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A B S T R A C T

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role
in regaining muscle strength and improving balance for people with different physical disabilities. However,
patients attending these programs are not able to assess their action performance in the absence of a
medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They
are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in
Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions
for designing automatic patient’s activity monitoring models. Then, improving such systems’ performance
to assist patients and physiotherapists has attracted wide interest of the research community. This paper
provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition
processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence
(AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from
skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied.
Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward
several suggestions for future research directions in this area.
1. Introduction

With the recent advances in medical science and related technolo-
gies, the elderly population in developed countries, such as the UK
and Australia, is growing. According to the Australian Bureau of Statis-
tics [1], the proportion of older adults in Australia (aged 65 and over)
is predicted to grow from 15% (3.8 million) of the whole population in
2017 to 22% (8.8 million) in 2025. Moreover, according to the Office
for National Statistics [2], due to the recent advances in healthcare,
the population of people over 60 in the UK is increasing from 14.9
million in 2014 to 18.5 million in 2025. According to Cameron and
Kurle [3], the possibility of being physically disabled due to different
medical conditions, such as stroke or a hip fracture, is higher for
older adults. Therefore, a new challenge is emerging for the healthcare
systems in developed countries, since the increase in the aging rate
is associated with the decline in the physical ability of the aging
population. Therefore, they are going to make up one of the largest
groups of people participating in physical rehabilitation programs.

∗ Corresponding author at: Centre for Computational Science & Mathematical Modelling, Coventry University, Coventry, UK.
E-mail address: sardaris@coventry.ac.uk (S. Sardari).

Patients with physical disabilities are usually prescribed (by physio-
therapists or occupational therapists) to attend different rehabilitation
programs either in medical agencies (hospitals) or at home. Each of
these methods of rehabilitation at the home or a medical center has its
advantages and limitations. During the inpatient rehabilitation period,
the performances of the patients are being monitored by the experts,
and they are provided with prompt feedback. However, depending
on their performance, the patients might need to attend the program
for several sessions. Attending these programs with the supervision of
an expert is expensive, time-consuming, and tedious, since it involves
transportation and inpatient medical services. Therefore, there is a
preference for a majority of patients for home-based rehabilitation [3].
Moreover, the inpatient programs usually include long waiting lists due
to factors such as shortage of staff and long waiting time for treatment
leading to poor health improvement in patients [4]. In addition, the
trend of home-based rehabilitation has increased after the prolonged
COVID-19 pandemic in 2020 and the closure of rehabilitation centers
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or their limited programs [5]. According to Frigerio et al. [6], the im-
plementation of tele-rehabilitation during the COVID-19 lockdown has
gained excellent satisfaction from the patients’ side and is a promising
tool to be used after the pandemic.

In addition to all of the aforementioned positive impacts of home-
based rehabilitation, it is worth mentioning that the quality of the
rehabilitation program plays an important role in the extent of the
neuroplasticity achieved by the patients [7]. However, the lack of
feedback and tedious home settings can have a demotivating effect on
the patients in home-based rehabilitation programs and may affect the
final outcome [8]. According to Gelaw et al. [9], to yield positive results
from home-based physical rehabilitation programs, patient enthusiasm
and continuous follow-up from the side of an expert are essential.
To follow up on the progress of the patients, the therapists use web-
based tele-rehabilitation programs in which, they monitor the actions
and provide online feedback. However, due to several challenges such
as shortage of staff and lack of time, there are challenges in ensur-
ing consistency of online monitoring [10]. Therefore, the need for
computer-aided home-based rehabilitation programs for inexpensive
and private training sessions with online feedback is increasing. These
computer-aided therapy sessions will utilize the sensors and human
activity analysis algorithms to guide the patients in performing the
actions properly, and assist the healthcare providers in monitoring
patients’ recovery status. The specific aim of this paper is to investigate
different automatic human activity analysis techniques in the literature
for monitoring home-based rehabilitation exercises, and to explore
the challenges and limitations of such techniques for further research
recommendations.

In general, human activity analysis is one of the most important and
challenging areas in AI. It involves analyzing human body movements
based on the motions of different body joints, skeleton, and mus-
cles [11]. Based on the complexity of the action, these movements can
be interpreted as different gestures, human–human interactions, group
actions, and behaviors [12]. Analyzing these activities can provide
useful information about the personality of individuals, their physiolog-
ical and psychological states, and possibly their targets and intentions.
Recently, there is a growing interest in developing and using automatic
human activity analysis systems, which can assist experts in different
tasks for health-care [13,14], surveillance in public places [15,16],
and developing driver-less systems [17,18]. However, developing an
effective system for human activity analysis highly depends on how
accurate are the motion tracking, data pre-processing, representation
learning, and evaluation techniques [11]. Therefore, while looking for a
problem definition for activity analysis, four main questions arise: ‘‘Q1:
What is the task that we are targeting in human activity analysis?’’,
‘‘Q2: What are the actions and input modalities for an automated
system?’’, ‘‘Q3: What are the automatic learning strategies that we
can consider for the problem?’’, and ‘‘Q4: What are the evaluation
techniques for the performance of an automated system?’’. An overview
of these questions as a pipeline of this study follows:

Q1: Human activity analysis encompasses several general tasks,
such as Human Activity Recognition (HAR), Human Activity Detection
(HAD), Human Activity Prediction (HAP), and finally Human Activ-
ity Evaluation (or assessment) (HAE). One of the popular fields of
study is the traditional HAR problem, which involves action classifi-
cation, based on a developed system that can assign class labels to
different action categories, based on the different input modalities.
HAR has been widely explored by researchers in various domains of
healthcare [19,20], driverless cars [21], surveillance systems for public
areas/home/organizations [22], smart home/city [23–25], etc. HAD
aims to assign starting and ending points (labels) to the performed
actions. Assigning these points to an untrimmed video has attracted
much attention due to its real-world applications in detecting and man-
aging abnormal dangerous situations in traffic or public [26,27]. HAP
refers to developing a model which can predict future actions (states)
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of a series of actions based on the previous incomplete observations.
Predicting the next states of many real-world actions and behaviors can
prevent hazardous situations, such as careless driving, terrorist attacks,
or even fall prediction in the daily living of elderly people [11,28,29].
Finally, in contrast to all of the tasks mentioned above, HAE aims to
assess the performed actions by individuals based on some reference
correct actions and provide some feedback (such as scores) to improve
the quality of the actions. According to Lei et al. [11], this field of study
has begun to attract many researchers in the community because of
its important real-world applications, such as skill training for differ-
ent expertise learners [30,31], sports activity assessment [32,33], and
physical activity rehabilitation [34,35]. In order to create an automatic
physical activity monitoring system for a rehabilitation period, the
HAE is the most important one to be considered. In other words, an
ideal automatic monitoring device must be able to evaluate the action
properly and then provide feedback on how the action can be more
accurately performed.

Q2: As mentioned above, human motion analysis has multiple ap-
plications which include different real-world situations. Depending
on which real-world problem we aim to solve by motion tracking
and analysis, the individuals perform different activities, ranging from
simple daily actions to complex and specific actions (such as sports
activity and rehab prescriptions). According to Yadav et al. [36],
depending on the complexity of the action and application we are
aiming, the automatic human action analysis systems usually need large
datasets containing different useful modalities, which aim to represent
the performed actions in the best way. According to Sun et al. [37],
human actions can be represented using several modalities such as
vision-based (RGB videos/images, depth videos/images, skeleton/joint
data sequences, InfraRed (IR) sequences) [28,38], wearable-based [39],
radar-based [40,41], audio-based [42], and Wifi-based [43]. With the
wide variety and accessibility of the sensors for capturing these modal-
ities in the past decade, the investigations on designing automatic
HAR/ HAE systems based on these data are growing [37]. However,
all of these modalities capture various information about an action.
Therefore, they have different levels of strengths and limitations, which
are illustrated in Fig. 1. The most important factors which should
be considered while selecting a modality for capturing actions are
the sensor’s cost, appropriate resolution depending on the application
and the target activity, privacy-preserving, visual interpretability, and
robustness towards any changes in the data collection conditions.

Comparing different techniques of data collection in Fig. 1 il-
lustrates the fact that the skeleton/joint modality, which includes a
sequence of the coordinates of human body joints, might be the best
option considering all of the factors. Skeletal data has drawn much
attention for the task of human activity recognition by many re-
searchers [44–46], because of certain advantages that it has compared
to other methods. According to Shi et al. [44], skeleton-based activity
recognition stands out from the rest of the vision-based recognition
methods because it shows robustness towards changes in body scales,
speed of the performed activity, camera viewpoints, and the inter-
ference of backgrounds. This modality preserves visible information
somehow, however, it is an affordable privacy-preserving technique
to capture important structural body motion information. Considering
the aforementioned advantages, this study specifically aims to dive
deep into different capturing techniques for skeletal data and previous
studies utilizing this modality.

Q3: One of the most important challenges in the human motion
analysis pipeline is how to develop a system that has a robust represen-
tation/feature learning framework. The performance of any automatic
recognition and evaluation model highly depends on the quality of
features extracted that represent the data [47]. There are two general
approaches for data representation and feature learning, i.e. hand-
crafted features learning, and automatic feature learning using DL
techniques [48]. Some of the popular methods for classical hand-crafted
feature extraction are based on different modalities of depth, RGB, and

skeleton data. For example, Depth Motion Map (DMM), Histogram of
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Fig. 1. Strength and limitations of different vision-based and non-vision-based modalities in human action analysis.
Gradients (HoG), and local binary features [49] can be extracted from
depth data. In other studies conducted by Xia et al. [50], 3D Histogram
of Oriented Displacement (HOD) and Accumulation of Motion Energy
(AME) are extracted as action features from the skeleton data. Using
the handcrafted features techniques for data representation might need
expert’s knowledge or specific algorithms for each problem, which
might lead us to less generalization in various problems. This means
that by using a specific algorithm for extracting features in a specific
modality for a specific problem, you may not be able to use the same
pipeline for another problem. Motivated by the successful performance
results of the use of DL techniques in various studies [51,52], this paper
will mostly investigate different studies which used this method for
skeleton data in the past ten years.

Q4: Finally, the evaluation techniques and criteria in the two tasks
of HAR and HAE differ from each other, since they address two different
problems of classification and regression, respectively. To the best
of our knowledge, previous studies in the vision-based rehabilitation
field rarely explored different evaluation methods for HAE problems.
Therefore, throughout this study, we will explore different evaluation
techniques, and examine their challenges, advantages, and limitations.

Exploring these four fundamental questions for the problem of au-
tomatic physical rehabilitation monitoring creates a workflow which is
illustrated in Fig. 2. Examining each part of this pipeline helps us to find
3

existing challenges and limitations in the literature, and then find pos-
sible solutions for addressing them. In the data acquisition stage, sensor
selection, ethics considerations, activity selection, and experiment de-
sign are the most important tasks to perform. After data collection,
modality capturing and action labeling are the challenging stages.
Next, the researchers should design the proper classification/regression
model based on the HAE/HAR problem. Finally, the evaluation metrics
and methods for the designed system should be considered to produce
accurate results. This paper is organized based on exploring different
solutions to these four questions and the way different related papers
address this workflow.

The remainder of this paper is organized as follows: Section 2
clarifies the methodology for this literature review and its contributions
compared to other related survey papers. In Section 3, we discuss the
types of impairments and the target body parts for different rehabilita-
tion exercises prescribed by the medical experts. Section 4 investigates
the related challenges of data collection. Section 5 explores the methods
for capturing skeleton data through sensing hardware. Section 6 pro-
vides a comparative analysis of different public datasets and discusses
their limitations and strengths. Section 7 provides information of the
AI-based methods for representation learning on the skeleton data and
how these models can be evaluated. Section 8 provides information
on how other studies evaluated the activities and annotated them.



Computers in Biology and Medicine 158 (2023) 106835S. Sardari et al.
Fig. 2. Designing a human activity analysis system for automatically monitoring physical rehabilitation follows this framework from left to right.
Section 9 provides a brief discussion of the current challenges detected
in the literature. Finally, Section 10 concludes the paper.

2. Methodology of the review and its contributions

In the last decade, several surveys and literature reviews have been
published, aiming to review generally the vision-based studies for auto-
matic physical activity recognition and evaluation for the rehabilitation
period. However, each of them summarizes different scopes of studies
and their limitations. In 2004, Zhou et al. [53] discussed different
visual or non-visual human motion tracking sensors for rehabilitation
exercises and compared these technologies. However, this study fails to
discuss any AI-based algorithms for developing automatic recognition
and assessment methods. In 2014, Webster et al. [54] investigated
the applications of Microsoft Kinect sensors in elderly care, stroke
rehabilitation, fall detection, and Kinect-based gaming. In the study
conducted by Da Gama et al. [55], the authors mostly focused on
providing a formulation of monitoring the progress in the rehabilitation
using various techniques such as angle flexion, euclidean distance,
etc. However, according to Debnath et al. [56], both of the previous
studies which either study the recognition (prediction) or evaluation
techniques for rehabilitation, have a clinical perspective for evaluation.
To solve this problem, Sathyanarayana et al. [57] discussed the vision-
based algorithms from the computer vision perspective for evaluation.
In a recent study, Ahad et al. [58] provided a short review of vision-
based action understanding for applications in assistive healthcare.
They investigated general vision-based sensors (such as Vicon optical
tracking system and depth sensors) and environmental scenarios(such
as lighting conditions and background settings) for data collection, the
challenges ahead of these data collection scenarios, and some bench-
mark datasets. However, this work lacks information about further
technical methods for representation learning (such as different DL
techniques, which can be utilized for this purpose) and evaluation
methods for scoring the activities. The latest literature review for
computer vision-based algorithms for rehabilitation and assessment
is conducted in [56]. This paper discusses a wide range of general
vision-based techniques for either recognizing or assessing rehabilita-
tion exercises. However, due to the generality of this study, this paper
reviews the previous studies in the field without covering the important
materials such as the significance and limitations of different sensors,
techniques, and scenarios for data collection. The possible physical
rehabilitation exercises were not discussed also as a guideline for future
work. In addition, there is very limited discussion on how different AI-
based methods and evaluation techniques can improve the performance
and feedback responses in the system. To solve all of these issues
this paper covers a wide range of studies specific to skeleton-based
activity assessment for rehabilitation problem. This study contributes
the following:
4

• This paper comprehensively reviews the skeleton-based data col-
lection procedures in relation to the sensor and physical activity
selection. Different challenges for proper data collection are iden-
tified and the limitations of the previous related public datasets
are discussed.

• This study specifically aims to provide an up-to-date and holistic
literature review on the AI-based skeleton data analysis methods
for the physical rehabilitation problem. To the best of our knowl-
edge, this is the first time a study has been conducted on the
strength and the gaps of HAE methods provided for this specific
problem which paves the path for further studies.

• The evaluation techniques are comprehensively explored for (1)
general automatic scoring systems and (2) part-based assessment
for each activity. Furthermore, the gaps and limitations of those
methods are discussed. This adds to the novelty of this paper
compared to the previously conducted literature review papers.

This study includes a systematic literature review and it encompasses
the most recent studies (between 2011 and 2022), related to devel-
oping AI-based technologies for automatic physical activity evaluation
on rehabilitation. The Preferred Reporting Items for Systematic Re-
views and Meta-Analysis (PRISMA) [59] checklist is utilized to conduct
the step-by-step research methodology. In the identification stage an
appropriate search for articles has been performed through Google
Scholar, Scopus, and Science Direct, PubMed databases as illustrated
in Fig. 3. Based on the research question of building skeleton-based
automatic human activity evaluation systems for rehabilitation prob-
lems, we utilized Boolean search strings such as ‘‘Activity Recognition’’,
‘‘Skeleton-based activity assessment’’, ‘‘Human activity evaluation’’,
‘‘Kinect sensors’’, and ‘‘Rehabilitation’’ in different combinations. For
example, when using the Science Direct database for a combination
of ‘‘Skeleton-based activity assessment for rehabilitation’’, the number
of retrieved articles was 1439. The number of articles retrieved from
Google Scholar, Science Direct, Scopus, and PubMed are 6012, 2312,
1273, and 1310, respectively. To avoid duplication among all of the re-
trieved 10907 articles, Mendeley software was utilized and this resulted
in the final 6091 articles. In the next stage, the articles were screened to
omit the unrelated studies to the content of the research question based
on several conditions. For this step, titles, abstracts, language (only
English is included), number of citations, and journal (or conference)
quality were considered which led to only 942 papers. To check the
eligibility for inclusion, full texts of records were screened and several
records were excluded due to their irrelevance to the aim and scope
of this review paper, duplicated information from another reviewed
literature, and lack of detailed discussion and evaluation. To double-
check the precision of this search, a software called Publish-or-Perish
(PoP) was used. It provides a specific search on specified keywords
which results in limited, but more related search results. Finally, the 32
most related papers to the scope of this study including studies related
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Fig. 3. The retrieval methodology used for finding, evaluating, and including the related articles in this review.
to previous literature reviews [53–58], datasets ( Table 3), and AI-based
methodologies ( Table 4), were retrieved and included in the review.
It is worth mentioning that one review study from 2008 [53] is added
to this paper because of the importance of the paper to the coherence
of this systematic review.

3. Rehabilitation and physical exercises

Physical disability and impairment are defined as limitations in
the individual’s physical functionality, mobility, or stamina which can
be temporary or permanent for the long term and hinder them from
daily normal activities [60]. In general, physical disabilities include
activity, mobility, visual, or auditory impairments, or chronic pains
causing difficulty in functioning. They may occur (especially in older
5

individuals) due to different neurological conditions such as stroke and
Parkinson’s disease or different injuries such as spinal cord injuries,
brain injuries, and hip fractures. To be specific, the physical impair-
ments can be categorized into two general groups: musculoskeletal
and neuromusculoskeletal [61]; musculoskeletal disabilities affect the
joint, skeleton, and muscle movements directly due to different reasons
such as back and neck pain, osteoarthritis, and bone fractures and
injuries. The neuromusculoskeletal group includes impairments caused
by neurological conditions such as stroke, cerebral palsy, poliomyelitis,
spinal cord/brain injuries, and Parkinson’s disease. These types of
disorders affect the nervous system which controls the muscles and
bones and their interaction with the brain [62]. Fig. 4 illustrates that
these disabilities might occur in both upper and lower limbs which are
divided by the hip joint [63].



Computers in Biology and Medicine 158 (2023) 106835S. Sardari et al.
Fig. 4. The 32 body joints and skeletons from both upper limb and lower limb captured
by Azure Kinect.

To overcome the challenges of different impairments in daily life,
physical rehabilitation programs are provided by the healthcare sys-
tems in most developed countries. The role of rehabilitation programs is
to improve the physical functionality of temporary cases of disabilities
and to define a need and care routine for permanent types of dis-
abilities. Along with pharmacological treatments most of the physical
rehabilitation programs encompass different physical exercise thera-
pies which aim to prepare patients with disabilities for normal daily
activities. These exercises may be prescribed by the expert tool/weight-
free or with the use of therabands or weights, based on the need and
facilities of the patients and the type of impairments. The healthcare
provider team usually monitors the physical activities based on several
scoring and evaluation questionnaires and methods [64–66].

There is a vast set of exercises for the purpose of physical reha-
bilitation. However, some of these exercises are more common and
suitable for the purpose of data collection for developing a vision-
based HAR/HAE system. These actions can be performed without using
any tools and weights and they are visually understandable for further
recognition and evaluation. Table 1 illustrates some of the physical
activities, target disability, and target body parts. The first 6 exercises in
the table are targeting upper limb and the next 4 of them are for lower
limb impairments. It is worth mentioning that some of these exercises
are targeting general impairments, which means that they are most
common in any rehabilitation program, regardless of the impairment.
This means that creating datasets using these exercises is more helpful
for creating a generalized automatic HAR/HAE system. In addition, the
datasets which have been created targeting both upper and lower limbs,
are considering more different skeletons and muscles which leads to a
generalized dataset.

The figures of the actions illustrated in Table 1 are perfectly inter-
pretable for gesture description. Several exercises are for the rehabili-
tation of the impaired upper limb. As an example, elbow flexion and
extension consist of moving the elbow joint, starting from a straight
elbow to a bent one. Shoulder flexion is moving the shoulder while
keeping the arm straight in front of the body. Shoulder abduction
consists of the movement of the arm raised away from the body’s side
while keeping it straight. To perform shoulder forward elevation the
participant needs to clap the hands together and lift the arms up above
the head while keeping arms and elbows straight. Shoulder extension is
6

another exercise starting the arm beside the body and finishing behind
the body while keeping the posture straight.

Some exercises are prescribed for the improvement of mobility in
the lower limb. For example, the side tap is a way to improve the
balance in the body by training the patient to move one leg to the other
side of the body, while maintaining the balance. The description and
guidance of the physical exercises and their targeted type of impair-
ments have been explored and mentioned in detail in a website [67],
which is developed and gathered by a large team of physiotherapists in
Sydney, Australia [68].

Rehabilitation period exercises can be conducted either in a medical
clinic or hospital with the direct supervision of a healthcare provider,
or in a home-based situation, where the patients perform the prescribed
actions in the home. There are several factors contributing to the
failure of clinic-based programs in providing full or partial recovery
for patients. The expensive treatments, lack of young workforce as-
sisting in these programs, transportation problems, the comfortable
situation of home-based rehabilitation for some older adults, and oc-
curring pandemics such as COVID-19 hinder many disabled individuals
from continuing to attend these programs. In the case of home-based
rehabilitation exercises, most of the patients are noncompliant with
the prescribed activities due to the lack of activity monitoring and
feedback [58]. With the advent of computer vision systems and AI
techniques, which leads to automatic rehabilitation period monitoring,
the challenges of traditional clinic-based and home-based rehabilitation
programs can be overcome. Telerehabilitation with a good strategy for
choosing data modality, vision-based sensor, and AI-based techniques
can assist the medical sector in monitoring the rehabilitation and
progress of patients. In the next section, we discuss the challenges
that skeleton data can overcome compared to other vision-based data
collection methods, and why this modality is preferable compared to
other vision-based modalities.

4. Challenges of data collection

While the interest of researchers in creating vision-based public
datasets for patient action recognition and evaluation has skyrocketed
in previous years, there are several technical and ethical issues that
need to be considered before creating a scenario for the calibrations.
These issues might hinder the dataset from being accurate and gener-
alized for further technical research and evaluation on them. In this
section, we are going to briefly discuss these challenges and difficulties
of vision-based datasets, and how skeleton modality can be a good
substitute for all other vision-based modalities by ameliorating some
of the limitations. Some of the challenges are general for any data
collection related to this domain, some of them are specific to vision-
based methods, and some of them are being solved by using the
skeleton data as the modality.

Privacy preserving: Even though the vision-based modalities are
favorable for their highly informative features and being captured
in a non-intrusive manner, they can create issues regarding privacy
preservation. Specifically, the RGB and depth images/videos contain
confidential face information, which creates reluctance for the individ-
uals to participate in the data collection. This information should be
confidentialised using some face-blurring algorithms to avoid the risk
of identifying, which adds another step to the preprocessing phase. This
issue creates a challenge for dataset availability for data formats such
as RGB data. However, using modalities such as skeleton data is highly
privacy-preserving because it just contains information like body joint
positions which cannot be used for identifying the participants.

Ethical integrity and intellectual property rights: Another important
issue that should be considered in any type of data collection is preserv-
ing the ethical integrity of the procedure. According to Facca et al. [75],
using digital sensing technologies for collecting data on health-related
subjects is challenging. These additional challenges compared to other
HAR/HAE data collections originated from the fact that the procedure
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Table 1
List of exercises prescribed by experts in rehabilitation programs. The figures are extracted from several resources [67,69,70].

Gesture visual description Gesture Name Target impairment

Elbow flexion and extension [71] General/ Spinal cord injury

Shoulder Flexion [71] General/ Spinal cord injury

Shoulder Abduction [69,71] General

Shoulder Forward Elevation [71] General

Shoulder Extension [69] General

Shoulder internal rotator with theraband [69] Spinal cord injury

Standing up and sitting down [72] General/ Impaired balance for elderly

Walking on staircase [73] General/ Impaired balance for elderly

Deep squat [69,74] General

Stepping to targets(side tap) [71] Impaired balance for elderly/ lower limb
incomplete Tetraplegia
includes real-life patients and disabled people, which is a sensitive
group. In order to utilize patients in the process, the data collection
procedure needs more ethical screening from the different organiza-
tions including the hospital. This can also raise problems related to
intellectual property rights for different organizations and hospitals.
This problem is usually solved by engaging healthy participants and
asking them to perform the correct activity and then mimicking the pa-
tients performing the same action for the data collection [58]. Although
7

the collected data is not as realistic as the previous methodology, it
is enough for developing different AI methods and evaluating their
performance.

Dataset Diversity: This issue should be considered before collecting
the data, in order to create generalized data containing participants
with different genders, ages, clothes, physical stamina, and ability [58].
The data collection should be performed in multiple episodes or repeti-
tions, for multiple actions, on different days and situations, containing
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subjects from various groups which is a challenging task to be per-
formed by a single team of researchers and needs to be performed
in several hospitals and institutions in parallel. This can lead to the
ethical issues mentioned above, because of the sensitivity of the data.
This challenge might be one of the major reasons for the lack of public
diverse datasets for physical activity recognition in rehabilitation. Most
of the public datasets for this field mentioned in Section 2.4 contain
a limited number of repetitions, subjects, and general diversity of the
data. However, NTU-RGBD Dataset [46] is one of the most diverse and
popular general action recognition datasets. This dataset contains 60
classes of single-person actions (such as drinking water, falling down)
and two-person actions (such as hugging, walking towards, or high-
five), captured from 40 participants. A large number of participants and
actions helps this dataset to contain diverse samples with high numbers.
In another study conducted by researchers in Osaka University [76] for
gait recognition, gait videos of 10,307 subjects (a balanced number of
males and females with various ages, ranging from 2 to 87 years) were
collected [77].

Ambiance calibration: The variations in the ambiance of the en-
vironment selected for performing action hugely affect the quality
and diversity of the data. The actions can be performed in different
indoor/outdoor, lighting, and temperature conditions. Most of the sen-
sors are sensitive to these conditions and might perform poorly in
some of these situations. According to Shahroudy et al. [46] a large
number of variations can be created by capturing the data in different
backgrounds, in order to create ambiance inconsistency and provide
a robust system. In the case of some sensors such as Kinect, they
are limited to indoor scenes, because of the operational limitations
for lighting in this sensor [55] and that should be considered While
creating datasets using this sensor.

Dataset variation: According to Miron et al. [71], another essential
issue to be considered while collecting data is intra-class and inter-
class variations. Each physical activity prescribed for the rehabilitation
period can be performed with different variations in speed and par-
ticipants, which defines intra-class variations. There are also variations
between different actions which makes it harder for any HAR system to
differentiate the actions. Skeleton data is somehow robust towards any
differences in speed of the actions and participant’s body scale because
frames captured from sensors like Kinect are first converted to a series
of feature vectors regardless of orientation, position, and the speed of
action [78]. This makes the skeleton data modality favorable for data
collection.

Data imbalance: In some data collection scenarios with binary ac-
tion classification with discrete labels as ‘‘correct’’ or ‘‘incorrect’’, there
is a chance that the final real-life dataset is highly imbalanced (means
that the distribution of samples from both classes is not equal) [71].
This happens because some patient participants are not able to perform
some gestures because of their medical condition or they are unable to
perform an action with several repetitions. To solve this problem during
the data collection both the correct and incorrect actions (imitating the
patient’s movements) can be performed by healthy participants. In the
case of tackling the imbalanced dataset, methods such as undersam-
pling and oversampling can be used after the data collection, which
vary in different ranges [47].

5. Skeleton data acquisition

As mentioned before there are several vision-based data acquisition
methods which include RGB, depth map, IR sequences, and skeleton
data. Based on many advantages that skeleton data have compared to
other vision-based modalities (like robustness for noisy background,
privacy preservation, computationally efficient compared to RGB data
to be processed, etc.), they are preferred by many of the studies in the
scope of physical rehabilitation assessment. With the advent of pose
estimation algorithms and accurate and accessible sensors, collecting
skeleton data is much easier and more popular nowadays. Generally,
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there are two methods for skeleton data acquisition, which include
direct use of any sensing hardware, and indirect methods which include
pose estimation algorithms for capturing skeleton information from
RGB data [79]. However, since our aim is to use accurate sensors for
capturing 3-dimensional skeleton data from people, we will discuss the
prior method in this subsection.

To capture the skeleton joint data many direct approaches (using
a sensor directly to capture the skeleton data) have been used by
several researchers. Optical Motion Capture System (OptiTrack MoCap)
sensors, such as Vicon, which are marker-based methods have been
used by several studies in the scope of rehabilitation [35,69,80]. In
this approach, some reflective markers can be attached to several
body joints and the patient’s movements are tracked by some trackers
(cameras). Then, with some processing of the data in the computer,
the 3D joint positions are captured [81]. The OptiTrack method for
capturing 3D skeleton data is known for its accuracy in capturing the
exact position and better processing capability [81]. However, due
to the higher cost of acquiring the sensors for capturing data, many
researchers use pose estimation algorithms or other cheap skeleton
data-capturing sensors.

With the advent of the Microsoft Kinect XBOX 360, the technology
of 3D sensing was transformed to a huge extent. This sensing technol-
ogy was introduced for the purpose of the gaming industry originally.
However, it caught the attention of the research community very
quickly and it was used in various research fields like gesture recogni-
tion [82], pose detection [83], object detection citemanap2015object,
sign language recognition [84], virtual reality applications [85], and
rehabilitation [56]. The first version of the Microsoft Kinect Sensors
(Kinect V1) was meant to be used in the gaming industry and then
used by researchers in various research fields as a sensing method.
The second version of Kinect (Kinect V2), which was for Windows,
had better resolution than the previous one and also has been used for
scientific research. Both of these devices have one depth and one RGB
camera. In 2019 Azure Kinect sensors were introduced by Microsoft
for scientific purposes, mainly for computer vision and speech analysis
applications [86]. Among the three sensing technologies for 3D imaging
of Time-of-Flight (TOF), Stereo vision, and structured light, the MS
Kinect V1 uses structured light technology, in which the device projects
some known signal to the object and inspects pattern distortion on
the signal received back. This method is suitable for indoor activity
monitoring because the pattern distortion is highly sensitive to envi-
ronmental interference [87]. MS Kinect V2 and Azure Kinect utilize the
TOF method of sensing in which the camera sends out IR lights, and
records the time or distance it takes for the IR light sent out to return
back. The dataset collected by this sensor is limited to indoor scenes,
because of the operational limitations of the IR sensor in the sense of
light [55]. This method compared to the structured light is more robust
to changing lighting conditions [88]. Compared to the first two versions
of Kinect, Azure Kinect has several advantages, including better depth
resolution, a lighter device (Azure Kinect is a lot smaller than the
first two versions), and is more accurate in positioning the skeleton
data [86]. The Skeleton joint positions captured by the SDK designed
for each of the devices of Azure Kinect, Kinect V2, and Kinect V1, are
32, 25, and 20 joints, respectively. To the best of our knowledge no
other previous studies have used the Azure Kinect sensor for capturing
physical rehabilitation exercises and due to the reasonable prices of this
sensor compared to other accurate methods such as OptiTracks, this
sensor should be explored in future studies. Table 2 illustrates several
other depth sensors which can capture depth 3D sensors with their
related features. Some of the sensors such as Intel RealSense D455 use
stereoscopic technology for capturing the depth data by using several
cameras distant from each other like the human eyes. These methods

need separate SDKs for capturing the skeleton data from the depth data.
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Table 2
Several depth sensors and their features such as depth image resolution and frame rate of capturing image.

Depth Sensors Technology Depth FOV frame rate (FPS) Depth image
resolution

Compatibility Price

Kinect V1 Structured light H:57◦,V:43◦ 30 320 × 240 px Windows 7,8 (USB
2.0)

≃ $150

Kinect V2 TOF H:70◦, V:60◦ 30 512 × 424𝑝𝑥 Windows 8 and
higher (USB 3.0)

≃ $160

Azure Kinect TOF NFOV: 65◦ WFOV:
120◦

30 NFOV: 640 × 576
WFOV: 512 × 512

Windows 10 64-bit
(USB 3.0)

≃ $400

Intel RealSense L515 TOF H:70◦, V:55◦ 30 1024 × 768 px USB 3.0 ≃ $350

Intel RealSense D455 Stereoscopic H:87◦, V:58◦ Up to 90 1280 × 720 px USB 3.0 ≃ $240

Intel RealSense D435 Stereoscopic H:87◦, V:58◦ Up to 90 1280 × 720 px USB 3.0 ≃ $180

Orbbec Astra Structured light H:57◦, V:45◦ 30 640 × 480 px Windows 7 and
higher (USB 2.0)

≃ $160

Asus Xtion Pro Structured light H:58◦, V:45◦ 30 640 × 480px USB 2.0 ≃ $150
6. Comparative analysis of available datasets

Observing the previous studies on collecting data for rehabilitation
exercises, confirms the fact that there are a few publicly available
skeleton-based datasets collected for targeting different impairments.
For example, in a study conducted by Ar and Akgul [89], the authors
used a Microsoft Kinect sensor to capture the RGB and depth videos
of the participants performing several rehabilitation exercises for knee
and shoulder rehabilitation. However, this study’s major limitation is
that it does not include joint and skeleton information, which can be
useful profoundly in HAR/HAE tasks. The reason behind the lack of
publicly available datasets for rehabilitation exercises is the privacy is-
sue for patients and the property rights of organizations [44]. Even the
previously described rich datasets like NTU RGB-D [46] are for daily
activities and they are not including rehabilitation exercises which are
complex activities. Table 3 illustrates some of the characteristics of
the datasets which include skeleton data as one of the vision-based
modalities collected. These datasets encompass different vision-based
modalities to provide sufficient information for evaluating different
automatic systems trained on them. However, there are several limita-
tions for the existing datasets (such as using old low-resolution sensors,
capturing data in single-view, and targeting specific populations or
body limbs) which need to be addressed.

Most of the datasets collected previously are targeting some spe-
cific impairments and their therapy activities. One of the famous
datasets created and published in 2018 is UI-PRMD (University of
Idaho-Physical Rehabilitation Movement Data) [69] which is cap-
tured to address the lack of publicly available datasets for therapy
movements. One of the strengths of this dataset is that it includes
10 general rehabilitation exercises and is not targeting any specific
impairment group. They asked 10 healthy individuals to perform both
correct actions and incorrect actions (simulating the patients) for 10
repetitions. This dataset includes the positions and angles of body joints
as skeleton data. Although the present paper is exploring skeleton data
as a sufficient modality for recognition and evaluation, using multi-
modality techniques can improve the performance of any HAR/HAE
system. However, the UI-PRMD is an example of studies not providing
any further vision-based modalities as a data format.

Another recent dataset collected and published by Miron et al. [71]
is utilizing one Kinect V1 sensor to record skeleton data from 29
subjects (15 patients and 14 healthy people) performing 9 general
rehabilitation exercises. This dataset provides skeleton data and the
depth images captured and not the RGB streams. Other than having
limited modalities, this dataset is suitable for HAR tasks since it only
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provides labels for ‘‘correct’’ and ‘‘incorrect’’ gestures.
The University of Bristol’s (Sensor Platform for HEalthcare in Res-
idential Environment) SPHERE-Staircase2014 [73], SPHERE-Walking
2015 [72], SPHERE-SitStand2015 [72] are a series of datasets including
the normal and impaired version of each of the walking, walking on
the staircase and sitting and standing movements. The actions in these
series of datasets have been performed in both normal and abnormal
gait (simulating the patients with stroke and Parkinson’s disease with
the supervision of a physiotherapist) in front of either Kinect or ASUS
Xmotion RGB-D camera. Although these datasets are a great source for
motion quality evaluation, they are specific to certain targeted actions
and the datasets are not generalized.

The KIMORE dataset is another recent dataset, published in 2019
[90], addressing the limited participants problem. In this study, 44
healthy and 34 unhealthy subjects perform 5 repetitions of 5 phys-
ical activities for back pain rehabilitation. Kinect V2 was used for
action recording and the depth streams and joint positions and joint
orientations were extracted using the sensor. The RGB images are also
captured, however, they are not publicly available. This dataset could
solve some problems related to a limited number of participants and
capture different modalities; however, this study includes only a limited
series of actions related to a specific target impairment (back pain).

AHA-3D [91] is a dataset captured in 2018 for assessing the lower
body fitness in seniors while performing exercises of chair-stand, feet
up and go, step test, and unipedal stance. A Kinect V2 and an RGB cam-
era are used to capture the information related to these actions from 11
young and 10 elderly people. Although this dataset has several vision-
based modalities which are useful for creating a powerful multi-modal
HAR/HAE system, this dataset lacks in the number of action classes and
the number of subjects. The TRSP [92] dataset was created to address
the lack of an appropriate dataset for detecting compensatory motions
during the rehabilitation period of stroke patients. Such a data set is
useful in developing an automatic system for coaching stroke survivors
in proper positioning. A Kinect V2 was used to capture the skeleton
data from four compensatory movements performed by 19 participants.
This dataset was also created for a specific purpose and includes limited
actions, participants, and modality.

Although some of the limitations of these studies are mentioned
specifically for each of them, there are some important general lim-
itations that have not been considered by any of these datasets. For
example, these datasets could be captured using sensors with higher
accuracy compared to sensors like Kinect V2, such as MS Azure Kinect.
Another problem they are facing is that they have used single sensors,
without changing their point of view, and position of them, which can
highly impact the RGB and depth data collected. The environmental
calibrations of the lab used for data capturing have not been consid-

ered and the data was collected in constant environmental situations
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Table 3
Public datasets for physical rehabilitation exercises.

Dataset (year) Target group Participants Sensors Physical activity Objective Collected
modalities

Limitations

IRDS (2021)
[71]

General 29 subjects (15
patients,
14 healthy
people)

Kinect V1 several
repetitions
of 9 general
rehabilitation
exercises (both
upper
and lower limb)

Classification of
correct/incorrect
actions
regression
(predicting
a score for
actions)

Skeleton data,
depth images

Limited number of
modality,
limited number of subjects,
discrete labels only
suitable for HAR research,
imbalance data

KIMORE
(2019) [90]

Back pain,
Stroke,
Parkinson’s

78 subjects (34
patients, 44
healthy)

Kinect V2 5 repetitions of
5 exercises
for back pain
(both upper
and lower limb)

regression
(predicting a
score for actions)

Skeleton data,
depth images,
RGB(not public)

Specific target population,
specific physical activities,
limited number of actions

UI-PRMD
(2018) [69]

General 10 healthy
subjects
(performing both
correct
and incorrect
actions)

Kinect and
VICON

10 repetition of
10 general
rehabilitation
exercises
(both upper and
lower limb)

regression
(predicting
a score for
actions)

Skeleton data Limited number of
modality, limited number
of subjects

SPHERE-
Staircase
(2014) [73]

Walking-up
stairs gait

12 participants
performing
normal and
abnormal gait

ASUS Xmotion
RGB-D camera

48 sequences of
1 action
including
walking
up the stairs
(lower limb)

Classifica-
tion/regression

Depth streams
and Skeleton
data

Limited to one action,
limited number of
modalities,
limited number of subjects,
specific physical activities,
limited to certain limb
rehab

SPHERE-
walking (2015)
[72]

Walking gait,
simulating stroke
and Parkinson’s
patients

10 participants
performing
normal and
abnormal gait

ASUS Xmotion
RGB-D camera

40 sequences of
1
action including
walking
(lower limb)

Classifica-
tion/regression

Depth streams
and Skeleton
data

Limited to one action,
limited number of
modalities, limited number
of subjects,
specific physical activities
(limited number of
actions),
limited to certain limb
rehab

SPHERE-
SitStand
(2015) [72]

Sitting and
standing gait

10 participants
performing
normal and
abnormal gait

Kinect V2 109 sequences of
1
action including
walking (lower
limb)

Classifica-
tion/regression

Depth streams
and Skeleton
data

Limited to one action,
Limited number of
modality,
limited number of subjects,
specific physical activities,
limited to certain limb
rehab

TRSP (2017)
[92]

compensatory
motion
detection in
stroke patients

19 subjects (10
healthy
, 9 stroke
patients)

Kinect V2 4 compensatory
movements
(upper limb)

Classification Skeleton data Limited to one action,
Limited number of
modality,
limited number of subjects,
limited to certain limb
rehab

AHA-3D
(2018) [91]

Assessing senior
lower body
fitness levels

21 subjects (11
young,
10 elderly
individuals)

Kinect V2/
RGB camera

79 sequences of
4 actions (lower
limb)

Classifica-
tion/regression

Skeleton data,
depth, RGB
images

limited number of subjects,
specific physical activities,
limited number of actions,
limited to certain limb
rehab
(without changing the background or the lighting or the temperature).
In addition, some of the actions such as rehabilitation exercises related
to neck joint recovery are not considered in the exercise setting. All of
these raise the need to create a general dataset that can solve some of
the problems mentioned above in the future. The more variations in
subjects and camera views and backgrounds, the more accurate will be
the evaluation of different techniques developed on the same dataset.
The introduction of a new activity recognition dataset for the purpose
of monitoring actions during the rehabilitation period will enable the
research community to apply different new AI techniques and explore
10

their potential and performance.
7. AI methods for representation (feature) learning and evaluation

After generating a proper dataset, including a balanced number of
samples for both correct and incorrect activities, the next important
step is the design of the analysis pipeline. The objective of each study
plays an important role in designing the pipeline for proposing a
methodology. Reviewing the literature shows that different research
projects were performed for developing automatic rehabilitation sys-
tems and each pursued specific objectives. This diversity in their objec-

tive makes the comparison difficult. In addition, the studies in this field
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Table 4
Skeleton-based methodologies proposed for automatic physical rehabilitation monitoring task.

Study (year) Dataset Targeting
population

Sensors Feature Modeling
strategy

Objective Contributions Limitations

Chang et al.
(2011) [93]

Non-public (2
young patients
performing
rehab exercises
for 34 days)

Upper limb
motor
impairment

Kinect Posture based
on the Joint
angles

Kinerehab Using Kinect
posture
recognition for
counting the
correct exercises

Confirms that the
Kinect-based
interventions
enhance patients’
motivation for
rehab, and improve
their performance
over time

Non-public dataset,
Preliminary
research, Not an
AI-based HAE
technique, Not
providing
continuous score for
the patients to
monitor their subtle
improvements

Chang et al.
(2013) [94]

Non-public (2
young patients
performing
rehab exercises
for 34 day)

Severe cerebral
palsy with upper
limb motor
impairment

Kinect Posture based
on the Joint
angles

Kinerehab Using Kinect
posture
recognition for
counting the
correct exercises

Confirms that the
Kinect-based
interventions
enhance patients’
motivation for
rehab, and improve
their performance
over time

Non-public dataset,
Preliminary
research, Not an
AI-based HAE
technique, Not
providing
continuous score for
the patients to
monitor their subtle
improvements

Lin et al.
(2013) [95]

Non-public (2
patients with
upper limb
disability
performing
Tai-Chi rehab
exercises)

Upper limb
impairment

Kinect Normalized
coordinates of
joints

Kinerehab Using skeleton
data provided by
Kinect and
perform
statistical
analysis on them

Grading the actions
using ME of
skeleton data and
prove the
contribution of
rehabilitation
exercises in
recovery

Non-public dataset,
Preliminary
research, Not an
AI-based HAE
technique, very
limited
understanding of
the improvement in
actions

Exell et al.
(2013) [96]

Non-public (3
patients
performing in 18
interventions)

Upper limb
stroke
rehabilitation

Kinect and
stimulation
glove

Joint angle
trajectory

FES method
for rehab and
screening
using the
data collected
from sensors

comparison of
patients
performance
before and after
FES with the
reference actions
using the plots
for the joint
angle trajectory
changing in time

Illustrated the
success of the
proposed system for
improving the
patients’ movement
and during reach
and grasp activities

Non-public dataset,
Not an AI-based
HAE technique

Su et al.
(2014) [97]

Non-public (3
shoulder rehab
exercises
performed 6
subjects)

Shoulder rehab
exercises

Kinect DTW vector
captured from
skeleton data

Dynamic
Time
Warping
(DTW)
algorithm
and fuzzy
logic

Using DTW and
Fuzzy Neural
system provided
a performance
evaluation
technique

Provided a good
action scoring
technique aligning
80.01% of the time
with the experts’
scores

Non-public dataset,
Not an AI-based
HAE technique,
Requires domain
knowledge to design
fuzzy rules for new
exercises.

Benettazzo
et al.
(2015) [98]

Non-public (2
shoulder rehab
exercises
performed by 10
participants)

Shoulder rehab
exercises

Kinect Joint position
distance from
the reference
action

ANN posture
recognition

Providing audio
feedback for the
actions using AI

Provided good
detection of the
exercises and
evaluate reliably
their correctness

Non-public dataset,
very basic AI-based
HAE/HAR technique

Antunes et al.
(2016) [99]

Non-public
(Modify action,
Weight and
balance) and
public
SPHERE-Walking
[72]

Stroke, General
rehab

Kinect, Asus
Xtion PRO

Normalized
and
temporarily
aligned
skeleton data
using DTW

Using
mathematical
approaches
like
Euclidean
distance

Providing
visually human
interpretable
feedback for
patients

Provided an
interpretable
physical action
assessment method

Not an AI-based
HAE technique

(continued on next page)
are rather new and the field has not been adequately explored, which
also highlights the potential for further research in this field.

For example, in one study, Chang et al. [93] have used Kinect
sensors to leverage the human pose estimation capabilities of the Kinect
11
SDK for counting the correct exercises performed by the participants in
physical rehabilitation (They call this system Kinerehab). This method
was only proposed to do a performance evaluation of two young
adults with upper limb impairments performing the exercises without
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Table 4 (continued).

Study (year) Dataset Targeting
population

Sensors Feature Modeling
strategy

Objective Contributions Limitations

Eichler et al.
(2018) [100]

Non-public (12
patients with
stroke, 10
healthy subjects
performing FMA
movements)

Stroke, upper
limb rehab

2 Kinect V1 FMA related
features

Action
scoring using
SVM and RF

Classifying
actions into
correct/incorrect
based on the
FMA feature set

Provided a good
precision (100%
accuracy for two
actions) based on
just handcrafted
features

Non-public dataset,
very basic AI-based
HAE technique,
utilizing handcrafted
features, Utilizing
discrete values for
action scoring and
classifying the
samples into
correct/incorrect

Li et al.
(2018) [101]

UI-PRMD General rehab Kinect,
VICON

Scaled and
mean shifted
joint angle
trajectory, RMS
based
soft-labels

Different
GAN
structures

Modeling and
evaluation of
actions using
GAN

Public dataset, First
attempt for
modeling and
evaluation of
actions through
GAN

Not providing
continuous score for
the patients to
monitor their subtle
improvements

Williams et al.
(2019) [102]

UI-PRMD General rehab Kinect,
VICON

Dimensionality
reduced
skeleton data
with AE

GMM model
for scoring
the actions

Automatic
assessment of
physical
activities

Public dataset, AI
method for scoring
the action, proved
that dimension
reduction methods
such as AE perform
better compared to
other methods
(PCA)

Using this technique
might miss the
information about
the correlation of
joints, no specific
info about the
contribution of
joints in the action
scoring is provided

Liao et al.
(2020) [66]

UI-PRMD,
KIMORE

General rehab,
Back pain,
Stroke,
Parkinson’s

Kinect,
VICON

Dimensionality
reduced
skeleton data
with AE

GMM Log-
likelihood
method for
scoring the
actions,
spatio-
temporal
method for
training an
automatic
scoring
model

Automatic
assessment of
physical
activities using
spatio-temporal
technique

Public dataset, AI
method for scoring
the action, good
performance
0.02527 MAD on
UI-PRMD, 0.03786
MAD on KIMORE

Using
spatial–temporal
technique might
miss the info about
the correlation of
joints, no specific
info about the
contribution of
joints in the action
scoring is provided

Kim et al.
(2021) [103]

IRDS General rehab Kinect Heatmaps of
the skeleton
joints

Pre-trained
ResNet

Patient
identification
through physical
activity

Public dataset Good
performance for
classification
(around 98% for a
specific gesture)

Lack of HAE
technique, for
scoring the actions
Using heatmap
technique might
miss the info about
the correlation of
joints

Chowdhury
et al.
(2021) [104]

KIMORE Back pain,
Stroke,
Parkinson’s

Kinect V2 Handcrafted
features
(angles and
distance
between
joints), raw
skeleton data

LSTM model
with hand
crafted
features
(LSTM-HF)
and
LSTM-GCN

Automatic
assessment of
physical
activities using
two different
techniques

Public dataset,
comparing the
average in every
fold of RMSE in all
actions by
LSTM-GCN (0.191)
and LSTM-HF
(0.290) shows
LSTM-GCN is better

No specific
information about
the contribution of
joints in the action
scoring is provided

Albert et al.
(2021) [105]

KIMORE Back pain,
Stroke,
Parkinson’s

Kinect V2 Normalized
joint positions

Utilizing
GAN for data
augmentation

Classifying the
actions into
healthy/patient
using a classifier
on original data
and augmented
data

Public dataset,
illustrated that the
model trained on
the augmented data
have better
F-measure over all
of the classes
compared to
original data

Not providing
continuous score for
the patients to
monitor their subtle
improvements, no
specific information
about the
contribution of
joints in the action
scoring is provided

(continued on next page)
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Table 4 (continued).

Study (year) Dataset Targeting
population

Sensors Feature Modeling
strategy

Objective Contributions Limitations

Raihan et al.
(2021) [106]

KIMORE Back pain,
Stroke,
Parkinson’s

Kinect V2 Extracted
features using
1D LBP from
skeleton data

Genetic
algorithm-
optimized
CNN

Automatic
assessment of
physical actions

Public dataset, AI
method for scoring
the action, Good
scoring performance
(MAD 0.01337 on
the validation set
for KIMORE)

Using this feature
extraction technique
might miss the info
about the
correlation of joints,
no specific info
about the
contribution of
joints in the action
scoring

Du et al.
(2021) [80]

Non-public (2
patients with
upper limb
disability
performing
Tai-Chi rehab
exercises)

Upper limb
impairment

Kinect Raw skeleton
data
represented as
graph

GCN with
self-
supervised
regularization

Automatic
assessment of
physical
activities

Public dataset,
proposed method
(with an average of
MAE for all
exercises = 0.021)
better than other
previous methods

No specific info
about the
contribution of
joints in the action
scoring

Deb et al.
(2022) [35]

UI-PRMD,
KIMORE

General rehab,
Back pain,
Stroke,
Parkinson’s

Kinect,
VICON

Raw skeleton
data
represented as
graph

STGCN with
self attention
model

Automatic
assessment of
physical
activities with
variable length,
providing
explainable
feedback

Public dataset,
Defining
explainability of the
model for better
feedback using
attention model,
considering the
variable length of
the movements,
better performance
compared to
previous methods

Not providing
individual scores for
each of the joints

Mottaghi et al.
(2022) [107]

KIMORE Back pain,
Stroke,
Parkinson’s

Kinect V2 Features
provided by
the dataset

Deep Mixture
Density NN

Automatic
assessment of
physical actions

Public dataset, AI
method for scoring
the action, Good
scoring performance

Using CNN-LSTM
might miss the info
about the
correlation of joints,
no specific info
about the
contribution of
joints in the action
scoring
proposing any AI-based HAE technique. In another research, Chang
et al. [94] used the same methodology to evaluate the performance
of the two young patients and provided them with feedback. This
proposed system provided 3 Degrees of Freedom (DoF) for performing
physical rehabilitation exercises in the upper limb, which included 1
DoF for elbows and 2 DoF for shoulders. That is an upgraded version
of the previous research with 1 DoF. These studies can be considered
preliminary research on the use of Kinect sensors for rehabilitation
purposes and do not include major AI-based proposed methodology.
In addition, counting the correct exercises utilized in these papers does
not provide any continuous score for the patients to know how close
they are to getting the action correct. However, one of the major results
of these studies is to confirm that Kinect-based interventions enhance
patients’ motivation for rehabilitation, and improve their performance
over time. According to Debnath et al. [56], to have a better scoring
function for physical activities, Exell et al. [96] compared the joint
angle trajectories. In this study, the authors used Functional Electrical
Stimulation (FES) which is used in stroke rehabilitation as a way
of assisting patients to improve their body movements. The Kinect
sensor and a stimulation glove are utilized for data collection. The
comparison of patients’ performance before and after FES with the
reference actions using the plots for the joint angle trajectory changing
in time illustrated the success of the proposed system for improving the
patients’ movement during reach and grasp activities.

Mean joint angle error can also be used as a way to grade an
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action, which has been used in another study related to the former
ones mentioned above as conducted by Lin et al. [95]. In this study,
the authors asked 2 patients with upper bone impairment to perform
a Tai-Chi regimen for upper limb rehabilitation which includes 10
standing and 18 sitting actions illustrated in Fig. 5. This paper includes
comprehensive information about the skeleton data normalization and
performing an action scoring technique that they have utilized. The
actions were graded through a strategy and feedback was provided for
the participant, to suggest a repetition on performing the action or not.

In the study conducted by Su et al. [97], the authors utilized the
DTW and a fuzzy neural system to perform better scoring of actions
and provide interpretable feedback based on the speed and the DTW
distance of the actions performed by the participants from standard
action. Benettazzo et al. [98] utilized joint position Euclidean distance
from the reference action as a feature set for providing audio feedback
for performance evaluation. All of these methods were proposed in a
way that they mostly aimed to produce feedback based on the skeleton
data extracted from the Kinect sensors and their differences from the
reference actions. However, one of the most important actions that can
be performed is to use AI-based techniques (instead of mathematical
difference techniques) to automatically score the actions, which makes
the progress of decision-making faster using their pattern recognition
ability. To solve this issue many studies changed their perspective to
build an AI-base automatic scoring system.

In general, one of the most important phases in building any auto-
matic recognition/evaluation system is to find the best representation
of the data, which mainly includes finding and extracting the most
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Fig. 5. Tai-Chi rehabilitation exercise regimen including (A) 10 standing exercises and (B) 18 sitting exercises [95]. For more details, please refer to the cited paper.
relevant features. There are two general approaches to performing fea-
ture extraction, which is hand-crafted feature extraction, or automatic
feature extraction mainly using DL strategies.

The conventional approaches for skeleton-based activity recognition
are mostly based on extracting hand-crafted features and then applying
some ML methods to them [108,109]. In the area of activity assess-
ment for physical rehabilitation, one of the hand-crafted feature-based
methods is introduced by Eichler et al. [100], in which the patients
and healthy participants perform the Fugl-Meyer Assessment (FMA)
physical activities as a clinically approved intervention for people
surviving from a stroke. Two Kinect sensors were utilized for action
recording and one medical professional provided FMA scores for the
actions. Some features relating to the speed of actions and statistical
values (such as mean, max, and variance) of different measurements
of angle and distance of the skeleton data were used as the feature
set for representing the data. Then, C4.5(as a decision tree method),
Support Vector Machine (SVM), and a Random Forest (RF) classifiers
were used to classify samples into patient and healthy (based on the
FMA score, where 0–1 is the score for the patient and 2–3 is the score
for the healthy participant). In another attempt, Antunes et al. [99]
provided a visually human-interpretable feedback system that uses
three different datasets to capture the skeleton data, then performs
some pre-processing on the data to align them temporarily and spatially
using Dynamic Time Warping (DTW), and finally provide feedback
based on the Euclidean distance of the joints to the reference action
to provide a score.

However, recently there are some proposed methodologies using
a Deep Learning approach on the raw collected data for the same
purpose. These methods mostly include three main Neural Network
architectures, i.e. Recurrent Neural Networks (RNNs) [45,46,110], Con-
volutional Neural Networks (CNNs) [111–113], and Graph Neural Net-
works (GNNs) [44,114–116]. For each of these methods, the coordi-
nates of the joints should be represented differently, such as vector
sequences, pseudo-images, and graphs, respectively. According to Shi
et al. [44], in the field of HAR, sequence-based techniques utilize RNN-
based architectures and feed the skeleton data as a sequence of joints
(time-series sequences), to capture the temporal features of the data.
CNN-based frameworks can capture the spatial features of the skeleton
pseudo-image representation of the skeleton data and perform an image
classification task. In some studies, instead of representing skeleton
data as sequences or pseudo-images, authors used graph-based models
in which the skeleton data is represented as a graph. In the graph
representation, joints are vertices and bones are edges. According to Shi
et al. [44], the reason for the popularity of graph-based techniques for
modeling skeleton data is that compared to the sequence-based meth-
ods and image-based representation, the graph-based methods are more
reasonable since the skeleton in the human body is naturally organized
as a graph. There are some kinematic dependencies between skeleton
bones and joints, and GNN models by applying special convolutions
14
on over graph edges corresponding to the joints can capture these
dependencies [117,118].

Deep Learning techniques for physical rehabilitation exercise eval-
uation have been explored recently in a small number of papers. In
the study conducted by Williams et al. [102], the authors utilized an
autoencoder (AE) for dimensionality reduction and a Gaussian Mixture
Model (GMM) to derive a parametric probabilistic movement model
of the density of the movements to evaluate the human movements in
physical rehabilitation exercises. MSE, MAE, and MPE for two exercises
of deep squat and standing shoulder abduction with four approaches
of scoring (GMM, DTW, Mahalanobis distance, and Euclidean distance)
were presented in this paper. This paper showed that the AE model
produces better results compared to other dimensionality reduction
methods, such as Principal Component Analysis (PCA).

Also, Liao et al. [66] proposed a pipeline with three important
components of dimensionality reduction for skeleton data, the scoring
method for the actions, and the spatio-temporal-based methodology for
scoring the actions. This paper investigated dimensionality reduction
for skeleton data using AEs (including 3D data of 15 to 40 skeleton
joints regarding the sensor type) which is rarely investigated by other
studies. The authors proposed a Gaussian Mixture Model (GMM) based
model for scoring the actions. Finally, a spatio-temporal architecture,
including 1D CNNs and Long Short-Term Memory (LSTM) layers, was
used to perform the regression. Kim et al. [103] performed a patient
identification using a pre-trained ResNet architecture on the heatmaps
extracted from the skeleton data of the healthy and patient people
in the public IRDS dataset. This method illustrated good performance
in classifying the patients. However, it lacks scoring of the actions,
which can help the patients to understand to what extent they are
performing the actions well. One of the latest research conducted by
Mottaghi et al. [107], proposed a pipeline called Deep Mixture Density
Network(DMDN) including CNN, and LSTM layers for capturing spatio-
temporal features of the motion by adding mixture density layers to
predict the scores for the skeleton data in the KIMORE dataset. The
metrics of Root Mean Square Error (RMSE) and Spearman correlation
coefficient of the validation dataset for each action were provided by
the authors and according to the results, the DMDN provides good
performance compared to Liao et al. [66] in some of the exercises.

In 2021 Raihan et al. [106] utilized a mixture of both hand-
crafted features and Deep Learning methodologies to propose a genetic
algorithm-optimized CNN model trained on the 1D LBP (Local Binary
Pattern) feature sets extracted from the skeleton data from KIMORE
dataset. The resulting Mean Absolute Deviation (MAD) for the testing
set in the KIMORE dataset illustrates that the method has a better
regression performance compared to the method proposed by Liao
et al. [66]. Chowdhury et al. [104] conducted research on comparing
the performance of two pipelines including feeding the handcrafted
features provided by the KIMORE dataset to an LSTM neural network
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Fig. 6. Attention maps provided in the paper [35] for five exercises. To represent the importance of each joint, the circles are shown bigger when they have higher importance.
The figure represents (a) the Average attention map (left) and joint role or importance (right) of expert users. In columns (b) and (c), the left figures illustrate the role (or
importance) of different joints in scoring, when the score gets high or low respectively, and the right figures show the difference in the role of joints from the reference movement
(where the violet circles are bigger, the patients needs to pay more attention to perform better action).
(LSTM-HF) and feeding the raw skeleton data as with a graph repre-
sentation to a Graph Convolutional Network (GCN)-LSTM architecture.
The RMSE reported as an average of cross-validation of every fold
for each exercise illustrates that LSTM-GCN (average RMSE=0.191)
performs better compared to LSTM-HF (average RMSE=0.290). The
results in this paper prove the fact that the GCN technique can capture
better spatio-temporal features of the human body compared to the
handcrafted features provided by the experts. In similar research, Du
et al. [80] utilized a GCN with a self-supervised regularization on the
UI-PRMD dataset to show that the GCN can capture spatial information
of the human body. The mean absolute error (MAE) between the
predicted score values and the ground truth performance scores on the
validation set for the 10 exercises shows that the proposed method
(with an average of MAE for all exercises of 0.021) performs better
than other methods such as Liao et al. [66] (with an average of MAE
for all exercises= 0.025).

One of the major limitations of the previous studies is that the HAE
systems are not able to provide interpretable and explainable feedback
for the patients to know which joints are the most contributing (salient)
ones in the decision-making progress of the system. Providing an ex-
plainable methodology can help the patients to improve their actions by
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paying more attention to the special joint movements resulting in low
scores and assist the patients in monitoring their actions and trusting a
transparent model instead of a black box. Another important limitation
of the previous works is that in order to feed the action performed by a
participant to a CNN or LSTM model, they had to convert the captured
videos to fixed-length ones which contradict real-world situations since
the actions can be performed with different speeds and repetitions.
To address both of these problems and create a model with better
performance, Deb et al. [35] proposed a Spatio-Temporal GCN (STGCN)
with a self-attention layer. This paper provides a comparison of dif-
ferent methods such as [66,116,119–121] with the evaluation criteria
such as MAD, Mean Absolute Percentage Error (MAPE) and RMSE
scores. Comparing these criteria for all of the 10 exercises in UI-PRMD
and five exercises in KIMORE illustrates that the proposed method
performs better in scoring for most of the exercises. The attention
map illustrating the importance of the joints in scoring each action is
given in Fig. 6. To the best of our knowledge, this is the first attempt
in providing explainable scores for actions in physical rehabilitation
assessment and this direction needs to be explored further.

Due to the fact that it is challenging to create a large dataset in the
medical domain (including the scope of this paper), which is essential
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for deep learning models to learn the pattern in data, some studies tried
to solve this situation with data augmentation methodologies. Albert
et al. [105] proposed a Generative Adversarial Network (GAN) with
CNN and LSTM layers for producing sufficient synthetically augmented
data. They illustrated that a fully convolutional network classifier
trained on the augmented data can classify the samples into patient
and healthy better than the original data. Li et al. [101] investigated
different types of GAN models, such as Deep Convolutional GANs
(DCGAN) [122], Wasserstein GAN [123], and Recurrent GAN [109]
for both data augmentation and performance evaluation. However, the
classification accuracy of the GANs is assessed based on a series of
introduced soft labels for the action sequences.

8. Evaluation methods

In this subsection two levels of evaluation criteria selection for
the skeleton data analysis is discussed. In the first level, evaluation
methods for the human subjects’ activities are discussed which plays an
important role in the final HAE system performance. The second level
encompasses the evaluation techniques proposed by different studies
to assess the performance of ML/DL-based HAE systems compared to
other pipelines.

8.1. Evaluation methods for human subjects’ actions

In this subsection, we discuss performance evaluation approaches
for the human subjects’ actions utilized in different previous studies.
In the level of the participants’ action evaluation, which includes the
‘‘degree of correctness’’ of the physical activities performed by the
subjects, the actions can be annotated with discrete and continuous
scores. In other words, the approach of scoring the actions may frame
the problem as either classification or regression [56]. The action
evaluation methodology plays an important role in the validation and
interpretability of the whole HAE system. Table 5 includes some of the
most common methods for scoring the actions which we will discuss in
the following.

According to Mangal et al. [64], generally human motion scor-
ing can be explored in two main categories, (1) rule-based and (2)
template-based approaches. Rule-based approaches (or clinical scoring)
are providing scores for the actions based on a set of rules provided by
the clinicians who assess the movement with tools and questionnaires.
In other words, some of the previous studies preferred to use the knowl-
edge and experience of the physiotherapists in scoring during the data
collection stage. Some of the very basic related methodologies such
as counting the correct exercises [93,94] have been proposed previ-
ously to evaluate patients’ improvement performance by comparing the
number of correct exercises before and after performing some physical
activities to the correct actions performed by the experts. This method
lacks a very important characteristic of an automatic assessment model,
which is the interpretability of the scoring methodology. The HAE
systems designed based on this scoring method are unable to assist
the expert in monitoring the subtle improvements in the performance.
FMA [124] and Unified PD Rating Scale (UPDRS) [125] are some
of the clinical scoring methodologies utilized by different authors for
action assessment [100,126]. As another example, clinicians monitored
the actions performed by the healthy and patient participants in the
KIMORE dataset [90] through a questionnaire called the Exercise Ac-
curacy Assessment Questionnaire (EAAQ) [127], which is illustrated
in Fig. 7. According to this assessment system finally, each action is
quantified through three scores of the clinical Total Score (TS) as the
sum of all of the ten identified scores; the clinical Primary Outcome
(PO) score as the sum of the scores of the first three questions; and the
clinical Control Factors (CF) as the sum of the last seven questions. In
the data collection related to the IRDS dataset [71], the authors utilized
the expert knowledge to provide scores as labels of correct/incorrect to
the participants performing the actions.
16
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These methodologies are able to provide powerful and real-world
scores because of using the experts’ knowledge. However, there are
several limitations to this data annotation method. First, in most of the
data collection procedures access to different experts from different dis-
ciplines (such as both computer science and medical science) is limited.
In addition, in some cases, the scoring methodologies that the medical
experts use might vary based on different tools and questionnaires.
This makes the data more specific to a certain tool and questionnaire
results and hinders the researchers from finding a more generalized
HAE pipeline for action assessment. It fails in generalizing the model
for new physical activities not clinically scored and not introduced to
the model before. Moreover, the reliability of the scores provided is
highly dependent on the experience, knowledge, and possible bias of
the expert scoring the actions. Therefore, we recommend that future
researchers in the related area provide an automatic procedure to create
generalized annotations. To reach this goal, it is preferable to use a
template-based scoring approach in which actions are being assessed
compared to a reference perfect action.

The template-based scoring approach can be classified into two
groups of model-free (direct matching) and model-based group of
metrics [66]. The model-free approach includes applying a distance
function between the sequences of actions performed by the participant
and the reference action. Utilizing distance functions as scoring criteria
assists us in providing a generalized qualification method, which can
be used for new types of physical activities. For example, to provide
a more generalized and interpretable score for assessing the actions
performed by the patients, some studies proposed grading the actions
through Mean Absolute Error (distance) (MAE) or MAD [95]. For
example, Lin et al. [95] used joint position (after scaling them) and
angle mean error as a measuring method for monitoring the progress
of patients. They used the distance/error (denoted by 𝑑) function
illustrated in Eq. (1) to find the distance of 3D joint positions of the
reference (𝑅𝑖) and patients (𝑃𝑖) movements considering that the Kinect
sensor can capture 𝑛 joints:

𝑑 = 1
𝑛

𝑛
∑

𝑖=1
|𝑅𝑖 − 𝑃𝑖| (1)

Then, they provided a set of discrete scores ranging from 0 to 2, in
which 0 means the ME for both of the joint positions and angles was
not higher than a threshold, 1 means the ME for either joint position or
angle was higher than a threshold, and 2 means that the ME for both
of the joint positions and angles was higher than a threshold. Although
this methodology improved the understanding of the performance of
the patients slightly, since it provides a discrete score, changes in
the improvement of the actions are not noticeable. In addition, these
scores are not taking into account the whole temporal sequence of
the action being performed from the starting point to the end of the
action. In general, methods like MAE and Euclidean [95,96,98,128]
distance for comparing the two time series are not suitable because
they are not considering the variations in the length of the time series
vector (length of recording). For this reason, methods like DTW are
being used as a distance metric for time series recordings with different
lengths [97]. In general, DTW is a method for recovering the optimal
temporal alignment of two sequences of time series with different and
variable lengths [129]. This method and other versions of it have
been used in several papers as a pre-processing phase to align two
human actions with different lengths [99]. In specific, according to
Zhou and De la Torre [130] given two time series of 𝑋 = [𝑥1,… , 𝑥𝑛]
nd 𝑌 = [𝑦1,… , 𝑦𝑚], DTW is a technique to align X and Y with different
engths of n and m such that, the following sum of square cost error is
inimized. This method can also be used for scoring the actions.

Compared to model-less approaches, the model-based metrics use
robabilistic methods for modeling the skeleton motion data and em-
loy the log-likelihood for performance evaluation [66]. According to
angal et al. [64] this approach is advantageous since it generates a
eneralized score for any type of action with good accuracy. Hidden
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Fig. 7. The questionnaire used in the KIMORE dataset for scoring participant’s action performance [90].
Table 5
List of common action evaluation methods and their limitations and strengths.

Subject performance
evaluation method

Some of the papers
using the criteria

Pros Cons

Counting the correct
exercises (discrete
scoring)

[93,94] Preliminary
methodology

Not monitoring the
subtle improvements in
the actions

MAE of joint
positions

[95] Providing a better
understanding of the
action compared to the
discrete scores

Not taking the whole
performance of the
temporal action from
the starting to the
ending point

MAE of joint angles [95,96] Providing a better
understanding of the
action compared to the
discrete scores

Not taking the whole
performance of the
temporal action from
the starting to the
ending point/ not
suitable for time series
data

Euclidean Distance
of skeleton data

[98,99,102,128] Providing a better
understanding of the
action compared to the
discrete scores

Not taking the whole
performance of the
temporal action from
the starting to the
ending point/ not
suitable for time series
data

DTW and its
variations

[74,97,102,131] Suitable for time series
data with variable
length

Probably not as
accurate and
generalized as
model-based methods

GMM or HMM [66,102,132] Model based method of
scoring (accurate and
generalized)

–

Markov Model (HMM) and GMM are some of the well-known model-
based methodologies for scoring the actions based on the probabilistic
density functions [66,102,132].

8.2. Evaluation methods for HAE system

The second step in the evaluation process is the evaluation and
comparison of the HAE systems based on some standard classification
and/or regression metrics. In other words, a very essential step in
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conducting research on designing an AI technique for action evaluation
is to explore the existing performance evaluation criteria for validating
the proposed HAE system. However, according to Lei et al. [11], the
evaluation criteria vary in different studies performed in rehabilita-
tion exercise assessment because of its non-uniformity in formulating
the data collection. Most of the studies in this scope use their own
dataset (which are non-public because of ethical issues and intellectual
property restrictions), with different configurations, and evaluation
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criteria, which makes it harder to compare different DL/ML-based
methodologies applied on them.

As mentioned in the previous section, many papers used MAD, MAP,
RMSE, Spearman correlation coefficient, and maybe other methods for
evaluating regression models. However, there is no uniformity and
coherency in using these criteria to make them comparable with future
works. One interesting limitation of previous related work related to the
evaluation criteria is not paying attention to the variations in actions
cross-subject and cross-view and therefore did not provide a cross-
subject and cross-view train-test split and score. For example, in the
Shahroudy’s et al. [46] study they used one cross-subject evaluation in
which they split the data into two sets of train-set and test-set based on
the subjects only. In cross-view evaluation, only the data collected by
the two front cameras were for training and the data from camera 1 is
used for the testing.

In addition to the previously mentioned limitations, it is worth
mentioning that all of the studies including designing an HAE sys-
tem for rehabilitation problem provided the general scores for the
actions [35,45,80,105,107]. However, a general score for each action
diminishes the explainability of the activity feedback in which the
patient will not be able to interpret the score and decide which body
part to improve. In an attempt to create interpretable feedback, Deb
et al. [35] utilized the attention map to illustrate the problematic body
part movements. However, to the best of our knowledge, the use of
separate scores for each body part needs to be studied further in the
future.

9. Summary of the detected limitations of previous studies

In this section, we briefly discuss the detected challenges in the
previous related studies. The studies on developing HAE systems for
rehabilitation exercises have the following gaps:

• The previous related public datasets have many limitations such
as limited data, single-view data capturing, targeting a specific
population, low-resolution capturing devices, and discrete label-
ing of the activities. This raises the need for new data collection
to cover all of these gaps.

• The studies conducted on developing AI-based methods for HAE
are very limited and few in number, which shows the potential of
this area to be explored further. They have used different datasets
for different targets (for activity recognition, or scoring the action
based on correct/incorrectness, or scoring actions with a contin-
uous label). Since, providing a continuous label can demonstrate
the improvement of the action better, developing a more accurate
HAE system for this aim is necessary.

• The accuracy of the scoring system plays an important role in
effective treatment. Due to the fact that very limited studies in
the literature have been detected, further studies on promoting
scoring accuracy should be conducted.

• The related methodologies provide feedback in a way that the
patient and expert are provided with either label for actions
as correct/incorrect or continuous scores. However, one future
study direction can be to use interpretable scores including visual,
audible, or tactile tangible feedback. This feedback system can
either be used as a reminder (of the incorrect posture or action
of the patient) or guidance (of the correct performance of the
activity) method for the patients. That can play a key role in a
successful rehabilitation procedure.

0. Conclusion

Physical activities have been widely used by physiotherapists as
he most adequate prescription for the physical rehabilitation of differ-
nt disabilities. With the advent and combination of computer vision
18

ethods and high-resolution sensors, many studies proposed different
ML/DL-based activity recognition and evaluation assistant systems to
help medical experts with decision-making and prescriptions. This pa-
per comprehensively reviews the different stages of designing a system
for such a task. Thus, the current review contributes significantly to
the literature on automated assessment of physical activity and exer-
cise. First, we discussed about different data-capturing technologies,
physical activities to be captured, and the challenges of data collection
for physical rehabilitation. Then, we explored the recent ML/DL-based
methodologies proposed by different studies for the HAR/HAE task
based on the skeleton modality, together with their evaluation methods
and the limitations and related gaps.

As mentioned above, the focus of this work is exploring the HAE
systems built based on skeleton data for the rehabilitation problem.
This decision is made to constrain the research domain in order to make
conducting this systematic review feasible. Thus, it is worthwhile to
suggest the exploration of different modalities (such as radar, audio,
wearable, and Wi-Fi) utilized for the same purpose in future studies to
examine their computational cost and accuracy. This will pave the way
for future researchers in activity type selection for the specific modality
that they are using as the input data. Another future work that we
could offer is a comprehensive analysis of designing HAE systems for
general applications (including rehabilitation actions, sports, and daily
activities) for a better comparison of different techniques’ performance
(especially DL-based methods).
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