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Abstract – We readdress the statistical mechanical problem of the size of a 2D ring polymer,
topologically unentangled with a planar lattice array of regularly spaced obstacles. It is commonly
assumed in the literature that such a polymer adopts a randomly branched type of configuration,
in order to ostensibly maximise chain entropy, while minimising obstacle entanglement. Via an
innovative analytic approach, valid in the condensed polymer region, we are able to provide a
greater theoretical understanding, and justification, for this presumed polymer behaviour. Our
theoretically derived results could also potentially have important implications for the structure
of interphase chromosomes, as well as electrophoretic ring polymer dynamics.
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Introduction. – The intriguing role of topology, or
topological constraints, in determining the properties
of unentangled ring polymers continues to fascinate re-
searchers in the field [1,2]. Indeed, there exists a substan-
tial literature on this topic (see, e.g., [3–6] and references
therein), with applications ranging from chromosomal
structure [7,8] to gel electrophoresis [9].

The purpose of this work however is to reinvestigate,
or reconsider, the simpler problem of the size R of a 2D
ring polymer (with degree of polymerisation N) which is
topologically unentangled with a planar lattice array of
regularly spaced obstacles (see fig. 1). Previous work on
this specific topic include that of [10–12].

In the work of [10], for example, a branched random
lattice was invoked from the outset for the allowable poly-
mer conformations, which naturally leads to the randomly
branched polymer result: R ∼ N1/4 [13]. Whereas, in [12]
a polymer area order parameter was introduced, and via
the approximate summation of leading logarithmic terms,
again the randomly branched polymer result was obtained
(in the absence of the excluded volume interaction).

To the best of our knowledge, there appears to be a
paucity of work available in the literature regarding any
direct simulations of the explicitly 2D case, as considered
in this work. Indeed, it has become somewhat common
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lore, and indeed even “obvious”, that an unentangled poly-
mer in an array of obstacles adopts a randomly branched
structure (possibly going over to something like a fractal
or crumpled globule [5,6] at higher densities).

Despite the previous work mentioned above, it therefore
seems naturally desirous for us to restudy, and elucidate
further, precisely how considerations of polymer topology
can give rise to randomly branched polymer statistics. In
particular, we would like to gain some additional and im-
proved theoretical understanding on how the presence of
topological constraints (via the use of a 2D Linking Num-
ber defined below) can lead to the typical size R of the
polymer adopting a randomly branched polymer type of
behaviour given by roughly R ∼ N1/4.

Theory. – We firstly proceed to provide below a con-
cise derivation of the theory to be used. The interested
reader is invited to consult [11,12,14–17] for more general,
background, information.

The (topologically invariant and integer valued) 2D
Linking Number Φnm between our polymer chain on the
plane, Rα(s), and an isolated planar obstacle at lattice po-
sition Rα

nm = (na,ma), with lattice spacing a, is defined
as [11,12]

Φnm =
1
2π

∫ L

0

ds εαβ
(Rα(s) −Rα

nm)
(R(s) −Rnm)2

∂Rβ(s)
∂s

, (1)
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Fig. 1: Sketch of a 2D ring polymer, topologically unentangled
with a planar lattice array of regularly spaced obstacles.

where s is the contour length along the chain, and εαβ is
the 2D antisymmetric tensor (defined by ε12 = +1 and
ε21 = −1).

For an unentangled ring polymer, we wish to introduce
the constraint that the (integer valued) 2D Linking Num-
ber Φnm between our polymer chain and an isolated ob-
stacle vanishes, as follows:∏

nm

δ(Φnm) =
∏
nm

sin(πΦnm)
πΦnm

≈
∏
nm

(
1 − π2

6
Φ2

nm

)
≈

∏
nm

e− π2
6 Φ2

nm ≈ e− π2
6

∑
nm Φ2

nm , (2)

where, in order to make analytic progress, the approxima-
tion used is to expand for values of the Linking Number
close to zero, this being the specific regime of interest for
this work.

Therefore, in order to penalise polymer conformations
with non-zero Linking Number, we introduce the following
Hamiltonian, HC , as

HC =
π2

6

∑
nm

Φ2
nm

≈ π2

6a2

∫
d2xΦ2(x), (3)

where in the second line, and for calculational convenience
and tractability, we pass to the continuum approximation
(with a short-distance cutoff a corresponding to the lattice
spacing of obstacles).

The required Boltzmann factor, e−HC , (in the contin-
uum approximation) can be simply unpacked via the in-
troduction of a vector gauge field, Aα(x), as follows (for

the analogous 3D case see [14–17]):

e−HC =
∫
DAα e−HA +i

∫ L
0 ds Aα(R(s)) ∂Rα(s)

∂s , (4)

where, by utilising the 2D identity, εαβ εμν = δαμ δβν −
δαν δβμ, the gauge field Hamiltonian, HA, can be written
as

HA =
1
2

∫
d2x

[
3a2

π2

(
εαβ∂αAβ

)2 +
1
η

(
∂αA

α
)2

]
(5)

which includes the usual gauge fixing term, controlled typ-
ically by the parameter η → 0 [14–17].

The familiar 2D polymer elasticity Hamiltonian [18],
Hel, is given by

Hel =
1
b

∫ L

0

ds δαβ
∂Rα(s)
∂s

∂Rβ(s)
∂s

(6)

with a step length b, while the 2D polymer excluded vol-
ume interaction is typically written [18] as (with interac-
tion strength ν)

Hev =
ν

2

∫ L

0

ds
∫ L

0

ds′ δ2
(
R(s) −R(s′)

)
. (7)

The Boltzmann weight associated with the polymer ex-
cluded volume interaction, given by Hev, can similarly be
re-expressed, by introducing an auxiliary scalar field φ(x),
as follows [18]:

e−Hev =
∫
Dφ e− 1

2ν

∫
d2x φ2(x) +i

∫ L
0 ds φ(R(s)). (8)

We are now in a position to form the requisite Green
function, G(x, x′;L), as a path integral [14–17]:

G(x, x′;L) =
∫ R(L)=x

R(0)=x′
DR(s)

× e−Hel +i
∫

L
0 ds Aα(R(s)) ∂Rα(s)

∂s +i
∫

L
0 ds φ(R(s))

(9)

which can be shown to satisfy the following governing
equation [14,17]:

∂

∂L
G(x, x′;L) =

(
b

4
(
∂α − iAα

)2 − iφ

)
G(x, x′;L) (10)

with the ring polymer case, as considered in this work,
clearly corresponding to the limit x → x′.

In order to proceed, it typically proves more useful to
utilise the Laplace transformed Green function (with re-
spect to the polymer length L), defined as: G̃(x, x′;μ) =∫ ∞
0

dL e−μL G(x, x′;L), such that [14,17](
− b

4
(
∂α − iAα

)2 + μ+ iφ

)
G̃(x, x′;μ) = δ2(x− x′).

(11)
The Laplace transformed Green function, G̃(x, x′;μ),

can additionally be written as the two-point function of a
complex field theory, derived from the following replicated
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Hamiltonian (see, e.g., [11,12,14,17] for related work):

Hn =
∫

d2x

[
b

4

n∑
a=1

(
Dαψa

)∗(
Dαψa

)
+μ

n∑
a=1

ψ∗
aψa + iφ

n∑
a=1

ψ∗
aψa

]
(12)

with replica index a, and covariant derivative Dα = ∂α −
iAα.

Following in the footsteps of [19], we now write for our
replicated complex field variable, ψa: ψa = χa, where χa

is restricted to be a purely real field. In this way the
“current” term, Jα

a = i(ψ∗
a∂

αψa − ψa∂
αψ∗

a), appearing in
eq. (12) vanishes identically. Polymer states corresponding
to nonzero values of such a current are thus disfavoured,
due to a correspondingly higher energy cost (as analo-
gously demonstrated in [19]).

Integrating out the auxiliary field φ, and the vector field
Aα (utilising a large momentum cutoff π/a), we arrive in
the appropriate, high density, limit of b

6

∑n
a=1 χ

2
a � 1 at

(for related work see [11,12,19], for example):

H ′
n =

∫
d2x

[
b

4

n∑
a=1

(
∂αχa

)2 + μ

n∑
a=1

χ2
a +

ν

2

( n∑
a=1

χ2
a

)2

+
π

8a2
ln

(
eb

6

n∑
a=1

χ2
a

)]
. (13)

Results and discussion. – We now wish to calcu-
late the ground-state energy of H ′

n, corresponding to a
condensed, confined, localised, and compact polymer con-
figuration. Such high density polymer states are typically
relatively weakly fluctuating, and in the thermodynamic
(or large N) limit, tend to be well described by the prin-
ciple of ground-state dominance [18,20].

Following closely the work of [19], and invoking a type of
“Lifshitz argument” [20], we consider a slowly varying, ra-
dially symmetric, ground state given by the ansatz [19,20]
χa = wa J0(j0,1 r/R). In this expression for χa, J0 is the
zeroth-order Bessel function, and j0,1 gives the location of
its first zero (j0,1 ≈ 2.4). Our variational ansatz is there-
fore simply described by just two parameters, namely its
radius (or optimal size) R, and its amplitude wa. Non-
radially symmetric field configurations are more energeti-
cally costly, and hence can be safely ignored for the ground
state [19].

It has been found that the appropriateness of such a
ground-state trial function for describing confined, or lo-
calised, states can be verified using the approach of [19].
The dominant contribution to the low-energy region, or
lowest-energy configuration, being well described by the
large-scale physics, or long-wavelength mode, is charac-
terised by the overall size parameter R [19].

Note that, unlike the work of, e.g., [11], we are not prob-
ing the (topologically induced) polymer collapse transition

point in this work. Rather, we are investigating deep in
the condensed polymer phase. Indeed, our approach has
in some ways many similarities to that of placing a poly-
mer chain in a rather deep, radially symmetric, potential
well [18,20]. There it is found again, using the well-known
“Lifshitz argument” [20], that the principle of ground-
state dominance typically leads to confinement, or locali-
sation, of polymer phase behaviour corresponding to the
lowest energy eigenvalue of an appropriately chosen eigen-
function [20] (satisfying certain boundary conditions [18]).

Furthermore, the Laplace variable μ, in a saddle point
approximation, can be seen to merely serve to enforce the
constraint:

∫
d2x

∑n
a=1 χ

2
a = L. This constraint will ulti-

mately allow us to normalise the amplitude of our ansatz,
thus fixing the value of

∑n
a=1 w

2
a. Such a constraint is

also broadly consistent with the closely related formal re-
sult (see, e.g., [12]) for the polymer density in terms of
replicated field variables: ρ =

∑n
a=1 χ

2
a.

Inserting our variational ansatz into eq. (13), we ulti-
mately obtain

H ′
n = d1

bL

R2
+ d2

νL2

R2
+ d3

R2

a2
ln

(
d4
bL

R2

)
, (14)

where, for notational simplicity and convenience, we have
introduced the following (purely numerical) constants,

given by: d1 = c2j2
0,1

4c1
, d2 = c3

4πc2
1
, d3 = π2

8 , d4 = e1+4c4

12πc1
,

and c1 =
∫ 1

0
uduJ2

0

(
j0,1 u

)
, c2 =

∫ 1

0
uduJ2

1

(
j0,1 u

)
,

c3 =
∫ 1

0 uduJ4
0

(
j0,1 u

)
, c4 =

∫ 1

0 udu ln
(
J0

(
j0,1 u

))
.

The size dependence of our condensed polymer state
can now be obtained by variationally minimising eq. (14),
with respect to the only remaining relevant collective coor-
dinate R. In this way, we are estimating the ground-state
energy as a function of the optimal size R. In the theory of
disordered systems this type of approach has proven to be
previously successful in estimating the size R of localised
states, where it corresponds to (or is typically referred to
as) the optimal-fluctuation method [19,21].

Such an approach (albeit approximate) is very useful,
since it permits us to investigate the long-distance proper-
ties of our polymer system in the non-perturbative regime.
Moreover, it is precisely this long-distance physics which
ultimately determines the overall polymer size R, which is
what we seek in this work.

Using L = Nb, and simply evaluating the numerical
value of d1/d2 � 1.8 from the values defined above (in-
volving additional, purely numerical, constants), we can
distinguish two different regimes for our confined poly-
mer, dependent on the strength of the excluded volume
interaction ν. We find that:

Regime i): For νN � 1.8, the first term on the l.h.s.
of eq. (14) dominates over the second term, and hence via
balancing with the third term we obtain R ∼ N

1
4 ln− 1

4 N .
This corresponds closely to the randomly branched poly-
mer result (R ∼ N

1
4 ), albeit with the additional presence

of a weakly N -dependent logarithmic term (ln− 1
4 N).
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Regime ii): For νN � 1.8, the second term on the l.h.s.
of eq. (14) dominates over the first term, and hence via
balancing with the third term we get R ∼ N

1
2 , which

corresponds to canonical random walk statistics.
Reassuringly, we can check a posteriori, and for the

sake of self-consistency, that the (large-density) condition
b
6

∑n
a=1 χ

2
a � 1, is indeed satisfied for both regimes stud-

ied above.
In this work, valid in the condensed, compact, and high-

density polymer phase, it therefore seems that the effect
of increasing the excluded volume interaction is to cause
the polymer chain to swell from a branched-like state to a
random-walk–type configuration. Then again, this more
swollen state could just as well be thought of as corre-
sponding to that of a polymer globule in two dimensions,
given that in some sense a random walk in 2D is equiva-
lent to a globular state, since they both represent space-
filling curves, with a fractal dimension equal to the ambi-
ent space dimension.

Heuristically [11], and very crudely, we can think of the
branched-like polymer result obtained in this work as fol-
lows. The energy of an ideal chain confined in a hole (or
potential well) of size R is roughly ∼ bL/R2, while the
energy of a chain unentangled with a lattice of obstacles
goes like ∼ R2/a2. Balancing these two terms, via a Flory-
type argument [22], leads to an approximate polymer size
of R ∼ N1/4, characteristic of randomly branched chains.
The appearance of the additional, weakly N -dependent,
logarithmic factor (ln− 1

4 N) in our derived expression for
the polymer size R given above, arises naturally due to the
topological constraint, mediated by the gauge field Aα, as
follows. Taking into proper account the topological inter-
action, via functionally integrating out the gauge field Aα

in eq. (12), introduces a concomitant, logarithmically de-
pendent, contribution to the expression for the effective
polymer Hamiltonian given by eq. (13). Despite being
presumably challenging numerically, it would be intrigu-
ing to see if the additional, weakly N -dependent logarith-
mic correction factor, ln− 1

4 N , predicted in this work for
the polymer size R, could be potentially observed in any
future simulation, or indeed experimental, work.

We should mention that, naturally, the results obtained
in this work are necessarily specific to the 2D nature of
the problem considered. It would be extremely interesting
to try and extend our novel theoretical approach to the
3D case, including the use of the canonical Gauss Linking
Number applied to a collection of mutually unentangled,
self-avoiding, ring polymers in three-dimensional space.

Finally, it is worth noting that the above arguments can
be made rather more general [19], and that an analogous

result could also be obtained by alternatively considering
a random scalar field, coupled to the polymer in such a
way as to give rise to a functional determinant, and hence
an analogous ∼ R2/a2 term in the free energy.
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