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Abstract 

Spiking Neural Networks (SNNs) can closely mimic the biological neural network systems. 

Recently, the SNNs have been developed in hardware circuits to emulate the time encoding 

and information-processing aspects of the human brain in real-time. However, the hardware 

SNN systems are suffering from large hardware resource consumption due to the high com- 

plexity of computational units. In this paper, a novel hardware SNN system based on stochastic 

computing is proposed to address this problem. Pair-based spiking-timing-dependent plas- 

ticity, coupled with integrate-and-fire neurons are employed to design the SNN. Stochastic 

computing can simplify the computational components of multipliers, adders, and subtrac- 

tors in conventional hardware SNNs, hence reduce the hardware resource cost. Experimental 

results show that compared with the state-of-the-art approaches the proposed SNN system 

reduces the resource consumption by 58.0% (especially registers by 65.6%). In the mean- 

time, the maximum normalized root mean square error between the proposed hardware and 

others is only 0.0097, which can maintain the behaviours of SNN. This work provides a 

beneficial alternative to the large-scale hardware SNN implementations. 

Keywords Spiking neural networks · Pair-based spiking-timing-dependent plasticity · 
Integrate-and-fire neurons · Stochastic computing 

 
1 Introduction 

 
Spiking Neural Networks (SNNs) are known as the third generation of Artificial Neural Net- 

works (ANNs), and they can more closely emulate information processing of the mammalian 

brain than traditional ANNs [1–4]. Spike Timing Dependent Plasticity (STDP) is a widely 

used learning method for SNNs, which is thought to play an important role in learning and 
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brain computation. It is considered most suitable for unsupervised training of feedforward 

SNNs and is similar to the biological behaviour [5–7]. Recently, the STDP is emulated by 

the software and hardware platform. For the software platform, the computer systems of 

conventional processors are applied to emulate the STDP [8–10]. The advantage of these 

software systems is that the emulated neurons are more flexible and the neuron models are 

more complex, and the disadvantage is that software platform cannot satisfy the requirement 

of parallel updating of state of neurons in the human brain. Thus the analog circuits and mem- 

ristors are used to implement the STDP [11–14]. However, they are not configurable, and 

modifying a small part of the circuit requires a long development cycle. Field Programmable 

Gate Array (FPGA) devices with massive reconfigurable logical, computing, and memory 

resources have been used to implement the STDP. For example, a digital implementation of 

the STDP learning rule using a stochastic approach is developed in [15], which realizes the 

computationally expensive exponential delay and is capable of producing the same results 

to a more complex STDP model. Look-Up-Tables (LUTs), piecewise linear approximation, 

and Base-2 approximation are used in the approach of [16] to design a new STDP model with 

low computational complexity. The COordinate Rotation DIgital Computer (CORDIC) algo- 

rithm is used to implement the exponential function required for STDP in [17]. These methods 

reduce the consumption of hardware resources in hardware implementation of exponential 

functions, thus reducing the hardware cost. However, these approaches still have relatively 

low accuracy, large hardware resources and power consumption, which is not conducive for 

the scalability of large-scale SNNs. To deal with this problem, the phenomenological model 

of STDP is developed in the approach of [5]. Each spike train is converted to a continuous 

local variable through a low-pass filter, and only the current pre- and post-synaptic spikes are 

considered for the update of synaptic weight.The multiplications of phenomenological STDP 

can be implemented by using the powers of 2, i.e., 2N in [18]. However, the approximation 

method still has relatively low accuracy in [18]. Therefore, building a low-cost hardware 

SNN with STDP is still a big challenge. 

To deal with this problem, another alternative to optimize the hardware cost and power 

consumption is proposed in [19], which is namely Stochastic Computing (SC). In the SC, 

the conventional arithmetic operations are replaced by the operations between stochastic 

bitstreams to decrease computational resources and complexity [20]. The SC has been widely 

used to address computing problems at a low cost. Several Finite State Machine (FSM)- 

based SC elements are used to implement basic digital image processing algorithms [21]. In 

addition, low-density parity-check codes based on the SC is proposed in [22], which  has a 

high speed and reduces the decoding complexity. The SC is also used to implement ANN. 

In the research of [23], a novel extended stochastic logic is proposed, which is used for 

efficient ANN implementation. An efficient way of hardware ANN is proposed by combining 

conventional binary radix computation and the SC technique [24]. 

To the authors’ best knowledge, the SC has not been applied to develop the STDP in  the 

SNNs. Inspired by these works, in this paper, an efficient hardware structure of SNN is 

designed, especially for the optimal design of the learning algorithm in synapses. The SC 

technique is used to achieve this design, and a novel hardware SNN with Pair-based STDP 

(PSTDP) based on the SC is proposed in this paper. The SC technique is employed to sim- 

plify the computational components of multipliers, adders, and subtractors in conventional 

hardware SNNs. The proposed system is synthesized and implemented on an FPGA device 

and experimental results show that only 323 LUTs and 491 registers are required by using 

the proposed system, and a low hardware resource consumption performance is obtained. 

The area and power consumption are evaluated by the SAED 90 nm CMOS technology, and 



 

 

 

the hardware area is 27,565 ¯m2, the power consumption is 2.32 mW. Moreover, the maxi- 

mum Normalized Root Mean Square Error (NRMSE) between the proposed and the original 

models is 0.0097, i.e., the model behaviour is maintained. Contributions of this paper can 

be summarized as follows: (a) The SC technique is employed for IF neurons, synapses and 

PSTDP learning rule in the SNN hardware implementation where arithmetic operations are 

replaced by stochastic bitstreams with minimized hardware resource consumption, leading to 

a hardware friendly SNN. (b) A hardware SC-based PSTDP learning rule (SC-PSTDP) is pro- 

posed to modulate the synaptic weight changing process and maintain the system scalability. 

(c) To validate the efficiency of the proposed SC-SNN, it is synthesized and implemented on 

FPGA device, and comparison results with previous works show that the proposed work can 

achieve a trade-off between the performance and hardware cost. The proposed SC-PSTDP 

is critical for the SNN hardware as it determines the learning process and system scalability. 

The synaptic weight regulation happens at each synapse, thus a good scalability can be main- 

tained if the learning control component has a low hardware cost. The proposed SC-PSTDP 

reduces the hardware consumption by using the SC technique, especially the DSP blocks 

which are expensive for FPGA devices. Thus, it can aid implementing the large-scale SNNs 

at a relatively low cost for the hardware system. The proposed SC-PSTDP in this paper is not 

limited to specific tasks. Besides, while maintaining the behavior of traditional STDP, the 

consumption of hardware resources is reduced and the scalability is improved by using the 

SC technique. Thus, the proposed SC-PSTDP provides an alternative for the SNN hardware 

implements. 

The rest of this paper is organized as follows. Section 2 describes the related works of the 

STDP in the SNNs. Section 3 introduces the theoretical background of the neuron, synapse, 

PSTDP learning rule and the SC. Section 4 describes the hardware architecture of SNN by 

using the proposed method and Sect. 5 provides performance analysis and comparisons with 

other works. Finally, the conclusion is presented in Sect. 6. 

 
 

2 Related Works 
 

As an unsupervised learning rule in the SNNs, the STDP has been widely explored recently. 

There are two main platforms for implementing STDP, one is the software architecture and 

the other is the hardware architecture. Specifically, the hardware implementation includes 

analog and digital circuits. 

 
2.1 Software-Based Architectures 

 
Recently, the computer systems employing conventional processors are applied to implement 

the STDP in the SNNs [8, 9, 25]. For example, a novel supervised learning approach based 

on an event-based STDP is proposed in [9], which is evaluated on the XOR problem. A pre- 

training scheme using STDP is proposed in [25], and it is used to train the deep SNNs. The 

experiment shows that the proposed method improves robustness and reduces the training 

time. However, they are all based on the von Neumann structure which is characterized by 

serial execution. It cannot satisfy the requirement of parallel updating of state of neurons in 

the human brain, thus software implementation cannot guarantee the behaviour of a large 

neural network in real-time. 



 

 

2.2 Hardware-Based Architectures 

 
The analog and digital circuits are applied to implement the STDP of SNNs [15–17, 26–28]. 

The Leaky Integrate-and-Fire (LIF) and STDP models for SNNS are implemented by the 

analog circuit in the approach of [26]. The analog programming is used to generate the STDP 

with arbitrary behaviour [27]. Although the analog circuits require very little silicon area, 

they have relatively low noise resistance and reliability. Besides, they are not configurable 

and flexible [15]. For example, even a small modification to the designed neuron model and 

STDP requires a long development cycle. To deal with this problem, the FPGA device is 

used to implement the neurons and the STDP in the SNNs [15, 16, 28]. The Izhikevich 

neuron model and STDP learning rule based on CORDIC method are implemented on FPGA 

devices in [17]. The combined circuit is designed to realize the complex computation of kernel 

function, and arithmetic shift is used to replace the multiplication operation in [29]. In [30], a 

neural computing hardware unit and a neuromorphic system architecture based on LIF neuron 

model are proposed. In [31], a digital hardware architecture for spiking force is designed. 

The Euler method and the RK3 method are applied to implement the SNNs on FPGA [32]. 

In [33], an SNN based on CORDIC with on-line STDP learning is presented. These methods 

aid to reduce the hardware cost, especially, the usage of multipliers. The SC is also used to 

implement the neuron and synapse models in the SNNs [15, 23, 28]. The Izhikevich neuron 

model is implemented by using the SC technique in [28], which can reduce area and power 

consumptions. This research shows that the SC technique can reduce the hardware cost of 

neuron and synapse models. Thus, the Integrate-and-Fire (IF) neuron and synapse models 

are implemented by the SC technique in this paper. Furthermore, the SC-PSTDP learning 

rule is proposed to modulate the synaptic weight changing process to enhance the scalability 

of the large-scale SNNs. The proposed method in this paper requires less hardware resources 

and has a high accuracy compared with other approaches. 

 
 

3 Preliminaries 
 

The SNN is composed of neurons and synapses. The neurons receive and respond to input 

spikes from other neurons, and synapses transmit information via spikes between neurons. 

In this section, spiking neurons, synapse models, the PSTDP learning rule, and the SC are 

introduced. 

 
3.1 Neuron Model 

 
Neurons are the basic components of the biological neural network systems. Massive neu- 

rons are interconnected in a network, which gives the nervous system powerful capacities for 

information processing [34, 35]. Researchers have proposed various mathematical models 

of neurons to closely mimic the behaviour and function of biological neurons. For exam- 

ple, Hodgkin–Huxley model is able to express many biological behaviours of neurons [36]. 

However, its circuit implementation is quite complex and consumes lots of resources, which 

constraints large-scale network simulation in real-time. The Izhikevich model aims to closely 

mimic the biological neurons [37], and the IF model has higher computational efficiency and 

few parameters of neurons, and it exhibits essential biological features [38]. Therefore, the 
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IF model is used as the neuron model in this paper, which is given by 

dv 
τm 

dt  
= Rm  I (t) , (1) 

where τm is the membrane potential time constant, v represents the membrane potential of 

the neuron, Rm denotes the membrane resistance, and I (t) is the current injected into the 

membrane from the synapse. When the membrane potential v exceeds the threshold vth , it 

will reset to vrest , and the neuron will fire a spike. 

 
3.2 Synapse Model 

 
The synapse is responsible for transmitting spikes from presynaptic to postsynaptic neurons 

and plays a significant role in memory and learning in the SNNs. The strength or performance 

of a synapse can be modulated by presynaptic and postsynaptic activities. Some mathematical 

models of synapses are developed to closely emulate the behaviour and function of synapses 

[39–41]. Considering the low-cost implementation of synapse model in hardware circuits, 

the α dynamic synapse model in [39] is employed in this work, and it is described by 

τ
 d Isyn 

= −Isyn + C 
. 

wij δ 
.
t − t f 

Σ 
, (2) 

where Isyn denotes the injected current, τ is the time constant for the decay of Isyn , C is a 

constant, n represents the number of spikes fired from presynaptic neuron j , wij denotes the 

synaptic weight between postsynaptic neuron i and presynaptic neuron j , t f is the arrival 

time of a presynaptic spike, and δ (t) denotes the Dirac delta function. Particularly, if a 

presynaptic spike arrives, the synaptic current Isyn is increased, otherwise, it is decreased. 

 
3.3 PSTDP Learning Rule 

 
The STDP is one of plasticity rules and it is used to learn and memorize in the SNNs [42]. 

Specifically, synaptic weight is changed according to the time difference between the pre- 

and post-synaptic spikes. If the presynaptic spike arrives before the postsynaptic spike, the 

synaptic weight will be potentiated. Otherwise, it will be depressed [43]. Particularly, the 

STDP learning rule has several variants [44, 45]. Among them, PSTDP has less computational 

complexity, and it is used in this paper. The PSTDP can be easily represented with two 

variables of x j and yi . The x j and yi are updated by 

 dx j  x j . . f 
Σ 

 

 d yi    yi . 
. 

f 
Σ 

 

where the x j and yi are the low-pass filtered version of the presynaptic spike train and 

postsynaptic spike train and they are only affected by the presynaptic spike and postsynaptic 

spike. When the presynaptic neuron fires a spike, the variable x j will increase; otherwise, it 

will decrease exponentially with time constant τ+. Similarly, the postsynaptic spike leaves 

a trace yi . When the postsynaptic neuron fires a spike, the yi will increase; otherwise, it will 

decrease exponentially with the time constant τ−. The τ+ and τ− are the time constants 

, (3) 
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of traces of presynaptic and postsynaptic spikes, and they affect the trajectory attenuation. 

Generally their values are based on the findings of biological experiments, but they may vary 

according to different approaches. In this paper, referring the approach of [5], τ  and τ are 
set as 10 ms. t f and t f represent the firing times of the presynaptic neuron and postsynaptic 

j i 

neuron, respectively. δ (t) is the Dirac delta function. When the pre- or post-synaptic spike 

arrives, the change of synaptic weight is calculated by 

 dwi j  
= −Bi yi (t) 

. 
δ 

.
t − t f 

Σ 
+ Bj x j (t) 

. 
δ 

.
t − t f 

Σ 
, (5) 

 

where wij is the synaptic weight between postsynaptic neuron i and presynaptic neuron j , 

Bi and Bj denote the maximum weight change amplitudes. The change of the weight is 

proportional to the postsynaptic spike trace yi or the presynaptic spike trace x j . 

 
3.4 Stochastic Computing 

 
The SC technique requires a longer computation time than the traditional arithmetic operation 

[46], as the computing data of SC is represented by a stochastic sequence. The stochastic 

sequence is a pseudo-random bitstream generated by Stochastic Number Generator (SNG) 

[46, 47]. However, complex arithmetic operators are replaced by the simple logic gates in the 

SC, thus the consumption of hardware resources is reduced. In the SC, there are two coding 

formats: unipolar and bipolar. A pseudo-random bitstream S with a length of L-bit is used to 

represent a random number X , and has L1-bit for logic one and (L L1)-bit for logic zero. 

For unipolar representation, the probability of random number X is px [0, 1], which is 

calculated by  px    L1/L. For bipolar representation, the probability of random number X is 

py  [   1, 1], which is calculated by a mapping function: py   2 px   1   (2L1  L)/L. Some 

basic computation elements, such as an SNG, a Stochastic Computing Element (SCE), and a 

de-randomizer are required in the SC. The circuit structure of SC addition is described in Fig. 

1 a, which contains SNG1, SNG2, a multiplexer, and a counter. Among them, the SNG1 

and 2 convert the traditional binary numbers of the inputs into stochastic sequences. In 

addition, the SNG is composed of a Linear Feedback Shift Register (LFSR) and a comparator, 

where the LFSR can generate pseudo-random numbers, then it is compared to the input 

binary number. The comparator outputs one if the pseudo-random number is less than the 

input binary number, otherwise, zero is the output [47]. In Fig. 1a, the X 1 represents the 

binary number, and the Y 1 represents the pseudo-random number. X 1 and Y 1 is the input of 

comparator, and SN 1 is the output of comparator. The counter is responsible for converting 

the output stochastic sequence of the SCE into a binary number. The range of a random 

number is [0, 1] in unipolar, so the addition result of two random numbers ranges in [0, 2]. To 

satisfy the range of SC in unipolar, a scale factor (0.5) is needed in multiplexer. Particularly, 

two separate SNG blocks are used to make the generated stochastic bitstreams uncorrelated. 

Different seeds are selected in the SNG to improve the accuracy of SC. Moreover, the SCE 

is composed of basic arithmetic operations, mainly including multiplication, addition, and 

subtraction, which are introduced as follows. 

 
(a) Multiplication In the unipolar format, a multiplication operation of two stochastic bit- 

streams is implemented by a simple two-input AND-gate. In the bipolar format, it is 

implemented by an XNOR-gate. These operations are shown in Fig. 1b, where A, B, and 

C denote the binary number, (e.g., A = 0.1002 is represented by p ( A) = 4/8), i.e., the 

f f 
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Fig. 1 The structure of SC arithmetic operations. a Hardware structure of SC addition; b SC multiplication; 
c SC addition; d SC subtraction 

 

 

 

number of logic ones is 4 in stochastic bitstreams and the length of stochastic bitstreams 

is 8. 

(b) Addition As can be seen from the Fig. 1b, the range of a random number is [0, 1] in unipolar 

format, so the addition result of two random numbers ranges in [0, 2]. A multiplexer is 

used to scale the addition operation to [0, 1] to satisfy the range of SC in unipolar. 

Therefore, the addition formula is p(C) p( A) p(B) /2, and its implementation is 

shown in Fig. 1c. 

(c) Subtraction The only difference between subtraction and addition is that an NOT-gate is 

added in subtraction, which is described as Fig. 1d, and this processing structure is only 

suitable for bipolar format. 

 
 

4 Methodology 
 

In this section, the SNN hardware system based on the SC technique, called SC-SNN, is 

presented. Specifically, the proposed system is composed of SC-IF, SC-Synapse, and SC- 

PSTDP. The overall architecture of the system is shown in Fig. 2 a. Their implementation 

circuits are described in detail in this section. In addition, considering the multiple uses of 

multiplication, addition, and subtraction operations in hardware implementation, the multi- 

plexing method is also used in this work to reduce hardware resource cost. Particularly, it can 

be seen from the circuit structure that there are no complex and luxurious multipliers which 

are widely used in conventional designs. 

 
4.1 SC-IF Neuron Model 

 
The function of neurons is to receive, process, and fire spikes in the SNNs. The IF neu- ron 

implementation based on the SC technique, namely SC-IF, is designed. Specifically, 



 

 

Fig. 2 a The overall architecture of 
system; b SC-IF; c 

SC-Synapse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

according to the Euler method [48], differential Eq. 1 of neuron model can be simplified as 

 

h 
v(t + 1) = v(t) + 

τm 
Rm I (t ), (6) 

where τm is the membrane potential time constant, v represents the membrane potential of the 

neuron, Rm denotes the membrane resistance, I (t) is the current injected into the membrane 

from the synapse, h is time step, and an adder and a multiplier are needed for hardware design. 

Specifically, the adder is implemented by the multiplexer and the multiplier is implemented 

by the AND-gate in the SC. The architecture of SC-IF hardware is described in Fig. 2b, 

which is composed of a controller, multiplexer, counter, and comparator. The multiplexer is 

responsible for the accumulation of membrane potential. Because the output of multiplexer 

is a stochastic sequence, it is converted into a binary number of membrane potential by a 

counter. Then the membrane potential vm is compared to the threshold vth . If the vm is greater 

than the threshold, a spike is fired by SC-IF. Moreover, the controller 1 is an FSM, which is 

used to control neurons to fire spikes. The function of each state is presented as follows. S0 is 

the initial state of the neuron. The state will go to S1 after a time step. In state S1, the neuron 

utilizes the circuit of adder to update membrane potential vm . The neuron will transfer from 

S1 to S2 and fire a spike in state S2 until membrane potential is greater than the threshold 

vth . Note that input and output data of the multiplexer in Fig. 2 are stochastic bitstreams. 
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4.2 SC-Synapse Model 
 

The α dynamic synapse model is used in the SNN. Its low-cost hardware implementation is 

a great challenge due to its complex mathematical operations, hence the α synapse model 

based on the SC technique is designed in this work, which is defined as the SC-Synapse 

model. Specifically, differential Eq. 2 of synaptic model can be simplified as 

Isyn (t + 1) = Isyn (t) −
 h I syn (t) 

+
 hC . 

wij δ 
.
t − t f 

Σ 
, (7) 

where Isyn denotes the injected current, τ is the time constant for the decay of Isyn , C is a 

constant, h is the time step, n represents the number of spikes fired from presynaptic neuron 

j , wij denotes the synaptic weight between postsynaptic neuron i and presynaptic neuron j . 

δ (t) is the Dirac delta function, and t f represents the firing times of the presynaptic neuron. 

To simplify the arithmetic operations, Eq. 7 can be further simplified to 

Isyn (t + 1) = Isyn (t) AI + B 
. 

wij δ 
.
t − t f 

Σ 
, (8) 

k=1 

where AI    1    h/τ , B hC/τ . The architecture of the SC-Synapse is shown in Fig. 2c. If a 

presynaptic spike arrives, the synaptic current Isyn is increased by synaptic weight wij , i.e., the 

multiplexer is needed to update the synaptic current; otherwise Isyn has an exponential decay 

where the AND-gate is used. As can be seen that only an AND-gate and a multiplexer are 

contained in the architecture of the SC-Synapse, so the aim of reducing hardware resource cost 

is achieved. 

 
4.3 SC-PSTDP Learning Rule 

 
The trace equations for implementing the PSTDP learning rule are simplified by the Euler 

method. Then the SC method is used to implement the PSTDP learning rule, namely SC- 

PSTDP. The differential Eqs. 3 and 4 can be simplified as 

x j (t + 1) = x j (t) −
 hx j (t) 

+ h 
. 

δ 
.
t − t f 

Σ 
, (9) 

yi (t + 1) = yi (t) −
 hyi (t) 

+ h 
. 

δ 
.
t − t f 

Σ 
, (10) 

 

where the x j and yi are the low-pass filtered version of the presynaptic spike train and 

postsynaptic spike train, respectively, τ+ and τ− are the time constants for the decay of x j 

and yi , h denotes time step. To reduce the hardware resource cost by using the SC technique, 

Eqs. 9 and 10 can also be simplified as 

x j (t + 1) = x j (t) A j + h 
. 

δ 
.
t − t f 

Σ 
, (11) 

f 

yi (t + 1) = yi (t) Ai + h 
. 

δ 
.
t − t f 

Σ 
, (12) 
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where A j = 1 − h/τ+, Ai = 1 − h/τ−. When a presynaptic spike arrives, the trace x j is 

increased. Equation 5 can be simplified as  dwij  = −Bi yi (t). Then according to the Euler 
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Fig. 3 a The overall architecture of SC-PSTDP; b Controller2; c Stochastic arithmetic unit (All input and 
output data are stochastic bitstreams) 

 
 

method, it can be simplified as wij (t +1)−wij (t) = −Bi yi (t). Similarly, when a postsynap- 

tic spike arrives, the trace yi is increased. Equation 5 can be simplified as dwij Bj x j (t), then 

wij (t 1) wij (t) Bj x j (t) can be obtained. Thus, the weight change Ow can be described 

as 

Ow1(t + 1) = yi (t)Bi , (13) 

Ow2(t + 1) = x j (t)Bj , (14) 

where Ow1 and Ow2 denote the synaptic weight changes, and they only depend on the time 

difference of pre- and post-synaptic spikes. Bi and Bj represent amplitudes. The synaptic 

weight is obtained by 

w (t + 1) = w (t) − Ow1(t ), (15) 

w (t + 1) = w (t) + Ow2(t ). (16) 

If a presynaptic spike arrives, the synaptic weight is depressed by Eq. 15. Similarly, it is 

potentiated by Eq. 16. In this work, the SC technique is used to calculate the Eqs. 11 to 16. 

The overall architecture of SC-PSTDP is shown in Fig. 3a, which contains three components: 

a controller 2, an SNG, and a stochastic arithmetic unit. 

Specifically, the stochastic arithmetic unit is responsible for logic operations, which is 

shown in Fig. 3c. x j and yi denote the trace of pre- and post-synaptic spikes, A j and Ai 

represent the attenuation coefficients of pre- and post-synaptic spikes trace, respectively, Bi 

and B j are amplitudes. w (t) describes the synaptic weight at time t . 0.5 represents a stochastic 

bitstream that the number of 1’s is 50% in the bitstream (e.g. 01011010...). All the input and 

output data in Fig. 3c are stochastic bitstreams. As can be seen that only four AND-gates, a 

NOT-gate and two multiplexers are required in the SC-PSTDP learning rule. Figure 3b 

describes the controller 2 in detail. According to Eqs. 11 to 16, seven states are required   to 

control the implementation of the SC-PSTDP. The function of each state is presented as 

follows: The system goes to state S0 where the initial values of SC-PSTDP are set. If a 

presynaptic spike arrives (i.e., presynaptic spike signal is high), the system is changed to S2 

where the value of the presynaptic spike trace is increased. If a postsynaptic spike is detected, 
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the system is changed to S3 where the value of the postsynaptic spike trace is increased. If 

there is no spike coming, the next state is S1 where the traces of pre- and post-synaptic spikes 

and synaptic current decay exponentially. If the trace value of pre- or post-synaptic spike is 

increased, the system is switched from S2 to S4 or S3 to S5. In state S4 or S5, weight change 

is calculated. Then when the weight change is calculated completely, the system is turned to 

S6 where the weight is updated. After all the computations are completed, the system returns 

to the S0 state. In this way, the synaptic weight has been updated once. 

 
 

5 Results 
 

In this section, the proposed SC-SNN hardware system with LFSR of three different pre- 

cisions is implemented using Verilog Hardware Description Language and verified on the 

FPGA device. Several performance metrics (Root Mean Square Error (RMSE), NRMSE, 

correlation, and hardware resources) are used to measure the SC-SNN. Experimental results 

of the proposed system are given and compared with others. 

 
5.1 Performance Evaluation 

 
A. Performance of SC-IF The performance metrics of SC-IF mainly include the RMSE, 

NRMSE, and correlation, which represent the similarity between the proposed SC-IF 

hardware and conventional IF neuron. Specifically, the RMSE and NRMSE are calculated 

by 

 
RMSE(Verr ) = 

 
1 M 

M 
i =1 

 
 

2 
err 

Σ1/2  
, (17) 

NRMSE(V , V ) 
RMSE 

 
Vmax − Vmin 

, (18) 

where Verr  (Vsc   Vori ), Vsc  is the membrane potential of the SC-IF neuron, Vori denotes 

the membrane potential of the original IF neuron model, M denotes the number of 

available data points in the selected region, Vmax , and Vmin are the maximum and 

minimum membrane potential values of the original model. Moreover, correlation shows 

the strength and direction of the linear relationship between two random variables in 

probability theory and statistics. The correlation between SC-IF neuron and the original 

IF neuron model can be described as 

 cov (Vsc, Vori ) 
.M   (Vscerr )(Vor ierr ) 
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where Vscerr Vsc Vsc, Vorierr Vori Vori , Vsc and Vori are the average values 

of membrane potential of SC-IF and IF neuron, respectively. In addition, the time step, 
threshold, resting potential and other parameters used in the SC-IF are shown in Table 
1 . Figure 4 shows the membrane potential waveforms of SC-IF and IF neurons. vth 
represents the threshold of the IF neuron. The black line represents the experimental 

results of the original IF neuron, while the red line shows the experimental results of SC- 

IF. The experiment shows that the RMSE (Verr ) and NRMSE (Vmax , Vmin) between 



 

 

 

Table 1 The parameters of the 
 

 

Parameters Description Value 

proposed SNN structure    

C Constant 100 

Bi Amplitude 0.3994 

B j Amplitude 0.3994 

h Time step 0.1ms 

vth Threshold 0.9mV 

vrest Resting potential 0mV 

Rm Membrane resistance 10M¨ 

τ Synapse time constant 10ms 

τ+ Trace x j time constant 10ms 

τ− Trace yi time constant 10ms 

τm Membrane potential time constant 10ms 

 

Fig. 4 The membrane potential of 
SC-IF and IF neurons 

 

 

 

 

 

 

 

 

 

 

Table 2 Performance 
 

 

Model SC-PSTDP8 SC-PSTDP10 SC-PSTDP12 

comparisons of SC-PSTDP with    

different bit lengths 

 

 

 

 

 

 

 

 
the proposed SC-IF with 12-bit length and original neurons are only 0.13% and 0.17%, 

respectively. Besides, its correlation is 99.99%. Overall, these evaluation metrics confirm 

that the SC-IF neuron of the SC-SNN has similar behaviour to the original IF neuron. 

B. Performance of SC-PSTDP The accuracy of the SC is affected by the length of LFSR 

[47]. It is particularly important to achieve a trade-off between the hardware resource 

consumption and accuracy. Thus, the SC-PSTDP with the LFSR of different bit lengths 

(e.g., 8-bit, 10-bit and 12-bit) is implemented. Particularly, similar to SC-IF, the RMSE, 

NRMSE, correlation and hardware resource consumption are used to evaluate the per- 

formance of SC-PSTDP. Table 2 shows performance comparisons of SC-PSTDP with 

different bit lengths. Among them, the SC-PSTDP8 denotes the proposed SC-PSTDP 

Slice LUTs 171 202 253 

Slice registers 259 310 371 

RMSE 0.2364 0.0165 0.0046 

NRMSE 0.1110 0.0352 0.0097 

CORR(%) 96.73 99.86 99.98 

 



 

 

− = 
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Fig. 5 The comparisons of results between the original PSTDP and the SC-PSTDP, the closer the better. a 
The presynaptic spike; b The postsynaptic spike; c The trace of the presynaptic spike; d The trace of the 
postsynaptic spike; e The synaptic weight; f The synaptic current 

 

 

 

with the LFSR of 8-bit length. 171 LUTs and 259 registers are consumed, and its cor- 

relation is 96.73%. For the SC-PSTDP12, 253 LUTs and 371 registers are needed, and 

its RMSE is 0.46%, NRMSE is 0.97%, correlation is 99.98%, which are greater than the 

approach of [49, 50]. It can be seen that the improvement of precision leads to increasing 

amount of hardware resources. This is because the increase in the sequence length of 

LFSR leads to more hardware resources. To achieve a trade-off between the accuracy 

and hardware resource consumption, this experiment adopts the LFSR of 12-bit length 

to generate a random sequence for the SC-PSTDP and the SC-IF, and its sequence length 

is 212 1 4095, i.e., a stochastic number is generated every 4095 clock cycles. The 

frequency of proposed hardware system is 100 MHz, it takes 40 us to generate a random 

number, i.e., the generation rate of random number is 25 KHz. The pre- and post-synaptic 

spikes, the traces of pre- and post-synaptic spikes, weight, and synaptic current of the 

proposed SC-PSTDP with 12-bit length are simulated on the FPGA device. Figure 5 

shows the experimental results. The black line represents the original PSTDP, and the 

red line represents the SC-PSTDP. As can be seen that the results of two simulations are 

very similar, which shows that the proposed SC-PSTDP can maintain the ability of the 

PSTDP to adjust the synaptic weight. In addition, the synaptic weight change pro- duced 

by the time difference between pre- and post-synaptic spikes is shown in Fig. 6 

a. Ot tpost tpre denotes the time difference of pre- and post-synaptic spikes. The 

synaptic weight is potentiated if Ot > 0, otherwise it is depressed. Figure 6b further 

shows the error of weight more clearly. It shows weight error reaches a maximum value 



 

 

 

 

 

 

 

 

 

 

 

 
  

Fig. 6 The weight change of PSTDP. a The comparison of weight change of original PSTDP and SC-PSTDP; 
b The absolute value of the difference between original PSTDP and SC-PSTDP 

 

Table 3 Utilized resources to 
implement SC-IF neuron and 
original IF neuron 

 

 

 

 

 
Table 4 Utilized resources to 
implement SC-PSTDP and 
original PSTDP model 

 
 

Resource SC-IF (This work) Original 
 

Slice LUTs 83 56 

Slice registers 134 51 

DSPs 0 2 

 
 

Resource SC-PSTDP (This work) Original 

 

 

 

 

 
of 0.0091 at 130 ms. Overall, the SC-PSTDP is very close to the original method of reg- 

ulating the synaptic weight. These further show the learning rule of SNNs is maintained 

in the proposed SC-SNN. Furthermore, the area and power consumption of the SC-SNN 

are evaluated, which follows the standard ASIC cell design flow based on a SAED 90 nm 

CMOS technology. The experiment shows that the hardware area of SC-SNN is 27,565 

μm2 and the power consumption is 2.32 mW. Overall, the SC-PSTDP is very close to 

the original method of regulating the synaptic weight. These further show the learning 

rule of SNNs is maintained in the proposed SC-SNN. 

 
5.2 Comparison of Resource Consumption 

 
The hardware cost and power consumption are two important metrics in the hardware SNN 

[15–17]. The proposed SC-SNN is implemented on the FPGA device. The utilized resources 

for hardware implementation of the SC-IF and original IF are presented in Table 3 . 83 LUTs 

and 134 registers are consumed by the proposed SC-IF. In addition, the hardware resource 

consumption of the SC-PSTDP and original PSTDP implementations is presented in Table 

4 . As can be seen, the proposed SC-PSTDP needs 253 LUTs and 371 registers. Though the 

proposed SC-IF and SC-PSTDP consume more LUTs and registers than the original 

implementation, they do not require the limited and expensive DSPs resources on the FPGA 

devices. This is because the arithmetic operations in the original implementation 

Slice LUTs 253 135 

Slice registers 371 140 

DSPs 0 10 
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Fig. 7 Comparisons of hardware resources under different network sizes of SC-SNN 

 

 
are replaced by the logical gates in the SC and the logic gates are implemented by the resources 

of LUTs and registers on the FPGA device. 

To further verify the scalability of SC-SNN, the proposed SC-IF and SC-PSTDP are used 

to build the SC-SNN of different network sizes, and they are implemented on FPGA device. 

The hardware resources consumption is shown in Fig. 7. It can be seen the number of LUTs 

and registers increase as the network size increases. The SC-SNN with the input layer 

containing 40 SC-IF neurons and the output layer containing one SC-IF neuron requires 

13,523 LUT and 20,334 registers. However, they still do not consume the DSP blocks which 

are very expensive for the FPGA devices. Thus, the proposed SC-SNN can be applied in 

large-scale SNNs. 

Moreover, in Table 5, the LUTs, registers, DSP blocks, max speed, NRMSE and device 

descriptions of SC-SNN are provided and compared with other works. The resource consump- 

tion of the same network size is calculated and compared. The approach of [41] contains a 

neuron and a synapse. Compared to it, the LUTs consumption of the proposed work is reduced 

by 58%, and registers are reduced by 65.6%. In [17], the two-layer network is designed with 

the input layer of 20 neurons and the output layer of a single neuron. If using the proposed 

method to build the same network in [17], 6,803 LUTs and 10,234 registers are consumed, 

i.e., the LUTs are reduced by 4%, and registers are reduced by 1.3%. In [29], the SNN con- 

sists of 48 input neurons, three output neurons, and 144 synapses. In [30], the input layer of 

SNN consists of 25 dummy neurons, the hidden layer consists of five LIF neurons, and the 

output layer contains one LIF neuron. The number of synapses is 130 as the full connection 

is adopted in the SNN network. In [31], the 510 neurons are included in the SNN with binary 

FORCE learning. In [32], 100 neuron cores are included based on the Euler method and RK3 

method. If the proposed method is used to build the same networks in [29–32], 40,665 LUTs 

and 60,258 registers, 35,463 LUTs and 52,384 registers, 219,430 LUTs and 328,040 regis- 

ters, 67,200 LUTs and 101,000 registers are consumed, respectively. This work consumes 

more LUTs and registers compared with [29–32], however it does not consume the DSP 

blocks which are expensive for the FPGA devices. In [33], the synapse model is designed 

by the CORDIC method, and it consumes 373 LUTs, 138 registers and three DSP blocks. 

The SC-Synapse model designed in this paper only needs 253 LUTs and 371 registers, and it 

does not require DSP blocks. Besides, the max speed of the SC-SNN is 191.1 MHz, which is 
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Table 5 Resource consumption comparisons between SC-SNN and other works 

Approach # of neurons/synapses LUTs Registers DSPs Max speed (MHz) NRMSE (%) Device 

Liu [41] 1/1 800 1468 0 100 NA Zynq-7000 

SC-SNN 1/1 336 505 0 191.1 0.97 Zynq-7000 

Heidarpur [17] 21/20 7088 10376 0 84.1 0.003 Spartan-6 

SC-SNN 21/20 6803 10234 0 191.1 0.97 Zynq-7000 

Zhang [29] 51/144 13862 5487 144 178 NA Virtex-7 

SC-SNN 51/144 40665 60258 0 191.1 0.97 Zynq-7000 

Farsa [30] 31/130 11339 1023 124 189.1 3.53 Virtex-6 

SC-SNN 31/130 35463 52384 0 191.1 0.97 Zynq-7000 

Akbarzadeh [31] 510/700 8077 2274 42 170.7 NA Artix-7 

SC-SNN 510/700 219430 328040 0 191.1 0.97 Zynq-7000 

Guo [32] 200/200 85961 66163 400 100 NA Virtex-7 

SC-SNN 200/200 67200 101000 0 191.1 0.97 Zynq-7000 

Wu [33] 0/1 373 138 3 303.4 NA Zynq-7000 

SC-SNN 0/1 253 371 0 191.1 0.97 Zynq-7000 

Çağdaş [51] 1/0 267 38 11 190 NA ZCU104 

SC-SNN 1/0 83 134 0 191.1 0.97 Zynq-7000 

Guo [52] 100/0 10163 3159 21 100 NA Virtex-7 

SC-SNN 100/0 8300 13400 0 191.1 0.97 Zynq-7000 



 

 

 

higher than other works except the approach of [33]. Though the NRMSE in [30] is smaller 

than this paper, it consumes more LUTs and registers. Besides, the max speed in [30] is 84.1 

MHz, which is smaller than this work. In the approach of [51], the Izh neuron module is 

implemented, where 38 registers, 267 LUTs and 11 DSPs are consumed for the unfolded 

architecture. If the proposed method is used to implement the neuron module, 83 LUTs and 

134 registers are needed, i.e., the LUTs are reduced by 68.9%. Though the consumed regis- 

ters are more than the work of [51], the proposed method does not consume DSP blocks. In 

the approach of [52], a neuromorphic hardware containing 100 neurons is proposed, which 

uses 10163 LUTs, 3159 registers and 21 DSPs. If the proposed method is used to build the 

same network in [52], 8300 LUTs, 13400 registers are consumed, i.e., the LUTs are reduced 

by 18.3% and no DSP blocks are required. 

 
 

6 Conclusion 
 

In this paper, a novel SNN hardware architecture by using the SC technique is proposed. The 

conventional arithmetic operations (e.g. multipliers, adders, and subtractors) are replaced by 

the stochastic bitstreams to reduce the hardware cost and power consumption. The pro- 

posed SC-SNN is implemented on the FPGA device, and the RMSE, NRMSE and curve 

correlation are used for performance evaluation, where the NRMSE between the proposed 

hardware SC-SNN and others is only 0.0097. In addition, the hardware resource consump- 

tion is compared with the previous approaches. Results show that only 323 LUTs and 491 

registers are consumed by the proposed SC-SNN containing two neurons and one synapse, 

and most importantly the proposed work does not require the DSP blocks (which are very 

expensive resources for FPGA devices). The proposed work achieves a trade-off between the 

performance and the hardware resources. Therefore, the scalability of the hardware SNN is 

improved by using the SC technique. Future work will further optimize the network hardware 

architecture. 
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