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We study the response function of the Einstein Telescope to kinematic Doppler anisotropies, which
represent one of the guaranteed properties of the stochastic gravitational wave background. If the frequency
dependence of the stochastic background changes slope within the detector frequency band, the Doppler
anisotropic contribution to the signal can not be factorized in a part depending on frequency, and a part
depending on direction. For the first time, we study the detector response function to Doppler anisotropies
without making any factorizable Ansatz. Moreover, we do not assume that kinematic effects are small,
and we derive general formulas valid for any relative velocity among frames. We apply our findings to three
well-motivated examples of background profiles; power-law, broken power-law, and models with a
resonance motivated by primordial black hole scenarios. We derive the signal-to-noise ratio associated with
an optimal estimator for the detection of nonfactorizable kinematic anisotropies, and we study it for
representative examples.
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I. INTRODUCTION

Once a stochastic gravitational wave background
(SGWB) is detected—see [1] for current prospects—the
next goal for GW science will be to characterize its
anisotropies. As for the cosmic microwave background
(CMB), the anisotropies of the SGWB promise to provide
information on the origin and evolution of the GW signal.
SGWB anisotropies can be produced by the mechanisms
that source the SGWB [2–14], or by propagation effects
through a perturbed universe [15–22]. Alternatively, they
can have a kinematical origin, being induced by the
detector motion with velocity v⃗ with respect to the rest
frame of the SGWB. In this work we focus on this last kind
of SGWB anisotropies, which have been recently theoreti-
cally investigated in [23–25] (see also [26,27] for appli-
cations and further developments).
The fact that Doppler anisotropies can be relevant for

observations of stochastic backgrounds is made manifest
by the CMB kinematic dipole, whose amplitude is around
two orders of magnitude larger than that of CMB intrinsic
anisotropies [28–31]. For the case of SGWB, in absence of

detection, we do not yet know how sizeable SGWB
Doppler anisotropies can be. The velocity v⃗ among the
SGWB and our frames could be large; think for example
of a SGWB produced in the early Universe, during a
phase transition within a cosmic fluid in relativistic
coherent motion (see e.g., [32,33] for general reviews on
SGWB sources).
At the moment, given our ignorance on possible sources

of SGWB, it is then wise to keep noncommittal on the
relative speed v⃗, and on the SGWB intrinsic properties. In
order to forecast prospects of detection of Doppler anisot-
ropies, the first step is to investigate the response of GW
experiments to their possible features. Previous articles
studied in detail the response of GW detectors to anisot-
ropies, starting with [34–44] (see [45] for a general review).
Usually, one assumes a factorizable ansatz for the quantities
describing the anisotropic signal. The signal should be
described in terms of a contribution depending on GW
frequency, times a contribution depending on GW direction
only. However, in general, such an ansatz is not suitable for
describing Doppler anisotropies. In fact, building on [24],
we show explicitly that if the SGWB slope changes within
the detector frequency band—a very common possibility
both for astrophysical and cosmological sources (see
e.g., [46] in the context of LISA)—the aforementioned
factorizable ansatz is violated.
In this work we outline a method for studying the general

case, making use of special simplifying conditions (first
pointed out in [47]) for characterizing the study of SGWB
with the Einstein Telescope [48,49]: we apply it to the case
of kinematic anisotropies. Our method does not implement
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any factorizable ansatz, nor makes the hypothesis that the
speed v⃗ among frames is small. We are able to express the
detector response function to an anisotropic signal in terms
of combinations of detector properties (the arm directions)
contracted with the velocity vector v⃗ (see Secs. II and III).
In particular, we find that the Einstein Telescope response
depends in a nonlinear (but computable) way on v⃗ as well
as on the frequency dependence of the SGWB profile. As a
byproduct, our findings indicate that SGWB Doppler
anisotropies can provide us with independent measure-
ments of key features of the SGWB.
We proceed in Sec. IV investigating the ET response

function to three explicit examples of SGWB with well
motivated frequency profiles: power law, broken power law
(see e.g., [50] for a survey), and models with a resonance,
motivated by second-order SGWB induced by the forma-
tion of primordial black holes (see e.g., [51–54]). In Sec. V
we determine an optimal estimator for detecting Doppler
anisotropies, exploiting the characteristic daily modulation
of kinematic anisotropies [34]. We obtain the expression
for the corresponding optimal signal-to-noise ratio, and we
apply our results to representative examples of broken
power-law SGWB profiles, in order to investigate explicitly
how the frequency dependence of the SGWB affects
measurements of Doppler effects. Our conclusions in
Sec. VI discuss possible further developments, and are
followed by four technical appendixes.

II. SETUP

In order to characterize the interferometer response to
Doppler anisotropies, we first present some basic ingre-
dients, and fix the conventions we use for describing the
stochastic gravitational wave background (SGWB). We
expand the gravitational wave perturbation habðt; x⃗Þ in
Fourier modes as (setting c ¼ 1)

habðt; x⃗Þ ¼
X
λ

Z þ∞

−∞
df
Z

d2n̂hλðf; n̂ÞeðλÞab ðn̂Þe2πifðt−n̂·x⃗Þ;

ð2:1Þ

where λ ¼ ðþ;×Þ are the polarization indices, f the GW
frequency, and n̂ a unit vector indicating the GW direction.
To ensure that the GW fluctuation is real, we impose
hλðf; n̂Þ ¼ h�λð−f; n̂Þ. The polarization tensors satisfy the

condition eðλÞab ðn̂Þ ¼ eðλÞab ð−n̂Þ, and are normalized such that

eðλÞab ðn̂Þeðλ
0Þ

ab ðn̂Þ ¼ 2δλλ
0
. The two-point correlator for the

Fourier modes hλðf; n̂Þ reads

hh�λðf; n̂Þhλ0 ðf0; n̂0Þi

¼ δλλ0

2
δðf − f0Þ δ

ð2Þðn̂ − n̂0Þ
4π

IðfÞPðf; n̂Þ; ð2:2Þ

with IðfÞ being the GW intensity, an even function of
frequency, IðfÞ ¼ IðjfjÞ. The factor Pðf; n̂Þ accounts for
the SGWB anisotropy. Importantly, we do not assume a
factorizable ansatz for P, and we allow it to be an arbitrary
function of f and n̂. Our general treatment will suit our
analysis of kinematic anisotropies in Sec. III. Nevertheless,
we assume for simplicity that P ¼ 1 if the two-point
correlator (2.2) is isotropic, i.e., when the function P is
independent of the GW direction n̂.
The quantity we are interested in is the laser phase

difference as measured by a planar ground-based interfer-
ometer; in particular, we have in mind the Einstein Telescope
(ET) [48]. To characterize this quantity, we follow the
discussion of [55] developed for LISA; we adapt it to the
case of an anisotropic GW background measured by a
ground-based instrument. We consider two arms AB and
AC of the interferometer, and indicate with ΦABC

the phase
difference, as measured at the common vertex A. Such a
phase difference can be decomposed into two parts,

ΦABC
ðtÞ ¼ ΔφABC

ðtÞ þ nABC
ðtÞ: ð2:3Þ

In this expression, ΔφABC
is the GW contribution (if any),

and nABC
is the noise. Introducing a standard nomenclature

for GW physics (see e.g. [56]), the GW contribution can be
expressed as

ΔφABC
ðtÞ ¼

X
λ

Z
∞

−∞
df
Z

d2n̂hλðf; n̂Þe2πiftFðλÞ
ABC

ðt; n̂Þ;

ð2:4Þ

where FðλÞ
ABC

is the detector pattern function. We work in a
small-frequency limit, suitable for ET [47] for which
2πfL ≪ 1, with L being the detector arm length. The
detector pattern function reads

FðλÞ
ABC

ðn̂; tÞ ¼ e−2πifn̂·x⃗AðtÞeðλÞab ðn̂ÞdabABC
ðtÞ; ð2:5Þ

with dabABC
being the detector tensor,

dabABC
ðtÞ ¼ 1

2
ðla

ABðtÞlb
ABðtÞ − la

ACðtÞlb
ACðtÞÞ; ð2:6Þ

and lABðtÞ indicating the unit vector pointing between A
and B vertexes. Notice that the quantity dabABC

is traceless,
daaABC

¼ 0.
Assuming that noise and GW signals are uncorrelated,

the two-point correlation function among phase differences
can be expressed as

hΦABC
ðtÞΦXYZ

ðt0Þi¼1

2

Z
∞

−∞
dfe2πifðt−t0Þ½RABC;XYZ

ðf;t;t0ÞIðfÞ

þNABC;XYZ
ðfÞ�: ð2:7Þ

CHOWDHURY, TASINATO, and ZAVALA PHYS. REV. D 107, 083516 (2023)

083516-2



Here XYZ denotes a vertex X between two interferometer
arms XY and XZ. Those arms can belong to the same
instrument as the arms AB and AC (i.e., a single version of
the ET interferometer), or instead to a second independent
ET-like instrument, as discussed in [47], in order to reduce
the correlated noise. Our arguments can in principle apply
to both situations. In Eq. (2.7), I is the GW intensity as
introduced in Eq. (2.2), while NABC;XYZ

the variance of the
noise Fourier transform,

hñ�ABC
ñXYZ

i ¼ δðf − f0Þδð2Þðn̂ − n̂0ÞNABC;XYZ
: ð2:8Þ

The function RABC;XYZ
in Eq. (2.7) is the detector response

function that we wish to characterize. Collecting the results,
such a response function can be expressed as

RABC;XYZ
ðf; t; t0Þ ¼

X
λ

Z
d2n̂
4π

Pðf; n̂ÞFðλÞ
ABC

ðn̂; tÞFðλÞ
XYZ

ðn̂; t0Þ

¼ dabABC
ðtÞdcdXYZ

ðt0ÞΓabcdðfÞ; ð2:9Þ

with dab given in Eq. (2.6), while

ΓabcdðfÞ ¼
X
λ

Z
d2n̂
4π

e−2πifn̂·Δx⃗Pðf; n̂ÞeðλÞab ðn̂ÞeðλÞcd ðn̂Þ:

ð2:10Þ

In Eq. (2.10), Δx⃗ denotes the spatial difference between
the vertexes A and X. The response function as defined
above depends on the direction-dependent quantity P as
introduced in (2.2), and controls the anisotropy of the GW
correlator. The quantity ΓabcdðfÞ is symmetric under the
interchanges a ↔ b, c ↔ d, ab ↔ cd. Moreover,
ΓaacdðfÞ ¼ 0. Equation (2.9) is an extension of well-known
formulas (see e.g., [57]) to the case of anisotropic SGWB.
The covariant matrix of phase differences in each vertex

can be diagonalized as explained in [47] in the context of
the ET interferometer. We refer the reader to this work for
details; we do not have anything to add to this topic. After
diagonalization, one determines three diagonal channels
(called A, E, T), denoted with the letters O;O0.
We aim at characterizing the response function

RO;O0 ðf; tÞ for each diagonal channel; for doing so, we
need to analyze the structure of the quantity Γabcd of
Eq. (2.10). For the case of the Einstein Telescope, a major
simplification arises, as first found and exploited in [47].
Since the instrument is mostly sensitive to relatively small
values of the frequency, f ∼ 7 Hz, the exponent depending
on the vertex distance in Eq. (2.10) can be neglected.
Indeed, we have j2πfΔx⃗j ≃ 6 × 10−5ð f

HzÞðΔxkmÞ. This quan-
tity is small (at most of order of percent) for correlations
between the arms of a single ET interferometer, or for
correlations between two distinct interferometers located
at different places on the Earth surface (but say within

continental Europe, see [47]). Under this approximation, in
what comes next we are going to determine the structure of
the response function of the ET interferometer to Doppler
anisotropies of SGWB, with no need to make any factor-
izable ansatz for Pðf; n̂Þ, or to assume that kinematic
effects are perturbatively small. In fact, we elaborate a
method allowing us to compute (2.10), with no need of any
expansion in spherical harmonics [which is not too well-
suited for general scenarios where Pðf; n̂Þ is explicitly
frequency dependent, as ours].

III. ET RESPONSE FUNCTION TO
KINEMATIC ANISOTROPIES

Kinematic anisotropies arise from the motion of our
GW detector with respect to the rest frame of the SGWB
source. These Doppler effects are expected to occur for any
background of primordial or astrophysical origin, and can
provide the largest anisotropic contribution to a SGWB
signal. As a concrete example, for the CMB the amplitude
of the kinematic dipole is two orders of magnitude larger
than the typical size of intrinsic CMB anisotropies of
primordial origin.
For the case of the SGWB, since we are ignorant about

its source (if any) and its velocity with respect to us, we
prefer to keep noncommittal, and derive general formulas
which can be applied to generic situations we might
encounter. Data, if and when available, will provide
information about the relative velocity among frames.
We make use of the analytic formulas for kinematic
anisotropies recently derived in [24], to obtain results that
are valid for any speed of the GW source with respect to us,
and for any frequency profile of SGWB signal. (We make
the simplifying hypothesis, though, that the GW signal is
isotropic in the rest frame of the SGWB source.)

We indicate with ΩðAÞ
GWðfÞ the GW energy density in the

rest frame of the SGWB source: as mentioned above,
we assume it to be isotropic. The GW energy density
becomes anisotropic in a boosted frame (B) moving with
velocity v⃗ wrt (A). In fact, denoting with β ¼ jv⃗j (in units
with c ¼ 1) the size of the relative velocity among frames,

ΩðBÞ
GW results [24]

ΩðBÞ
GWðf; n̂Þ ¼ D4ΩðAÞ

GWðD−1fÞ; ð3:1Þ

with

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1 − βn̂ · v̂

; ð3:2Þ

and n̂ and v̂ are the unit vectors along GW direction and the

relative velocity of the frame, respectively. Hence, ΩðBÞ
GW in

Eq. (3.1) is anisotropic, and in general the effects of
anisotropy cannot be factorized in a part depending on
frequency, and another one on direction [24]. Hence, the
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analysis as commonly carried on in previous works should
be accommodated to the present situation. Recall that, for
the isotropic case, the SGWB energy dependence is related
to the GW intensity IðfÞ by

Ωisotropic
GW ðfÞ ¼ 4π2f3

3H2
0

IðfÞ; ð3:3Þ

with H0 being the present-day Hubble parameter. Using
Eq. (3.1), we can then conveniently express the GWenergy
densities in frames (A) and (B) as

ΩðAÞ
GWðfÞ ¼

4π2

3H2
0

f3IðfÞ;

ΩðBÞ
GWðfÞ ¼

4π2

3H2
0

f3IðfÞPkinðf; n̂Þ; ð3:4Þ

with [recall the definition (3.2)]

Pkinðf; n̂Þ ¼
D

IðfÞ IðD
−1fÞ: ð3:5Þ

The expression in Eq. (3.5) demonstrates explicitly that
Pkinðf; n̂Þ can not be factorized in a part depending on
frequency, times a part depending on direction (unless I is
an exact power law). In fact, if the frequency profile of I
changes within the detector frequency band, the depend-
ence of (3.5) on D (hence on the anisotropy vector v̂)
changes at the positions where the slope of I changes.
We will discuss examples of this possibility in the next
sections. Notice that if β ¼ 0 (no kinematic anisotropy)
then Pkin ¼ 1, as desired.
Fortunately, given the special properties of ET [47]

which we discussed at the end of Sec. II, we can
nevertheless derive an exact expression for the ET response
function to kinematic anisotropies, with no need of sim-
plifying ansatz. As we show in the technical Appendix A,
the interferometer response function (2.9) relative to the A,
E, T channels can be expressed as a combination of three
terms only, with transparent geometrical meanings,

RO;O0 ðf; t; t0Þ ¼ 4

5

�
1þ 5

2
c1ðfÞ

�
dabO ðtÞdO0abðt0Þ

þ 4c2ðfÞðv̂adabO ðtÞdO0bcðt0Þv̂cÞ
þ c3ðfÞðv̂av̂bdabOðtÞÞðv̂cv̂ddcdO0 ðt0ÞÞ;

ð3:6Þ

with O;O0 denoting the interferometer channels, dab being
the detector tensor (2.6), and v̂ the unit velocity vector
among the two frames. The quantities introduced in (3.6)
read

c1 ¼
K1

8
þ 3K2

4
þ K3

8
; c2 ¼

3K1

8
−
3K2

4
−
5K3

8
;

c3 ¼
3K1

8
−
15K2

4
þ 35K3

8
; ð3:7Þ

where

K1 ¼
Z

d2n̂
4π

ðPkin − 1Þ; K2 ¼
Z

d2n̂
4π

ðPkin − 1Þðn̂ · v̂Þ2;

K3 ¼
Z

d2n̂
4π

ðPkin − 1Þðn̂ · v̂Þ4: ð3:8Þ

Some comments on the results so far:
(i) All the effects of kinematic anisotropies in the

response function (3.6) are contained in the three
terms proportional to the frequency-dependent
coefficients ciðfÞ in Eq. (3.7). They depend on
covariant contractions of the detector tensors
dabðtÞ with the direction v̂a of the relative frame
velocity. Their frequency dependence has important
implications when discussing perspectives of detec-
tion, as we will discuss in what follows.

(ii) The three independent terms of the response func-
tion (3.6) resemble in spirit the effects of the three
multipoles l ¼ ð0; 2; 4Þ that were found in [47]
to contribute to anisotropies detectable by ET. We
refrain from elaborating on this analogy in this work,
since in our approach we do not implement a
multipolar expansion of the anisotropic signal, given
that we can not factorize it in frequency times
direction. Nevertheless, it would be interesting to
understand whether some alternative generalization
of the approach of [47] to a nonfactorizable ansatz
can lead to results as ours.

(iii) Our method relies on the computation of the three
integrals Ki in Eq. (3.8), which can be easily
performed by numerical tools, depending on the
profile of IðfÞ [recall the definition of Pkin in
Eq. (3.5)]. Notice that they all vanish when β ¼ 0
(no kinematic effects) or when IðfÞ is a linear
function of frequency [see Eq. (3.5)].1 But in
general, our formulas are valid for any size of
0 ≤ β < 1, and encompass all kinematic effects with
no need of any perturbative expansion in β.

(iv) The geometrical quantities appearing in the response
function (3.6) explicitly depend on time: in particu-
lar, the orientation of the detector(s) with respect to
the velocity vector v̂ experiences daily and annual
modulations due to the motion of the Earth. This
property will be crucial for determining the optimal
estimator sensitive to kinematic anisotropies [34]
(see Sec. V). Interestingly, our general formulas can

1In fact, then ΩGW is proportional to f4, a particular case in
which kinematic effects cancel out [24].
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also describe scenarios where the kinematic param-
eters β and v̂ have intrinsic time dependence (not just
due to the Earth’s motion). It would be interesting in
future works to explore whether there can be SGWB
sources realizing this possibility.

In Sec. IV we study three well-motivated examples of
IðfÞ, so as to concretely explore the effects of kinematic
anisotropies on the response function of ET.

IV. THREE EXAMPLES OF SGWB
FREQUENCY PROFILES

We apply our methods to three well-motivated scenarios
for the frequency dependence of IðfÞ. We start discussing
the case of an exact power-law profile, for which we are
able to obtain fully analytic formulas valid for any value of
0 ≤ β < 1. We then continue discussing the cases of single
and multiple broken power law, for which the function
Pkin—the quantity controlling the SGWB anisotropy—is
not factorizable in parts depending respectively on
frequency and direction. In such cases, we compute
how anisotropies depend on the frequency profiles of
IðfÞ, with no restrictions on the size of β within the
interval 0 ≤ β < 1.

A. First example: A power-law SGWB profile

We start by considering a power-law intensity profile in
the SGWB rest frame, as described by the ansatz

IPLðfÞ ¼ I0

�
f
f⋆

�
α

; ð4:1Þ

where I0 is a normalization factor, and f⋆ is a reference
frequency. Relation (4.1) for the intensity implies, through
Eq. (3.3), that ΩGW scales with frequency as

ΩGW ∝ f3þα: ð4:2Þ

The degree of kinematic anisotropy depends on the
parameter α in Eq. (4.1). Making use of Eq. (3.5), the
kinematic anisotropy parameter Pkin reads

Pkin ¼
D

IPLðfÞ I
PLðD−1fÞ ¼ D1−α; ð4:3Þ

confirming that, in this particular case, the dependence on
frequency cancels out. The integrals (3.8) can be done
analytically, and we can build exact expressions for the
quantities c1;2;3 which enter in the response function of
Eq. (3.6), for any values of α and 0 ≤ β ≤ 1. The complete
formulas are rather long and we relegate them to
Appendix B. In Table I we present the exact results for
the coefficients ci given in Eq. (3.7) as functions of β. We
make three representative choices of the exponent α.

In each case, the absolute value of the size of the
anisotropy contributions to the detector response function
monotonically increases, as β increases towards β → 1. The
case α ¼ −3 corresponds to a scale-invariant GW density
parameter, according to Eq. (4.2).
Notice that, in the small β limit, contributions start only

at order β2 (or higher); the ET response is insensitive to
linear contributions in β to kinematic anisotropies, corre-
sponding to the kinematic dipole. This reflects the fact that
ET is insensitive to the dipolar anisotropies [47], at least
within the approximation we are interested in.
In this power-law scenario, it is also instructive to

investigate how the results vary with the exponent α, while
having β fixed to a representative value. We plot the results
in Fig. 1, for two choices of the velocity parameter β, one
with β large, and one with β relatively small. As expected,
the amplitude of ci is quite sensitive to the value of β.
The absolute values of the coefficients ci of Eq. (3.7)

increase as the absolute value of α increases. The larger the
exponent, the larger the kinematic effects on the anisotro-
pies. For the coefficient c3, there is a flat plateau around
α ¼ 0, approximately between −1 ≤ α ≤ 5. Such a flat
plateau is present for both large and small values of β.
These findings will be useful for interpreting the results of
the scenarios we shall discuss next.

B. Second example: A broken power-law SGWB profile

We now turn to a broken power-law profile for the GW
intensity IðfÞ in the SGWB rest frame. Many examples
and realizations of such a profile exist in the literature, see
e.g., the survey in [50]. In this case, the role of frequency
is important, and kinematic anisotropies can not be fac-
torized as frequency times direction. We consider the
following ansatz for the SGWB intensity as function of
frequency [58,59]:

IBPLðfÞ ¼ I0

�
f
ffid

�
γ
�
1þ

�
f
f⋆

�1
κ

�−κðγþδÞ
: ð4:4Þ

The exponents γ and δ control the growing and decaying
parts of the SGWB frequency profiles, respectively. The
parameter κ controls the smoothness of the transition. The
quantity I0 is a normalization factor. ffid is a fiducial
frequency, and f⋆ is a parameter controlling the frequency

TABLE I. The ci of Eq. (3.7) for three choices of exponents in
the power-law ansatz of Eq. (4.1).

α ¼ −3 α ¼ 3 α ¼ 5

c1 − 64β7þ66β5−80β3þ30ðβ2−1Þ3 tanh−1ðβÞþ30β
60β5ðβ2−1Þ

64
105

β2

1−β2
8β2

315

ð81−10β2Þ
ð1−β2Þ2

c2 66β5−80β3þ30ðβ2−1Þ3 tanh−1ðβÞþ30β
12β5ðβ2−1Þ − 4

35
β2

1−β2 − 8β2

315

ð27þ4β2Þ
ð1−β2Þ2

c3 96β7−462β5þ560β3−210ðβ2−1Þ3 tanh−1ðβÞ−210β
12β5ðβ2−1Þ

0 8
315

β4

ð1−β2Þ2
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region where the profile changes slope. In Fig. 2 we have
plotted the SGWB intensity for concrete examples for
representative choices of parameters.
For the case of broken power-law, the quantities in

Eq. (3.8) need to be integrated numerically. The coeffi-
cients ci in Eq. (3.6) explicitly depend on frequency. In fact,
we expect them to be constant in the frequency ranges
corresponding to a constant slope—in the regions of
growth and decay of the intensity profile—following the
behavior described in Sec. IVA. Their nontrivial frequency
dependence is amplified as β increases. The frequency
profiles of the plots in Fig. 3 confirm these expectations.

Notice that, for the choice of parameters corresponding to
the dashed-line plot on the right panel of Fig. 2, the size of
the quantity c3 in Fig. 3 is one order of magnitude smaller
than c1;2. This is due to the fact that the growing and
decaying slopes of the corresponding IðfÞ have been
chosen to lie in the flat plateau of Fig. 1 (right panel).
We will reconsider this case in Sec. V.
Furthermore, we also expect that the smaller the param-

eter κ is in our ansatz (4.4), the sharper the transition among
the growing and decaying regions of the intensity profile
will be. Therefore, when κ is small, the features in the
detector response as a function of frequency are further

FIG. 1. The ci for the power-law ansatz (4.1). Left plots: We fix β ¼ 0.3 and vary the exponent α. Right plots: We fix β ¼ 0.04 and
vary the exponent α.
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enhanced around f⋆. Figure 3 confirms these expect-
ations. Notice also that, for sharp transitions, the absolute
value of the amplitude of the ci around the transition can
be larger than their value in the constant-slope regions

(see e.g., Fig. 3, upper right panel). This indicates that the
response function can be sensitive to sudden changes in
slope, and kinematic anisotropies can be an indicator of
such features.

C. Third example:
Double broken power-law, and resonance

As a last example, we consider a double power-law
profile for the SGWB intensity IðfÞ. Such a possibility is
physically motivated by early-universe scenarios in which a
SGWB is induced at second order in perturbations by a
scalar power spectrum with a pronounced peak [51–54].
Such models are frequently investigated in the context
of primordial black hole production from inflation (see
e.g., [60] for an exhaustive review). Interestingly, if the
source scalar peak is sufficiently narrow, the induced
SGWB profile has an initial bump, followed by a pro-
nounced, narrow resonance. The details of the bump and of
the resonance depend on properties of the source curvature
spectrum, as well as on the underlying cosmological
expansion. Nevertheless, analytical formulas are available
for a number of examples [61–63]. Effects of Doppler
anisotropies in these scenarios have been recently inves-
tigated in [24], in the small β limit.

FIG. 2. Logarithmic plot of the intensity for a broken power-
law profile, Eq. (4.4). Solid line: I0 ¼ 10−3, γ ¼ 4, δ ¼ 7,
κ ¼ 0.02, ffid ¼ f⋆=10. Dashed line: I0 ¼ 10−3, γ ¼ 3, δ ¼ 5,
κ ¼ 0.2, ffid ¼ f⋆=10.

FIG. 3. The quantities ci of Eq. (3.7) for the broken power-law ansatz (4.4). Solid lines: β ¼ 0.2, and the same parameters as the solid
line plot of Fig. 2. Dashed lines: β ¼ 0.3, and the same parameters as the dashed line plot of Fig. 2.
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For simplicity, we model such a scenario in terms of
double power-law, essentially duplicating the ansatz of
Sec. IV B,

IDPLðfÞ ¼ I1

�
f
f1

�
γ−3
�
1þ

�
f
f⋆

�1
κ

�
−κðγþδÞ

þ I2

�
f
f2

�
γ1−3
�
1þ

�
f
f3

� 1
κ1

�−κ1ðγ1þδ1Þ
; ð4:5Þ

where I1;2 are normalization factors, f1, f2, f3 are fiducial
frequencies, and f⋆ a characteristic frequency around
which the first bump occurs. The exponents have the same
roles as in the single broken power-law case [see comments
after Eq. (4.4)], controlling the slope of the spectrum. See
Fig. 4 for a phenomenological profile with the desired
features. The position of the resonance has been chosen to
lie within the best sensitivity region for the ET-D nominal
configuration.
With such a rich frequency dependence of the initial

spectrum, we can also expect a rich frequency profile of the
anisotropy parameters ciðfÞ of Eq. (3.6). In proximity of
the resonance (the second peak) we expect drastic changes
in the amplitude of the ci as a function of frequency, since
the slopes of the intensity IðfÞ (or the GW density) reach
large values. This expectation is confirmed by our results in

FIG. 4. Logarithmic plot of the GWenergy density for a double
broken power-law profile, Eq. (4.5) [converted to ΩGW using
Eq. (3.3)]. We have chosen the following values for the
parameters: I1¼9H2

0×10−11=ð8π2Þ, I2 ¼ 45H2
0 × 10−13=ð8π2Þ,

γ ¼ 4, δ ¼ 25 κ ¼ 0.5, γ1 ¼ 20, δ1 ¼ 33, κ1 ¼ 0.02, f1 ¼ 1=3,
f⋆ ¼ 10=3, f2 ¼ 5, f3 ¼ 20=3 Hz. A mild bump is followed by
a pronounced peak. In the dashed line we plot the Einstein
Telescope sensitivity curve ΣGWðfÞ to a stochastic background,
with one year of data collection. See the discussion around
Eq. (5.15) for explanations.

FIG. 5. The quantities ci of Eq. (3.7) for the double broken power-law ansatz (4.5). We choose β ¼ 0.2, and the remaining parameters
are the same as in Fig. 4.

CHOWDHURY, TASINATO, and ZAVALA PHYS. REV. D 107, 083516 (2023)

083516-8



Fig 5. In fact, for large slopes, the absolute value of the ci
become large (see Fig 1); this property can enhance the
prospects of detectability, as we will learn in Sec. V C. In
comparison, the initial mild bump, at frequencies smaller
than the resonance peak, produces small oscillatory effects.
Notice that Fig. 5 indicates that the absolute values of the ci
get larger for an intermediate frequency band, before
stabilizing to constant values. The values of the ci are
following the slopes of the spectrum as it increases, and
then decreases, around the resonance region.
The general formulas we developed in Sec. III can also

be applied to any further physically motivated ansatz for
IðfÞ. In fact, it would be interesting to carry out a more
systematic investigation of the ET response function to
kinematic anisotropies for a greater variety of frequency
profiles. If any of the features associated with the kinematic
anisotropy parameters can be detected, they might re-
present a further indirect probe of the frequency profile
of IðfÞ, besides direct methods [64]. We plan to investigate
these subjects in future works.

V. DETECTABILITY AND
SIGNAL-TO-NOISE RATIO

In this section we investigate the prospects of detect-
ability of kinematic anisotropies by means of ground-based
interferometers, focussing on the Einstein Telescope. Our
aim is to determine an optimal estimator for a quantity
sensitive to kinematic anisotropies, study the corresponding
signal-to-noise ratio, and consider some representative
examples of nonmonotonic frequency profiles.
We make the hypothesis that noise and GW signal (in the

SGWB rest frame) are stationary. But recall that, as we
learned in Sec. III, a feature of the ET response function to
kinematic anisotropies is its time dependence. The orien-
tation of the detector with respect to the velocity vector
between the ET and SGWB frames changes with time,
following the daily and annual motions of the Earth. Such
time dependence of the signal is precisely the key for
determining an optimal estimator sensitive to kinematic
anisotropies.

A. Disentangling the signal time-dependence

Inspired by the works [34,47], we start discussing a
method to disentangle the daily time-dependence of the
signal, and formulate time-independent quantities which
are easier to deal with. So far, our results have been
presented in a covariant form: see e.g., Eq. (3.6). To
proceed, we choose a convenient reference frame. Let
our reference system be anchored to the Earth, with ẑ axis
along the earth rotation axis. The detector tensors dab in
Eq. (3.6) are constants, and what varies with time is the
velocity vector v̂. For any given time t, we can split the
velocity vector into two parts—one along the ẑ axis, and
the other perpendicular to it,

v̂ ¼ ðv̂ · ẑÞẑþ ½v̂ − ðv̂ · ẑÞẑ�: ð5:1Þ

The vector component parallel to ẑ, which we dub v⃗k,
does not change with time, being along the Earth rotation
axis. The vector component orthogonal to ẑ, which lies on
the plane ðx̂; ŷÞ, undergoes a sinusoidal daily modulation
with period Te ¼ 24 hours. Dubbing f̄e ¼ 1=Te the fre-
quency of the Earth rotation, and indicating with
v⃗⊥ cos ð2πf̄etÞ the time-dependent component of the veloc-
ity vector in the plane ðx̂; ŷÞ, we can write

v̂ðtÞ ¼ v⃗k þ v⃗⊥ cos ð2πf̄etÞ; ð5:2Þ
with v⃗k, v⃗⊥ constant vectors.
Using the split of Eq. (5.2), we can decompose the

response function RO;O0 of Eq. (3.6) into a finite set of
terms, each one with its own dependence on time,

ROO0 ðf; t; t0Þ ¼
X2

m;m0¼−2

Rðm;m0Þ
OO0 ðfÞe2πif̄eðmtþm0t0Þ: ð5:3Þ

The time-independent (but frequency-dependent)Rðm;m0Þ
OO0 ðfÞ

coefficients are even under interchanges of m → −m,

m0 → −m0. Moreover, they have the property Rðm;m0Þ
OO0 ¼

Rðm0;mÞ
O0O . They can be found in appendix C, expressed in

terms of contractions of detector tensors with the vectors
v⃗k;⊥. Since Eq. (3.6) contains three contributions only, the
sum in Eq. (5.3) spans only a finite number of terms.

B. Defining an optimal estimator

To continue, we follow [34,47], introducing the notion of
time-dependent Fourier transform as

Φ̃Oðt; fÞ≡
Z

tþτ=2

t−τ=2
dt0e−2πift0ΦOðt0Þ; ð5:4Þ

with τ being a convenient chopping time much longer than
the time spent by light in traveling among different parts
of the interferometer system (so as to ensure the signal
develops correlations), but much shorter than the daily
period of the Earth (so that the signal can be taken as
constant during the interval τ).
We define the quantity CðtÞ as

CðtÞ≡X
OO0

Z
∞

−∞
dfQ̃OO0 ðfÞΦ̃Oðt; fÞΦ̃�

O0 ðt; fÞ; ð5:5Þ

and use it as the estimator of kinematic anisotropies.
The function Q̃OO0 ðfÞ is the optimal filter to be determined.
We disentangle the Earth rotation effects in the estimator by
Fourier expanding,

CðtÞ ¼
X
m

Cme2πimf̄et: ð5:6Þ
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Hence, by inversion, the time-independent coefficients Cm
are given by

Cm ¼ 1

T

Z
T

0

dtCðtÞe−2πimf̄et; ð5:7Þ

with T being the total time of data collection, which we
assume to be a multiple of Te. The Cm are the constant
quantities we are interested in for estimating the detect-
ability of the signal. The corresponding SNR for each index
m is defined as

SNRm ¼ hCmi
hC2mi1=2

: ð5:8Þ

We derive the expression for the optimal SNRm in
Appendix D. The crucial property we will use is that,
for nonvanishing m, only the signal contributes to the
numerator of Eq. (5.8), since the noise is stationary, and its
contribution cancels when it appears within oscillatory
integrals. This is why we can exploit the daily time
modulation of the signal for extracting information on
kinematic anisotropies.
The result is

SNRm ¼
ffiffiffiffiffiffi
2T

p �Z
∞

0

dfS2
mðfÞ

I2ðfÞ
N2ðfÞ

�
1=2

; ð5:9Þ

for m ≠ 0, under the hypothesis of common noise N for
any non-null channel. We introduced the combination of
response functions

SmðfÞ ¼
����X
OO0

X2
m0;m00¼−2

δKðm −m0 −m00ÞRðm0;m00Þ
OO0 ðfÞ

����;
ð5:10Þ

with δK being the Kronecker delta. We learn that the
optimal SNR depends on the frequency-dependent quan-

tities Rðm−m0;m0Þ
OO0 ðfÞ, associated with the Doppler anisotro-

pies of the SGWB signal.

C. Representative examples

We now apply the previous findings to the represen-
tative example of SGWB with a broken power-law
frequency profile. First, we select the same ansatz as
Eq. (4.4) for the GW intensity, convert it to energy density
by writing

ΩGWðfÞ ¼ Ωð0Þ
GWf

3

�
f
ffid

�
γ
�
1þ

�
f
f⋆

�1
κ

�−κðγþδÞ
; ð5:11Þ

with Ωð0Þ
GW ¼ 4π2I0=ð3H2

0Þ, and represent in Fig. 6 the
profile of interest. We choose a convenient set of
parameters in which the SGWB profile changes slope
at the frequency f ¼ 7 Hz corresponding to the maximal
sensitivity for ET-D.
In this example, the slopes in the growing and decaying

phases of the spectrum are small, and consequently we
expect that the c3ðfÞ function is much smaller than c2ðfÞ
(see the discussion in Secs. IVA and IV B, in particular
Figs. 1 and 3). We confirm this fact by computing the
squares of c2;3ðfÞ for the example at hand. (These are
quantities we will need in a moment.) We plot the result in
Fig. 7; manifestly, the value of c3 is orders of magnitude
smaller than c2 over the entire interesting range of
frequencies. Moreover, both c22 and c23 act as high-pass
filters in frequency, being vanishingly small for frequencies
smaller than around 13 Hz, and almost constant for
frequencies above this value. Since both quantities enter
in the response function and in the expression for SNRm,
such a behaviour makes manifest the importance of
frequency dependence of the signal IðfÞ for forecasting
the detectability of kinematic anisotropies.
Depending on the index m, by evaluating the quantity

Sm, we can probe both the profiles for c2 and c3.
Let us start focussing on the case m ¼ 2. The

function Sm reads (we make use of the formulas in
Appendix C)

S2 ¼
X
OO0

Rð1;1Þ
OO0 ¼ c2ðfÞ

�X
OO0

va⊥dOabdbO0dv
d⊥
�
: ð5:12Þ

Here we have included only the contribution due to c2,
since the additional contribution of c3, being subdominant,

FIG. 6. Logarithmic plot of of the GW energy density for a
broken power-law profile, Eq. (5.11). Ωð0Þ

GW ¼ 10−15, γ ¼ 3,
δ ¼ 9, κ ¼ 0.2, ffid ¼ 1 Hz, f⋆ ¼ 7 Hz. In the dashed line we
plot the sensitivity curve ΣGWðfÞ of Eq. (5.15).
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can be neglected (see Fig. 7). The corresponding SNR2

reads

SNR2 ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

T
1 year

s
×

Ωð0Þ
GW

10−12

!�
ΣOO0va⊥dOabdbO0dv

d⊥
4
5
ΣOO0dOabdabO0

�

×

�Z
fmax

fmin

dfAðfÞ
�

1=2
; ð5:13Þ

with

AðfÞ ¼ c22ðfÞ
�
ΩGWðfÞ
Ωð0Þ

GW

�
2
�

10−12

ΣGWðfÞ
�

2

; ð5:14Þ

where we use 1 year ¼ 365.25 days ¼ 31.56 × 106 Hz−1,
and we introduce the quantity

ΣGWðfÞ ¼
4π2f3

3H2
0

�
NðfÞ

4
5
ΣOO0dOabdabO0

��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

31.56 × 106
p

�
;

ð5:15Þ

which corresponds to the sensitivity curve for the
detection of a stochastic background with one year of data
collection—see Sec. IVA of [55], and Fig. 14 of [49].
Besides the overall f3 and constant factors, this function is
defined in terms of the noise correlation N of Eq. (2.8)
(common to all non-null channels, and built in terms of
publicly available ET-D specifications2 [65]), over the
response function for an isotropic background [defined
as in Eq. (3.6) with all ci set to zero], and over the square
root of one year expressed in Hz−1.
The SNR2 of Eq. (5.13) is then made of three coef-

ficients, with transparent physical interpretations:
(1) The overall square root of the observation time, as

expected. We accompany it with the coefficient

Ωð0Þ
GW=10

−12, setting the fiducial overall normaliza-
tion for the SGWB energy density as in Fig. 6.

(2) A purely geometrical contribution, depending on
the orientation of the detector with respect to the
projection of the velocity vector normal to the
Earth’s rotation axis.

(3) An integral in frequency, which depends on the
profile of the SGWB, as well as on the detector
specification. The integral is computed over the
detectable frequency band of ET. It contains the
square of the GW density (see Fig. 6) and the square
of the Doppler coefficient c2 (see Fig. 7, left panel),
that makes it sensitive to the degree of kinematic
anisotropy of the scenario. Finally, it also depends on
the square of noise-energy density [see Eq. (5.15)].

For definiteness, in Fig. 8 we represent the functionAðfÞ
of Eq. (5.14), which appears in the frequency integral in

FIG. 7. The profiles of c22 and c23 for the profile of Fig. 6. We fix β ¼ 0.1.

FIG. 8. Plot of the integrand function AðfÞ of Eq. (5.14),
computed for the example of Figs. 6, 7. This function has a peak
at frequencies around 10 Hz, in proximity of the region of
maximal sensitivity of ET.2http://www.et-gw.eu/index.php/etsensitivities.
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Eq. (5.13). We notice a very pronounced peak at frequen-
cies around 10 Hz, nearby the maximal sensitivity of the
instrument. It also corresponds to the region where the
SGWB changes slope. Notice that the peak is slightly
slanted towards high frequencies; we interpret this behavior
to be due to the ‘high-pass’ filter function c22, as noted at the
beginning of this subsection.
The integral over frequencies corresponding to the

last factor of Eq. (5.13) can be numerically computed.
We find

�Z
104 Hz

1 Hz

df
1 Hz

AðfÞ
�

1=2
¼ 3.66: ð5:16Þ

Hence we learn that, if the geometrical second factor

of Eq. (5.13) is of order one, we need an Ωð0Þ
GW ≃ 10−12

for ensuring SNR2 > 1. The integral over frequencies
in Eq. (5.16) helps in increasing the prospects of
detectability—a feature that has been exploited in the
past in the context of power-law sensitivity curves [66]
(see also [67] for a recent proposal for the case of broken
power laws).
We now continue with the case m ¼ 4. The function S4

results (see Appendix C)

S4¼
X
OO0

Rð2;2Þ
OO0 ¼ c3

16

�X
OO0

dOabdO0cdva⊥vb⊥vc⊥vd⊥
�
: ð5:17Þ

In this case, this quantity is insensitive to c2: hence it can
probe the function c3 that—although small—is the only
parameter contributing. Proceeding exactly as above, the
corresponding SNR4 reads

SNR4 ¼
 ffiffiffiffiffiffiffiffiffiffiffiffi

T
1 year

s
×
Ωð0Þ

GW

10−12

!�
ΣOO0dOabdO0cdva⊥vb⊥vc⊥vd⊥

4
5
ΣOO0dOabdabO0

�

×

�Z
fmax

fmin

dfB1ðfÞ
�

1=2
; ð5:18Þ

with

B1ðfÞ ¼ 3.9 × 10−3 × c23ðfÞ
�
ΩGWðfÞ
Ωð0Þ

GW

�
2
�

10−12

ΣGWðfÞ
�

2

:

ð5:19Þ

Again, the profile of the function (see Fig. 9) is peaked at
frequencies around the maximal sensitivity of ET, and it is
slightly slanted towards the right, because of the ‘high-
pass’ behavior of the weighted function c23. This time, the
integral can be numerically computed to be

�Z
104 Hz

1 Hz

df
1 Hz

B1ðfÞ
�

1=2
¼ 3.96 × 10−4; ð5:20Þ

making it harder to detect the effects of c3 with respect
to c2. The remaining cases of m ≠ 2, 4 can be treated
analogously to these ones, and we do not go through them
explicitly.
As a last example, we compute the signal-to-noise ratio

SNR4 for the case of double broken power-law of Eq. (4.5),
that is, the profile with resonance in Fig. 4, as discussed in
Sec. IV C. By making use of Eq. (3.3), we convert the GW
intensity of Eq. (4.5) into GW energy density. The
corresponding profile is

ΩGWðfÞ ¼ Ω1

�
f
f1

�
γ
�
1þ

�
f
f⋆

�1
κ

�−κðγþδÞ

þ Ω2

�
f
f2

�
γ1
�
1þ

�
f
f3

� 1
κ1

�−κ1ðγ1þδ1Þ
; ð5:21Þ

where Ω1;2 are normalization factors, and the meaning and
implications of the remaining quantities are discussed
after Eq. (4.5).
We express the formula for the SNR for the case

m ¼ 4 as

SNR4¼
 ffiffiffiffiffiffiffiffiffiffiffiffi

T
1 year

s
×
Ωð0Þ

GW

10−12

!�
ΣOO0dOabdO0cdva⊥vb⊥vc⊥vd⊥

4
5
ΣOO0dOabdabO0

�

×

�Z
fmax

fmin

dfB2ðfÞ
�

1=2
; ð5:22Þ

with Ωð0Þ
GW being a ‘fiducial’ reference scale for the

amplitude of the SGWB energy density, and

B2ðfÞ ¼ 3.9 × 10−3 × c23ðfÞ
�
ΩGWðfÞ
Ωð0Þ

GW

�
2
�

10−12

ΣGWðfÞ
�

2

:

ð5:23Þ

FIG. 9. Plot of the function B1ðfÞ in Eq. (5.19), computed for
the example of Figs. 6, 7.
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The function B2ðfÞ depends on c23, which assumes large
values. The profile of B2ðfÞ is peaked for values of
frequency at the maximal sensitivity of ET (see Fig. 10).
The frequency integral in Eq. (5.22) can be evaluated to be�Z

104 Hz

1 Hz

df
1 Hz

B2ðfÞ
�

1=2
¼ 3.14 × 103: ð5:24Þ

Apparently, having pronounced resonances or features
seems to enhance the detectability of anisotropic signals,
a fact pointed out recently in [14].

VI. CONCLUSIONS

We studied the response function of the Einstein
Telescope to kinematic anisotropies of the stochastic
gravitational wave background. For the first time we
did not assume a factorizable ansatz for the Doppler
effects, nor did we assume the limit of small velocity
among frames. We applied our findings to quantitatively
study the response functions for three well-motivated
examples of gravitational wave background profiles:
power-law, broken power-law, and models with resonan-
ces motivated by primordial black hole scenarios. We then
derived the signal-to-noise ratio associated with an opti-
mal estimator for the detection of nonfactorizable kin-
ematic anisotropies. We analyzed the signal-to-noise ratio
for some representative examples of broken and double
broken power-law profiles.
Our work can be extended in several directions. First of

all, it would be interesting to study further examples of
realistic background profiles, to investigate more system-
atically how Doppler kinematic effects depend on the
background profile, and which scenarios lead to higher
signal-to-noise ratio and are easier to detect. Also, it
would be useful to quantify (as in [47]) corrections to the
assumption of negligible vertex distance, as discussed
towards the end of Sec. II, and investigate whether those

corrections can be important for specific background
profiles.
At the level of applications, the detection and precise

measurements of kinematic anisotropies can represent a
new indirect avenue for characterizing the properties of
the stochastic gravitational wave background, and its
sources. Suppose in fact that the, yet to be detected,
stochastic background is made of different sources; their
possible different speeds with respect to us make a
difference in their contributions to Doppler anisotropies,
and a measurement of the latter might allow us to
distinguish among sources. These and other fascinating
questions are left to future work.
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APPENDIX A: PROOF OF EQ. (3.6)

The aim of this appendix is to prove Eq. (3.6). We write

ROO0 ðf; t; t0Þ ¼ dabO ðtÞdcdO0 ðtÞΓabcdðf; β; v̂Þ; ðA1Þ

with

Γabcdðf; β; v̂Þ ¼
X
λ

Z
d2n̂
4π

Pðf; n̂ÞeðλÞab ðn̂ÞeðλÞcd ðn̂Þ; ðA2Þ

and, as in [47], we neglect separation distance among
detectors, and P is given by Eq. (3.5). Since it is contracted
with the dab’s, we will only be interested in the contribu-
tions Γabcd which are traceless along the first and last
two indexes. Moreover, Γabcd is symmetric under the

FIG. 10. Left panel: The profile of the quantity c23 in the scenario with energy profile (5.21), represented in Fig 4. It is nonvanishing
only for a limited range of frequencies. Right panel: The function B2ðfÞ of Eq. (5.23).

RESPONSE OF THE EINSTEIN TELESCOPE TO DOPPLER … PHYS. REV. D 107, 083516 (2023)

083516-13



interchanges a ↔ b, c ↔ d, ab ↔ cd. We use the identity
in Appendix A of [68],

X
λ

eðλÞab ðn̂ÞeðλÞcd ðn̂Þ ¼ ðδac − n̂an̂cÞðδbd − n̂bn̂dÞ

þ ðδad − n̂an̂dÞðδbc − n̂bn̂cÞ
− ðδab − n̂an̂bÞðδcd − n̂cn̂dÞ: ðA3Þ

The quantity we are after can be conveniently separated
into two parts,

Γabcd ¼ ΓðisoÞ
abcd þ ΓðanisoÞ

abcd ; ðA4Þ

with

ΓðisoÞ
abcd ¼

X
λ

Z
d2n̂
4π

eðλÞab ðn̂ÞeðλÞcd ðn̂Þ; ðA5Þ

ΓðanisoÞ
abcd ¼

X
λ

Z
d2n̂
4π

ðP − 1ÞeðλÞab ðn̂ÞeðλÞcd ðn̂Þ: ðA6Þ

By symmetry considerations, (see e.g., [57]) the isotropic
part can only be proportional to the combinations

ΓðisoÞ
abcd ¼ b1ðδacδbd þ δadδbcÞ þ b2δabδcd; ðA7Þ

where b1;2 are functions of frequency. Using identity (A3),
and the fact that

R
d2n̂=4π ¼ 1, we find that

δcdδabΓ
ðisoÞ
abcd ¼ 6b1 þ 9b2 ¼ 0; ðA8Þ

δbdδacΓ
ðisoÞ
abcd ¼ 12b1 þ 3b2 ¼ 4: ðA9Þ

Hence b1 ¼ 2=5, b2 ¼ −4=15. The part proportional to b2
will vanish upon contractions with the dabO quantities.

The anisotropic part ΓðanisoÞ
abcd can in principle be propor-

tional to the following combinations:

ΓðanisoÞ
abcd ¼ c1ðδacδbd þ δadδbcÞ þ c2ðδacv̂bv̂d þ δadv̂bv̂c þ δbcv̂av̂d þ δbdv̂av̂cÞ

þ c3v̂av̂bv̂cv̂d þ c4δabδcd þ c5ðδabv̂cv̂d þ δcdv̂av̂bÞ:

Considerations like the ones above lead to the identities

c1 ¼
K1

8
þ 3K2

4
þ K3

8
; ðA10Þ

c2 ¼
3K1

8
−
3K2

4
−
5K3

8
; ðA11Þ

c3 ¼
3K1

8
−
15K2

4
þ 35K3

8
; ðA12Þ

c4 ¼
K1

8
−
5K2

4
þ K3

8
; ðA13Þ

c5 ¼ −
5K1

8
þ 9K2

4
−
5K3

8
: ðA14Þ

The quantities K are given in Eq. (3.8) of the main text.
They vanish when β ¼ 0.
Assembling the results, we find that the structure of the

response function is

ROO0 ðf; t; t0Þ ¼ 4

5

�
1þ 5

2
c1

�
dabO ðtÞdO0abðtÞ

þ 4c2dabO ðtÞdO0bcðtÞv̂cv̂a
þ c3ðv̂av̂bdabOðtÞÞðv̂cv̂ddcdO0 ðtÞÞ; ðA15Þ

corresponding to Eq. (3.6) of the main text.

APPENDIX B: EXACT FORMULAS FOR THE
POWER-LAW CASE

The aim of this appendix is to present the general
formulas for the coefficients ci for the power-law
ansatz of Sec. IVA. They are as follows (denoting
β� ¼ 1� β):

c1 ¼
β−

1
2
−α
2βþ

1
2
−α
2ðβþα − β−

αÞ
αðβþ − β−Þ

− 1; ðB1Þ

c2 ¼
3α2ββ−

αðβ−βþÞ3=2 − 3α2ββþαðβ−βþÞ3=2 − 2αðαþ 1Þðαþ 2Þβ3βþðβ−βþÞα=2
6αðβ−βþÞα2ðαþ 1Þðαþ 2Þβ3βþ

þ 6ðβ þ 1Þβþα
ffiffiffiffiffiffiffiffiffiffiffi
β−βþ

p þ 3αβ
ffiffiffiffiffiffi
β−

p
βþαþ3

2ðαβþ þ β − 2Þ − 3βþ3=2β−
αþ1

2ðαβðαβþ þ β þ 2Þ þ 2Þ
6αðβ−βþÞα2ðαþ 1Þðαþ 2Þβ3βþ

; ðB2Þ
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c3 ¼ −
2αðαþ 1Þðαþ 2Þðαþ 3Þðαþ 4Þβ5ðβ−βþÞα=2
10ðβ−βþÞα2αðαþ 1Þðαþ 2Þðαþ 3Þðαþ 4Þβ5

−
5ðαβððαþ 1Þβððαþ 2Þβððαþ 3Þβ þ 4Þ þ 12Þ þ 24Þ þ 24Þβ−α

ffiffiffiffiffiffiffiffiffiffiffi
β−βþ

p
10ðβ−βþÞα2αðαþ 1Þðαþ 2Þðαþ 3Þðαþ 4Þβ5

þ 5
ðαβððαþ 1Þβððαþ 2Þβððαþ 3Þβ − 4Þ þ 12Þ − 24Þ þ 24Þβþα

ffiffiffiffiffiffiffiffiffiffiffi
β−βþ

p
10ðβ−βþÞα2αðαþ 1Þðαþ 2Þðαþ 3Þðαþ 4Þβ5 : ðB3Þ

These expressions are valid for any α and 0 < β < 1.
Notice that in some specific limits these power-law results
formally diverge, and the limits give logarithmic contribu-
tions, as in the α → −3 case discussed in the main text.

APPENDIX C: THE COEFFICIENTS Rðmm0Þ

We report here the explicit formulas for the coefficients

Rðm;m0Þ
OO0 as discussed in Sec. VA. They are as follows:

Rð0;0Þ
OO0 ¼

�
4

5
þ 2c1

�
dOabdabO0 þ 4c2vakdOabdbO0dv

d
k

þ c3
4
dOabdO0cdðva⊥vb⊥ þ 2vakv

b
kÞðvc⊥vd⊥ þ 2vckv

d
kÞ;
ðC1Þ

Rð1;0Þ
OO0 ¼ 2c2va⊥dOabdbO0dv

d
k

þ c3
2
dOabdO0cdva⊥vbkðvc⊥vd⊥ þ 2vckv

d
kÞ; ðC2Þ

Rð2;0Þ
OO0 ¼ c3

8
dOabdO0cdva⊥vb⊥ðvc⊥vd⊥ þ 2vckv

d
kÞ; ðC3Þ

Rð1;1Þ
OO0 ¼c2va⊥dOabdbO0dv

d⊥þc3dOabdO0cdva⊥vbkvc⊥vdk; ðC4Þ

Rð2;1Þ
OO0 ¼ c3

4
dOabdO0cdva⊥vb⊥vc⊥vdk; ðC5Þ

Rð2;2Þ
OO0 ¼ c3

16
dOabdO0cdva⊥vb⊥vc⊥vd⊥: ðC6Þ

The quantities Rðm;m0Þ
OO0 have the property that

Rðm;m0Þ
OO0 ¼ Rðm0;mÞ

O0O .

APPENDIX D: COMPUTATION OF THE
SNRm, AND PROOF OF EQ. (5.9)

The aim of this appendix is to compute the optimal
signal-to-noise ratio

SNRm ¼ hCmi
hC2mi1=2

; ðD1Þ

for the quantities defined in Sec. V. We proceed by first
evaluating the numerator, then the denominator.

1. Evaluating hCmi
For anym ≠ 0, the stationary noise does not contribute to

hCmi. Hence, this key quantity is only sensitive to the
anisotropy signal. Collecting results and definitions in the
main text, we find that, for nonvanishing index m

hCmi ¼
1

2T

X
OO0

Z
T

0

dte−2πimf̄et

Z
∞

−∞
dfdf0Q̃OO0 ðfÞ

Z
tþτ=2

t−τ=2
dt0dt00e2πiðf−f0Þðt0−t00ÞROO0 ðf0; t00; t0ÞIðf0Þ;

¼ 1

2T

X
OO0

Z
T

0

dte−2πimf̄et

Z
∞

−∞
dfdf0Q̃OO0 ðfÞIðf0Þ

X
m0m00

Z
tþτ=2

t−τ=2
dt0dt00e2πit0ðf−f0þm0f̄eÞe−2πit00ðf−f0−m00f̄eÞRðm0m00Þ

OO0 ðf0Þ:

ðD2Þ
To handle the nested integrals, we start performing the time integrals along t0; t00.
We use the definition of finite-size δ-functionZ

tþτ=2

t−τ=2
dt0e2πit0ðf0−f00þm0f̄eÞ ¼ δτðf0 − f00 þm0f̄eÞe−2iπtðf0−f00þm0f̄eÞ; ðD3Þ

with δτðxÞ given by

δτðxÞ≡ sin ðπxτÞ
πx

; lim
τ→∞

δτðxÞ ¼ δDðxÞ; ðD4Þ
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and δD being the Dirac delta. Then we get the expression

hCmi ¼
1

2T

X
OO0

X
m0m00

Z
T

0

dte−2πimf̄et

Z
∞

−∞
dfdf0Q̃OO0 ðfÞIðf0ÞRðm0m00Þ

OO0 ðf0Þδτðf − f0 þm0f̄eÞδτðf − f0 −m00f̄eÞe2iπtðm0þm00Þf̄e :

ðD5Þ

Since f̄e is much smaller than the frequency f of GW, we
can neglect the mf̄e contributions in the argument of the δτ
functions. Moreover, τ is much longer than the inverse of
GW frequencies. Hence we can treat one of the δτ as Dirac-
delta function δD, and obtain

hCmi ¼
τ

2

X
OO0

Z
∞

−∞
dfQ̃OO0 ðfÞSOO0 ðfÞIðfÞ; ðD6Þ

for the numerator of Eq. (D1), with

SðmÞ
OO0 ðfÞ ¼

X2
m0;m00¼−2

δKðm −m0 −m00ÞRðm0;m00Þ
OO0 ðfÞ; ðD7Þ

and δK being the Kronecker delta.

2. Evaluating hC2
mi1=2

To evaluate the denominator of Eq. (D1), we work under
the hypothesis of noise domination in Eq. (2.7), and
compute the variance of the noise. The steps are very
similar to the previous ones, and already carried out in
Sec. 3.2 [47]. We report the result of the calculation,

hC2mi ¼
τ2

4T

X
OO0

Z
∞

−∞
dfjQ̃OO0 ðfÞj2NOðfÞNO0 ðfÞ: ðD8Þ

We refer the reader to [47] for details.

3. Estimating the optimal SNRm

We now collect the results, and assume that the detector
noise NO ¼ N is the same for all the non-null channels.
The expression for the SNR is obtained by combining
Eqs. (D6) and (D8),

SNRm ¼
ffiffiffiffi
T

p P
OO0
R∞
−∞ dfQ̃OO0 ðfÞSOO0 ðfÞIðfÞ

ðR∞−∞ df
P

OO0 jQ̃OO0 ðfÞj2N2ðfÞÞ1=2 ;

¼
ffiffiffiffiffiffi
2T

p P
OO0
R∞
0 dfQ̃OO0 ðfÞSOO0 ðfÞIðfÞ

ðR∞0 df
P

OO0 jQ̃OO0 ðfÞj2N2ðfÞÞ1=2 ; ðD9Þ

where in the second line we perform an integration only
over positive frequencies (hence the

ffiffiffi
2

p
factor in front).

We determine the optimal value for the filter Q̃OO0 ðfÞ,
using standard techniques based on Wiener filtering [56].
We introduce a positive-definite scalar product ½…�,
defined as

½AOO0 ðfÞ; BOO0 ðfÞ�≡X
OO0

Z
∞

0

dfA�
OO0 ðfÞBOO0 ðfÞN2ðfÞ:

ðD10Þ

Using this scalar product, we reexpress (D9) as

SNRm ¼
ffiffiffiffiffiffi
2T

p ½Q̃OO0 ðfÞ;SOO0 ðfÞIðfÞ=N2ðfÞ�
½Q̃OO0 ðfÞ; Q̃OO0 ðfÞ�1=2 : ðD11Þ

This quantity is maximized choosing a filter Q̃OO0 ðfÞ ¼
SOO0 ðfÞIðfÞ=N2ðfÞ. Using it, the optimal signal-to-noise
ratio results

SNRm ¼
ffiffiffiffiffiffi
2T

p �Z
∞

0

df

����X
OO0

SðmÞ
OO0 ðfÞ IðfÞ

NðfÞ
����2
�

1=2
;

ðD12Þ

hence demonstrating Eq. (5.9).
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