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BACKGROUND: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-
programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices.
Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade
serous carcinoma representing the most common and aggressive subtype.
METHODS: We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly
available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound
activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples
and cell lines.
RESULTS: Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential
enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032
and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the
efficacy of specific inhibitors in vitro.
CONCLUSION: Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This
computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.

British Journal of Cancer; https://doi.org/10.1038/s41416-023-02274-2

INTRODUCTION
The last decades have witnessed a significant increase in
functional genomic approaches, high-throughput data availability
and innovative computational methodologies [1]. Thriving in this
data-intensive environment, in silico strategies have been widely
used for drug development, discovery and repositioning [2]. In
silico approaches take advantage of vast genomic datasets to
stratify patients into distinguishable molecular sub-groups,
enabling the delivery of more accurate personalised care to
patients [3, 4]. To date, this field has largely been driven by
genomics, whereas now there is a surge in the exploitation of
epigenomics, which offers a more dynamic view of disease, and
therefore personalised treatment options [5, 6].
In contrast to genomics, epigenomics encompasses a set of

covalent modifications that occur at chromatin level with no
alteration to the underlying DNA sequence [7]. Different patterns
of epigenetic alterations have fundamental effects on cancer
progression, providing cancer cells with a degree of plasticity that
allows them to adapt to their environment [8]. The precise
temporal and spatial epigenomic regulation of gene transcription

is orchestrated by cis-acting regulatory elements that include
promoter regions surrounding the transcriptional start site of
genes, and enhancers, generally located many kilobases away
from the gene body [9]. Active enhancers are highlighted by
acetylated histone 3 at lysine 27 (H3K27ac), an epigenetic mark
commonly associated with open chromatin regions [10]. Enhan-
cers play a central role in regulating transcription where disease-
specific alterations are a critical aspect of cancer development, as
aberrant enhancer landscapes alter the expression of oncogenes
and tumour suppressor genes [11]. Re-programmed enhancer
landscapes have been identified in several cancers, including
ovarian cancer (OC) [12, 13].
OC malignancies are subdivided into histological subtypes that

exhibit distinct gene expression profiles, clinical features, response
to chemotherapy and outcome [14]. High-grade serous carcino-
mas (HGSC) are the most common (~75%) and most aggressive
subtype, while other histological presentations are much less
prevalent, for example clear-cell (CC, ~5%) and mucinous
carcinomas (MC, 2–3%) [14]. Despite OC heterogeneity, the first
line of standard treatment is generally comprised of debulking
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surgery followed by platinum-based chemotherapy [15]. Although
most cases initially display a positive response to this treatment
strategy, 40–50% patients develop platinum resistance, leading to
an unfavourable prognosis [16]. At present, only a few targeted
therapies have been approved for use in the management of OC
and include PARP and VEGF inhibitors, however specific resistance
mechanisms have also emerged against these treatment strate-
gies [17, 18].
Here, we present a novel computational strategy designed to

identify potential and much-needed candidate drugs for OC
treatment. Interrogating publicly available epigenomic ChIP-Seq
data, this pipeline mapped differential enhancer regions between
diseased and healthy samples. Using these regions as input for the
‘Mining Algorithm for Genetic Controllers’ algorithm (MAGIC) [19],
specific transcription factor (TF) binding enrichment was deter-
mined. Finally, candidate drug compounds were identified using
the ‘Search Tool for Interactions of Chemicals’ (STITCH) [20], and
experimental validation was conducted using patient-derived OC
samples. Among the predicted top-ranked candidates specific for
HGSC we identified CDK inhibitor SNS-032 and EHMT2 inhibitor
UNC0646, both of which exhibited promising in vitro results.
Importantly, our novel framework can now be exploited in
multiple disease settings, offering a unique approach to drug
discovery through profiling of epigenomic landscapes.

METHODS
Dataset download and quality control assessment
ChIP-Seq datasets were downloaded from repositories GSE68104,
GSE121103 and GSE156275 [12, 21–23]. The sample size was determined
by public availability. Fastq files were downloaded using the prefetch and
fasterq-dump functions from the SRA toolkit. Prior to analysis, the quality
of raw data was assessed using fastqc [24]. Read mapping statistics were
obtained directly from Bowtie2 and STAR aligners for ChIP-Seq and RNA-
Seq respectively [25, 26]. For ChIP-Seq samples (H3K27ac), read quality was
assessed using the phantompeakqualtools package [27]. Normalised
strand cross-correlation and relative strand cross-correlation metrics were
required to adhere to the ENCODE standards [28].

Next-generation sequencing analysis
For ChIP-Seq analysis, sequence reads were mapped against human
reference genome build hg38 using Bowtie2 [25]. Removed reads prior to
peak calling include: reads >5 bases with Phred score <30, reads containing
undefined bases and reads mapping to DAC ENCODE consensus excluded
regions [29]. Peak calling was performed using MACS2 with default settings
[30]. To identify significantly dysregulated H3K27ac peaks, we used the
Bioconductor package DiffBind with DESeq2 settings [31, 32]. DiffBind was
used to analyse ChIP-Seq signal distribution in genomic locations of
annotated enhancers obtained from the GeneHancer database [33],
incorporating the remove grey list and remove blacklist options. Enhancer
occupancy heat maps were generated using the pheatmap R package [34].
Principal component analysis was performed and plotted using DiffBind [35]
and ggplot2 [36] packages, respectively. Volcano plots and pathway
enrichment plots were also generated using ggplot2. Genome browser plots
were generated using Gviz R package [37]. Upset plots were generated using
UpSetR package [38]. Venn diagrams were created using Inkscape v0.92 [39].
Pathway analyses were performed using WebGestaltR [40]. For RNA-Seq
analysis, sequence reads were mapped against human reference genome
build hg38 using STAR [26]. Prior to alignment, low-quality read ends were
removed using the sickle window adaptive trimming tool [41]. Gene count
tables were generated using the STAR aligner quant mode function.

MAGIC enhancer matrix and transcription factor enrichment
As MAGIC was originally designed to assess enriched TF binding in gene
promoter regions, a novel MAGIC matrix was designed to map enhancer
locations annotated in the GeneHancer database [33]. We developed a
custom R script to generate our matrix, where 1695 BED files from TF ChIP-
Seq experiments for both human cell lines and primary samples were
downloaded from ENCODE using the ENCODExplorer R package (R version
3.6.3) [42]. With this newly generated matrix, MAGIC was used to identify
enriched TF binding within enhancers (FDR < 0.01, K-S test). ‘Find

Individual Motif Occurrences’ (FIMO) [43] was used to refine the list of
TFs produced by MAGIC, removing TFs with no significant enrichment of
motif binding sites (P < 0.001) using a custom R script. Motif sequence
logos were generated using the diffLogo R package [44]. Molecular surface
render plots of complex members were obtained from Uniprot [45] and
UCSF Chimera [46].

Protein complex and compound search
The CORUM DB protein complex database [47] was used to isolate enriched
protein components using a custom R script. The STITCH database was
used to assess chemicals linked to specific complex coregulators, filtered
and ranked using a STITCH combined score (>700) [20]. The ChEMBL
database was used to identify chemicals corresponding to drug
compounds approved by the FDA or undergoing clinical trial [48]. Bar
plots, RPKM complex factor diagrams and pie charts were generated using
ggplot2 [36]. Network diagrams were generated using Cytoscape [49].

Compounds, cell culture and cell viability assays
Identified drug compounds were provided by GlaxoSmithKline (i-CBP112,
GSK343, GSK503, UNC0646), purchased from Cayman Chemical (MI, US):
Seliciclib (CAY10009569), BIX-01294 (CAY13124), SNS-032 (CAY17904) and
NU-6102 (CAY113317) or MedChemExpress (NJ, US): AUZ 454 (HY-15004).
Patient-derived primary ovarian cancer cells were isolated from ovarian
biopsies using a protocol adapted from Sheperd et al. [50]. Human
biological samples were sourced ethically and their research use was in
accord with the terms of the informed consents under an IRB/EC-approved
protocol. Primary cells were maintained in 50% MCDB 105+ 50% M199
media (Merck, DE) supplemented with 20% foetal calf serum (Thermo-
Fisher Scientific, MA, USA). Sample size was determined by availability.
Ovarian cancer cell lines were purchased from ATCC® (LGC Ltd, UK). SKOV3
(CVCL_0532) and OVCAR-3 (CVCL_0465) were maintained in RPMI 1640
media (Gibco™, 11875093) supplemented with 20% foetal calf serum (FBS;
Gibco™, 10270106) and 10 μg/ml of insulin solution from bovine pancreas
(I0516, Merck; DE). UWB1.289 (CVCL_B079) and CAOV3 (CVCL_0201) were
maintained in DMEM/F-12+GlutaMAX™ (ThermoFisher Scientific) (10%
FBS). All cell lines used within this study were authenticated at NorthGene™

using the PowerPlex® Fusion kit (DC24, Promega; WI, USA) in 2022.
Laboratory reports are available upon request. Micoplasma contamination
was routinely tested with the MycoAlert Mycoplasma Detection Kit
(LZLT07218, Lonza, CH). The RealTime-Glo™ MT Cell Viability Assay
(Promega, G9712) was used to assess live cell viability following the
manufacturer’s instructions. All samples were tested in triplicates (n= 3).
The experiment was replicated three times in the laboratory. Half-
inhibitory concentration values (IC50) and heatmaps were generated using
Graphpad Prism (V9). Raw luminescence values were transformed into
logarithmic values, normalised and fitted to a dose-response curve using a
non-linear regression; 100% and 0% values were defined by vehicle control
and Staurosporine positive control (Biotechne, MN, USA), respectively.

Flow cytometry
All flow cytometry experiments were undertaken using a CellStream®

(Luminex; TX, US). Cell cycle staining was performed using DAPI ready-
made solution (1 µl/mL, MBD0015; Merck, DE) following the manufacturer’s
instructions. Prior to staining, cells were fixed in 70% ethanol. Cell cycle
profiles were analysed using FlowJo™ 10 using the Watson (Pragmatic)
model; all data met the assumptions of the test. Schematic representations
of cell percentages in different cell cycle phases were graphed using
Graphpad Prism (V9). Values shown are defined as mean; error bars
represent the coefficient of variation. Apoptosis staining was performed
using Annexin V-FITC (640906, Biolegend; CA, US) and Propidium iodide
(PI, 421301, Biolegend) as per manufacturer’s instructions, which included
the use of Annexin V Binding Buffer (422201, Biolegend) and Cell Staining
Buffer (420201, Biolegend). Unstained cells and cells stained with Annexin
V/PI only were used to calculate the compensation matrix that was applied
to all the data to adjust for signal overlap between channels of the
emission spectra. All data met the assumptions of the test.

RESULTS
Epigenomic landscapes reveal novel therapeutic avenues
Deep epigenomic data mining offers an exciting alternative
approach to current computational drug repurposing pipelines
that typically use genomic or transcriptomic datasets [51, 52].
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In this study, we implemented a novel computational approach to
identify potential candidates for the treatment of OC subtypes
(Fig. 1) using both cell line and primary sample H3K27ac ChIP-Seq
datasets as discovery cohorts. Specifically, five primary OC sample
datasets per subtype (HGSC, CC, MC 1–5) and three HGSC
(Kuramochi, OAW42, UWB1.289), CC (JHOC5, RMG-II, ES2) and MC
(MCAS, GTFR230, EFO27) cell line datasets were explored
(Supplementary Table S1). Datasets from patient-derived primary
ovarian samples (IOE4 and IOE11) were used as non-cancerous
controls [21].

Prediction of regulatory elements in ovarian cancer ChIP
samples
Extensive quality control was performed on NGS data as samples
were derived from different sources (Supplementary Table S1).
Based on standard quality check parameters [53], all samples
were deemed acceptable to pursue further analysis. At first,
we undertook peak calling using MACS2, which resulted in the
identification of an average of 65,000 peaks per sample. To
facilitate downstream analyses with MAGIC [19], enriched regions
were also identified using annotated enhancers obtained from the
GeneHancer database [33]. The GeneHancer repository contains
~400,000 human regulatory elements divided into proximal
(promoter), distal (enhancer) and proximal with distal enhancer
functions. Using this approach, we identified 11,485–70,139
predicted regulatory elements per sample (Supplementary
Table S1). Signal enrichment of proximal elements displayed a
bimodal genomic distribution, while distal and proximal/distal
elements displayed a unimodal genomic distribution (Fig. 2a), as
expected [54, 55]. Due to H3K27ac being considered primarily as
an active enhancer mark [10], we decided to concentrate on the

examination of distal and proximal/distal enhancer elements,
henceforth simply labelled as enhancers.
To validate predicted enhancer locations at genomic level, we

evaluated specific enrichment at the sites of well-known
biomarkers of OC. MUC16 is the most widely used biomarker for
OC [56] and we found enhancers linked with its expression in all
HGSC samples and 50% of CC (Fig. 2b). HNF1B is commonly
regarded as a CC-specific biomarker [57]. In accordance, an
enhancer located proximally to its transcriptional start site was
enriched in most CC samples but not in HGSC (Fig. 2b). CEACAM5
is a known tumour marker specific for MC [58] and analysis
identified that corresponding enhancers were enriched in most
MC samples (Fig. 2b).
Prior to differential analysis, we evaluated broad enhancer

landscape similarities and differences, and discovered a clear
contrast between cell line profiles of diseased and healthy
samples (Fig. 2c). Separate clustering was also observed when
analysing profiles of primary cells of all subtypes (Fig. 2d). In most
instances replicates clustered together, confirming the high
reproducibility of samples (Fig. 2c–f). To compare the persistence
of enhancer regions across subtypes, we searched for MACS2
peaks which overlapped with enhancer regions in the GeneHancer
database. Comparison of overlapping regions in HGSC revealed a
total of 112,256 enriched enhancers across all samples, of which
12.8% were present in all primary samples and 9.6% were present
in all cell line samples (Fig. 2g). In the case of CC (6.8% primaries,
15.5% cell lines) and MC (9.5% primaries, 20.5% cell lines), the
overlap is higher in cell lines compared to primary samples
(Supplementary Fig. S1). The largest intersection of enhancers
occurred when comparing all primary samples and cell
lines, suggesting a recurrent but still highly privative and
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sample-dependent enhancer landscape, as has been noted in
cancer cells of colon, gastric and ovarian origin [59–61].

Differential analysis reveals subtype-specific target enhancer
landscapes
Next, we performed differential analysis comparing the peak
strength of H3K27ac-enriched regions between cancerous and
healthy samples (Fig. 3a). We identified a total of 88,245 enhancer

regions that were significantly enriched across the three HGSC cell
lines (Fig. 3b), whereas 86,904 were identified when comparing
HGSC primary cells and healthy samples (Fig. 3c). Differential
analysis of CC and MC cell lines and primary samples rendered
analogous peak representation, while primary enriched peaks were
significantly greater than active enhancers in cell line samples
(Fig. 3d, e). Given that enhancer enrichment, as determined
by elevated levels of H3K27ac, signifies an open chromatin
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architecture, we were keen to understand what this effect could
have on TF and concomitant coregulator recruitment. We therefore
focused only on those enhancer regions that were enriched, and
common to both the cell line and primary sample datasets.
In the case of HGSC, we found an overlap of 23.2% between cell

lines and primary samples, while we observed 12.5% and 20.1% in

CC and MC, respectively (Fig. 3f). Interestingly, we found a global
overlap of 4.7% between the intersected enriched enhancer
regions of the different subtypes. A relatively high percentage of
cell type-specific enhancers were also observed in HGSC (34.3%),
CC (16.7%) and MC (25.6%) (Fig. 3g). Lastly, we assigned enriched
enhancer locations to putative target genes based on GeneHancer
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annotations and performed pathway analyses using WebGestaltR
[40]. Subtype-specific regulatory networks were found to be
strongly associated with predicted enriched enhancer regions
(FDR < 0.05), including NOTCH1 signalling pathways, known to be
altered in HGSC [62] and the ERBB signalling pathway, linked with
CC [57] (Fig. 3h). These results suggest that there is a
predominance of subtype-specific enhancer landscapes, corrobor-
ating earlier observations [12, 13, 61].

Identification of enriched transcription factor binding
Subsets of aberrantly over-represented H3K27ac peaks were
analysed using MAGIC and our custom enhancer matrix, with
534 TFs exhibiting significant enrichment (P < 0.001). This list was
cross-referenced with publicly available RNA-Seq data to filter out
non-expressed TFs (GSE121103) [12], resulting in the identification
of 164 TFs that displayed significant enrichment scores across the
OC subtypes (Fig. 4a and Supplementary Table S2). Of these, 100
(61%) were shared amongst all subtypes, 28 between two
subtypes (17%), and 36 (22%) were subtype-specific (Fig. 4b).
ESR1 and NR3C1were the predominant TFs (Fig. 4c, d), both of
which have been previously associated with ovarian carcinogen-
esis [63, 64]. ESR1 was also the top enriched TF for the HGSC
subtype (Fig. 4c), suggesting a major role for this TF in regulating
aberrant epigenomic landscapes that lead to HGSC tumour
development. As well as hormone receptors, we identified other
major general TFs, like MYC (Fig. 4c, d), a TF that has been
associated with all stages and types of ovarian tumorigenesis [65].

Identification of enriched complex coregulators
Transcriptional regulation involves the recruitment of dynamic
complexes to regulatory regions either subsequently to or together
with the direct binding of TFs [66]. Accordingly, we interrogated the
CORUM database to identify coregulators that are known to
associate with each of the TFs linked with the deregulation of OC
enhancer landscapes [47]. After removing non-expressed coregu-
lators using RNA-Seq data, analysis resulted in the identification of
201 regulatory complexes, of which 175 (87%) were shared
amongst all subtypes, 15 between two subtypes (7.5%), and

interestingly 11 (5.5%) were subtype-specific for either HGSC or MC,
suggesting that OC subtype-specific regulatory complexes could
exist (Fig. 4e and Supplementary Table S3). HGSC subtype-specific
complexes include E2F-1-DP-1-cyclin A-CDK2 and CTNNB1-FERMT2-
TCF7L2, while MC-specific complexes are mainly formed by
interacting SMAD coregulators (Fig. 4e–g and Supplementary
Table S3). Many of the coregulators identified are known to be
present in several of the 201 protein complexes and were
extensively shared amongst the subtypes (259 out of 290), while
only a small percentage were privative of specific subtypes (8 HGSC,
4 CC and 19 shared between 2 different subtypes) (Fig. 4e and
Supplementary Table S3). Amongst the more prevalent cofactors,
HDAC1 and HDAC2 were present in approximately 20-30% of the
identified complexes across OC subtypes (Fig. 4f and Supplemen-
tary Fig. S2).

Coregulator interactions reveal potential drug candidates
Having identified TFs and coregulators associated with aberrant
enhancer switching, we next sought to identify chemical
compounds that could be used to target these regulatory proteins
by assigning chemical/protein interaction scores via STITCH [20].
Despite differences in subtype-specific enhancer landscapes,
potential drug candidates were largely shared between subtypes,
with an 87.9% overlap likely due to shared TFs and coregulators.
The top ten ranked drug candidates for all subtypes were
monopolised by those directly targeting ESR1 and NR3C1 (Table 1
and Supplementary Table S4). Interestingly, Sulindac, a non-
steroidal anti-inflammatory identified in previous in silico reposi-
tioning studies [51], was ranked among the top compounds for all
subtypes (Table 1).
Screening identified seliciclib/CYC202 and SNS-032/BMS-

387032 as HGSC-specific molecules that inhibit CDK2, 7 and 9
[67, 68] (Fig. 5a and Table 1). Both drug compounds have been
investigated for the treatment of solid malignancies in Phase I
clinical trials [69, 70] but they did not progress to Phase II. In
addition, we broadened for potential therapeutic candidates
search, to identify drugs that have not yet been included in clinical
trials for any cancer setting by exploring the CHEMBL database

Fig. 4 Identification of enriched transcription factor binding and associated complexes. a Binding motifs identified by FIMO for top three
predicted enriched TFs in enriched HGSC, CC and MC enhancer sites. b Subtype unique TFs with enriched binding in enriched enhancer sites.
c MAGIC score of top ten TF binding sites for enriched GeneHancer enhancer sites in HGSC, CC and MC subtypes after filtering using MOTIF
analysis and RNA-Seq expression levels. d Subtype-specific significant enrichment of TFs for the top twenty significantly enriched TFs from
each subtype. e RPKM score from RNA-Seq HGSC and MC primaries for complexes only identified in HGSC and MC samples, respectively.
Green borders indicate TFs identified in the pipeline and blue borders indicate complex coregulators. f Number of complexes where each
coregulator is a component for HGSC samples, including only coregulators present in more than ten complexes. See also Supplementary
Fig. S2 for coregulators of CC and MC samples. g E2F-1-DP-1-Cyclin A-CDK2 complex identified uniquely in HGSC. Created with
BioRender.com.

Table 1. Top-ranked compounds predicted to target OC cells based on subtype-specific enhancer landscapes.

OC subtype Target Drugs Comments

High-grade serous, clear cell
and mucinous carcinomas

PPARG Rosiglitazone, Pioglitazone
Telmisartan, Rapamycin

Anti-diabetic and anti-inflammatory drugs. First two
withdrawn from market in several countries

ESR1 Fulvestrant, estradiol, tamoxifen,
afimoxifene

Oestrogen receptor modulators

NR3C1 Mifepristone, hydrocortisone,
dexamethasone

Anti-glucocortidoids and glucococorticoid
medication

CTNNB1 Sulindac, dinoprostone,
indomethacin

Non-steroidal anti-inflammatories (NSAIDs)

High-grade serous carcinomas CDK2 Seliciclib, SNS-032 Tested in vitro

EHMT2 Flavopiridol, BIX-01294, UNC0646 Tested in vitro

EZH2 Ademetionine, GSK503, GSK343 Tested in vitro

Clear-cell carcinomas SRC, CDK7 Dasatinib, Alvocidib —

Mucinous carcinomas NFYA, FOXH1 Icosapent, Galzin —
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[48] (Supplementary Table S4). Using this approach we identified
BIX-01294, a molecule that inhibits histone methyltransferase
EHMT2/G9A, involved in anti-tumour immune response and
chemoresistance in HGSC [71] (Fig. 5a and Table 1).

Validation of predicted HGSC-specific therapeutics
The efficacy of selected molecules was evaluated in primary cells
derived from late-stage HGSC clinical samples and cell line models

(Fig. 5b, Supplementary Table S5 and Supplementary Fig. S3). The
histone acetyltransferase inhibitor i-CBP112 ranked poorly
(~400th) and was selected as a negative control. Overall, SNS-
032 exhibited potent and clinically achievable anti-tumour activity
across the panel of patient samples and cell lines; seliciclib and
i-CBP112 showed little to no activity (IC50 > 10 μM) (Fig. 5b, c and
Supplementary Fig. S3). Although SNS-032 was primarily selected
based on its activity against CDK2, it is also sensitive to CDK7/9
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(IC50 in cell-free assays: 4 nM [CDK9], 48 nM [CDK2] and 62 nM
[CDK7]) [67]. To validate the specific vulnerability of HGSC towards
CDK2 inhibition, we tested the CDK1/2 inhibitor NU-6102 and the
CDK2-specific inhibitor AUZ 454. Whilst NU-6102 showed no
activity (IC50 > 10 μM), probably due to its higher sensitivity
towards CDK1, AUZ 454 exhibited considerable levels of anti-
tumour activity in the range of μM (Supplementary Fig. S3),
suggesting an abnormal behaviour of CDK2 in HGSC. Next, we
performed qRT-PCR and western blot analyses to confirm
predicted modes of action. The expression of known CDK2 targets
was significantly upregulated following SNS-032 treatment
(Supplementary Fig. S4) [72]. At the same time, CDK2-specific
target Rb-Thr821 was de-phosphorylated after exposure with SNS-
032 and AUZ 454 [73], indicating the presence of a CDK2-specific
mechanism of action. In addition, we performed cell cycle and
apoptosis assays which, as expected, led to apoptotic cell death
coupled with cell cycle arrest (Fig. 5d, e and Supplementary
Fig. S5).
We also tested compounds BIX-01294 and UNC0646 targeting

EHMT2 as well as GSK503 and GSK343 targeting methyltransferase
EZH2 as means of comparison. After 72 h, both EHMT2 inhibitors
exhibited potent anti-tumour in vitro activity in all models (Fig. 5b,
c and Supplementary Fig. S3). Neither of the EZH2 inhibitors was
able to match the in vitro efficacy observed with BIX-01294 or
UNC0646 (Fig. 5b, c and Supplementary Fig. S3). The expression of
known EHMT2 targets was significantly up and/or downregulated
following treatment [74], and EHMT2 inhibition led to a significant
decrease in the levels of H3K9me2, the main histone methylation
target of EHMT2 (Supplementary Fig. S4); these results point to a
specific EHMT2-driven effect. EHMT2 inhibition led to increased
levels of cellular apoptosis, whereas no significant changes were
observed in the DNA profile (Fig. 5d, e and Supplementary Fig. S5).
Overall, the results of in vitro validation studies in patient-derived
cells and cell lines further confirmed the efficacy of our approach,
supporting the concept of epigenomic profiling as means to guide
therapeutic strategies.

DISCUSSION
In 2012, the ENCODE project proposed that there were 400,000
regions with enhancer-like features in the human genome [75].
Since then, numerous studies have investigated the epigenomic
landscape of cancer, labelling active enhancers in the regions of
tens of thousands per cell type. For example, Lidschreiber et al
identified 58,457 putative enhancers across 7 cancer cell lines
from different origins [76], Mack et al. profiled more than 30,000
enhancers in ependymoma primary cells [77] and Ooi et al.
detected 36,973 predicted distal enhancer regions in gastric
cancer cell lines [60]. In ovarian cancer, Shang et al identified
36,388 regulatory elements across four cell line models [61]. We
have refined this approach to define cancer-associated enhancer

landscapes and have identified aberrant enhancer activity
associated exclusively to specific OC subtypes. Linking broad
epigenomic signatures, in this case H3K27ac, we were subse-
quently able to map enhancer locations to enriched TF binding
sites and associated coregulator proteins. Interestingly, through
this process, we observed a notable disparity between the
subtype-specific nature of most abnormal cis-regulatory elements
and the fact that the TFs, and more pronouncedly, the cofactors
governing such networks display substantial homogeneity across
the range of studied OC subtypes.
To discover novel therapeutic agents for OC, we sought to

identify chemicals that targeted the TFs and coregulators uniquely
enriched at enhancers. To validate our findings and the usefulness
of our approach, we tested the in vitro efficacy of a subset of
pipeline drug outputs in patient-derived primary samples. SNS-
032 is a potent and selective CDK2, 7 and 9 inhibitor [67], whose
in vitro efficacy has been proven in OC cell lines, and their
sensitivity towards this compound linked with cyclin E1 over-
expression, relatively common in HGSC patients (15–20%) [78].
SNS-032 was investigated for the treatment of haematologic and
solid malignancies in two Phase I clinical trials [69, 70] but no
further developments have been undertaken. We extended
previous investigations on the effect of SNS-032 in OC using
patient-derived primary samples and cell lines, although unfortu-
nately, we could not confirm sample CCNE1 status. Our study
suggests that SNS-032 represents a good therapeutic option for
HGSC patients, given its outstanding efficacy in vitro. In contra-
position, seliciclib or NU-6102 displayed overall lower in vitro
efficacy levels, which correlates with known IC50 values obtained
in cell-free assays as well as previous in vitro observations [79].
Importantly, CDK2 was one of the few cofactors uniquely
identified in HGSC, as part of the protein complex E2F-1-DP-1-
cyclin A-CDK2 [80]. Our findings highlight the critical role of this
cofactor modulating broad epigenomic landscapes and demon-
strate a potential for further research into the clinical effectiveness
of targeting CDK2 in HGSC.
In our effort to put forward new therapeutic targets against

HGSC, we performed further in vitro testing of compounds
targeting EZH2 and EHMT2 molecules. Preclinical studies have
previously highlighted the potential of targeting EZH2, although
no clinical trial is currently investigating the use of EZH2 inhibitors,
specifically in OC subjects [81]. The EHMT1/2 inhibitor BIX-01294 is
known to block the proliferation of cancer cell lines but has shown
considerable toxicity problems in preclinical studies [82]. We have
shown that while EZH2 inhibitors mainly displayed poor in vitro
efficacy results, BIX-01294 analogue UNC0646 exhibited an
improved response, with IC50 values in the range of ~1–3 μM
across the studied samples.
Epigenomic deregulation continues to emerge as a key driver in

ovarian tumorigenesis, and more specifically in the differentiation
of OC subtypes [23]. Such epigenomic deficiencies have the

Fig. 5 Drug compound selection and validation of drug efficacy using clinical samples. a Network diagram of HGSC targets (CDKs and
EHMT2) and targeting compounds (STITCH score >0.95). Edge thickness represents combined STITCH confidence score. Round nodes and
diamond nodes represent compounds that have undergone some phase of clinical trials and have not undergone clinical trials, respectively.
Compound node colours represent compound mechanism of action (MOA). Factor node outline colour indicates the number of the expressed
complexes which the factor is a component of. Red and green highlight circles indicate CDK and EHMT-related protein groups respectively.
b Heatmap representing the effect of drug compounds on patient-derived clinical samples treated for 72 h. Each 4 rows of the heatmap
represent the top concentrations used to derive IC50 values (10 μM, 1 μM, 100 nM and 10 nM). Heatmap values were calculated using relative
viability compared to the vehicle control (DMSO). Red colour indicates low viability following treatment. c Table displaying calculated best fit
IC50 values after 72 h of treatment with varying concentrations (10 pM-10 μM) of displayed drug compounds. DMSO was used as vehicle
control and staurosporine was used as positive control (+). d Flow cytometry cell cycle analyses of CAOV3 and OVCAR-3 cells treated with
selected compounds for 24 h. Bar chart error represents coefficients of variation (cv). Blue peaks represent cells in G0/G1, while green peaks
represent cells in G2/M phase. The area depicted as yellow represents cells in the S phase. e Flow cytometry apoptosis analysis of CAOV3 and
OVCAR-3 cells treated with selected compounds for 24 h. Cells were stained with Propidium iodide and Annexin V-FITC, rendering 4
populations: viable (−, −), early apoptotic (−,+), late apoptotic (+, +) and dead (+, −), three of which are highlighted in the panels. Graphs
display cell densities, whereby red, green and blue colours indicate high, medium and low cell densities, respectively.
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potential to be targeted with existing therapies already in clinical
or preclinical trials for other diseases. Here we present the first
attempt to investigate subtype-specific enhancer re-programming
aimed at drug discovery and repurposing in OC. Overall, in silico
and in vitro investigations suggest that EHMT2, together with
CDK2, represent the best candidates to pursue further preclinical
studies aimed at improving HGSC treatment strategies. The
effectiveness of this approach, identifying potential candidate
molecules based on the evaluation of one histone mark alone, is
extremely encouraging. Combining enhancer-localised epige-
nomic datasets for H3K27ac and other histone marks could lead
to further subtype stratification using this approach.
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