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ABSTRACT
An inverse design in electromagnetic method based on the topological derivative approach is presented. Topological
derivative method is used to measure the sensitivity of a given functional with respect to an infinitesimal perturbation in
a domain. The topological derivative concept has been successfully applied in many relevant fields such as geophysics,
multi-scale material design and inverse problems. In this work, the reflection coefficient is considered as an objective
function to design the electromagnetic devices. Finally, numerical experiments are presented to illustrate the performance
of the optimisation approach.
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1. INTRODUCTION
Neutrinos are subatomic particles and one of the most abundant particles in the universe. However, they are difficult to
detect, as they have weak interaction with matter. Detecting neutrinos and determining their absolute mass is an important
goal in the particle physics field. To achieve this goal, it is necessary to develop sensor techniques capable of detecting low-
power electronic signals. However, the development of effective and efficient design sensors is an engineering challenge,
the complex dynamics of electromagnetic waves leads to non-intuitive designs. To overcome these challenges, topology op-
timisation methods are an essential part of this process. Thus, several topological optimisation methods in electromagnetic
devices have been developed in recent years,1, 2 this approaches including bio-inspired methods,3 level-set methods,4, 5 and
adjoint-based methods.6, 7

In this work, we present the topological derivative method applied to an electromagnetic scattering problem based on
the work Ref. 8. Proposed by Sokołowski & Żochowski,9 the main idea of the topological derivative method is to compute
the variation of a functional that is associated with the topology of a given domain. In other words, because the functional is
associated with the topology of a domain, the topological derivative identifies whether it is necessary to include or remove
material at a given location. In particular, for this work, the reflection coefficient Slm is chosen as an objective function
to design the electromagnetic device. This functional is related to the topology of the domain, therefore, in a given region,
the algorithm will measure its variation by changing a material Si for another SiO2.

This paper is organized as follows: the electromagnetic scattering problem is defined in Section 2. The topological
derivative method is introduced in Section 3. In addition, Section 4 presents a three spatial dimensions application example
using reflexive coefficient as objective function. Finally, some basic mathematical definitions are described in Appendix A.

2. ELECTROMAGNETIC MODEL
Let us consider an open and bounded domain D ⊂ R3. A near-field domain is denoted as BR ⊂ D, with boundary
Γ = ∂BR. The optimization region is given by Ω ⊂ BR, such that Ω = Ωa ∪ Ωb and Ωa ∩ Ωb = ∅, with Ωa and Ωb

representing regions with refractive index n1 and n2 respectively. As previously described, a generic domain is represented
in Fig. 1.
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Figure 1. Generic representation of domain. The electromagnetic problem is defined D. In addition, the near-field domain is defined as
BR ⊂ D. Finally, the optimization domain Ω is is split into two disjoints subdomains Ωa = Ω \ Ωb and Ωb, which are represented by
light and dark regions, respectively.

The electromagnetic wave scattering problem can be written mathematically as follows:
∇× (∇× E)− k20n

2
iE = F, in D,

n× E = 0, on Γ0,
n×∇× E = Gin, on Γin,
n×∇× E = Gout, on Γout,

(1)

where k0 is the wavenumber in vacuum, ni the refractive index, F is a source domain, n is the outward unit normal vector,
Gin is the source of the input port and Gout is the source of the output port of the device D.

The problem (1) can be compactly rewritten in a weak formulation: find E ∈ V , such that∫
D

(
∇× E · ∇ ×W − k20n

2
iE ·W

)
dx = S(W ), ∀W ∈ V , (2)

where S(W ) ∈ V ′ represents any boundary and domain source terms, with V ′ denoting the dual space of V , the necessary
definitions of space and norm among others are described in Appendix A.

3. THE TOPOLOGICAL DERIVATIVE METHOD
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular
domain perturbation, such as the insertion of holes, inclusions, source-terms or even cracks. The topological derivative was
rigorously introduced in Ref. 9. Since then, this concept has become a subject of intensive research. In fact, the topological
derivative concept has proven to be useful, with a wide range of applications, such as image processing,10 fracture11 and
damage12 mechanics, seismic application13 and treatment of cancer by hyperthermia.14 For a deeper understanding, a
detailed description of the method can be found in the books.15, 16

Let us consider a characteristic function χ = 1Ω associated to the domain Ω. Suppose that Ω is subject to a singular
perturbation confined in a small ball Bε(x̂) of size ε and center at x̂ ∈ Ω, as shown in Fig. 2. We denote by χε(x̂)



the characteristic function associated to the topologically perturbed domain. In the case of a perforation, for instance,
χε(x̂) = 1Ω − 1

Bε(x̂)
, and the perforated domain is obtained as Ωε(x̂) = Ω \ Bε(x̂). Then, we assume that a given

shape functional ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following topological asymptotic
expansion

ψ(χε(x̂)) = ψ(χ) + ρ(ε)DTψ(x̂) +R(ρ(ε)), (3)

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, ρ(ε) is a positive function such that
ρ(ε) → 0, when ε → 0, and R(ρ(ε)) = o(ρ(ε)) is the remainder. The function x̂ 7→ DTψ(x̂) is called the topological
derivative of ψ at x̂. Therefore, this derivative can be seen as a first order correction of ψ(χ) to approximate ψ(χε(x̂)).

Figure 2. The topological derivative concept.

Since our goal is to maximize or minimize a shape functional given, in general form, by

ψ(E) = 〈φ(E), φ∗(E)〉, (4)

where 〈·, ·〉 is the standard internal product and ∗ is used to denote the complex conjugate.

To define the objective function in terms of scattering parameters Sℓm, the input and output ports of the device must be
defined over Γ. With the normalized input mode m excited, the coefficient can be calculated by projecting the electromag-
netic fields onto the normalized output port mode (eℓ, hℓ):17–19

Sℓm := φℓ(Em) =

∫
Γ

(Em × hℓ + eℓ ×Hm) · n̂ ds =
∫
Γ

(Em × hℓ + jℓ ×∇× Em) · n̂ ds, (5)

where Em is used to denote the solution of the FEM formulation (2) with normalized mode m as a source, n̂ is the unit
normal vector field to Γ and

jℓ =
i

k0η0µr
eℓ. (6)

In addition φℓ : V 7→ C is a complex-valued scalar function, then 〈φ∗
ℓ (Em), φℓ(Em)〉 = φ∗

ℓ (Em)φℓ(Em). In this case,
the adjoint problem (10) reads: find V ∈ V , such that∫

D

(
∇× V · ∇ ×W − k20n

2V ·W
)
dx = φ∗

ℓ (Em)

∫
Γ

(hℓ × n̂ ·W + n̂× jℓ · ∇ ×W ) ds ∀W ∈ V . (7)

In particular, in this work, the topological derivative represents the sensitivity of the shape functional ψ(E) with respect
to the nucleation of a small inclusion in Ω with different material properties. For this work the associated topological
derivative is given by the following result:

PROPOSITION 3.1. Let ψ(E) be the shape functional (4), with E used to denote the solution to the variational problem
(2). Then, its topological derivative can be written as

DTψ(x) = 2<{k20(n22 − n21)s(x)E(x) · V (x)}, (8)

for almost all x ∈ Ω. The signal function s(x) is given by

s(x) =

{
+1, x ∈ Ωa

−1, x ∈ Ωb

. (9)



and the adjoint state V is solution to the following auxiliary variational problem: find V ∈ V , such that∫
D

(
∇× V · ∇ ×W − k20n

2
iV ·W

)
dx = 〈φ∗(E), φ(W )〉 ∀W ∈ V . (10)

Proof. The proof is presented in Ref. 8.

4. NUMERICAL RESULTS
The optimization over several wavelengths can also be used to tailor the spectral response of the device beyond a flat curve.
Specific filters can be designed using this feature. As an example, we design a compact diplexer that splits signals from the
O and C bands using λ = 1.55 µm. In this case the objective function is

Ψ(Ω) =
(
1− |S21(1.55 µm)|2

)2
. (11)

The optimization domain is a 3-d volume with area 2.0 µm × 2.0 µm and thickness of 110 nm. The Si waveguides con-
nected to the device, shown in Fig. 4(b), have widths of 200 nm and the same thickness as the optimization volume. All
surroundings are filled with SiO2.

APPENDIX A. BASIC DEFINITIONS
Some definitions are necessary. , the space V is defined as

V := {W ∈ Hcurl(D;Cd) : n̂×W = 0 on Γ}, (12)

where Hcurl(D;Cd) is used to denote the standard complex-valued Hilbert space20 of vector functions W : D 7→ Cd, such
that W ∈ L2(D;Cd) and ∇ ×W ∈ L2(D;Cd). The associated norms in L2p(D;Cd) and Hcurl(D;Cd) are respectively
defined as

‖W‖L2p(D;Cd) :=

(∫
D
|W |2p dx

) 1
2p

, ‖W‖Hcurl(D;Cd) :=

(∫
D
(|W |2 + |∇ ×W |2) dx

) 1
2

, (13)

where |W |2p := (W ·W )p for 1 ≤ p <∞, with W used to denote the complex conjugate of W . Note that the L2-norm is
obtained by setting p = 1 in the above equation (left). Outside BR, the formulation can be extended to include anisotropic
and magnetic materials, as required when open domains are simulated with the help of perfectly matched layer (PML). The
associated magnetic field is given by

H =
i

k0η0µr
∇× E (14)

with η0 the vacuum wave impedance, and µr the relative magnetic permeability (assumed constant and equal for all
materials in the near-field domain).

The complex-valued, scalar or vector function φ(E) is assumed to be linear with respect to its argument, namely

φ(αU + V ) = αφ(U) + φ(V ) ∀ U, V ∈ V , α ∈ C, (15)

and it is written in terms of integrals concentrated on Γ. In this scenario, we aim to find the best material distribution within
Ω, which means to find the optimal topology for the domains Ωa and Ωb.
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Err = 0.99884
|φ₁| ≤ 0.022

θ = 89.7°
|g₁| ≤ 1.3e+06

Err = 0.84302
α = 2⁰

Err = 0.26924
|φ₁⁰| ≤ 0.12

θ = 39.9°
|g₁⁰| ≤ 1.6e+07

Err = 0.25462
α = 2⁻³

Err = 0.19989
|φ⁰₂| ≤ 0.087

θ = 32.7°
|g⁰₂| ≤ 9e+06

Err = 0.19291
α = 2⁻₃

Err = 0.17681
|φ₂⁻| ≤ 0.078

θ = 9.29°
|g₂⁻| ≤ 9.2e+06

Err = 0.17506
α = 2⁻³
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