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A B S T R A C T

Mechanical stimulation, such as fluid-induced wall shear stress (WSS), is known that can influence the cellular
behaviours. Therefore, in some tissue engineering experiments in vitro, mechanical stimulation is applied via
bioreactors to the cells in cell culturing to study cell physiology and pathology. In 3D cell culturing, porous
scaffolds are used for housing the cells. It is known that the scaffold porous geometries can influence the scaffold
permeability and internal WSS in a bioreactor (such as perfusion bioreactor). To calculate the WSS generated on
cells within scaffolds, usually computational fluid dynamics (CFD) simulation is needed. However, the limitations
of the computational method for WSS calculation are: (i) the high time cost of the CFD simulation (in particular
for the highly irregular geometries); (ii) accessibility to the CFD model for some cell culturing experimentalists
due to the knowledge gap. To address these limitations, this study aims to develop an empirical model for
calculating the WSS based on scaffold permeability. This model can allow the tissue engineers to efficiently
calculate the WSS generated within the scaffold and/or determine the bioreactor loading without performing the
computational simulations.
1. Introduction

Mechanical stimulation, such as fluid-induced wall shear stress
(WSS), is known that can influence the cellular behaviours, e.g., differ-
entiation of stem cells, cellular proliferation, and mineralisation of
extracellular matrix (ECM) [1]. To study cellular physiology and pa-
thology in cell culturing, WSS is applied to cells via bioreactors, such as
perfusion bioreactor. In tissue engineering (TE) experiments in vitro, cells
are usually cultured in a 3D environment, for which porous scaffolds are
used for housing the cells [2]. Previous studies have found that scaffold
porous geometric characteristics, such as porosity, pore size and pore
shape, can influence the internal microfluidic environment, including the
WSS on cells within scaffolds [3,4]. Also, according to Refs. [3,5], porous
geometric characteristics can influence the scaffold permeability, which
affects the nutrient delivery within the scaffold.
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To quantify the WSS within scaffold, usually a numerical approach
(e.g., based on computational fluid dynamics – CFDmodel) is needed due
to the infeasibility of direct measurement of fluid-induced WSS [4,6].
These CFD models are based on the scaffold geometries from either
computer-aided design (CAD) [5,7] or micro-computed tomography
(microCT) images [7,8]. However, there are a few limitations of WSS
calculation. Firstly, for cell culturing experimentalists, the accessibility to
the CFD model is limited due to the knowledge gap [2]. Therefore, they
need the help from computational engineers for calculating the WSS
and/or determining the applied loading to the bioreactors. Secondly, if
the CFD simulation is based on the scaffold geometry from CAD, it is
likely that the calculated WSS would have a deviation from the real WSS
in the manufactured scaffold due to the manufacturing error, according
to the findings in previous study [7]. Thirdly, if the CFD model is based
on the scaffold geometry that reconstructed from microCT images, the
partment of Biomedical Engineering, Faculty of Science & Engineering, Swansea

4 March 2023
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:feihu.zhao@swansea.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medntd.2023.100223&domain=pdf
www.sciencedirect.com/science/journal/25900935
www.journals.elsevier.com/medicine-in-novel-technology-and-devices/
https://doi.org/10.1016/j.medntd.2023.100223
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.medntd.2023.100223


Fig. 1. Porous scaffold geometries with (a) cubic pore unit (i.e., symmetric pore shape) and (b) gyroid pore unit (i.e., non-symmetric pore shape); (c) illustration of
boundary and loading conditions of the CFD model.
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computational time cost could be high, in particular for the scaffold with
highly irregular struts geometries [9]. Furthermore, the WSS would
change with the tissue growth inside the scaffold [10]. To determine the
real-time adjustment/optimisation of the bioreactor loading, a more
advanced computational model, which couples the tissue growth within
scaffold and the CFD model is needed, such as [10–12]. However, the
time cost will be even higher to run these advanced computational
models.

To address these limitations, it is hypothesised that a simple empirical
model for correlating the scaffold internal WSS and permeability exists. If
the hypothesis is true, this empirical model will allow the tissue engi-
neers/bioreactor users to easily calculate the WSS generated within the
scaffold and/or tune the bioreactor loading without performing the nu-
merical simulations.

2. Methods

2.1. Scaffold geometry generation

To generate the data of WSS and permeability, the scaffolds with two
types of pore shapes were proposed, cubic shape and gyroid shape, which
represented (i) symmetric pore unit and (ii) non-symmetric pore unit,
respectively. The scaffolds with cubic and gyroid pore shapes have been
commonly used for in vitro and in vivo TE with the application of accurate
3D printing technique in scaffold manufacturing [13]. The investigated
pore size d and porosity φ are in the ranges of 300–1000 μm and 60%–

90% respectively, which were typically seen in TE applications [2].
The scaffolds with cubic pores were created in SolidWorks (Dassault

Syst�emes, France) using Eq. (1) for controlling the pore size (d) and
porosity (φ) [14]:

φ¼ � 2
�
d
L

�3

þ 3
�
d
L

�2

(1)

where, L is the length of the repeating unit (Fig. 1a).
The scaffolds with gyroid (i.e., triply periodic minimal surfaces -
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TPMS) pore geometries were created in an open-source software,
MSLattice [15]. To generate the gyroid pores with controlled the pore
size and porosity, the level set method was applied on the implicit
function of gyroid topology (Eq. (2) [16]):

sinðxÞcosðyÞþ sinðzÞcosðxÞ þ sinðyÞcosðzÞ � C ¼ 0 (2)

where x, y and z were the coordinates, C was the level constant that was
defined by Walker et al. in Eqs. (3) and (4) [16]:

C¼ 0:7864φ3 � 1:1798φ2 � 2:5259φþ 1:4597 (3)

d¼ � 11:7311C5 � 0:1307C4 � 1:7987C3 þ 0:2070C2 � 186:9928C

þ 433:0114 (4)

Therefore, C was associated with porosity φ and pore size d for
generating the gyroid geometry with defined porosity and pore size in
MSLattice [15].

All these geometries were imported to ANSYS – CFX (ANSYS Inc, PA,
USA) for CFD simulation as illustrated in supplementary material.
2.2. CFD simulation

To calculate the scaffold permeability and internal WSS, the CFD
approach will be used. The scaffold permeability (κ) describes how easily
the medium/liquid can move through. It can be calculated according to
Darcy's law:

κ¼Q � μ � H
A � ΔP (5)

where, Q is the prescribed flow rate; A is the cross-sectional area to flow;
μ is the dynamic viscosity of the medium (similar as water μ¼ 0.889 mPa
s [17]); ΔP is the pressure drop over the scaffold length H (H ¼ 4.5 mm),
ΔP is calculated from CFD simulation.

The WSS on the scaffold surface (ГS) was calculated according to Eq.
(6) from CFD model:



Fig. 2. Scaffold permeability of (a) cubic pores and (b) gyroid pores influenced by pore size and porosity; ratio of average WSS (τa) and applied fluid velocity (Vin) of
(c) cubic pores and (d) gyroid pores influenced by pore size and porosity.
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þ ∂vj
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Fig. 3. Empirical model based on the power-law function for correlating the
average WSS and permeability (blue o and - - are the CFD simulation data and
fitted function for cubic pore shape; black * and – are the CFD simulation data
and fitted function for gyroid pore shape). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of
this article.)
� ��
xi2ΓS

where, xi (or xj) is the ith (or jth) spatial coordinates.
In the CFD model, considering the application context of perfusion

bioreactor in TE, we applied the inlet fluid velocity of 100 μm/s [14], and
outlet relative pressure of 0 Pa (i.e., atmospheric pressure) in Fig. 2. The
culturing medium simulated in this study had the same properties as
water, i.e., density ρ ¼ 1000 kg/m. According to the pre-computation in
ANSYS – CFX, the maximum Reynolds number was 0.54 among all the
geometries, manifesting the flow was laminar. The side surfaces and
struts surfaces were defined as non-slip walls (i.e., the fluid has zero
velocity relative to the solid surfaces) as shown in Fig. 2. After mesh
sensitivity analysis, the model geometry was mesh by 375 μm, and the
mesh element size for all the non-slip walls (pointed out in Fig. 1c) was
refined to 37.5 μm. The mesh captured curvature features of the geom-
etries, i.e., the maximum allowable angle that one element edge could
span another was 18�. The mesh was generated by a quadratic tetrahe-
dron method with a patch conforming algorithm. The CFD model was
solved using finite volume method by ANSYS – CFX under the conver-
gence criteria of the root mean square residual of the mass and mo-
mentum <10�4.
2.3. Regression analysis

To obtain the correlation between the permeability (κ) and average
value of WSS (τa), regression analysis was carried out on κ and τa of
different scaffold geometries under the 95% confidence interval. As two
scaffold pore shapes in this study (cubic and gyroid) represented the
symmetric pore unit and non-symmetric pore unit, the regression anal-
ysis was conducted on each pore shapes separately.
3

3. Results

As the average WSS was proportional to the inlet fluid velocity [14,
18,19], we introduced a parameter γ ¼ τa/Vin for WSS characterisation. It
was found that the permeability and WSS both were dependent on the
porosity, pore size and pore shape (Fig. 2). The permeability and WSS
increased with the decreasing of porosity and pore size, although some
anomalies were observed in cubic pore (Fig. 2a).



Fig. 4. Verification of the empirical model using the irregular pores (representing the scaffolds without symmetric pore unit); and the regular pores with spherical and
cubical shapes (representing the scaffolds with symmetric repeating pore unit).
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The data showed the nonlinear trend between the permeability κ and
parameter γ as shown in Fig. 3. Therefore, nonlinear regression, which
was based on the power-law function was used in Matlab (MathWorks,
CA, USA). Finally, an analytical function with the different coefficient
values was derived as below:

γ¼A � κ�0:4793 (7)

where, A is the coefficient, A ¼ 0.002116 for gyroid pore shape (non-
symmetric pore unit) with the R-square ¼ 0.9598; A ¼ 0.001576 for
cubic pore shape (symmetric pore unit) with the R-square ¼ 0.7824.

4. Discussion and conclusion

In this study, a simple empirical model, which can correlate the
scaffold permeability with the resultant average WSS was developed.

The Kozeny – Carman equation showed that the permeability is
dependent on the porosity, struts size and shape [20]. The results of
permeability (in Fig. 2 a and b) agreed with the trend of the permeability
change predicted by the Kozeny-Carman equation. Also, the influence of
pore size and porosity on the WSS observed in this study (Fig. 2 c and d)
was similar as that reported in Ref. [14]. For cubic pore geometry, the
anomalies of κ (Fig. 2a) and γ (Fig. 2c) were due to the imperfect pores in
the region close to the boundaries (e.g. 4 side faces) when fitting the
repeating pore units into a confined volume. However, this influence was
trivial for gyroid pore geometry. Therefore, to reduce the influence that
might be caused by the anomalies of the data, we firstly applied the
nonlinear regression to the data of gyroid pore (black * in Fig. 3) to
obtain Eq. (7). Afterwards, this equation with an already determined
exponent of �0.4793 was applied to the data of cubic pore (blue o in
Fig. 3) for determining the coefficient C.

To verify the accuracy of this empirical model, we tested it with 4
different geometries, which have been used in TE applications (Fig. 4).
The scaffolds with non-symmetric pore units (irregular pore shapes) are
usually made by electrospinning / salt leaching [21,22]; while the
symmetric pore units (spherical and cubic pore shapes) can be fabricated
by various techniques (such as: salt leaching / sintering / 3D printing
4

[23–25]). The WSS was calculated using Eq. (6) based on CFD approach.
It was found that the average error of prediction by empirical model was
11.3% for scaffolds with non-symmetric pore units (irregular pore
shapes); 14.5% for scaffolds assembled by symmetric pore units (spher-
ical and cubic pore shapes). Therefore, it has been demonstrated that this
empirical model has reasonable accuracy in WSS calculation for the
scaffold geometries investigated/tested in this study. Also, it is expected
that this empirical model can be applied on other scaffolds, which have
(i) non-symmetric pore units (such as: irregular pore shapes, TPMS
structures with Schwarz D/P pore shapes, etc.); (ii) symmetric pore units
(such as: cylindrical, prism and diamond pore shapes, etc.). For further
improving the empirical model accuracy, more scaffolds with various
porous geometries need to be tested in the future work.

In conclusion, a power-law based empirical model was developed, for
the first time, for calculating the average WSS within scaffolds according
to the permeability. The researchers can easily use it for rapidly deter-
mining the mechanobiological experiment conditions for TE in vitro
without performing computational simulations, e.g., quantifying the
resultant WSS on cells within scaffolds and/or determining the applied
loading (such as flow rate) to the bioreactor.
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