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Abstract
Westudy asymptotic behaviour of positive ground state solutions of the nonlinear Schrödinger
equation

−�u + u = u2
∗−1 + λuq−1 inRN , (Pλ)

where N ≥ 3 is an integer, 2∗ = 2N
N−2 is the Sobolev critical exponent, 2 < q < 2∗

and λ > 0 is a parameter. It is known that as λ → 0, after a rescaling the ground state
solutions of (Pλ) converge to a particular solution of the critical Emden-Fowler equation
−�u = u2

∗−1. We establish a novel sharp asymptotic characterisation of such a rescaling,
which depends in a non-trivial way on the space dimension N = 3, N = 4 or N ≥ 5.We also
discuss a connection of these results with a mass constrained problem associated to (Pλ).
Unlike previous work of this type, our method is based on the Nehari-Pohožaev manifold
minimization, which allows to control the L2 norm of the groundstates.

Keywords Nonlinear Schrödinger equation · Critical Sobolev exponent · Concentration
compactness · Normalized solutions · Asymptotic behaviour.

Mathematics Subject Classification Primary 35J60; Secondary 35B25 · 35B40

1 Introduction and notations

We study standing–wave solutions of the nonlinear Schrödinger equation with attractive
double–power nonlinearity

iψt = �ψ + |ψ |q−2ψ + |ψ |p−2ψ in R
N × R (1.1)
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where N ≥ 3 is an integer and 2 < q < p. A theory of NLS with combined power
nonlinearities was developed by Tao, Visan and Zhang [27] and attracted a lot of attention
during the past decade (cf. [3, 4, 11] and further references therein).

A standing–wave solutions of (1.1) with a frequency ω > 0 is a finite energy solution in
the form

ψ(t, x) = e−iωt Q(x).

After a rescaling

Q(x) = ω
1

p−2 u(
√

ωx),

we obtain the equation for u in the form

− �u + u = |u|p−2u + λ|u|q−2u in R
N , (1.2)

where λ = ω
− p−q

p−2 > 0.
When p ≤ 2∗, where 2∗ = 2N

N−2 is the Sobolev critical exponent, weak solutions of (1.2)
correspond to critical points of the associated energy functional Iλ : H1(RN ) → R, defined
by

Iλ(u) := 1

2

∫
RN

(|∇u|2 + |u|2)− 1

p

∫
RN

|u|p − λ

q

∫
RN

|u|q .

By a ground state solution of (1.2)we understand a solution uλ ∈ H1(RN ) such that Iλ(uλ) ≤
Iλ(u) for every nontrivial solution u of (1.2).

In the subcritical case p < 2∗, the existence of a positive radially symmetric exponentially
decaying ground state solution of (1.2) is the result of Berestycki andLions [9]. If 2∗ ≤ q < p
there are no finite energy solutions of (1.2), which follows from Pohžaev identity.

In this paper we are interested in the critical case p = 2∗. We study the problem

−�u + u = u2
∗−1 + λuq−1, u > 0 in R

N , (Pλ)

where q ∈ (2, 2∗) and λ > 0 is a parameter. The following result gives a characterisation of
the existence of ground states for (Pλ).

Theorem 1.1 Problem (Pλ) admits a positive radially symmetric exponentially decreasing
ground state solution uλ ∈ H1(RN ) ∩ C2(RN ) provided that:

• N ≥ 4, q ∈ (2, 2∗) and λ > 0;
• N = 3, q ∈ (4, 6) and λ > 0;
• N = 3 and q ∈ (2, 4] and λ is sufficiently large.

For N ≥ 4, Theorem 1.1 is established by Akahori, Ibrahim, Kikuchi and Nawa [2],
Alves, Souto and Montenegro [8] and Liu, Liao and Tang [21]. In the case N = 3, Theorem
1.1 is proved in the above mentioned papers for q ∈ (2, 6) and large λ > 0. Theorem 1.1 for
N = 3, q ∈ (4, 6) and every λ > 0 was proved in Zhang and Zou [30, Theorem 1.1] (see
also Li and Ma [19] or Akahori et al. [4, Proposition 1.1]).

Very recently, Akahori, Ibrahim, Kikuchi and Nawa [5], and Wei and Wu [29] refined the
results concerning the existence and non-existence of ground states to (Pλ) when N = 3.
Although their definition of the ground state is different from that in our paper, they established
the existence of a λ∗ > 0 such that (Pλ) has a ground state if λ > λ∗ and no ground state if
λ < λ∗ when N = 3 and q ∈ (2, 4]. Moreover, when N = 3 and λ = λ∗, (Pλ) has a ground
state if q ∈ (2, 4).
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Concerning the uniqueness, Akahori et al. [1, 3, 4] and Coles and Gustafson [11] proved
that the radial ground state uλ is unique and nondegenerate for all small λ > 0 when N ≥ 5
and q ∈ (2, 2∗) [4, Theorem 1.1] or N = 3 and q ∈ (4, 2∗) [11], [1, Theorem 1.1]; and for all
large λ when N ≥ 3 and 2+ 4/N < q < 2∗ [3, Proposition 2.4]. Very recently, Akahori and
Murata [6, 7] established the uniqueness and nondegeneracy of the ground state solutions for
small λ > 0 in the case N = 4.

In general, the uniqueness of positive radial solutions of (Pλ) is not expected. Dávila,
del Pino and Guerra [12] constructed multiple positive solutions of (1.2) for a sufficiently
large λ and slightly subcritical p < 2∗. A numerical simulation in the same paper suggested
nonuniqueness in the critical case p = 2∗. Wei and Wu [29] recently proved that there exist
two positive solutions to (Pλ) when N = 3, q ∈ (2, 4) and λ > 0 is sufficiently large, as
[12] has suggested. Chen, Dávila and Guerra [10] proved the existence of arbitrary large
number of bubble tower positive solutions of (1.2) in the slightly supercritical case when
q < 2∗ < p = 2∗ + ε, provided that ε > 0 is sufficiently small. However, if 3 ≤ N ≤ 6
and N+2

N−2 < q < 2∗ then Pucci and Serrin [25, Theorem 1] proved that (Pλ) has at most one
positive radial solution (see also [2, Theorem C.1]).

Existence of a positive radial solution to (1.2) in the supercritical case 2 < q < 2∗ ≤ p
for sufficiently large λ was established earlier by Ferrero and Gazzola [13, Theorem 5] using
ODE’smethods, however the variational characterisation of these solutions seems open. They
also proved that for 2 < q < 2∗ < p and small λ > 0 Eq. (1.2) has no positive solutions.

Before we formulate the result in this paper we shall clarify the notations.

Notations. Throughout the paper, we assume N ≥ 3. The standard norm on the Lebesgue
space L p(RN ) is denoted by ‖ · ‖p . The space H1(RN ) is the usual Sobolev space
with the norm ‖u‖H1(RN ) = ‖∇u‖2 + ‖u‖2, while H1

r (RN ) = {u ∈ H1(RN ) :
u is radially symmetric}. The homogeneous Sobolev space D1(RN ) is defined as the com-
pletion of C∞

c (RN ) with respect to the norm ‖∇u‖2.
For any small λ > 0, any q ∈ (2, 2∗), and two nonnegative functions f (λ, q) and g(λ, q),

throughout the paper we write:

• f (λ, q) � g(λ, q) or g(λ, q) � f (λ, q) if there exists a positive constantC independent
of λ and q such that f (λ, q) ≤ Cg(λ, q),

• f (λ, q) ∼ g(λ, q) if f (λ, q) � g(λ, q) and f (λ, q) � g(λ, q).

BR denotes the open ball in R
N with radius R > 0 and centred at the origin, |BR | and Bc

R
denote its Lebesgue measure and its complement in R

N , respectively. As usual, c, c1 etc.,
denote positive constants which are independent of λ and whose exact values are irrelevant.

2 Main result

In this paper we are interested in the limit asymptotic profile of the ground states uλ of the
critical problem (Pλ), and in the asymptotic behaviour of different norms of uλ, as λ → 0
and λ → ∞. Of particular importance is the L2–mass of the ground state

M(λ) := ‖uλ‖22,
which plays a key role in the analysis of stability of the corresponding standing–wave solu-
tion of the time–dependent NLS (1.1), and in the study of the mass constrained problems
associated to (Pλ), cf. Lewin and Nodari [17, Sect. 3.2] and Sect. 3 below for a discussion.

In the subcritical case p < 2∗, it is intuitively clear and not difficult to show (using e.g.
Lyapunov–Schmidt type arguments) that as λ → 0, ground states of (1.2) converge to the

123



   13 Page 4 of 26 S. Ma, V. Moroz

unique radial positive ground state of the limit equation

− �u + u = |u|p−2u in R
N . (2.1)

In the critical case p = 2∗, by Pohožaev identity, the formal limit Eq. (2.1) has no nontrvial
finite energy solutions. In fact, we will see later that uλ converges as λ → 0 to a multiple of
the delta-function at the origin.

Recently Akahori et al. [4, Proposition 2.1] proved that after a rescaling, the correct limit
equation for (Pλ) as λ → 0 is given by the critical Emden-Fowler equation

− �U = U 2∗−1 in R
N . (2.2)

Recall that all radial solutions of (2.2) are given by the Talenti function

U1(x) := [N (N − 2)] N−2
4

(
1

1 + |x |2
) N−2

2

(2.3)

and the family of its rescalings

Uρ(x) := ρ− N−2
2 U1(x/ρ), ρ > 0. (2.4)

Note that while (Pλ) and the associated energy Iλ arewell–posed in H1(RN ), the limit critical
Emden-Fowler Eq. (2.2) is well–posed in D1(RN ) 
⊂ H1(RN ). Moreover, in the dimensions
N = 3, 4 the ground states Uρ /∈ H1(RN ), so small perturbation arguments are not (easily)
available for the study of limit behaviour of uλ.

Akahori et al. [4, Proposition 2.1] proved, using variational methods, that the rescaled
family of ground state solutions of (Pλ), defined as

ũλ(x) := μ−1
λ uλ

(
μ

− 2
N−2

λ x
)
, μλ := uλ(0) = ‖uλ‖∞ (2.5)

converges as λ → 0 in D1(RN ) to the Uρ∗ , where ‖Uρ∗‖∞ = 1. This result was used in the
proof of the uniqueness and nondegenaracy of the ground states of (Pλ) for N ≥ 5 in [4],
and for N = 3 in [1]. Very recently, Akahori and Murata [6, 7] obtained the uniqueness and
nondegeneracy of the ground state solutions in the case N = 4. The rescaling μλ in (2.5) is
implicit.

Our main result in this work is an explicit asymptotic characterisation of a rescaling which
ensures the convergence of ground states of (Pλ) to a ground state of the critical Emden–
Fowler Eq. (2.2). More precisely, we prove the following.

Theorem 2.1 Let {uλ} be a family of ground states of (Pλ).

(a) If N ≥ 5 and q ∈ (2, 2∗), then for small λ > 0

uλ(0) ∼ λ
− 1

q−2 , (2.6)

‖∇uλ‖22 ∼ ‖uλ‖2∗
2∗ ∼ 1, ‖uλ‖22 ∼ (2∗ − q)λ

2∗−2
q−2 , ‖uλ‖qq ∼ λ

2∗−q
q−2 . (2.7)

Moreover, as λ → 0, the rescaled family of ground states

vλ(x) = λ
1

q−2 uλ

(
λ

2∗−2
2(q−2) x

)
, (2.8)

converges to Uρ0 in H1(RN ) with

ρ0 =
(
2(2∗ − q)

∫
RN |U1|q

q(2∗ − 2)
∫
RN |U1|2

) 2∗−2
2(q−2)

, (2.9)
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and the convergence rate is described by the relation

‖∇Uρ0‖22 − ‖∇vλ‖22 ∼ (q − 2)λ
2∗−2
q−2 . (2.10)

(b) If N = 4 and q ∈ (2, 4) or N = 3 and q ∈ (4, 6), then for small λ > 0

uλ(0) ∼
{

λ
− N−2

2(q−2) (ln 1
λ
)

N−2
2(q−2) if N = 4,

λ
− N−2

q−4 if N = 3,
(2.11)

‖∇uλ‖22 ∼ ‖uλ‖2∗
2∗ ∼ 1, (2.12)

‖uλ‖22 ∼
{

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 if N = 4,

λ
2

q−4 if N = 3,
(2.13)

‖uλ‖qq ∼
{

λ
4−q
q−2 (ln 1

λ
)
− 4−q

q−2 if N = 4,

λ
6−q
q−4 if N = 3.

(2.14)

Moreover, there exists ξλ ∈ (0,+∞) verifying

ξλ ∼
{

λ
1

q−2 (ln 1
λ
)
− 1

q−2 if N = 4,

λ
2

q−4 if N = 3,
(2.15)

such that as λ → 0, the rescaled family of ground states

wλ(x) = ξ
N−2
2

λ uλ(ξλx), (2.16)

converges to U1 in D1(RN ) ∩ Lq(RN ) , and the convergence rate is described by the
relation

‖∇U1‖22 − ‖∇wλ‖22 ∼
{

λ
2

q−2
(
ln 1

λ

)− 4−q
q−2 if N = 4,

λ
2

q−4 if N = 3.
(2.17)

Similar type of results were recently obtained byWei andWu [28, 29]. In [29] the authors
study solutions of (Pλ) in the case N = 3 and q ∈ (2, 4). In particular, [29, Theorem
1.2 and Propostion 2.4] proves that for sufficiently large μ there exist a ground state and a
blow-up positive radial solution of (Pλ), and derives asymptotic estimates of type (2.11) on
these two solutions. These results complement Theorem 2.1 above. In [28] the authors study
normalised solutions of (Pλ) for N ≥ 3 and general range q ∈ (2, 2∗). In [28, Theorem
1.2 and Propostion 2.4] they show convergence up to a rescaling of the mountain–pass type
normalised solution of (Pλ) with a fixed mass to a normalised solution of the Emden–Fowler
Eq. (2.2) and derive asymptotic estimates of the rescaling similar to the results in Theorem
2.1. It is not known in general (cf. Sect. 2) whether or not normalised solutions in [28] are
(rescalings of) ground states in Theorem 2.1. In fact, comparison of estimates in [28] and
Theorem 2.1 could potentially help to study this question. The techniques in our work and
in [28, 29] are different.

Asymptotic characterisation of ground states of the equation with a double–well nonlin-
earity in the form

− �u + ωu = |u|p−2u − |u|q−2u in R
N , (2.18)

with ω > 0 and 2 < q < p < +∞ was obtained by Moroz and Muratov [24], and by Lewin
andNodari [17]. Our proof of Theorem 2.1 is inspired by [24] yet the techniques in the present
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work are different.While the arguments in [24] are based on the Berestycki–Lions variational
approach [9], the proofs in this work use minimization over Nehari manifold combined with
Pohozaev’s identity estimates, and the Concentration Compactness Principle. The advantage
of the Nehari–Pohožaev approach is that it allows to include the control the L2–norm of the
ground states, which is essential in the study of the mass constrained problems associated
to (Pλ). Our method could be extended to nonlinear Hartree type equations with nonlocal
convolution terms which include competing scaling symmetries [23] and nonlocal Kirchhoff
equations [22], while the Berestycki–Lions approach seems to be limited to local equations
only.

In the case λ → ∞, the explicit rescaling

v(x) = λ
1

q−2 u(x) (2.19)

becomes relevant. Clearly, (2.19) transforms (Pλ) into the equivalent equation

−�v + v = λ
− 2∗−2

q−2 v2
∗−1 + vq−1 in R

N . (Rλ)

This suggests that as λ → ∞ the limit equation for (Rλ) is given by the equation

− �v + v = vq−1 in R
N , (2.20)

which has the unique positive radial solution v∞ ∈ H1(RN ) ∩ C2(RN ). For completeness,
we formulate the following result, which was proved by Fukuizumi [14, Lemma 4.2] (see
also [3, Proposition 2.3]).

Theorem 2.2 Let N ≥ 3, q ∈ (2, 2∗) and {uλ} be a family of ground states of (Pλ). Then as
λ → +∞, the rescaled family of ground states

vλ(x) = λ
1

q−2 uλ(x) (2.21)

converges in H1(RN ) to v∞. Moreover, the convergence rate is described by the relation

‖v∞‖2H1(RN )
− ‖vλ‖2H1(RN )

= 1

q − 2
λ

− 2∗−2
q−2 (1 + o(1)). (2.22)

The Nehari–Pohožaev variational arguments developed in this work can be adapted to
show that the statement of Theorem 2.2 remains valid also for the Eq. (1.2) in whole range
case of admissible exponents 2 < q < p ≤ 2∗. We omit the details, as these mostly repeat
(in simplified form) the arguments in our proof of Theorem 2.1 in the case N ≥ 5.

In the rest of the paper we concentrate on the case λ → 0. In Sect. 4 we obtain several
preliminary estimates. In Sect. 5 we prove Theorem 2.1. However, before we proceed with
the proof of Theorem 2.1, in the next section section we discuss a connection with the mass
constrained problem.

3 A connection with themass constrained problem

Consider the energy

J (v) := 1

2

∫
|∇v|2dx − 1

q

∫
|v|qdx − 1

p

∫
|v|pdx,

constrained on

Sρ := {v ∈ H1(RN ) : ‖v‖L2 = ρ
}
.
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For 2 < q < p ≤ 2∗, critical points of J on Sρ satisfy

− �v + ωρv = |v|p−2u + |v|q−2v in R
N , (3.1)

where ωρ ∈ R is an unknown Lagrange multiplier. A ground state of J on Sρ is a minimal
energy critical point of J on Sρ .

According to [26, Theorem 1.1] (see also [18, Theorem 1.4]), for all N ≥ 3, 2 < q < 2∗,
and for all sufficiently small ρ > 0, the energy J admits a ground state vρ on Sρ . The ground
state vρ is positive, radially symmetric and satisfies (3.1) with an ωρ > 0. When 2 < q <

2 + 4/N the ground state vρ is a local minimum of J on Sρ , while for 2 + 4/N ≤ q < 2∗
the ground state vρ is a mountain–pass type critical point of J on Sρ .

Recall that (3.1) is equivalent to (Pλ) after a rescaling

λρ := ω
− (N−2)(2∗−q)

4
ρ , v(x) = ω

N−2
4

ρ u(
√

ωρx) (3.2)

and thus the results of Theorem 2.1 in principle could be applicable to (3.1). Caution however
is needed as it is a-priori unknown (and generally speaking isn’t always true [16, 17]) if a
ground state of J on Sρ corresponds, after the rescaling (3.2), to a ground state of the
unconstrained problem (Pλρ ). Recall however that when 3 ≤ N ≤ 6 and q ∈ (2∗ − 1, 2∗),
equation (Pλ) has at most one positive radial solution [25, Theorem 1] (see also [2, Theorem
C.1]). Hence a positive ground state of J on Sρ , when it exists, must coincide after the
rescaling (3.2) with the unique positive solution of (Pλρ ). Even in this uniqueness scenario,
the relation ρ → ωρ (and hence ρ → λρ) is apriori unknown. It turns out however that
the asymptotic of λρ as ρ → 0 can be recovered via the Pohožaev-Nehari identities and the
estimates of the Lq -norm of uλρ from Theorem 2.1. The following result links Theorem 2.1
with the mass constrained problem.

Theorem 3.1 Assume that 3 ≤ N ≤ 6 and q ∈ (2∗ − 1, 2∗). Let ρ → 0, and vρ ∈ Sρ be the
the ground state of J on Sρ . Then

vρ(x) = λ
− 1

2∗−q
ρ uλρ

(
λ

− 2
(N−2)(2∗−q)

ρ x
)
,

where uλρ is the ground state of (Pλρ ) and

λρ ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ
(N−2)2(q−2)(2∗−q)

8 if N ≥ 5,

ρ
(q−2)(4−q)

2

(
W0

(
4

(4−q)2
ρ

− 2(q−2)
4−q

)) 1
4 (4−q)2

if N = 4,

ρ
(q−4)(6−q)

q−2 if N = 3.

(3.3)

here W0(·) is the principal branch of the Lambert W–function.1 In particular, as ρ → 0, the
ground states vρ converge to a ground state of the critical Emden–Fowler Eq. (2.2), after the
rescalings described in Theorem 2.1.

Proof Given ρ > 0, assume that vρ ∈ H1(RN ) is a critical point of J on Sρ with a critical
level mρ = J (vρ) and with a Lagrange multiplier ωρ ∈ R. Denote

A = ‖∇vρ‖22, B = ‖vρ‖qq , C = ‖vρ‖2∗
2∗ .

1 W0(x) is defined as the the unique real solution of the equation yey = x , x ≥ 0.
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Applying Nehari and Pohožaev identities (cf. [9]), we obtain the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
A − 1

q
B − 1

2∗C = mρ

A − B − C = −ωρρ2

N − 2

2
A − N

q
B − N

2∗C = −N

2
ωρρ2.

(3.4)

This is a linear system and the determinant is zero when q = 2∗. We solve the system
explicitly to obtain

ωρ = (N − 2)(2∗ − q)

2qρ2 B, mρ = 1

N
A − N

2

( 1
q

− 1

2∗
)
B, C = A − N

(1
2

− 1

q

)
B.

(3.5)

From the first relation we can deduce

ρ2ωρ = (N − 2)(2∗ − q)

2q
B > 0. (3.6)

Taking into account the rescaling (3.2), we obtain

B = ‖vρ‖qq = λ
− q

p−q
ρ λ

p−2
2(p−q)

N
ρ ‖uλρ ‖qq = λρ‖uλρ ‖qq , (3.7)

and from (3.6) we have

ρ2λ
− 4

(N−2)(2∗−q)
ρ = cλρ‖uλρ ‖qq , (3.8)

or

ρ2 = cλ
1+ 4

(N−2)(2∗−q)
ρ ‖uλρ ‖qq . (3.9)

Recall that according to Theorem 2.1, for small λ > 0 the Lq–norm of ground states of (Pλ)

satisfies

‖uλ‖qq ∼

⎧⎪⎪⎨
⎪⎪⎩

λ
2∗−q
q−2 if N ≥ 5,

λ
4−q
q−2 (ln 1

λ
)
− 4−q

q−2 if N = 4,

λ
6−q
q−4 if N = 3.

(3.10)

Substituting into (3.9) we obtain

ρ ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

8
(N−2)2(q−2)(2∗−q)
ρ if N ≥ 5,

λ
2

(q−2)(4−q)
ρ (ln 1

λ
)
− 4−q

2(q−2) if N = 4,

λ

q−2
(q−4)(6−q)
ρ if N = 3,

(3.11)

and then (3.3) follows after the inversion. ��
Remark 3.2 We conjecture that the estimates (3.3) remain valid beyond the uniqueness sce-
nario of [25, Theorem 1]. The proof of this would require a direct analysis of the ground
states of J on Sρ adapting the techniques in this paper, and thus bypassing the unconstrained
problem (Pλ). Note that the estimate (3.3) is different from the estimates in [28, Proposition
4.1, 4.2], where ρ is fixed.
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4 Rescalings and preliminary estimates as � → 0

The formal limit equation for (Pλ) as λ → 0 is given by

−�u + u = u2
∗−1 inRN . (P0)

Recall that (P0) has no nontrivial solutions in H1(RN ), this follows fromPohožaev’s identity.
We denote the Nehari manifolds for (Pλ) and (P0) as follows:

Mλ :=
{
u ∈ H1(RN ) \ {0}

∣∣∣∣
∫
RN

|∇u|2 + |u|2 =
∫
RN

|u|2∗ + λ|u|q
}

.

M0 :=
{
u ∈ H1(RN ) \ {0}

∣∣∣∣
∫
RN

|∇u|2 + |u|2 =
∫
RN

|u|2∗
}

.

Denote

I0(u) := 1

2

∫
RN

(|∇u|2 + |u|2)− 1

p

∫
RN

|u|p

the limiting energy functional I0 : H1(RN ) → R. It is easy to see that

m∗
λ := inf

u∈Mλ

Iλ(u), m∗
0 := inf

u∈M0
I0(u).

are well defined and positive. Let uλ be the ground state for (Pλ) constructed in Theorem
1.1. Then we have the following

Lemma 4.1 The family of solutions {uλ}λ>0 is bounded in H1(RN ).

Proof It is not hard to show that m∗
λ ≤ m∗

0. Moreover, we have

m∗
λ = Iλ(uλ) = Iλ(uλ) − 1

q
I ′
λ(uλ)uλ

=
(
1

2
− 1

q

)∫
RN

|∇uλ|2 + |uλ|2 +
(
1

q
− 1

2∗

)∫
RN

|uλ|2∗

≥
(
1

2
− 1

q

)∫
RN

|∇uλ|2 + |uλ|2.

Therefore, {uλ} is bounded in H1(RN ). ��
For λ > 0, define the rescaling

v(x) = λ
1

q−2 u
(
λ

2∗−2
2(q−2) x

)
. (4.1)

Rescaling (4.1) transforms (Pλ) into the equivalent equaition

−�v + λσ v = v2
∗−1 + λσ vq−1 in R

N , (Qλ)

where

σ := 2∗ − 2

q − 2
= 4

(N − 2)(q − 2)
. (4.2)

The corresponding energy functional is given by

Jλ(v) = 1

2

∫
RN

|∇v|2 + λσ |v|2 − 1

2∗

∫
RN

|v|2∗ − 1

q
λσ

∫
RN

|v|q . (4.3)
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The formal limit equation for (Qλ) as λ → 0 is given by the critical Emden–Fowler equation

−�v = v2
∗−1 inRN . (Q0)

We denote their corresponding Nehari manifolds as follows:

Nλ :=
{
v ∈ H1(RN ) \ {0}

∣∣∣∣
∫
RN

|∇v|2 + λσ |v|2 =
∫
RN

|v|2∗ + λσ |v|q
}

.

N0 :=
{
v ∈ D1,2(RN ) \ {0}

∣∣∣∣
∫
RN

|∇v|2 =
∫
RN

|v|2∗
}

.

Then

mλ := inf
v∈Nλ

Jλ(v), m0 := inf
v∈N0

J0(v)

are well-defined. It is well known that m0 is attained on N0 by the Talenti function

U1(x) := [N (N − 2)] N−2
4

(
1

1 + |x |2
) N−2

2

and the family of its rescalings

Uρ(x) := ρ− N−2
2 U1(x/ρ), ρ > 0. (4.4)

For v ∈ H1(RN ) \ {0}, we set

τ(v) :=
∫
RN |∇v|2∫
RN |v|2∗ . (4.5)

Then (τ (v))
N−2
4 v ∈ N0 for any v ∈ H1(RN ) \ {0}, and v ∈ N0 if and only if τ(v) = 1.

It is standard to verify the following.

Lemma 4.2 Let λ > 0, u ∈ H1(RN ) and v is the rescaling (4.1) of u. Then:

(a) ‖∇v‖22 = ‖∇u‖22, ‖v‖2∗
2∗ = ‖u‖2∗

2∗ ,
(b) λσ ‖v‖22 = ‖u‖22, λσ ‖v‖qq = λ‖u‖qq ,
(c) Jλ(v) = Iλ(u), mλ = m∗

λ.

In particular, if vλ is the rescaling (4.1) of the ground state uλ, then Jλ(vλ) = Iλ(uλ) and
hence vλ is the ground state of (Qλ). Moreover, vλ satisfies the Pohožaev’s identity [9]:

1

2∗

∫
RN

|∇vλ|2 + λσ

2

∫
RN

|vλ|2 = 1

2∗

∫
RN

|vλ|2∗ + λσ

q

∫
RN

|vλ|q . (4.6)

Define the Pohožaev manifold

Pλ := {v ∈ H1(RN ) \ {0} | Pλ(v) = 0},
where

Pλ(v) := N − 2

2

∫
RN

|∇v|2 + λσ N

2

∫
RN

|v|2 − N

2∗

∫
RN

|v|2∗ − λσ N

q

∫
RN

|v|q . (4.7)

Clearly, vλ ∈ Pλ. Moreover, we have the following minimax characterizations for the least
energy level mλ.
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Lemma 4.3 Let λ ≥ 0. Set

vt (x) =
{

v( xt ) if t > 0,
0 if t = 0.

Then

mλ = inf
v∈H1(RN )\{0}

sup
t≥0

Jλ(tv) = inf
v∈H1(RN )\{0}

sup
t≥0

Jλ(vt ).

In particular, we have mλ = Jλ(vλ) = supt>0 Jλ(tvλ) = supt>0 Jλ((vλ)t ).

Proof The proof is standard and thus omitted. We refer the reader to [19, Theorem 1.1], or
to [15]. ��
Lemma 4.4 Let λ > 0. The rescaled family of ground states {vλ} is bounded in H1(RN ). In
particular, {vλ} is bounded in L p(RN ) uniformly for all p ∈ [2, 2∗].
Proof Since ‖∇vλ‖2 = ‖∇uλ‖2 is bounded by Lemma 4.1 and Lemma 4.2, we need only to
show that vλ is bounded in L2(RN ). Since vλ ∈ Nλ ∩ Pλ, we have∫

RN
|∇vλ|2 + λσ

∫
RN

|vλ|2 −
∫
RN

|vλ|2∗ − λσ

∫
RN

|vλ|q = 0,

and

1

2∗

∫
RN

|∇vλ|2 + λσ

2

∫
RN

|vλ|2 − 1

2∗

∫
RN

|vλ|2∗ − λσ

q

∫
RN

|vλ|q = 0.

It then follows that(
1

2
− 1

2∗

)
λσ

∫
RN

|vλ|2 =
(
1

q
− 1

2∗

)
λσ

∫
RN

|vλ|q .

Thus, we obtain ∫
RN

|vλ|2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|vλ|q . (4.8)

By the Sobolev embedding theorem and the interpolation inequality, we obtain

∫
RN

|vλ|q ≤
(∫

RN
|vλ|2

) 2∗−q
2∗−2

(∫
RN

|vλ|2∗
) q−2

2∗−2 ≤
(∫

RN
|vλ|2

) 2∗−q
2∗−2

(
1

S

∫
RN

|∇vλ|2
) 2∗(q−2)

2(2∗−2)

,

where S is the best Sobolev constant. Therefore, we have

(∫
RN

|vλ|2
) q−2

2∗−2 ≤ 2(2∗ − q)

q(2∗ − 2)

(
1

S

∫
RN

|∇vλ|2
) 2∗(q−2)

2(2∗−2)

.

It then follows from Lemma 4.2 that
∫
RN

|vλ|2 ≤
(
2(2∗ − q)

q(2∗ − 2)

) 2∗−2
q−2

(
1

S

∫
RN

|∇uλ|2
)2∗/2

, (4.9)

which together with the boundedness of uλ in H1(RN ) implies that vλ is bounded in L2(RN ).
Finally, for any p ∈ [2, 2∗], by (4.9) and the interpolation inequality, we have

∫
RN

|vλ|p ≤
(∫

RN
|vλ|2

) 2∗−p
2∗−2

(∫
RN

|vλ|2∗
) p−2

2∗−2 ≤
(
2(2∗ − q)

q(2∗ − 2)

) 2∗−p
q−2

(
1

S

∫
RN

|∇uλ|2
)2∗/2

,
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and

lim
q→2

(
2(2∗ − q)

q(2∗ − 2)

) 2∗−p
q−2 = e−N (2∗−p)/4, for any p ∈ [2, 2∗].

Therefore, by Lemma 4.1, {vλ} is bounded in L p(RN ) uniformly for p ∈ [2, 2∗]. ��
Remark 4.5 A straightforward computation shows that

lim
q→2

(
2

q

) 2∗−2
q−2 = e− 2

N−2 , lim
q→2

(
2∗ − q

2∗ − 2

) 2∗−2
q−2 = e−1

and

lim
q→2∗

1

2∗ − q

(
2∗ − q

2∗ − 2

) 2∗−2
q−2 = N − 2

4
.

Therefore, we have

(
2(2∗ − q)

q(2∗ − 2)

) 2∗−2
q−2 ∼ 2∗ − q.

Next we obtain an estimation of the least energy.

Lemma 4.6 Let

Q(q) :=
(
2∗ − q

2∗ − 2

) 2∗−q
q−2

and G(q) := q − 2

2∗ − 2
Q(q). (4.10)

Then Q(q) ∼ 1, G(q) ∼ q − 2 and for all λ > 0:

(i) 1 < τ(vλ) ≤ 1 + G(q)λσ ,

(i i) m0 > mλ > m0

(
1 − λσ NG(q)(1 + G(q)λσ )

N−2
2

)
.

Proof For θ ∈ (0, 1), consider the function

g(x) := xθ
(
1 − x1−θ

)
, x ∈ [0,+∞).

It is easy to see that

max
x≥0

g(x) = θ
θ

1−θ (1 − θ).

Using the interpolation inequality,

∫
RN

|vλ|q ≤
(∫

RN
|vλ|2

) 2∗−q
2∗−2

(∫
RN

|vλ|2∗
) q−2

2∗−2

,

we see that∫
RN |vλ|q − ∫

RN |vλ|2∫
RN |vλ|2∗ ≤ ζ

θq
λ (1 − ζ

1−θq
λ ) ≤ θ

θq
1−θq
q (1 − θq) = G(q), (4.11)

where

θq = 2∗ − q

2∗ − 2
, ζλ =

∫
RN |vλ|2∫
RN |vλ|2∗ .
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Since vλ ∈ Nλ, by (4.8) and (4.11), we have

1 < τ(vλ) =
∫
RN |∇vλ|2∫
RN |vλ|2∗ = 1 + λσ

∫
RN |vλ|q − ∫

RN |vλ|2∫
RN |vλ|2∗ ≤ 1 + λσG(q).

This proves (i). To prove (i i), we first note that by (4.8) and (4.11) the following inequality
holds

1

q

∫
RN

|vλ|q − 1

2

∫
RN

|vλ|2 ≤
∫
RN

|vλ|q −
∫
RN

|vλ|2 ≤ G(q)

∫
RN

|vλ|2∗
.

Since vλ ∈ Nλ, by (4.8), we also have

mλ =
(
1

2
− 1

2∗

)∫
RN

|∇vλ|2 + (
1

2
− 1

2∗ )λσ

∫
RN

|vλ|2 − (
1

q
− 1

2∗ )λσ

∫
RN

|vλ|q

= 1

N

∫
RN

|∇vλ|2.

Therefore, by Lemma 4.3 and the definition of τ(vλ), we find

m0 ≤ sup
t≥0

Jλ((vλ)t ) + λσ (τ(vλ))
N/2
[
1

q

∫
RN

|vλ|q − 1

2

∫
RN

|vλ|2
]

≤ mλ + λσ (τ(vλ))
N
2

∫
RN

|vλ|2∗
G(q)

≤ mλ + λσ (τ(vλ))
N−2
2

∫
RN

|∇vλ|2G(q)

≤ mλ

[
1 + λσ NG(q)(1 + G(q)λσ )

N−2
2

]
. (4.12)

Hence, we obtain

mλ ≥ m0

1 + λσ NG(q)(1 + G(q)λσ )
N−2
2

> m0

[
1 − λσ NG(q)(1 + G(q)λσ )

N−2
2

]
,

which completes the proof. ��
Lemma 4.7 Assume N ≥ 5. Then there exists a constant c0 > 0, which is independent of q,
λ, and such that for all small λ > 0,

mλ ≤ m0 − λσ

⎧⎨
⎩
c0
q

(
2

q

) 2∗−q
q−2

G(q) − λσ 2Nm0

q − 2
G(q)2

⎫⎬
⎭ .

Proof For each ρ > 0, the family {Uρ} of radial ground states of (Q0) defined in (4.4)
verifies

‖Uρ‖22 = ρ2‖U1‖22, ‖Uρ‖qq = ρ
2(2∗−q)

2∗−2 ‖U1‖qq . (4.13)

Let g0(ρ) = 1
q

∫
RN |Uρ |q − 1

2

∫
RN |Uρ |2. Then there exists a unique ρ0 = ρ0(q) ∈ (0,+∞)

given by

ρ0 =
(
2(2∗ − q)

q(2∗ − 2)
· ‖U1‖qq
‖U1‖22

) 2∗−2
2(q−2)

,

123



   13 Page 14 of 26 S. Ma, V. Moroz

such that

g0(ρ0) = sup
ρ>0

g0(ρ) = 1

q

(
2

q

) 2∗−q
q−2

G(q)

(
‖U1‖q(2∗−2)

q

‖U1‖2(2∗−q)
2

) 1
q−2

. (4.14)

Since N ≥ 5, by using the Lebesgue Dominated Convergence Theorem, it is not hard to
show that

lim
q→2

(
‖U1‖q(2∗−2)

q

‖U1‖2(2∗−q)
2

) 1
q−2

= exp

(
2
∫∞
0 κ(r) ln 1

1+r2
dr∫∞

0 κ(r)dr

)
·
∫ ∞

0
κ(r)dr ,

where κ(r) = (1 + r2)2−Nr N−1. Therefore, we conclude that

c0 := inf
q∈(2,2∗)

(
‖U1‖q(2∗−2)

q

‖U1‖2(2∗−q)
2

) 1
q−2

> 0. (4.15)

Thus, we get

g0(ρ0) ≥ c0
q

(
2

q

) 2∗−q
q−2

G(q).

Put U0(x) := Uρ0(x), then by Lemma 4.3, we have

mλ ≤ sup
t≥0

Jλ(tU0) = Jλ(tλU0)

= t2λ
2

∫
RN

|∇U0|2 − t2
∗

λ

2∗

∫
RN

|U0|2∗ + λσ

∫
RN

t2λ
2

|U0|2 − tqλ
q

|U0|q

≤ sup
t≥0

(
t2

2
− t2

∗

2∗

)∫
RN

|∇U0|2 + λσ

∫
RN

t2λ
2

|U0|2 − tqλ
q

|U0|q

= m0 + λσ

∫
RN

t2λ
2

|U0|2 − tqλ
q

|U0|q . (4.16)

It follows from d
dt Jλ(tU0)

∣∣
t=tλ

= 0 and
∫
RN |∇U0|2 = ∫

RN |U0|2∗ = Nm0 that

Nm0 + λσ

∫
RN

|U0|2 = t2
∗−2

λ Nm0 + tq−2
λ λσ

∫
RN

|U0|q .

Recall that g0(ρ0) = 1
q

∫
RN |U0|q − 1

2

∫
RN |U0|2 > 0, it follows that

∫
RN |U0|q >

∫
RN |U0|2.

If tλ ≥ 1, then

Nm0 + λσ

∫
RN

|U0|2 ≥ tq−2
λ

{
Nm0 + λσ

∫
RN

|U0|q
}

and hence

tλ ≤
(
Nm0 + λσ

∫
RN |U0|2

Nm0 + λσ
∫
RN |U0|q

) 1
q−2

< 1,

a contradiction. Therefore, tλ < 1 and hence

Nm0 + λσ

∫
RN

|U0|2 < tq−2
λ

{
Nm0 + λσ

∫
RN

|U0|q
}

,
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from which it follows that
(
Nm0 + λσ

∫
RN |U0|2

Nm0 + λσ
∫
RN |U0|q

) 1
q−2

< tλ < 1. (4.17)

Let

Aλ :=
∫
RN |U0|q − ∫

RN |U0|2
Nm0 + λσ

∫
RN |U0|q .

Then Aλ ≤ 1
Nm0

[∫
RN |U0|q − ∫

RN |U0|2] and

[1 − λσ Aλ]
1

q−2 < tλ < 1. (4.18)

Let g(t) := t2
2

∫
RN |U0|2− tq

q

∫
RN |U0|q , and h(x) := g([1−x] 1

q−2 ) for x ∈ [0, 1]. Then g(t)

has an unique miximum point at t0 =
(∫

RN |U0|2∫
RN |U0|q

) 1
q−2

and is strictly decreasing in (t0, 1),

and for small x > 0, we have

h′(x) = 1

q − 2
[1 − x] q−4

q−2

[
−
∫
RN

|U0|2 + (1 − x)
∫
RN

|U0|q
]

> 0.

Therefore, for small λ > 0, it follows from (4.18) and the monotonicity of g(t) in (t0, 1) that

g(tλ) ≤ g([1 − λσ Aλ]
1

q−2 ) = h(λσ Aλ) = 1

2

∫
RN

|U0|2 − 1

q

∫
RN

|U0|q + h′(ξ)λσ Aλ,

for some ξ ∈ (0, λσ Aλ). Since for small λ > 0, we have

h′(ξ) ≤ 2

q − 2

[∫
RN

|U0|q −
∫
RN

|U0|2
]

,

and similar to (4.11), we have∫
RN |U0|q − ∫

RN |U0|2∫
RN |U0|2∗ ≤ G(q),

thus, by the definition of Aλ, we obtain that

g(tλ) ≤ 1

2

∫
RN

|U0|2 − 1

q

∫
RN

|U0|q + 2λσ

Nm0(q − 2)

[∫
RN

|U0|q −
∫
RN

|U0|2
]2

= −g0(ρ0) + 2λσ

Nm0(q − 2)

[
Nm0

∫
RN |U0|q − ∫

RN |U0|2∫
RN |U0|2∗

]2

≤ −g0(ρ0) + λσ 2Nm0

q − 2
G(q)2,

from which the conclusion follows. ��
Lemma 4.8 There exists a constant � = �(q) > 0 such that for all small λ > 0,

mλ ≤
⎧⎨
⎩
m0 − λσ

(
ln 1

λ

)− 4−q
q−2 � = m0 − λ

2
q−2 (ln 1

λ
)
− 4−q

q−2 � if N = 4,

m0 − λ
σ+ 2(6−q)

(q−2)(q−4) � = m0 − λ
2

q−4 � if N = 3 and q > 4.
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Proof Let ρ > 0, R � 1 be a large parameter and ηR ∈ C∞
0 (R) is a cut-off function such

that ηR(r) = 1 for |r | < R, 0 < ηR(r) < 1 for R < |r | < 2R, ηR(r) = 0 for |r | > 2R and
|η′

R(r) ≤ 2/R.
For � � 1, a straightforward computation shows that

∫
RN

|∇(η�U1)|2 =
{
Nm0 + O(�−2) if N = 4,
Nm0 + O(�−1) if N = 3.∫

RN
|η�U1|2∗ = Nm0 + O(�−N ),

∫
RN

|η�U1|2 =
{
ln �(1 + o(1)) if N = 4,
�(1 + o(1)) if N = 3.

By Lemma 4.3, we find

mλ ≤ sup
t≥0

Jλ((ηRUρ)t ) = Jλ((ηRUρ)tλ )

≤ sup
t≥0

(
t N−2

2

∫
RN

|∇(ηRUρ)|2 − t N

2∗

∫
RN

|ηRUρ |2∗
)

− λσ t Nλ

[∫
RN

1

q
|ηRUρ |q − 1

2
|ηRUρ |2

]

= (I ) − λσ (I I ). (4.19)

where

tλ =
⎛
⎝ (N − 2)

∫
RN |∇(ηRUρ)|2

2N
[

1
2∗
∫
RN |ηRUρ |2∗ − λσ

2

∫
RN |ηRUρ |2 + λσ

q

∫
RN |ηRUρ |q

]
⎞
⎠

1
2

. (4.20)

Set � = R/ρ, then

(I ) = 1

N

‖∇(η�U1‖N2
‖η�U1‖N2∗

=
{
m0 + O(�−2) if N = 4,
m0 + O(�−1) if N = 3.

(4.21)

Since

ϕ(ρ) :=
∫
RN

1

q
|ηRUρ |q − 1

2
|ηRUρ |2 = 1

q
ρN− N−2

2 q
∫
RN

|η�U1|q − 1

2
ρ2
∫
RN

|η�U1|2

takes its maximum value ϕ(ρ0) at the unique point ρ0 > 0, and

ϕ(ρ0) = sup
ρ≥0

ϕ(ρ) = 1

q

(
2

q

) 2∗−q
q−2

G(q)

(
‖η�U1‖q(2∗−2)

q

‖η�U1‖2(2∗−q)
2

) 1
q−2

≤ 1

q

(
2

q

) 2∗−q
q−2

G(q)‖U1‖2∗
2∗ ,

where we have used the interpolation inequality

‖η�U1‖qq ≤ ‖η�U1‖
2(2∗−q)

2∗−2
2 ‖η�U1‖

2∗(q−2)
2∗−2

2∗ .
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Then we obtain

(I I ) =
(

‖∇(η�U1)‖22
‖η�U1‖2∗

2∗ + λσ 2∗ϕ(ρ0)

)N/2

ϕ(ρ0)

≥
(

‖∇(η�U1)‖22
‖η�U1‖2∗

2∗

)N/2 [
1 − λσ N 2ϕ(ρ0)

(N − 2)‖η�U1‖|2∗
2∗

]
ϕ(ρ0). (4.22)

Therefore, we have

mλ ≤ 1

N

‖∇(η�U1‖N2
‖η�U1‖N2∗

{
1 − λσ N

‖η�U1‖(2∗−2)N/2
2∗

[
1 − λσ N 2ϕ(ρ0)

(N − 2)‖η�U1‖|2∗
2∗

]
ϕ(ρ0)

}

≤ 1

N

‖∇(η�U1‖N2
‖η�U1‖N2∗

{
1 − λσ N

2‖η�U1‖(2∗−2)N/2
2∗

ϕ(ρ0)

}

≤ 1

N

‖∇(η�U1‖N2
‖η�U1‖N2∗

{
1 − λσ 2

m0
ϕ(ρ0)

}
.

For the rest of the proof, we consider separately the cases N = 4 and N = 3.
Case N = 4. Since

ϕ(ρ0) = 1
q

(
2
q

) 2∗−q
q−2

G(q)

(
‖U1‖q(2∗−2)

q +o(1)

[ln �(1+o(1))]2∗−q

) 1
q−2

= (ln �)
− 2∗−q

q−2 1
q

(
2
q

) 2∗−q
q−2

G(q)
(
‖U1‖q(2∗−2)

q + o(1)
) 1

q−2

≥ (ln �)
− 2∗−q

q−2 1
2q

(
2
q

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q ,

by (4.21), we have

mλ ≤ [m0 + O(�−2)]
⎧⎨
⎩1 − λσ (ln �)

− 2∗−q
q−2

1

qm0

(
2

q

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q

⎫⎬
⎭ .

Take � = (1/λ)M . Then

mλ ≤ [m0 + O(λ2M )]
⎧⎨
⎩1 − M− 2∗−q

q−2 λσ (ln
1

λ
)
− 2∗−q

q−2
1

qm0

(
2

q

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q

⎫⎬
⎭ .

If M > 1
q−2 , then 2M > σ , and hence

mλ ≤ m0 − λσ (ln
1

λ
)
− 2∗−q

q−2
1

2q

(
2

qM

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q . (4.23)

Thus, if N = 4, the result of Lemma 4.8 is proved by choosing

� = 1

2q

(
2

qM

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q .
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Case N = 3. In this case, we always assume that q ∈ (4, 6). Since

ϕ(ρ0) = 1

q

(
2

q

) 2∗−q
q−2

G(q)

(
‖U1‖q(2∗−2)

q + o(1)

[�(1 + o(1))]2∗−q

) 1
q−2

= �
− 2∗−q

q−2
1

q

(
2

q

) 2∗−q
q−2

G(q)
(
‖U1‖q(2∗−2)

q + o(1)
) 1

q−2

≥ �
− 2∗−q

q−2
1

2q

(
2

q

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q , (4.24)

we have

mλ ≤ [m0 + O(�−1)]
⎧⎨
⎩1 − λσ �

− 2∗−q
q−2

1

qm0

(
2

q

) 2∗−q
q−2

G(q)‖U1‖
q(2∗−2)
q−2

q

⎫⎬
⎭ .

Take � = δ−1λ
− 2

q−4 . Then

mλ ≤ [m0 + δO(λ
2

q−4 )]
⎧⎨
⎩1 − δ

6−q
q−2 λ

2
q−4

1

qm0

(
2

q

) 6−q
q−2

G(q)‖U1‖
4q
q−2
q

⎫⎬
⎭ .

Since 6−q
q−2 < 1, we can choose a small δ > 0 such that

mλ ≤ m0 − λ
2

q−4
1

2q

(
2δ

q

) 6−q
q−2

G(q)‖U1‖
4q
q−2
q , (4.25)

and take

� = 1

2q

(
2δ

q

) 6−q
q−2

G(q)‖U1‖
4q
q−2
q ,

which finished the proof in the case N = 3. ��

Corollary 4.9 Let δλ := m0 − mλ, then

λσ � δλ �

⎧⎪⎨
⎪⎩

λσ if N ≥ 5,

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 if N = 4,

λ
2

q−4 if N = 3 and q ∈ (4, 6).

Lemma 4.10 Assume N ≥ 5. Then for small λ > 0,

2q

2∗ − 2
Q(q)m0 ≥ ‖vλ‖qq ≥ Q(q)

⎛
⎝c0

q

(
2

q

) 2∗−q
q−2 − λσ 2NQ(q)m0

⎞
⎠ q(2∗ − 2)

(τ (vλ))N/2 ,

(4.26)

where c0 > 0 is given in Lemma 4.7. In particular,

‖vλ‖22 ∼ 2∗ − q and ‖vλ‖qq ∼ 1.
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Proof Since

mλ = 1

N

∫
RN

|∇vλ|2 = 1

N

∫
RN

|vλ|2∗ + λσ q − 2

2q

∫
RN

|vλ|q ,

then by Lemma 4.6, we get

λσ q − 2

2q

∫
RN

|vλ|q = τ(vλ) − 1

τ(vλ)
mλ ≤ λσG(q)m0,

and hence

‖vλ‖qq ≤ 2q
G(q)

q − 2
m0 = 2q

2∗ − 2
Q(q)m0.

On the other hand, by (4.8) and (4.12), we have

m0 ≤ mλ + λσ (τ(vλ))
N/2 q − 2

q(2∗ − 2)

∫
RN

|vλ|q .

Therefore, it follows from Lemma 4.7 that

‖vλ‖qq ≥
⎛
⎝c0

q

(
2

q

) 2∗−q
q−2 G(q)

q − 2
− λσ 2Nm0

(
G(q)

q − 2

)2
⎞
⎠ q(2∗ − 2)

(τ (vλ))N/2 ,

from which the conclusion follows.
A straightforward computation shows that

lim
q→2

(
2

q

) 2∗−q
q−2 = e− 2

N−2 , lim
q→2

(
2∗ − q

2∗ − 2

) 2∗−q
q−2 = e−1, lim

q→2∗

(
2∗ − q

2∗ − 2

) 2∗−q
q−2 = 1,

which together with ‖vλ‖22 = 2(2∗−q)
q(2∗−2)‖vλ‖qq yield the last relation. ��

Recall that mλ = m∗
λ for λ > 0 by Lemma 4.2. Moreover, the following result holds.

Lemma 4.11 m0 = m∗
0.

Proof Clearly, we have

m0 = inf
u∈D1(RN )\{0}

sup
t>0

J0(tu) ≤ inf
u∈H1(RN )\{0}

sup
t>0

I0(tu) = m∗
0.

To prove the opposite inequality, we argue as in the proof of Lemma 4.6 and Lemma 4.8, but
easier. ��

Clearly, Lemma 4.11 implies that m∗
0 is not attained onM0. In fact, it is also well known

that (P0) has no nontrivial solution by the Pohozaev’s identity. Observe that

I0(uλ) = Iλ(uλ) + λ

q

∫
RN

|uλ|q = mλ + o(1) = m∗
0 + o(1),

and

I ′
0(uλ)v = I ′

λ(uλ)v + λ

∫
RN

|uλ|q−2uλv = o(1).

That is, the family {uλ} of ground states of (Pλ) is a (PS) sequence of I0 at levelm∗
0 (otherwise

u0 should be a nontrivial solution of (P0), which is a contradiction).
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5 Proof of Theorem 2.1

We recall the P.-L. Lions’ concentration–compactness lemma, which is at the core of our
proof of Theorem 2.1.

Lemma 5.1 (P.-L. Lions [20]) Let r > 0 and 2 ≤ q ≤ 2∗. If (un) is bounded in H1(RN ) and
if

sup
y∈RN

∫
Br (y)

|un |q → 0 as n → ∞,

then un → 0 in L p(RN ) for 2 < p < 2∗. Moreover, if q = 2∗, then un → 0 in L2∗
(RN ).

Using Lemma 5.1, we establish the following.

Lemma 5.2 If N ≥ 5, then vλ → Uρ0 in H1(RN ) as λ → 0, where Uρ0 is a positive ground
state of (Q0) with

ρ0 =
(
2(2∗ − q)

∫
RN |U1|q

q(2∗ − 2)
∫
RN |U1|2

) 2∗−2
2(q−2)

.

If N = 4 and N = 3, then there exists ξλ ∈ (0,+∞) such that ξλ → 0 and

vλ − ξ
− N−2

2
λ U1(ξ

−1
λ ·) → 0

in D1(RN ) and L2∗
(RN ) as λ → 0.

Proof Note that vλ is a positive radially symmetric function, and by Lemma 4.4, {vλ} is
bounded in H1(RN ). Then there exists v0 ∈ H1(RN ) verifying −�v = v2

∗−1 such that

vλ⇀v0 weakly in H1(RN ), vλ → v0 in L p(RN ) for any p ∈ (2, 2∗), (5.1)

and

vλ(x) → v0(x) a.e. on R
N , vλ → v0 in L2

loc(R
N ). (5.2)

Observe that

J0(vλ) = Jλ(vλ) + λσ

q

∫
RN

|vλ|q − λσ

2

∫
RN

|vλ|2 = mλ + o(1) = m0 + o(1),

and

J ′
0(vλ)v = J ′

λ(vλ)v + λσ

∫
RN

|vλ|q−2vλv − λσ

∫
RN

vλv = o(1).

Therefore, {vλ} is a (PS) sequence for J0.
By Lemma 5.1, it is standard to show that there exists ζ

( j)
λ ∈ (0,+∞), v( j) ∈ D1,2(RN )

with j = 1, 2, . . . , k where k is a non-negative integer, such that

vλ = v0 +
k∑
j=1

(ζ
( j)
λ )−

N−2
2 v( j)((ζ

( j)
λ )−1x) + ṽλ, (5.3)
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where ṽλ → 0 in L2∗
(RN ), v( j) are nontrivial solutions of the limit equation −�v = v2

∗−1

and
∫
RN |∇v( j)|2 ≥ S

N
2 with S being the best Sobolev constant. Moreover, we have

lim inf
λ→0

‖vλ‖2D1(RN )
≥ ‖v0‖2D1(RN )

+
k∑
j=1

‖v( j)‖2D1(RN )
, (5.4)

and

m0 = J0(v0) +
k∑
j=1

J0(v
( j)). (5.5)

Moreover, J0(v0) ≥ 0 and J0(v( j)) ≥ m0 for all j = 1, 2, · · · , k.
If N ≥ 5, then by Lemma 4.10, we have v0 
= 0 and hence J0(v0) = m0 and k = 0. Thus

vλ → v0 in L2∗
(RN ). Since J ′

0(vλ) → 0, it follows that vλ → v0 in D1(RN ).
Observe that by the Strauss’ H1–radial lemma [9, Lemma A.II] we have

vλ(x) ≤ CN |x |− N−1
2 ‖vλ‖H1(RN ) for |x | > 0.

Hence we obtain(
− � − C |x |− 2(N−1)

N−2

)
vλ ≤ (− � + λσ − v2

∗−2
λ − λσ v

q−2
λ

)
vλ = 0,

for some constant C > 0 which is independent of λ. We also have
(

− � − C |x |− 2(N−1)
N−2

) 1

|x |N−2−ε0
= (ε0(N − 2 − ε0) − C |x |− 2

N−2
) 1

|x |N−ε0
,

which is positive for |x | large enough. By the maximum principle on R
N \ BR , we deduce

that

vλ(x) ≤ vλ(R)RN−2−ε0

|x |N−2−ε0
for |x | ≥ R. (5.6)

When ε0 > 0 is small enough, the right hand side is in L2(Bc
R) for N ≥ 5andby thedominated

convergence theoremweconclude thatvλ → v0 in L2(RN ), andhence in H1(RN ).Moreover,
by (4.8) we obtain ∫

RN
|v0|2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|v0|q ,

from which it follows that v0 = Uρ0 with

ρ0 =
(
2(2∗ − q)

∫
RN |U1|q

q(2∗ − 2)
∫
RN |U1|2

) 2∗−2
2(q−2)

.

If N = 4or 3, then byFatou’s lemmawehave‖v0‖22 ≤ lim infλ→0 ‖vλ‖22 < ∞. Therefore,
v0 = 0 and hence k = 1. Thus, we obtain J0(v(1)) = m0 and hence v(1) = Uρ for some
ρ ∈ (0,+∞). Therefore, we conclude that

vλ − ξ
− N−2

2
λ U1(ξ

−1
λ ·) → 0

in L2∗
(RN ) as λ → 0, where ξλ := ρζ

(1)
λ ∈ (0,+∞) satisfying ξλ → 0 as λ → 0. Since

J ′
0(vλ − ξ

− N−2
2

λ U1(ξ
−1
λ ·)) = J ′

0(vλ) + J ′
0(U1) + o(1) = o(1)
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as λ → 0, it follows that vλ − ξ
− N−2

2
λ U1(ξ

−1
λ ·) → 0 in D1(RN ) ��

In the lower dimension cases N = 4 and N = 3, we perform an additional rescaling

w(x) = ξ
N−2
2

λ v(ξλx), (5.7)

where ξλ ∈ (0,+∞) is given inLemma5.2. This rescaling transforms (Qλ) into an equivalent
equation

−�w + λσ ξ
(2∗−2)s
λ w = w2∗−1 + λσ ξ

(2∗−q)s
λ wq−1 in R

N , (Rλ)

here and in what follows, we set for brevity

s := N−2
2 =

{
1, if N = 4,
1
2 , if N = 3.

The corresponding energy functional is given by

J̃λ(w) := 1

2

∫
RN

|∇w|2 + λσ ξ
(2∗−2)s
λ |w|2 − 1

2∗

∫
RN

|w|2∗ − 1

q
λσ ξ

(2∗−q)s
λ

∫
RN

|w|q .
(5.8)

It is straightforward to verify the following.

Lemma 5.3 Let λ > 0, u ∈ H1(RN ) and v and w are the rescalings (4.1) and (5.7) of u
respectively. Then:

(a) ‖∇w‖22 = ‖∇v‖22 = ‖∇u‖22, ‖w‖2∗
2∗ = ‖v‖2∗

2∗ = ‖u‖2∗
2∗ ,

(b) ξ
(2∗−2)s
λ ‖w‖22 = ‖v‖22 = λ−σ ‖u‖22, ξ (2∗−q)s

λ ‖w‖qq = ‖v‖qq = λ1−σ ‖u‖qq ,
(c) J̃λ(w) = Jλ(v) = Iλ(u).

Let wλ(x) = ξ
N−2
2

λ vλ(ξλx) where the vλ is a ground state of (Qλ). Then by Lemma 5.2
we conclude that

‖∇(wλ −U1)‖2 → 0, ‖wλ −U1‖2∗ → 0 as λ → 0. (5.9)

Note that the corresponding Nehari and Pohozaev’s identities read as follows∫
RN

|∇wλ|2 + λσ ξ
(2∗−2)s
λ

∫
RN

|wλ|2 =
∫
RN

|wλ|2∗ + λσ ξ
(2∗−q)s
λ

∫
RN

|wλ|q ,
and
1

2∗

∫
RN

|∇wλ|2 + 1

2
λσ ξ

(2∗−2)s
λ

∫
RN

|wλ|2 = 1

2∗

∫
RN

|wλ|2∗ + 1

q
λσ ξ

(2∗−q)s
λ

∫
RN

|wλ|q .
We conclude that(

1

2
− 1

2∗

)
λσ ξ

(2∗−2)s
λ

∫
RN

|wλ|2 =
(
1

q
− 1

2∗

)
λσ ξ

(2∗−q)s
λ

∫
RN

|wλ|q .

Thus, we obtain

ξ
(q−2)s
λ

∫
RN

|wλ|2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|wλ|q . (5.10)

To control the norm ‖wλ‖2, we note that for any λ > 0,wλ > 0 satisfies the linear inequality

− �wλ + λσ ξ
(2∗−2)s
λ wλ = w2∗−1

λ + λσ ξ
(2∗−q)s
λ w

q−1
λ > 0, x ∈ R

N . (5.11)
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Lemma 5.4 There exists a constant c > 0 such that

wλ(x) ≥ c|x |−(N−2) exp(−λ
σ
2 ξ

(2∗−2)s
2

λ |x |), |x | ≥ 1. (5.12)

Proof The same as [24, Lemma 4.8]. ��
As consequences, we have the following two lemmas.

Lemma 5.5 If N = 3, then ‖wλ‖22 � λ− σ
2 ξ

− (2∗−2)s
2

λ .

Lemma 5.6 If N = 4, then ‖wλ‖22 � − ln(λσ ξ
(2∗−2)s
λ ).

To prove our main result, the key point is to show the boundedness of ‖wλ‖q .
Lemma 5.7 If N = 3, 4 and N

N−2 < r < 2∗, then ‖wλ‖rr ∼ 1 as λ → 0. Furthermore,
wλ → U1 in Lr (RN ) as λ → 0.

Proof By (5.9), we have wλ → U1 in L2∗
(RN ). Then, as in [24, Lemma 4.6], using the

embeddings L2∗
(B1) ↪→ Lr (B1) we prove that lim infλ→0 ‖wλ‖rr > 0.

On the other hand, arguing as in [4, Propositon 3.1], we show that there exists a constant
C > 0 such that for all small λ > 0,

wλ(x) ≤ C

(1 + |x |)N−2 , ∀x ∈ R
N , (5.13)

which together with the fact that r > N
N−2 implies that wλ is bounded in Lr (RN ) uniformly

for small λ > 0, and by the dominated convergence theoremwλ → U1 in Lr (RN ) as λ → 0.
��

Proof (Proof of Theorem 2.1)We only give the proof for N = 3, 4. The case N ≥ 5 is easier.
We first note that for a result similar to Lemma 4.4 holds for wλ and J̃λ. By (5.10), (4.5) and
Lemma 5.3, we also have τ(wλ) = τ(vλ). Therefore, by (5.10) we obtain

m0 ≤ sup
t≥0

J̃λ((wλ)t ) + λσ τ(wλ)
N
2

{
1

q
ξ

(2∗−q)s
λ

∫
RN

|wλ|q − 1

2
ξ

(2∗−2)s
λ

∫
RN

|wλ|2
}

= mλ + λσ τ(vλ)
N
2

q − 2

q(2∗ − 2)
ξ

(2∗−q)s
λ

∫
RN

|wλ|q , (5.14)

which implies that

ξ
(2∗−q)s
λ

∫
RN

|wλ|q ≥ λ−σ q(2∗ − 2)

(q − 2)τ (vλ)
N
2

δλ,

where δλ = m0 − mλ. Hence, by Corollary 4.9, we obtain

ξ
(2∗−q)s
λ

∫
RN

|wλ|q � λ−σ δλ �
{

(ln 1
λ
)
− 4−q

q−2 if N = 4,

λ
2(6−q)

(q−2)(q−4) if N = 3.
(5.15)

Therefore, by Lemma 5.7, we have

ξλ �
{

(ln 1
λ
)
− 1

q−2 if N = 4,

λ
4

(q−2)(q−4) if N = 3.
(5.16)
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On the other hand, if N = 3, then by (5.10), Lemma 5.5 and Lemma 5.7, we have

ξ
(q−2)s
λ � 1

‖wλ‖22
� λ

σ
2 ξ

(2∗−2)s
2

λ .

Then

ξ
(q−4)s
λ � λ

σ
2 .

Hence, observing that s = N−2
2 = 1

2 , σ = 2∗−2
q−2 = 4

q−2 , for q ∈ (4, 6) we obtain

ξλ � λ
4

(q−2)(q−4) . (5.17)

If N = 4, then by (5.10), Lemma 5.6 and Lemma 5.7, we have

ξ
(q−2)s
λ � 1

‖wλ‖22
� 1

− ln(λσ ξ
(2∗−2)s
λ )

.

Note that

− ln(λσ ξ
(2∗−2)s
λ ) = σ ln

1

λ
+ (2∗ − 2)s ln

1

ξλ

≥ σ ln
1

λ
,

it follows that

ξ
(q−2)s
λ � 1

‖wλ‖22
�
(
ln

1

λ

)−1
.

Since s = N−2
2 = 1, we then obtain

ξλ �
(
ln

1

λ

)− 1
q−2

. (5.18)

Thus, it follows from (5.14), (5.17), (5.18) and Lemma 5.7 that

δλ = m0 − mλ � λσ ξ
(2∗−q)s
λ �

{
λ

2
q−2 (ln 1

λ
)
− 4−q

q−2 if N = 4,

λ
2

q−4 if N = 3,

which together with Corollary 4.9 implies that

‖∇U1‖22 − ‖∇wλ‖22 = Nδλ ∼
{

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 if N = 4,

λ
2

q−4 if N = 3.

Finally, by (5.10), Lemma 5.5 and Lemma 5.6, we obtain

‖wλ‖22 ∼
{
ln 1

λ
if N = 4,

λ
− 2

q−4 if N = 3.

Statements on uλ follow from the corresponding results on vλ and wλ. This completes the
proof of Theorem 2.1. ��
Acknowledgements The authors are grateful to the anonymous referee for their multiple helpful suggestions.
Part of this research was carried out while S.M. was visiting Swansea University. S.M. thanks the Department
of Mathematics for its hospitality. S.M. was supported by National Natural Science Foundation of China
(Grant Nos.11571187, 11771182)

Data availability No data were used in this paper.

123



Asymptotic profiles for a nonlinear... Page 25 of 26    13 

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akahori, T., Ibrahim, S., Kikuchi, H.: Linear instability and nondegeneracy of ground state for com-
bined power-type nonlinear scalar field equations with the Sobolev critical exponent and large frequency
parameter. Proc. Roy. Soc. Edinburgh Sect. A 150, 2417–2441 (2020)

2. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Existence of a ground state and blow-up problem for a
nonlinear Schrödinger equation with critical growth. Differ. Integral Equ. 25, 383–402 (2012)

3. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Global dynamics above the ground state energy for the
combined power type nonlinear Schrodinger equations with energy critical growth at low frequencies.
Mem. Amer. Math. Soc. 272(1331), v+130 (2021)

4. Akahori, T., Ibrahim, S., Ikoma, N., Kikuchi, H., Nawa, H.: Uniqueness and nondegeneracy of ground
states to nonlinear scalar field equations involving the Sobolev critical exponent in their nonlinearities for
high frequencies. Calc. Var. Partial Differ. Equ. 58(120), 32 (2019)

5. Akahori, T., Ibrahim, S., Ikoma, N., Kikuchi, H., Nawa, H.: Non-existence of ground states and gap of
variational values for 3D Sobolev critical nonlinear scalar field equations. J. Differ. Equ. 334, 25–86
(2022)

6. Akahori, T., Murata, M.: Uniqueness of ground states for combined power-type nonlinear scalar field
equations involving the Sobolev critical exponent at high frequencies in three and four dimensions.
NoDEA Nonlinear Differ. Equ. Appl. 29(71), 54 (2022)

7. Akahori, T.,Murata,M.:Nondegeneracy of ground states for nonlinear scalar field equations involving the
Sobolev-critical exponent at high frequencies in three and four dimensions. Preprint, arXiv:2203.13473
(2023)

8. Alves, C., Souto, M., Montenegro, M.: Existence of a ground state solution for a nonlinear scalar field
equation with critical growth. Calc. Var. Partial Differ. Equ. 43, 537–554 (2012)

9. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration.
Mech. Anal. 82, 313–345 (1983)

10. Chen, W., Dávila, J., Guerra, I.: Bubble tower solutions for a supercritical elliptic problem inRN . Ann.
Sc. Norm. Super. Pisa Cl. Sci. 15, 85–116 (2016)

11. Coles, M., Gustafson, S.: Solitary waves and dynamics for subcritical perturbations of energy critical
NLS. Publ. Res. Inst. Math. Sci. 56, 647–699 (2020)

12. Dávila, J., del Pino, M., Guerra, I.: Non-uniqueness of positive ground states of non-linear Schrödinger
equations. Proc. Lond. Math. Soc. 106(2), 318–344 (2013)

13. Ferrero, A., Gazzola, F.: On subcriticality assumptions for the existence of ground states of quasilinear
elliptic equations. Adv. Differ. Equ. 8, 1081–1106 (2003)

14. Fukuizumi, R.: Stability and instability of standing waves for nonlinear Schrödinger equations. Disserta-
tion, Tohoku University, Sendai, 2003. Tohoku Math. Publ. 25, 68 (2003)

15. Jeanjean, L., Tanaka, K.: A remark on least energy solutions in RN . Proc. Amer. Math. Soc. 131, 2399–
2408 (2002)
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