the proposed method lies 
in the category of green AI research, meaning that computational resources and time are substantially reduced with this 
approach, when compared to current practice in industry.

Keywords  Mesh generation · Spacing function · Machine learning · Near-optimal mesh prediction · Computational fluid 
dynamics

1  Introduction

Computational methods are increasingly used to comple-
ment experiments and analysis in many areas of science and 
engineering. The large majority of numerical methods used 
to simulate physical phenomena require the generation of 
a mesh that describes the geometry under consideration. 
The process of generating unstructured meshes of com-
plex geometries is still recognised as one of the bottlenecks 

of the computational fluid dynamics (CFD) simulation 
pipeline [1–3].

All mesh generation strategies require the specification 
of a spacing function that controls the size of the generated 
elements in the domain. The spacing function utilised must 
lead to a mesh that is only refined in the vicinity of regions 
that contain complex features that need to be resolved. Dif-
ferent approaches are usually considered to define the spac-
ing function, namely the use of a background structured or 
unstructured mesh [4], refinement based on boundary curva-
ture [5], the specification of the spacing at certain geometric 
entities and the use of point, line or triangular sources [5, 6]. 
Sources are usually preferred for complex geometric mod-
els in three dimensions due to the greater flexibility they 
offer. In addition, using sources can complement the use 
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of background meshes, the refinement based on boundary 
curvature and/or the refinement based on geometric entities. 
However, defining an appropriate set of sources for complex 
models is still time consuming and it requires a significant 
level of human intervention.

In recent years, mesh adaptive processes have gained 
popularity [7]. With these approaches, the user only needs 
to define an initial coarse mesh. An iterative and automatic 
process ensures that the mesh is successively refined, only 
where needed, to accurately capture the solution. Despite 
the potential of such approaches, it is known that an inad-
equate initial mesh may result in some unresolved features, 
even after many refinement loops. In addition, mesh adaptive 
algorithms have shown that a significant number of refine-
ment loops, between 20 and 30, might be required to reach 
the required accuracy [8]. It is worth noting that each loop 
requires a computation, estimating the error of the computed 
solution, generating an adapted mesh and the interpolation 
of the solution from the old to the new mesh.

The objective of this work is to develop a technique, 
based on neural networks (NNs), that enables the prediction 
of a near-optimal mesh suitable for simulation. The main 
idea is to make use of the vast volume of data, that already 
exists in industry, to optimise the selection of a suitable 
spacing function. The proposed approach aims at exploiting 
the knowledge embedded in previous simulations to inform 
the mesh generation stage. In addition, it has the potential to 
alleviate the recurrent problem of mesh generation being a 
major bottleneck in the CFD simulation pipeline. The tech-
nique presented can also be used to predict a mesh to be used 
in an adaptive process. In this scenario, it is anticipated that 
the number of refinement loops required would significantly 
decrease, when compared to a naive choice of the initial 
mesh.

The proposed strategy consists of four stages. First, a 
technique to produce a set of point sources from an exist-
ing solution is proposed. The use of point sources, contrary 
to other type of sources, is considered here to reduce the 
parameters associated with each source and to enable the 
possibility to group sources in a latter stage. For each avail-
able solution, a set of point sources that leads to a mesh 
capable of capturing all the solution features is created. 
The process is based on well established concepts of error 
estimation and a recovery process to compute the Hessian 
matrix of a key variable at the nodes of the given mesh. 
With this information, a novel process is presented to cre-
ate point sources that lead to a continuous spacing function 

that closely represent the discrete spacing function induced 
by the calculated spacing at the nodes. This step is repeated 
for all the solutions available, leading to different sets of 
point sources. To ensure that the data can be used to train a 
NN, an approach to combine the sources of each case into 
a global set of sources is proposed. The strategy ensures 
that the final set of sources can represent the spacing func-
tion for all the cases available. By using the global set of 
sources, a NN is devised. The inputs are the design param-
eters (e.g. flow conditions, geometric parameters) and the 
outputs are the characteristics of all the mesh sources (i.e., 
position of the sources, spacing and radius of influence). 
After the NN is trained, it can be used to predict the spacing 
function required for unseen cases and, ultimately, to predict 
a near-optimal mesh for a new simulation. To speed up the 
generation of the near-optimal meshes, a novel approach to 
merge point sources into line sources is also proposed. The 
approach is based on the total least-squares [9] and it ensures 
that, during the mesh generation stage, the number of que-
ries required to calculate the spacing at a point is reduced.

The starting point considered here is a set of accurate 
solutions that are available in an industrial environment. 
It is worth noting that the solutions might have been com-
puted in over-refined meshes with the objective to mini-
mise the human intervention required to create an optimal 
mesh. However, the approach could be easily extended to 
learn from existing optimal meshes if they are available, for 
instance when the computations use an adaptive approach 
to reach the required accuracy.

The methodology proposed in this paper is also assessed 
in terms of efficiency and the environmental implications. To 
this end, the carbon footprint and energy consumption of the 
computations required to perform a parametric CFD analysis 
of a wing for varying flow conditions and angle of attack is 
considered. The usual practice in industry consists of gen-
erating a fixed, very fine, mesh that is capable of capturing 
the flow features for all the configurations to be tested. This 
is usually done to minimise the required human intervention 
that is required to generate tailored meshes for each one of 
the cases of interest. With the approach proposed here, it is 
possible to obtain near-optimal meshes at a negligible cost, 
after a NN has been trained. However, in recent years there 
have been growing concerns about the lack of transparency 
when reporting the gains induced by the use of NNs [10]. 
This is due to the lack of data related to the cost of train-
ing and fine tuning the NNs that are subsequently used to 
perform accurate predictions. This work aims at reporting 
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the full cost of the proposed approach by accounting for the 
fine tuning of the NN and even the repetition of experiments 
usually performed to minimise the effect of the randomness 
introduced in the initialisation of the NN weights.

Despite the use of machine learning algorithms in 
the computational engineering field has increased expo-
nentially during the last years, the focus seems to be on 
learning to predict physical phenomena  [11–13]. The 
use of machine learning to assist the mesh generation 
has attracted much less attention, but related work can 
be found in the literature. Early attempts to use NNs to 
predict the mesh density can be found in the framework 
of magnetic device simulations [14–16]. More recently, 
in [17, 18] the authors propose the use of a NN to predict 
the spacing at a given location based on some geometric 
parameters, boundary conditions and parameters of the 
partial differential equation under consideration. Algo-
rithms based on NNs to assist mesh adaptive strategies 
have also been recently proposed [19–21] as well as the 
use of NNs to inform mesh adaptation in transient simula-
tions [22] and even the assessment of mesh quality [23].

The approach proposed here is, to the authors knowl-
edge, the first attempt to predict the mesh spacing function 
that is suitable for new simulations by using the flexibility 
of mesh sources. The potential of the proposed approach is 
demonstrated in the context of three dimensional inviscid 
compressible flows, but the strategy is general and does 
not rely on partial differential equations that describe the 
underlying physical phenomena. It is worth noting that 
the aim is to predict the mesh spacing and not the solution 
for two main reasons. First, the volume of data required 
to perform accurate predictions of three dimensional 
solutions of large scale problems could render such an 
approach unfeasible. Second, when utilising NNs to pre-
dict unseen cases, there is a level of uncertainty that is 
difficult to control. It is apparent that an error in the mesh 
spacing function is orders of magnitude more acceptable 
than errors in engineering quantities of interest. In fact, the 
near-optimal meshes predicted with the proposed approach 
can be further tuned using mesh adaptivity to ensure a reli-
able output to be used in engineering design.

The remainder of the paper is organised as follows. Sec-
tion 2 summarises the required concepts on mesh spacing 
and control and neural networks. The proposed strategy 
is described in detail in Sect. 3, including the algorithms 
proposed for each one of the stages involved in the pro-
cess. Numerical examples are presented in Sect. 4. The 

examples demonstrate the applicability and potential of the 
method in a CFD context, including problems with flow 
and geometric parameters. The predicted near-optimal 
meshes are assessed, not only by comparing the predicted 
spacing to the target spacing, but also by assessing the 
accuracy of the computed CFD solutions on the predicted 
meshes. Section 5 presents a detailed analysis of the effi-
ciency of the method presented when compared to the cur-
rent industrial practice and the environmental implications 
are discussed. Finally, Sect. 6 summarises the conclusions 
of the work that has been presented.

2 � Background

This Section introduces some fundamental concepts on 
mesh spacing and neural networks that are utilised when 
presenting the proposed strategy to predict near-optimal 
meshes.

2.1 � Mesh spacing and control

The ability of unstructured meshes to efficiently discretise 
complex geometric domains has made them the preferred 
choice in the aerospace industry for CFD simulations. In con-
trast to structured meshes, the efficiency arises from the ability 
of an unstructured mesh to locally refine regions of interest 
with minimal impact on the rest of the domain. Refinement 
techniques can be divided into, automatic based on mesh adap-
tivity, or manually controlled based on user expertise. Adap-
tive remeshing can be regarded as an automatic technique 
which can be used to concentrate elements in regions where 
the gradient of the solution is high. However, it is known that 
an inadequate initial mesh, despite many refinement loops, 
may result in some unresolved flow features.

Various techniques have been utilised to enable user-con-
trolled refinement and to allow engineers to generate ele-
ments with the desired size in a given region of the domain. 
These techniques include the use of a background mesh, the 
use of points, lines or triangular sources and the refinement 
based on boundary curvature [5].

The requirement of manually generating a coarse mesh 
that covers the domain of interest, has restricted the use of 
background meshes in three dimensions. However, they 
are frequently used to control the gradation of the spacing 
between the region of interest and the rest of the domain. In 
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this case, an unstructured mesh, made from a few tetrahedral 
elements, is manually created, and the desired spacing at the 
nodes of the mesh is defined. The spacing at any point in the 
domain is computed by using a linear interpolation of the 
nodal spacing values corresponding to the tetrahedron that 
contains the point.

Alternatively, sources provide flexible control of the local 
spacing desired at a given region. A point source defined, at 
a given location x , provides the required spacing �0 at that 
location. The region of influence of the source is defined by 
specifying a sphere of radius r, within which the spacing 
remains constant. To avoid a sudden increase of the spacing 
beyond the sphere of influence, an exponential increase of 
the spacing is defined by providing a second radius, R, at 
which the spacing doubles. Hence, the spacing at a distance 
d, from the source location x , is given by

The way a line source controls the local spacing is an exten-
sion of the point source. A line source is defined by connect-
ing two point sources. The location of the nearest point on 
the line, p̂ , to a given point in space, p , is first determined. 
Using the two points of the line source, a linear interpola-
tion is employed to determine the spacing and radii at p̂ . The 
location p̂ is used as a point source with the interpolated 
spacing and radii and to determine the required spacing at 
the point p̂ . The extension to triangular sources follows the 
same rationale.

When multiple mechanisms are utilised to control the size 
of the elements, the minimum value of the spacing obtained 
from all mechanisms will be utilised during the mesh gen-
eration stage.

2.2 � Artificial neural networks

Artificial neural networks (NNs) are an assortment of neu-
rons organised by layers. For the NNs considered in this 
work, each neuron is connected to all the neurons of the 
previous and subsequent layers. Each connection between 
the neurons has an associated weight, and each neuron has 
a bias. This particular case is referred to as a multi-layer per-
ceptron, which is a class of feed-forward NNs. The first and 
last layers of the network are called input and output layers, 
respectively. The remaining layers, called hidden layers are 

(1)𝛿(d) =

{
𝛿0 if d < r

𝛿0e
ln(2)

d−r

R−r otherwise
.

numbered l = 1,… ,Nl , with Nl being the number of hidden 
layers [24].

During the forward propagation, the value of a neuron in 
the layer l + 1 is computed by using the values associated 
with the neurons in the previous layer, l, the weights of the 
connections, and the bias from the previous layer, which is 
then modified by an activation function Fl . Mathematically, 
the value of the j-th neuron in the layer l + 1 , denoted by zl+1

j
 , 

is computed as

where bl
j
 is a bias that is introduced to enhance the approxi-

mation properties of the network, �l
ij
 denotes the weight of 

the connection between the i-th neuron of the layer l and the 
j-th neuron of the layer l + 1 and Nl

n
 is the number of neurons 

in the layer l. An illustration of a generic multi-layer percep-
tron NN is shown in Fig. 1.

For a single case with N inputs and M outputs, the NN 
has an input vector � = {x1, ..., xN}

T , and an output vector 
� = {y1, ..., yM}

T . As part of the training process, to deter-
mine how well a NN is performing in the prediction of the 
outputs, a cost function is used. The cost function used is 
constructed using the mean square error, that measures the 
discrepancy between the true outputs and the NN predic-
tions. The cost function for Ntr training cases is

(2)zl+1
j

= Fl+1
⎛⎜⎜⎝

Nl
n�

i=1

�l
ij
zl
i
+ bl

j

⎞⎟⎟⎠
,

(3)C(�) =
1

NtrM

Ntr∑
k=1

M∑
i=1

[yk
i
(xk) − hk

i
(�)]2,

Inputs Hidden Layers Outputs

Fig. 1   Schematic representation of a multi-layer perceptron NN
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where hk
i
(�) corresponds to the predicted output computed 

using the forward propagation.
The goal of the training stage is to minimise the cost 

function of Eq. (3), by optimising the weights and biases. 
The ADAM optimiser is employed in this work [25], which 
is considered computationally efficient and well suited for 
problems involving large data sets or a large number of 
parameters. The ADAM optimiser used to update a given 
weight at iteration r + 1 in given by

where

and

In the above expressions, the step size is taken as � = 10−3 , 
the exponential decays for the moment estimates are taken 
as �1 = 0.9 and �2 = 0.999 , and the regularisation is taken 
as � = 10−7.

The design of the NN considered in this work requires 
selecting an appropriate number of layers, number of neu-
rons per layer and the activation function. The selection of 
the number of layers and neurons is done by studying the 
performance of the network for different values of these 
hyperparameters. Examples of these studies will be pre-
sented in the numerical examples in Sect. 4.

Numerical experiments have been performed to analyse 
the influence of the activation function on the predict-
ing accuracy of the NN. The experiments showed that 
the sigmoid function produced more accurate results 
for reduced datasets, when compared to other classical 
activation functions. Therefore, the architecture selected 
involves the use of the sigmoid function for all hidden 
layers and a linear function for the output layer. These 
functions are given by

(4)�
l,r+1

i,j
= �

l,r

i,j
− �

m
l,r

i,j√
v
l,r

i,j
+ �

,

(5)m
l,r+1

i,j
=

�1(1 − �r−1
1

)

1 − �r
1

m
l,r

i,j
−

1 − �1

1 − �r
1

�C

��
l,r

i,j

(6)v
l,r+1

i,j
=

�2(1 − �r−1
2

)

1 − �r
2

v
l,r

i,j
−

1 − �2

1 − �r
2

(
�C

��
l,r

i,j

)2

.

respectively.

3 � Construction of near‑optimal meshes

To obtain an optimum engineering design, numerous geo-
metric configurations must be analysed through the range 
of operating conditions. Reducing the time to generate a 
solution with the required accuracy enables more con-
figurations to be evaluated. In addition, often, multiple 
meshes are required to ensure that the asymptotic conver-
gence has been reached. This process has to be repeated 
for every configuration and for every operating condition. 
Alternatively, a fine mesh that is capable of capturing the 
features for a range of operating conditions can be used. 
The first process could either be automated, by using 
mesh adaptivity, or manually controlled, by enhancing 
and updating the parameters of the used mesh control 
technique.

This work proposes to use historic data, accumulated 
from analysis carried out during previous designs, to pre-
dict an appropriate starting mesh that can be considered 
as a near-optimal for a given geometric configuration 
and/or operating conditions. It is assumed that solutions 
satisfying the desired accuracy, for a range of geometric 
configurations and operating conditions, are available. 
These solutions could have been achieved utilising differ-
ent modelling techniques, such as structured, unstructured 
or hybrid methods.

The proposed concept to generate a near-optimal mesh 
can be summarised in the following four stages: 

1.	 For every solution, obtained from a given set of design 
parameters, create a set of point sources that can gener-
ate a mesh to capture the given solution.

2.	 Combine the individual sets of sources into a global set 
that is customised to generate the available mesh for all 
given cases.

3.	 Train a NN to predict the characteristics of the global set 
of sources for a new, unseen, set of input parameters.

(7)S(x) =
1

1 + e−x
and L(x) = x,
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4.	 Reduce the predicted global sources and combine point 
sources into line sources prior to generating the near-
optimal mesh.

These four stages are described in detail in the remainder 
of this Section.

3.1 � Generating point sources from a given solution

The process of creating a set of sources that leads to a mesh 
capable of capturing a given solution, requires the compu-
tation of the suitable element size at every point in space. 
Here, the element spacing is related to the derivatives of the 
solution using the Hessian matrix, a principle that is com-
monly used in error analysis, such as

where � is an arbitrary unit vector, �� is the spacing along the 
direction of � , Hij are the components of the Hessian matrix 
of a selected key variable � , namely

and K is a user-defined constant.
The derivatives of the key variable, � , are computed, at 

each node of the current mesh, by using a recovery process, 
based upon a variational residual statement [26, 27]. Next, 
the optimal value of the spacing at a node is taken to be

where �i , for i = 1,… , n , are the eigenvalues of the Hessian 
matrix, �.

The spatial distribution of the mesh parameters is 
uniquely defined when a value for the user-defined constant 
K is specified. For smooth regions of the flow, this constant 
reflects the value of the root mean square error in the key 
variable that can be accepted.

In the current implementation, two threshold values for 
the computed spacing are used: a minimum spacing �min and 
a maximum spacing �max , so that

The reason for defining the maximum value, �max , is to 
account for the possibility of a vanishing eigenvalue in 
Eq. (10). The value of �max is chosen as the spacing to be 

(8)�2
�

(
N∑

i,j=1

Hij�i�j

)
= K,

(9)Hij =
�2�

�xi�xj
,

(10)�i = min
i=1,…,n

{√
K

�i

}
,

(11)�min ≤ �i ≤ �max, for i = 1,… ,N.

used in the regions where the solution is smooth. On the 
other hand, maximum values of the second derivatives 
occur near regions with steep gradients, where the gradi-
ent demands that smaller elements are used. By imposing 
a minimum value for the mesh size, �min , an excessive con-
centration of elements near regions with steep gradients is 
avoided.

To enable the use of data that was generated using dif-
ferent numerical techniques, a method which ensures the 
uniformity of the training data has to be devised. Since the 
underlying meshes that were used for generating the data 
can be different and are often very large, the use of sources 
to specify the mesh requirement to capture the given solu-
tions is proposed.

The main idea is, for a given mesh, to group points that 
have similar required spacing, calculated using Eq. (10), 
to form a point source that is located at the centre of the 
grouped points with a radius that extend from the centre 
to the furthest point in the group. This process reduces the 
quantity of information needed to describe an optimal mesh 
by up to two orders of magnitude, without sacrificing the 
quality of the information which describes the required 
mesh.

It is worth noting that the process will reflect the level of 
fidelity provided by the given solutions. Hence, the process 
can be used both, at the initial investigation stage, when the 
meshes are not highly refined, and at the data acquisition 
stage, when the solutions are provided on a highly refined 
mesh or on an adapted mesh.

Algorithm 1 describes the devised technique to convert a 
given solution to a set of point sources.

(a) One surrounding layer (b) Two surrounding layers

Fig. 2   Detail of a triangular mesh illustrating the concept of sur-
rounding layers. The central node is denoted by a blue star. The nodes 
with similar spacing are denoted with a green circle, whereas nodes 
with a dissimilar spacing are denoted with a red triangle. The sce-
nario in a shows one surrounding layer of nodes with similar spacing 
to the central node, whereas the scenario in b shows two surrounding 
layers
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Algorithm 1 Process for creating point sources
Input: A mesh M with N nodes and a vector δ of dimension N , where

the component δI contains the spacing at node I calculated using the equidis-
tribution principle, as given by Equation (10). The set of nodes is denoted by
N = {1, . . . , N} and the coordinates of the I-th node are denoted by xI

1: Construct a vector l of dimension N , where the component lI contains
the number of surrounding layers of nodes with a spacing δJ such that
δJ/δI < γ, with γ being a user-specified ratio;

2: Initialise the set of unused nodes: U ← N ;
3: Initialise the set of sources: S ← ∅;
4: while |U| > 0 do
5: Find J ∈ U such that δJ < δK and lJ > lK , ∀K ∈ U ;
6: Initialise a new point source: λ ← {xJ , δJ , r = δJ , R = 2r};
7: Create a list: L ← {J};
8: Mark the vertex J as used: U ← U \ {J};
9: NL ← 0;

10: while NL �= |L| do
11: NL ← |L|;
12: Create a list: L̃ ← {K ∈ N | K is connected to a node in L};
13: if δK/δJ < γ, ∀K ∈ L̃ then
14: L ← L ∪ L̃;
15: U ← U \ L̃;

16: Modify source: λ ←
{
∑

S∈L
xS/|L|, δJ , r = max

S∈L
{‖xL − xS‖2}, R = 2r

}
;

17: else if ∃K ∈ L̃ | δK/δJ < 2 then
18: for K ← 1 to |L̃| do
19: if δK/δJ < γ then
20: L ← L ∪ {K}
21: U ← U \ {K}
22: Modify source: λ ← {xJ , δJ , r = ‖xI − xK‖2, R = 2r};
23: else if δK/δJ < 2 then
24: L ← L ∪ {K};
25: U ← U \ {K}
26: end if
27: end for
28: end if
29: end while
30: S ← S ∪ {λ};
31: end while

The process starts from the computed spacing required 
at every point of the mesh to capture a given solution. 
To ensure optimum grouping of points that have similar 
required spacing, the number of surrounding layers of 
nodes with spacing similar to the node under considera-
tion is computed. Figure 2 illustrates the concept of sur-
rounding layers.

The process ensures that the spacing required at every 
node of the given mesh is covered by a minimum of one 

point source. In the current implementation, it is assumed 
that the radius R, where the spacing doubles, is twice the 
radius r where the spacing is constant and equal to the 
spacing of the grouped points. It is also assumed that dif-
ferent spacings are similar, if they are lower than 5% of the 
spacing at the node under consideration. The creation of 
a point source is terminated if the spacing at a surround-
ing layer is larger than the spacing at the radius R of the 
point source.
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3.2 � Generating global sources from sets of local 
sources

The process described above does not guarantee that the 
number of sources to capture the required meshes is the 
same, for different sets of input parameters. In addition, 
despite the fact that two sets of sources would contain 
sources in close proximity, their position in the list of 
sources can be, in general, very different. The former will 
make the use of NNs unfeasible, whereas the later will 
impose significant difficulties when finding a correlation 
between inputs and outputs. To solve these two issues, a 
process to create one set of global sources that can be used 
for all sets of input parameters is devised.

The basic idea is to create one set of global sources 
which can be used to map the index of each source in a 

local set to an index of a source in the global set. The map-
ping is based on the minimum distance between the global 
and local sources and it is defined as

where Li = {(j, i) | j ∈ {1,… , |Si|}} denotes the indices 
of local sources in Si , the indices of all local sources is 
L = L1 ∪… ∪ LC and the indices of the global sources is 
G = {1,… , |G|} , where G is the list of global sources.

Algorithm 2 describes the developed process to com-
bine the sets of local sources into one set of global sources. 
The set of global sources are further tuned for each input 
set of parameters to produce the required mesh to capture 
the given solution.

(12)

F ∶ L ⟶ G

(j, i) ⟼ F(j, i) ∶=

{
k if ∃k ∈ G |�j,i = Λk

0 otherwise
,

Fig. 3   Illustration of the process described in Algorithms 1 and 2 to obtain the point sources for a set of training cases and the construction of 
the global set of sources
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The process starts with an empty list of global sources 
and considers one case at a time. As the sources of the first 
available case are unique, they are added to the list of global 
sources with a one to one mapping. Any newly added source 
to the global list is inserted in an ADT data structure. The 
ADT is then be utilised to identify sources from the global 

Algorithm 2 Process for creating global sources
Input: Set of lists of point sources S = {S1, . . . ,SC}, where Si is the list of

sources for the i-th case and C is the total number of cases. The j-th source of
the i-th case is denoted by λj,i and the sphere associated to a point source, with
centre xj,i and radius rj,i, is denoted by Bj,i = {x ∈ R3 | ‖x− xj,i‖2 ≤ rj,i};
1: Insert the sources of all cases, S, in an alternating digital tree (ADT);
2: Initialise the list of global sources: G ← S1. Global sources are denoted

by Λl, for l = 1, . . . , |G| and the sphere associated to a global source with
centre xl and radius rl, is denoted by Bl = {x ∈ R3 | ‖x− xl‖2 ≤ rl};

3: Associate sources in S1 with corresponding global sources in G by using
the mapping given by Equation (12);

4: for i ← 2 to C do
5: for j ← 1 to |Si| do
6: Search the ADT to create a list of sources: L ← {λr,s ∈ S | Br,s ∩

Bj,i �= ∅};
7: for all λr,s ∈ L do
8: if F (r, s) �= 0 and ‖xj,i − xr,s‖2 ≤ min{rj,i, rr,s} then
9: Find λu,v such that ‖xu,v − xj,i‖2 ≤ min

λa,b∈L
{‖xa,b − xj,i‖2};

10: end if
11: end for
12: if ∃ λu,v then
13: Associate λj,i with the global source ΛF (u,v);
14: else
15: G ← G ∪ {λj,i};
16: Associate λj,i with the global source Λ|G|;
17: end if
18: end for
19: end for
20: for i ← 1 to C do
21: Initialise the list of combined sources: Ci ← ∅;
22: for k ← 1 to |G| do
23: if ∃j | F(j, i) = k then
24: λ� ← λj,i;
25: else
26: A ← {(r, s) | F(r, s) = k};

27: λ� ←





∑

(r,s)∈A

xr,s/‖A‖, δ� = min
l∈Si

{δl(x�)}, r = δ�, R = 2r




;

28: end if
29: Ci ← Ci ∪ {λ�}
30: end for
31: end for

list that are in close proximity to the remaining local sources. 
If no source from the global list is close to a local source, 
the local source is added to the list of global sources and the 
mapping is updated. If a global source is found to be in close 
proximity of a local source, the local source index is mapped 
to the global source index. When all cases are considered, 
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the global set of sources are customised for each set of input 
parameters. For each case, if a local source has been mapped 
to a global source, the local source characteristics are used 
unchanged. For any global source that has no corresponding 
local source, the characteristics are calculated to ensure that 
the spacing produced is compatible with the spacing that 
would be produced by the local source.

Figure 3 illustrates the two algorithms described above 
using a two dimensional example with two design varia-
bles, namely the free-stream Mach number and the angle 
of attack.For each training case, the pressure field is used 
to obtain a set of point sources. The point sources in Fig. 3 
are represented by circles, coloured using the spacing value 
and with a radius proportional to the radius of influence of 
each source. The illustration, made with real data from a two 
dimensional example, shows that point sources with small 
spacing are created in the regions where the solution shows 
a high pressure gradient.

Once the point sources for all cases are constructed, the 
sets of global sources are created for each case using Algo-
rithm 1. This process ensures that the number of global 
sources is the same in all cases, and therefore the data can 
be used to train a NN.

3.3 � Construction of NN for predicting 
the characteristics of the sources

The creation of a set of global sources, with the same num-
ber of characteristics for all cases, enables the use of NNs to 
predict these characteristics for unseen cases. In this work, 
the objective is to predict the location, spacing and the radius 
within which the spacing remains constant. Generally, the 
values of the spacing and the radius varies by more than two 

orders of magnitude. To ensure a consistent training of the 
NN, without a bias towards larger values, the logarithm of 
the spacing and the radius is used. This scaling also prevents 
the NN predicting unrealistic negative values for these two 
outputs.

As stated in Sect. 2.2, the NN has an input input vector 
� = {x1, ..., xN}

T , and an output vector � = {y1, ..., yM}
T . In 

the numerical examples considered in this work, the number 
of inputs, N, is related the flow conditions and/or geometric 
parameters, whereas the number of outputs M are the source 
characteristics (i.e., position, spacing and radius r). When 
Ntr training cases are considered, the input is an array of size 
N × Ntr and the output is an array of size M × Nsrc × Ntr , 
where Nsrc is the number of global sources.

Different models can be used to train and predict the 
characteristics of the global sources. The obvious choice 
is to train one NN to predict all the source characteristics. 
However, this work will also investigate the use of different 
NNs to train source characteristics of different nature. For 
instance, one NN can be trained to predict the position of the 
sources, another NN to predict the spacing and another NN 
to predict the radius. Another alternative would be to train 
Nsrc NNs, each one trained to predict the characteristics of 
a single source.

In terms of the implementation, TensorFlow 2.7.0 [28] 
was used to construct the NNs considered in this work. To 
ensure that the NN prediction capability is not heavily influ-
enced by the initial choice of the NN weights, the training 
is performed five times for each experiment considered by 
varying the seed values of the optimisation process. For 
each training, a maximum of 500 epochs is considered and 
the training is stopped when either the maximum number 
of epochs is reached or no improvement in the objective 

Fig. 4   Illustration of prediction stage using the trained NN and the process described in Algorithms 3 to reduce the set of sources before generat-
ing and mesh that can finally be used to compute a solution
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function is observed during 50 consecutive epochs. It is 
worth noting that the batch size used in all the examples 
considered is eight, which for the examples presented here 
produced a better performance than the default value of 32 
in TensorFlow.

To measure the accuracy of the NN predictions, the clas-
sical statistical R 2 measure [29] is considered for all the test 
cases. To better illustrate the difficulty on predicting the dif-
ferent characteristics of mesh sources, the R 2 measure is 
reported for the five characteristics independently (x, y and 
z position of the source, spacing and radius).

3.4 � Reducing the global set of sources

After the training stage, a NN is used to predict the char-
acteristics of the global set of sources for unseen cases. 
Although it is possible to use the global set of sources 
to generate a predicted mesh, removing from the list of 
global sources entries that are redundant, has the potential 
to speed up the generation process considerably. This is 
because, during the mesh generation process, it is neces-
sary to compute the spacing induced by each source at a 
point to take the minimum of all the spacings.

Sources with an associated spacing function adequately 
described by other sources are classed as surplus. Algo-
rithm 3 describes the process devised to remove surplus 
sources.

Algorithm 3 Process for removing inactive point sources
Input: List of global point sources G = {Λ1, . . . ,Λ|G|};

1: Create a vector, d, of dimension |G|, where the i-th component is di such
that δ(x) = δ̃, ∀x ∈ ∂Bdi,xi

, with δ̃ being the background spacing and
Bd,x0 = {x ∈ R3 | ‖x− x0‖2 ≤ d};

2: Insert the sources in an ADT;
3: Mark all sources as active: A ← G
4: for i ← 1 to |G| do
5: Search the ADT to create a list of sources: L ← {Λk ∈ G | Bk∩Bi �= ∅};
6: for j ← 1 to |L| do
7: if Λj ∈ A then
8: if δi < δj and ‖xi − xj‖2 < ri − rj then
9: A ← A \ {Λj};

10: else if δi > δj and ‖xi − xj‖2 < rj − ri then
11: A ← A \ {Λi};
12: break;
13: end if
14: end if
15: end for
16: end for
17: Initialise the list of visited sources: V ← ∅;
18: Initialise the list of reduced sources: R ← ∅;
19: while |V| < |A| do
20: Find Λk ∈ A such that δk = min

Λj∈A
{δj} and rk = max

Λj∈A
{rj};

21: Define a Cartesian grid of H := [xk−Rk, xk+Rk]× [yk−Rk, yk+Rk]×
[zk − Rk, zk + Rk] with 
2Rk/δk	 equally-spaced points in each direction
and define the sampling points in the grid as pr,s,t

22: if ∃pr,s,t | δk(pr,s,t) < min
Λj∈R

{δj(pr,s,t)} then

23: R ← R∪ {Λk}
24: end if
25: V ← V ∪ {Λk}; ;
26: end while



	 Engineering with Computers

1 3

The algorithm starts by determining the maximum 
region of influence of each source, i.e. the region where 
the computed spacing from the source reaches the maxi-
mum allowable spacing. All sources are inserted into an 
ADT data structure to speed up the search process. For 
each source in the global list, the ADT is searched to 
identify sources that have an overlapping sphere with 
the source under consideration. The source with a larger 
spacing is removed if its associated sphere is inside the 
associated sphere of the source with smaller spacing.

A further check is conducted to determine if the 
region of influence of a source can be covered by mul-
tiple regions of influence of other sources. This is per-
formed in a discrete fashion, by using the spacing of the 
source to divide the region of influence of the source 

under consideration into a uniform local grid. The spac-
ing at each point of the local grid is evaluated using the 
sources that have been already added to the list of reduced 
sources. If the evaluated spacing at any point of the local 
grid has a larger spacing that the spacing from the source 
under consideration, the source is added to the list of 
reduced sources.

Figure 4 illustrates the on-line stage of the proposed 
approach.After the NN is trained, for a new set of design 
parameters (flow conditions in this two dimensional exam-
ple), the NN is used to predict the characteristics of the 
global sources. Using Algorithm 3, the sources are reduced. 
This process ensures that the mesh generation stage does 
not require a very large number of queries to compute the 
spacing at a point. For the examples considered in this work, 
Algorithm 3 produces a reduction of around 60% in the num-
ber of point sources.

Once the mesh is obtained, the standard CFD calculation 
is performed. The illustrative example of Fig. 4 shows the 
computed pressure field, which exhibits all the expected flow 
features for this transonic case.

In an attempt to produce a smooth spacing function, line 
sources are created using a group of point sources. Algo-
rithm 4 describes the process that is proposed for the crea-
tion of line sources from grouped point sources.An iterative 

Fig. 5   Pressure coefficient, Cp , 
for three different flow condi-
tions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 6   Data sets for training (blue circles) and testing (red crosses) for 
the example with varying flow conditions

Table 1   Three models used for training NNs able to predict the char-
acteristics of the sources

Model NN architecture

1 NN
1
 (x, y, z, �

0
 , r)

2 NN
1
 (x, y, z) NN

2
 ( �

0
) NN

3
 (r)

3 NN
1
 (x) NN

2
 (y) NN

3
 (z) NN

4
 ( �

0
) NN

5
 (r)
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Fig. 7   r2 for the five source characteristics as a function of the number of layers and number of neurons in each layer for model 2 and for the 
example with varying flow conditions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 8   The regression plots for the spacing, �
0
 , for three flow conditions corresponding to a subsonic and two transonic cases
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process is used to identify sources that have similar spac-
ing and their associated sphere intersects with the associ-
ated sphere of a source that has already been added to the 
group. Orthogonal regression is then used to fit a plane to 
the grouped point sources. The distance of each point source 
to the plane is calculated, and the points with a distance 
greater than their radius of influence are removed from the 
group. The process of finding a best fit plane continues until 
all points in the group are within the allowable distance. 
The coordinates of the remaining point sources are projected 
onto the best fit plane and used to compute the best fit line 
using orthogonal regression. The process of removing points 
from the group that do not satisfy the allowable distance 
criteria will also be applied to the projected points. The fur-
thest two points remaining in the group will be used to form 
a line source.

Fig. 9   R2 histogram for all test cases for the example with varying 
flow conditions

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(a) Model 1

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(b) Model 2

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(c) Model 3

Fig. 10   Minimum R 2 for the five mesh characteristics as a function of the number of training cases for the three models of Table 1

(a) Target

(b) Model 1 (c) Model 2 (d) Model 3

Fig. 11   Target mesh and predicted meshes using the three models of Table 1 for M∞ = 0.79 and � = 5.39◦
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Algorithm 4 Process for merging point sources into line sources
Input: List of point sources: L = {Λ1, . . . ,Λ|L|};

1: Initialise the set of unused sources: U ← L;
2: while U �= ∅ do
3: Initialise the list of connected point sources: C ← ∅;
4: Find Λk ∈ U such that δk = min

Λj∈L
{δj};

5: Create the list of sources to be added: A ← {Λk};
6: Add sources to the list: C ← C ∪ A;
7: Mark sources as used: U ← U \ A;
8: NC ← 0;
9: while NC �= |C| do

10: NC ← |C|;
11: Ã ← ∅
12: for j ← 1 to |A| do
13: for i ← 1 to |L| do
14: if Λi ∈ U and max{δi, δk}/min{δi, δk} < γ and ‖xi −

xj‖2 < ri + rj then
15: Ã ← Ã ∪ {Λi};
16: end if
17: end for
18: end for
19: A ← Ã;
20: C ← C ∪ A;
21: U ← U \ A;
22: end while
23: NC ← 0;
24: while NC �= |C| do
25: NC ← ‖C‖;
26: X ← {xi}i=1,...,|C|;
27: Compute the plane P that fits the set of points X using orthogonal

regression, as described in Appendix A.1;
28: for i = 1 to |C| do
29: Compute the distance to the plane: di,P := min

x∈P

{‖x− xi‖2};
30: if di,P > ri then
31: C ← C \ {Λi};
32: U ← U ∪ {Λi};
33: end if
34: end for
35: end while
36: NC ← 0
37: while NC �= |C| do
38: NC ← |C|;
39: X ← {xi}i=1,...,|C|;
40: Compute the line L that fits the set of points X using orthogonal

regression, as described in Appendix A.2;

41: for i = 1 to |C| do
42: Compute the distance to the plane: di,L := min

x∈L

{‖x− xi‖2};
43: if di,L > ri then
44: C ← C \ {Λi};
45: U ← U ∪ {Λi};
46: end if
47: end for
48: end while
49: Find xi and xj such that ‖xi − xj‖2 = max

Λk,Λl∈C
‖xk − xl‖2;

50: Build a line source using the point sources Λi and Λj ;
51: end while
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Fig. 12   Histogram of the ratio between the predicted and target spacing for the three models of Table 1

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

(d) M∞ = 0.41, α = 8.90◦ (e) M∞ = 0.79, α = 5.39◦ (f) M∞ = 0.80, α = 8.19◦

Fig. 13   Target (top row) and predicted (bottom row) meshes using model 2 for three flow conditions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 14   Pressure coefficient, Cp , for three different flow conditions, computed using the predicted near-optimal meshes of Fig. 13
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4 � Numerical examples

This Section presents three numerical examples of increas-
ing difficulty to test the potential and applicability of the 
proposed technique. The examples involve the prediction 
of meshes for three dimensional CFD simulations involv-
ing inflow conditions and geometric parameters. One of the 
challenges of the examples used is that the variation of the 
input parameters induce different flow patterns that include 
subsonic and transonic cases with different shock structures 
and strength. Therefore, being able to predict the near-opti-
mal mesh for unseen cases is not an easy task.

4.1 � Near‑optimal mesh predictions on the ONERA 
M6 wing at various inflow conditions

The first example considers the prediction of near-optimal 
meshes over a fixed geometry, with variable flow condi-
tions. The objective is to study the potential of the proposed 
approach to accurately predict the sources that can be used 
to generate near-optimal meshes for unseen flow conditions. 
Numerical experiments are used to study the influence of the 
hyperparameters and the size of the training set.

The geometry used in this example is the ONERA M6 
wing [30] and the inviscid compressible flow conditions are 
described by two parameters, namely the free-stream Mach 
number, M∞ , and the angle of attack, � . It is worth noting 
that the range used for the parameters, M∞ ∈ [0.3, 0.9] and 
� ∈ [0◦, 12◦] leads to subsonic and transonic flows. This 

means that the required meshes vary substantially with 
respect to the flow conditions.

To illustrate the variation in the solution induced by the 
parameters, Fig. 5 shows the pressure coefficient, Cp , for 
three different combinations of the input parameters.For the 
first set of input parameters, M∞ = 0.41 and � = 8.90◦ , the 
flow is subsonic and the mesh should be refined near the 
leading and trailing edges to capture the high variation of 
the pressure on these regions. For the second set of inputs, 
M∞ = 0.79 and � = 5.39◦ , the typical �-shock can be clearly 
observed. Refinement near the discontinuity of the pressure 
is therefore necessary to capture such abrupt changes in the 
pressure field. Finally, for the last set of inputs, M∞ = 0.80 
and � = 8.19◦ , the �-shock is also clearly visible, but at a dif-
ferent position and with a different strength when compared 
to the second case. The simulations were performed using 
the in-house flow solver FLITE [31] with unstructured tetra-
hedral meshes consisting of approximately 1.3 M elements 
and 230K nodes. The surface mesh is made of approximately 
20K triangular elements.

For training, a set with Ntr = 160 cases is considered 
and a set with Ntst = 100 cases is considered for testing. 
To minimise the undesired use of the trained NNs for 
extrapolation, the training set is generated in the region of 
interest, namely (M∞, �) ∈ [0.3, 0.9] × [0◦, 12◦] , whereas 
the test set is generated using a reduced space, namely 
(M∞, �) ∈ [0.33, 0.81] × [1.0◦, 11.0◦] . Both the training and 
testing datasets are displayed in Fig. 6.

Table 2   Comparison of the 
aerodynamic coefficients 
computed with the target and 
predicted meshes for three flow 
conditions

M∞ = 0.41, � = 8.90◦ M∞ = 0.79, � = 5.39◦ M∞ = 0.80, � = 8.19◦

Target Prediction Target Prediction Target Prediction

C
L

0.605 0.603 0.469 0.468 0.722 0.723
C
D

0.0342 0.0340 0.0289 0.0287 0.0828 0.0828

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted
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Fig. 15   Comparison of the pressure coefficient, Cp , for three different flow conditions, at one section
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To produce sampling points that offer good coverage of 
the parametric space, the training and testing datasets are 
generated using scrambled Halton sequencing. The Halton 
sequence is a sequence of points commonly used in numeri-
cal analysis and Monte Carlo simulations because it is deter-
ministic and the points generated have low discrepancy [32]. 
The scrambled Halton sequence is a modification of the 

original Halton sequence to improve performance in higher 
dimensions [33, 34].

It should be noted that when utilising data generated by 
industry over the years, the training set will most likely not 
correspond to a Hatlton sequencing. It would be expected 
that the cases available have been decided by an expert engi-
neer and, therefore, would be specifically selected to cap-
ture sensitive areas of the flight envelope that undergo large 
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Fig. 16   Histograms of the sampling data used for the training and test sets of the variable wing geometry

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

Fig. 17   Pressure coefficient, Cp , for three different geometric configurations. For each case the first NACA corresponds to the root of the wing 
and the second NACA corresponds to the tip
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changes in flow features. Such bias in parameter selection 
is expected to improve the accuracy of the NNs. As such, 
the random approach of the Halton sequencing taken in this 
paper is a more conservative approach that requires more 
training data.

The number of sources generated from the solutions of 
the training and test datasets, computed using Algorithm 1, 
varied between 2142 and 5593. The global set of sources 
that resulted from the combination of sources described 
in Algorithm 2 and used for training the NNs consisted of 
19,345 sources.

Three different models could be used for predicting the 
characteristics of the sources. All the models use the same 
two inputs, but differ by the number of NNs required and the 
number of predicted outputs for each NN. The first model 
predicts the five characteristics of all the sources using a 
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Fig. 18   Minimum R 2 for the five mesh characteristics as a function of 
the number of training cases for the example with varying geometry

Fig. 19   Histogram of the ratio between the predicted and target spacing for the example with varying geometry

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

(d) NACA0010–NACA1115 (e) NACA4109–NACA6306 (f) NACA0012–NACA0007

Fig. 20   Target (top row) and predicted (bottom row) meshes for three geometric configurations
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single NN. The second model trains the location (three coor-
dinates) of all the sources using one NN, whereas the spac-
ing and radius are trained using two more NNs. The third 
model trains each characteristic of all the sources separately, 
requiring the training of five NNs. The three models under 
consideration are summarised in Table 1.

Three further models could be considered, where the 
training of each source is performed independently. For 
instance, Nsrc NNs could be trained to predict the five char-
acteristics of each source. Similarly, three NNs could be 
trained per source or even five NNs per source. These three 
models are not considered in the current work because they 
become impractical for realistic problems involving a large 
number of sources. Not only the training requires the con-
struction of thousands of NNs, but also the prediction stage 
requires loading the weights of thousands of NNs to com-
pute the required spacing.

To compare the three models described in Table  1, 
first the hyperparameters of each NN are tuned. Figure 7 
shows the variation of the R 2 as a function of the number of 

layers and the number of neurons in each layer when using 
NTr = 160 training cases.It is worth noting that a different 
colour scale is used for the coordinates and the remaining 
two characteristics, i.e. spacing and radius. The results show 
that it is substantially more difficult to predict the spacing 
and radius, compared to the coordinates of the source. In 
addition, the accuracy of the predicted coordinates is almost 
insensitive to the NN architecture, whereas the spacing and 
radius benefit from using a particular choice of hyperparam-
eters. The most suitable architecture for this example would 
be a NN with three hidden layers and 25 neurons per layer. 
This will provide the best possible accuracy for all the char-
acteristics whilst minimising the size of the NN.

Figure 8 shows the regression plot for the spacing, for 
three flow conditions that correspond to a subsonic and two 
transonic cases.It is worth noting that the R 2 value for all 
cases is above 90, despite the substantial difference in flow 
features between a subsonic and a transonic case. This shows 
the robustness of the proposed approach when predicting the 

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

Fig. 21   Pressure coefficient, Cp , for three different geometric configurations, computed using the predicted near-optimal meshes of Fig. 20
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Fig. 22   Comparison of the pressure coefficient, Cp , for three different geometric configurations, at one section
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spacing of each source, which is the most difficult quantity 
to predict accurately.

The histogram in Fig. 9 shows the R 2 for all test cases.The 
results show that only one test case has an R 2 value below 
90 and the average R 2 is above 96. This demonstrates the 
accuracy of the predictions for unseen cases encompassing 
both subsonic and transonic flow features.

The next experiment aims to investigate the influence of 
the number of training cases, Ntr , in the accuracy of the pre-
dictions and the performance of the three models described 
in Table 1. Figure 10 shows the minimum R 2 for the five 
mesh characteristics as a function of the number of training 
cases, for the three models of Table 1.The minimum number 
of training cases used was 10, and it was increased until the 
total number of available cases was selected. All the test 
cases were used in assessing the accuracy of the selected 
NN regardless of the number of training cases used. For each 

number of training cases, the hyperparameters were tuned, 
as presented earlier.

The results show that very few training cases are required 
to perform accurate predictions of the coordinates of the 
sources. This is expected because, as explained in Sect. 3.2, 
sources are grouped based on proximity. The prediction of 
the spacing and radius is much more challenging and the 
results show that models 2 and 3 are able to outperform 
model 1. This is because both models 2 and 3 train an inde-
pendent NN to predict the spacing and radius, whereas in the 
first model, a single NN is used to predict all characteristics. 
The performance of models 2 and 3 is almost identical.

To illustrate the potential of the proposed approach, the 
trained NNs are next used to predict the characteristics of 
the sources and near-optimal meshes are generated and 
compared with target meshes. All the meshes are generated 
following the process to eliminate surplus point sources 

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 23   Pressure coefficient, Cp , for three different geometric configurations and flow conditions. For each case the first NACA corresponds to 
the root of the wing and the second NACA corresponds to the tip
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(a) Increasing geometry
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(b) Increasing flow conditions
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(c) Increasing both

Fig. 24   Minimum R 2 for the five mesh characteristics as a function of the number of training cases for the example with varying flow conditions 
and geometry. Three different strategies of increasing the number of training cases are considered
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described in Algorithm 3. In addition, point sources are 
merged into line sources using Algorithm 4.

Figure 11 shows the target mesh and the predictions using 
the three models of Table 1.The flow conditions corresponds 
to M∞ = 0.79 and � = 5.39◦ . The meshes produced with the 
three models exhibit the refinement required to capture the 
most important features of this transonic flow. However, 
model 1 predicts a larger spacing near the location of the 
shock, whereas the characteristics of the sources produced 
by models 2 and 3 produce a spacing much more similar 
to the target. It is worth noting that the only difference 
between models 2 and 3 is the prediction in the location of 
the sources. It is expected that the position of the sources is 
more accurate in model 3 because independent NNs are used 

for each one of the three coordinates. However, the gain is 
expected to be negligible because the previous experiments 
showed that the location of the sources is the easiest quantity 
to predict, even when using a very reduced training set.

To further illustrate the performance of each model, 
the spacing function induced by the predicted sources is 
compared with the spacing function induced by the target 
sources. To this end, the spacing induced by the predicted 
sources is compared to the target spacing at the centroid 
of each element of the target mesh, for all test cases. Fig-
ure 12 shows the histogram of the ratio between predicted 
and target spacing for the three models.The minimum and 
maximum values for each bin in the histogram are depicted 
with red error bars, whereas the orange bar represents the 

Fig. 25   Histogram of the ratio between the predicted and target spacing for the example with varying flow conditions and geometry

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

(d) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(e) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(f) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 26   Target (top row) and predicted (bottom row) meshes for three flow conditions and geometric configurations
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standard deviation from the mean. A value of the ratio 
between 1/1.25 and 1.25 is considered extremely accurate 
and it should produce a mesh able to capture all the targeted 
flow features. Values of the ratio higher than 1.25 indicate 
that there are regions where the NN predicts a larger spac-
ing, resulting in an under-refined mesh that can lead to miss-
ing some flow features. Similarly, a value of the ratio below 
1/1.25 indicates that there are regions where the NN predicts 
a smaller spacing, resulting in regions unnecessarily refined.

The results in Fig. 12 show a very similar performance 
of the three models. Model 1 exhibits a slightly lower value 
in the middle bin, whereas the bin between 1.15 and 1.25 
contains a larger percentage of elements when compared to 
models 2 and 3. It can also be observed that the worst per-
forming case for model 1 is less accurate than the worst case 
produced from models 2 and 3. The performance of models 
2 and 3 is very similar, with a marginal better performance 
provided by model 3.

Using the best available NN in model 3, the predicted 
sources for the three test cases are used to produce the near-
optimal meshes for the cases shown in Fig. 5. Figure 13 
shows the target and predicted meshes for three different 
flow conditions.The results clearly show the ability of the 
proposed technique to produce meshes that are locally 
refined near the relevant regions, with no manual interac-
tion and no required user expertise.

The solutions obtained using the predicted near-optimal 
meshes are shown in Fig. 14.To further compare the accu-
racy of the solutions obtained on the predicted near-optimal 

meshes, Fig. 15 compares the pressure coefficient, at one 
section of the wing, to the pressure coefficient computed 
with the target mesh.The results indicate that, regardless 
of the flow regime, the resolution of all flow features are 
captured equally well by the meshes generated using the 
predicted and target sources.

Finally, the lift, CL , and drag, CD , coefficients obtained 
from the simulations using the meshes generated from the 
target sources and the meshes generated from the predicted 
sources are compared in Table 2.A maximum difference 
of two lift counts and two drag counts, further confirms 
the ability of the trained sources to construct the required 
meshes for unseen cases.

An alternative approach to using a NN to predict a near-
optimal mesh for an unseen test case would be to use an opti-
mal mesh from a similar flight condition from the training 
dataset. A case from the unseen test set is selected to com-
pare this alternative method with the NN approach presented 
in this paper. The case used is a transonic case, where the 
optimal mesh varies significantly as the parameters change, 
and the accuracy of the solution is very sensitive to using 
an appropriate mesh.

Taking an example flight condition of (M∞, �) being 
(0.79, 5.39◦) , above, the nearest training cases in the para-
metric space corresponds to (M∞, �) equal to (0.82, 5.34◦) . 
Taking the optimal mesh from the training case and using it 
on the unseen test flight condition, a solution using the given 
mesh is obtained.

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 27   Pressure coefficient, Cp , for three different flow conditions and geometric configurations, computed using the predicted near-optimal 
meshes of Fig. 27

Table 3   Comparison of the 
aerodynamic coefficients 
computed with the target and 
predicted meshes for three 
geometric configurations

NACA0010–NACA1115 NACA4109–NACA6306 NACA0012–
NACA00072

Target Prediction Target Prediction Target Prediction

C
L

0.377 0.377 0.751 0.754 0.311 0.312
C
D

0.0275 0.0273 0.0851 0.0853 0.0154 0.0154
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Comparing the lift, CL , and drag, CD , coefficients obtained 
using the two methods, a very large difference is found 
between the expected target results and the obtained results 
using a mesh from a similar case. The difference being 8 lift 
counts and 12 drag counts, which is beyond what is to be 
tolerated. Whereas the NN could accurately predict a mesh 
able to capture the solution within one lift and drag count of 
the target solution.

4.2 � Near‑optimal mesh predictions on a variable 
wing geometry at fixed inflow condition

The second example involves the prediction of near-optimal 
meshes for a geometrically parametrised wing at a fixed tran-
sonic condition of M∞ = 0.85 and � = 3◦ . The geometry is 
constructed from two different four-digit NACA aerofoils 
placed at the root and the tip of the wing. A linear variation 
of the geometry is considered in the span direction of the 
wing. The three parameters of each four-digit NACA aero-
foil form the input of the NN. Given the better performance 
of the model 3 architecture demonstrated in the previous 
example, this and the following example in Sect. 4.3, only 
use this model type for the NNs.

Halton sequencing of the six input parameters is used 
to generate a training dataset consisting of Ntr = 160 train-
ing cases. For both aerofoils, the range of the maximum 
camber, m, is taken between 0 and 6, the range of location 
of the maximum camber, n, is set between 0 and 4 (corre-
sponding to 0% and 40% of the chord) and the range of the 
thickness, p, is set between 6 and 24. A further dataset of 
Ntst = 40 test cases is also generated using Halton sequenc-
ing. As in the previous example, the range of inputs used 
to generate the test cases is slightly modified to minimise 
the undesired use of the trained NNs for extrapolation. To 

Table 4   Comparison of the 
aerodynamic coefficients 
computed with the target and 
predicted meshes for three 
geometric configurations

NACA3314–NACA1113 NACA5421–NACA2116 NACA2121–NACA4409

M∞ = 0.69 , � = 3.00◦ M∞ = 0.74 , � = 5.60◦ M∞ = 0.86 , � = −3.10◦

Target Prediction Target Prediction Target Prediction

C
L

0.435 0.436 0.805 0.804 −0.021 −0.020
C
D

0.0158 0.0162 0.1009 0.1013 0.0509 0.0508

Table 5   Details of the algorithm and HPC facilities used

Type of core CPU
Number of cores (Mesh generation) 1
Number of cores (CFD) 24–64
Number of cores (NN) 1
CPU Model IntelⓇ XeonⓇ Gold 6252
Memory available 96GB-192GB
Platform Local server
Geographical location United Kingdom
Real CPU usage factor 1.0
Power usage efficiency (PUE) 1.4
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(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦
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(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦
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(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 28   Comparison of the pressure coefficient, Cp , for three different flow conditions and geometric configurations, at one section
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illustrate the training and test datasets employed, Fig. 16 
displays a histogram of the two datasets.

For each training and test case, the CFD solution is 
obtained using FLITE [31] on an unstructured tetrahedral 
mesh consisting of approximately 1.3 M elements and 
250K nodes. Figure 17 shows the pressure coefficient, Cp , 
on the surface and a cut across the wing for three geom-
etries from the test set.The number of sources generated 
from the solution of each case in the datasets, based on 
Algorithm 1, varied between 3,949 and 7,571. The global 
set of sources that resulted from the combination of 
sources described in Algorithm 2, and used for training, 
consisted of 48,503 sources.

Following the rationale of the previous example, the 
influence of the number of training cases on the accuracy 
of the predictions is studied. For each number of training 
cases, the NN architecture is tuned by varying the num-
ber of hidden layers and neurons in each layer. Figure 18 
shows the minimum R 2 for the five mesh characteristics 
as a function of the number of training cases.Similar to 
the previous example, predicting the coordinates of the 
sources requires very few training cases to achieve an 
excellent predicting accuracy. Predicting the spacing and 
radius of the sources is more difficult, but with 40 training 
cases the lowest R 2 is already above 80. It is worth noting 
that the same level of R 2 achieved in the first example is 
not reached. This is mainly attributed to the fact that in 
both cases the maximum number of training cases is 160 
but this example contains three times more parameters. In 
addition, it is worth noting that the parameters considered 

in this example are geometric parameters and it is usu-
ally more difficult to generate reduced order models, when 
compared to flow conditions [12, 35].

To quantify the ability of the model to predict the correct 
characteristics of the sources that produces a mesh compa-
rable to the target mesh, the ratio between the spacing com-
puted using the predicted sources and the target sources at 
the centroid of the elements was evaluated. Figure 19 shows 
the histogram of the ratio between predicted and target spac-
ing.The results show that, despite the reduced size of the 
training dataset, less than 5% of the elements generated for 
all test cases have a spacing more than double the target 
spacing. The results suggest that more training cases that 
better sample the parametric space are needed. This can be 
achieved using a more generic definition of the geometry 
and eliminating the need to have the NACA digits as integer 
values.

Using the best available NN, the predicted sources are 
used to produce the near-optimal meshes for the three test 
cases outlined in Fig. 17. Figure 20 shows the target and 
predicted meshes for the three different geometric configura-
tions.Despite the low number of training cases used for this 
problem involving six geometric parameters, the proposed 
approach is able to predict near-optimal meshes, capturing 
the local refinement required for different geometric con-
figurations. It is worth noting that the last geometric case 
considered in Fig. 20 corresponds to a point near the bound-
ary of the six-dimensional parametric space and therefore 
the accuracy of the prediction is expected to be lower, when 
compared to other cases.

The solutions obtained using the predicted near-optimal 
meshes are shown in Fig. 21.To better compare the accuracy 
of the solutions obtained on predicted near-optimal meshes, 
Fig. 22 compares the pressure coefficient, at one section of 
the wing, with the pressure coefficient computed with the 
target mesh.The comparison of pressure coefficients shows 
that, despite some differences that can be observed on the 
predicted meshes of Fig. 20, the predicted near-optimal 
meshes are capable of capturing all the flow features. To 

Fig. 29   Fine mesh around the M6 wing

Table 6   Carbon footprint and energy consumption for the parametric 
study using a fixed mesh capable of accurately capturing all the solu-
tions

Task Wall clock (H) Carbon (Kg 
CO

2
e)

Energy (MWh)

Mesh generation 1.0 3.61 × 10−3 5.89 × 10−5

CFD solution 3,432.10 527.17 2.28
Total 3,433.0 527.17 2.28

Table 7   Carbon footprint and energy consumption for the parametric 
study using the proposed approach to train a NN, including tuning the 
hyperparameters, predict the near-optimal meshes and run the CFD 
simulations

Task Wall clock (H) Carbon 
(Kg CO

2

e)

Energy (MWh)

NN tuning and training 156.6 2.13 9.22 × 10−3

Mesh generation 23.8 0.32 1.40 × 10−3

CFD solution 143.0 12.36 5.35 × 10−2

Total 323.4 14.81 0.064
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confirm this finding, the lift, CL , and drag, CD , coefficients 
obtained from the simulations using the meshes generated 
from the target sources and the meshes generated from the 
predicted sources are compared in Table 3.A maximum 
difference of only three lift counts and two drag counts, 
confirms the ability of the trained sources to construct the 
required meshes for unseen cases.

4.3 � Near‑optimal mesh predictions at various 
inflow conditions on a variable wing geometry

The last example involves the prediction of near-optimal 
meshes for a geometrically parameterised wing at vari-
able flow conditions. The geometry is the same used in the 
example of Sect. 4.2, whereas the flow conditions consider 
a Mach number and angle of attack between [0.6, 0.9] and 
[−4◦, 10◦] , respectively.

A Halton sequencing of the six geometric parameters 
is used to generate a dataset consisting of 52 cases. For 
each value of the geometric parameters, a Halton sequenc-
ing of the two flow parameters was used to generate a 
dataset that consisted of 24 cases. The combination of 
the two datasets provides the final dataset that consisted 
of Ntr = 52 × 24 = 1, 248 training cases. The same pro-
cedure was used to generate a test dataset that contains 
Ntst = 8 × 24 = 192 cases.

For each case in the training and test datasets, the 
solution is obtained using the FLITE [31] solver and an 
unstructured tetrahedral mesh consisting of approximately 
1.3 M elements and 250K nodes. The distribution of the 
pressure coefficient for three test cases is shown in Fig. 23.

The number of sources generated from the solution of 
each case in the datasets, based on Algorithm 1, varied 
between 1,533 and 7,582. The global set of sources that 
resulted from the combination of sources described in Algo-
rithm 2, and used for training, consisted of 54,713 sources. 
The influence of the number of training cases in the accuracy 
of the predictions is studied next. To better understand the 
importance of the flow and geometric parameters separately, 
the increase of the number of training cases is performed in 
three different ways. First, the number of training cases are 
increased by increasing only the number of geometric con-
figurations, starting with 3 cases and doubling the number 
of geometric cases until all geometric configurations avail-
able are considered. For each geometric configuration, the 
24 available flow conditions were used. Second, the number 
of training cases are increased by increasing only the number 
of flow conditions considered. Finally, the increase in the 
number of training cases is performed by not distinguishing 
the type of parameters, so increasing both the number of 
flow conditions and geometric configurations is considered.

Figure 24 shows the minimum R 2 , for the five mesh 
characteristics, as a function of the number of training 
cases.The qualitative behaviour is similar to the previous 
examples. With a very reduced dataset for eight param-
eters, it is possible to produce very accurate predictions 
of the coordinates of the sources, whereas accurate pre-
dictions of the spacing and radius require a significant 
increase in the number of training cases. For a given num-
ber of training cases, the best NN architecture was found 
by varying the number of hidden layers and neurons in 
each layer, following the same process described in previ-
ous examples.

To quantify the ability of the model to predict the correct 
characteristics of the sources that produces a mesh compa-
rable to the target mesh, the ratio between the spacing com-
puted using the predicted sources and the target sources at 
the centroid of the elements of the target mesh is evaluated. 
Figure 25 shows the histogram of the ratio between predicted 
and target spacing.Despite the larger number of parameters 
and the different nature of the parameters involved, the 
results show that less than 5% of the elements generated 
for all test cases have a spacing more than double the target 
spacing.

Using the predicted characteristics of the sources, meshes 
for the three test cases shown in Fig. 23 are produced, and 
compared to the meshes obtained with the target charac-
teristics. As in the previous examples, all the meshes are 
generated following the process to eliminate surplus point 
sources described in Algorithm 3 and merging point sources 
into line sources using Algorithm 4. Figure 26 shows the 
target and predicted meshes for the three different geometric 
configurations.The results show that the proposed approach 
is able to predict the characteristics of the sources in such 
a way that the generated meshes provide appropriate mesh 
resolution near the regions where is needed. The smoothness 
of the spacing function in the second and third test cases 
of Fig. 26 could be improved by increasing the number of 
training cases or by modifying the similarity tolerance used 
for grouping sources.

To analyse the ability of the near-optimal meshes gener-
ated to capture the required flow features, Fig. 27 shows the 
pressure coefficient distribution obtained with the predicted 
meshes of Fig. 26.To better quantify the accuracy of the 
solutions obtained on predicted near-optimal meshes, Fig. 28 
compares the pressure coefficient, at one section of the wing, 
with the pressure coefficient computed with the target mesh.
It can be clearly observed that despite the lack of smoothness 
in the spacing functions obtained with the predicted char-
acteristics of the sources, the near-optimal meshes are able 
to correctly capture all the required flow features, offering 
an excellent agreement with the solutions computed on the 
target meshes.
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Finally, the lift and drag coefficients resulted from the 
simulation using the mesh generated from target sources and 
the mesh generated from the predicted sources are compared 
in Table 4.A maximum difference of only one lift count and 
four drag counts confirms the ability of the trained NNs to 
predict the characteristics of the mesh sources for unseen 
cases.

5 � Efficiency and environmental implications

The strategy proposed in this work relies on training a 
relatively large number of NNs using deep learning. The 
accuracy of the predictions has been evaluated and the 
implications in terms of reducing the number of hours 
required to produce near-optimal meshes for simulation 
are clear. However, in the last few years there have been 
growing concerns about the environmental impact of train-
ing large models using NNs [10, 36]. This is because the 
majority of articles found in the literature tend to focus on 
the accuracy of the predictions, but ignore the resources 
required to train and tune the NNs.

This Section aims at analysing the efficiency of the pro-
posed approach to demonstrate that the strategy presented 
can be labelled as Green AI research [10], in the sense that 
it reduces the computational cost that is currently required 
in industry to achieve similar results.

When considering the computational and environmental 
impact of a methodology based on deep learning, several 
factors must be taken into consideration. These factors 
include not only the training time for one model, but also 
the time required to perform the hyperparameter tuning. In 
addition, other factors such as the computing infrastructure 
used, the hardware architecture or even the geographical 
location of the high performance computing (HPC) facili-
ties employed [36, 37].

In this work, the model developed in [36] to estimate 
the carbon footprint of a computation is considered. The 
characteristics of the HPC facilities used in all the compu-
tations presented in this work are summarised in Table 5.
The algorithms involved, when measuring the efficiency of 
the proposed approach, are the mesh generation algorithm, 
the CFD solver and the NN training. The mesh generator 
runs on a single processor. The CFD solver runs on 24 
processors for meshes between 5 M to 6.5 M elements and 
on 64 processors for a mesh of 40 M elements. Finally, the 
training of the NN is performed using a single processor.

To analyse the efficiency and environmental impact of 
the methodology proposed in this work, the common task 
of performing CFD computations for a varying free-stream 
Mach number and angle of attack is considered. This cor-
responds to the first example described in Sect. 4.1. The 

free-stream Mach number varies between 0.3 and 0.9, and 
computations are performed in steps of 0.05. The angle of 
attack varies between −4◦ and 12◦ , and computations are 
performed in steps of 1.6◦ . This means that a total of 143 
CFD computations are required.

The most common approach considered in industry when 
performing this parametric study consists of generating a 
fixed, very fine, mesh that is capable of capturing the solu-
tion for all the cases of interest [38]. This is done in practice 
to minimise the time consuming task of generating a mesh 
tailored for every single case, which is not only difficult, but 
actually requires a significant amount of human intervention. 
For the example considered here, an unstructured mesh of 
40 M tetrahedral elements is generated. A detailed view of 
the fine mesh generated is shown in Fig. 29.The genera-
tion of this mesh takes only one hour on a single processor. 
However, the implications of generating a single mesh are 
substantial when running the CFD solver. In this example, 
each CFD simulation takes 24 h using 64 processors, which 
implies a server memory capacity of 192GB. This amounts 
for a total of 3,432 h to compute the 143 solutions required.

Table 6 summarises the carbon footprint and energy con-
sumption induced by the process of computing the 143 solu-
tions with a fixed mesh.The footprint is obviously dominated 
by the CFD calculations and the total amount is equivalent 
to more than 3000 km in a passenger car, or almost a flight 
from New York City to San Francisco [36].

The alternative, proposed in this work, is to train a NN 
with all the data that is currently available in industry and 
use the predictions to generate tailored near-optimal meshes 
for each case. With this strategy the mesh generation stage 
is no longer time consuming and does not require the input 
of an expert engineer. In the current example, each near-
optimal mesh is generated in 10 min using a single proces-
sor. The near-optimal meshes have between 5 M and 6.5 M 
elements for all the cases considered, which is a fraction of 
the number of elements required for the fixed-mesh approach 
currently employed in practice. For the near-optimal meshes, 
the CFD simulations run on 24 processors, with 96GB avail-
able memory, and the solution requires between 40 min and 
one hour and 20 min. It is worth noting that the variation of 
the time required for the solution is induced by the variation 
in the mesh that is required for each case.

Table 7 summarises the carbon footprint and energy con-
sumption induced by the proposed approach.This includes 
the resources required to tune the hyperparameters of the 
network, the generation of 143 near-optimal meshes and the 
associated CFD simulations. It is worth noting that the time 
required for tuning accounts for the fact that the experiments 
to tune the NNs were repeated five times, to minimise the 
effect of the random initialisation of the NN weights.

The footprint of the proposed approach is dominated by 
the tuning of the NN, which is a figure that is not reported 



	 Engineering with Computers

1 3

on many occasions [10]. Despite a grid search was used 
to find the best hyperparameters and experiments were 
repeated five times, the total carbon footprint and energy 
consumption is more than 35 times lower than using the 
common practice of running all cases on a single mesh.

It is worth noting that it is possible to reduce the com-
putational cost of performing the simulations in a very 
fine mesh by utilising the solution with a certain Mach 
number and/or angle of attack for another case. However, 
it is very important to note that the proposed approach also 
permits this type of solution restarting after interpolating 
one computed solution to a new predicted mesh. There-
fore, the gain is expected to be very similar to the one 
reported here. In addition, it is worth mentioning that on 
some occasions this restarting approach is not preferred 
because it requires running all the cases serially.

6 � Concluding remarks

A novel method to predict the characteristics of sources that 
are used to control the spacing in an unstructured mesh gen-
eration algorithm has been proposed. The method provides 
the ability to automatically predict the near-optimal mesh for 
an unseen flow condition or geometric configuration, using 
historic data accumulated from previous CFD analysis.

It is assumed that a database of accurate solutions is 
available for a variety of flow conditions and/or geometric 
configurations. The strategy involves four steps. First, for 
every solution available, a set of mesh sources is created. 
Each source has five characteristics, namely the three spatial 
coordinates, the spacing required at the vicinity of the point 
and the radius of influence. A procedure to create the sources 
that will enable reproducing the spacing function that will 
produce a mesh capable of accurately reproducing the given 
solution is proposed. The second step involves combining 
the sources of multiple cases into a single set of global mesh 
sources. A process to combine the sources into a global set 
is proposed. The resulting set of global sources will enable 
the generation of meshes that are suitable to capture all the 
solutions of a given set of cases. The third step involves 
the use of machine learning. A NN is trained to predict the 
characteristics of the global set of sources. Once trained, the 
NN is used to predict the characteristics of the mesh sources 
for unseen flow conditions and/or geometric configurations. 
The last step, aimed at improving the efficiency of the mesh 
generation process, removes surplus sources and merge point 
sources into line sources when possible.

The ability of the proposed strategy to predict the near-
optimal mesh for unseen flow conditions and/or geometric 
configurations is tested using three numerical examples. The 
examples utilise a database of three dimensional inviscid 
compressible flow solutions for varying inflow conditions 

and geometric parameters. Numerical experiments are 
reported to show the influence of the NN architecture and 
the size of the training dataset in the prediction capability 
of the NN. Even with a reduced training dataset, the mesh 
characteristics are accurately predicted. Furthermore, the 
near-optimal meshes constructed with the predicted charac-
teristics of the sources are used to compute CFD solutions. 
The results show that even in the most complicated example, 
with eight parameters of different nature (i.e. flow condi-
tions and geometric parameters), the resulting meshes lead 
to accurate CFD solutions. More precisely, the computed 
aerodynamic quantities using the near-optimal meshes are 
within the required accuracy for the aerospace industry, i.e. 
less than five lift/drag counts difference with respect to the 
target solution.

To conclude, the proposed approach was analysed in 
terms of efficiency and the environmental implications were 
discussed. The analysis showed that the technique proposed 
in this work is capable of reducing the carbon footprint 
of computations by a factor of 35, when compared to the 
current practice in industry. This factor was obtained by 
accounting for the whole cost of the proposed technique, 
that is including the resources required to train multiple NN 
and fine tune the hyperparameters.

Total least‑squares approximations in three 
dimensions

Finding the plane or line that produces the best fit to a given 
set of points is a classical problem in many applications of 
science and engineering. To define what is considered the 
best fit, it is necessary to specify a measure for the deviation 
of a point with respect to a plane or line. On many occa-
sions, a simple measure that involves one of the coordinates 
is considered, but the result is highly dependent on the par-
ticular arrangement of the given set of points. This section 
describes the procedure to fit a plane or a line to a set of 
points in three dimensions by employing the true distance, 
measured in the orthogonal direction. This is a particular 
case of the technique usually referred to as the total least-
squares.[9]

Fitting a plane to a set of points using orthogonal 
regression

Let us consider a set of n points in ℝ3 , denoted by 
X = {xi}i=1,…,n , and a plane, P , defined by a point x0 ∈ ℝ

3 
and a unit normal vector n . By definition, a point x ∈ P 
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satisfies n ⋅ (x − x0) = 0 . A generic point xi ∈ X  can be 
expressed as

where �i = n ⋅ (xi − x0) is the distance from the point 
xi to the plane P , �i is the distance from the orthogonal 
projection of xi onto P , namely x̂i , to the point x0 and 
t = (x̂i − x0)∕‖x̂i − x0)‖.

To find the plane that best fits the given set of points, the 
point x0 and the unit normal vector n that minimises the 
energy function given by

are sought, where M ∶=

n∑
i=1

(
xi − x0

)(
xi − x0

)T.

To simplify the minimisation problem, the point x0 is 
taken as the average position of the given set of points X  , 

namely x0 =
n∑
i=1

xi∕n . With this choice, the energy function 

becomes a quadratic form and the unit normal vector n that 
provides the minimum of E(n) is simply the normalised 
eigenvector corresponding to the minimum eigenvalue of the 
matrix M.

Fitting a line to a set of points using orthogonal 
regression

Let us consider a set of n points in ℝ3 , denoted by 
X = {xi}i=1,…,n , and a line, � , defined by a point x0 ∈ ℝ

3 
and a unit vector t . By definition, a point x ∈ � satisfies 
t × (x − x0) = 0 . A generic point xi ∈ X  can be expressed as

where �i = t ⋅ (xi − x0) is the distance from x0 to the orthog-
onal projection of xi onto the line � , namely x̂i . The coeffi-
cient �i = ‖xi − x̂i‖ = ‖xi − x0 − �it‖ represents the distance 
from xi to its orthogonal projection onto the line �.

To find the line that best fits the given set of points, the 
point x0 and the unit vector t that minimises the energy func-
tion given by

a r e  s o u g h t ,  w h e r e  M̂ = tr (M)I −M  a n d 

M ∶=

n∑
i=1

(
xi − x0

)(
xi − x0

)T.

(13)xi = x0 + �in + �it,

(14)E(x0, n) =

n∑
i=1

�2
i
= nTMn

(15)xi = x0 + �in + �it,

(16)E(x0, t) =

n∑
i=1

�2
i
= tTM̂t

To simplify the minimisation problem, the point x0 is 
taken as the average position of the given set of points X  , 

namely x0 =
n∑
i=1

xi∕n . With this choice, the energy func-

tion becomes a quadratic form and the unit vector t that 
provides the minimum of E(t) is the normalised eigenvec-
tor corresponding to the minimum eigenvalue of the 
matrix M̂.
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