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Abstract

Within the electrostatic formulation of holographic duals to (balanced) conformal quivers in five and 
three dimensions, we study the expressions for Wilson loops in antisymmetric representations. We derive 
general expressions for various quantities participating in the formalism (VEV of Wilson loops, represen-
tation, gauge-node) and apply these to examples, connecting some results present in the bibliography. In 
the case of three dimensional quivers, we present a relation between Wilson loops in an ‘electric’ and in 
the ‘magnetic/mirror’ descriptions. In a very detailed appendix, we relate the electrostatic and holomorphic 
description of the holographic duals to these SCFTS.
Crown Copyright © 2023 Published by Elsevier B.V. This is an open access article under the CC BY 
license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

The Maldacena conjecture, or AdS/CFT [1] motivates the study of both gravity and field the-
ory topics. In particular, the study of supersymmetric and conformal field theories in diverse 
dimensions. In relation to this, various efforts have been dedicated to the classification of Type II 
or M-theory backgrounds with AdSd+1 factors. These backgrounds are proposed as holographic 
duals to (encoding semi-classically the highly quantum dynamics of) SCFTs in d dimensions 
with different amounts of SUSY. For the case in which the solutions are half-maximally super-
symmetric, important progress in classifying string backgrounds and the mapping to families of 
quantum field theories has been achieved.

A lot of work has been done along the lines described above. In this paper, we focus our 
attention on the case of conformal and supersymmetric linear quiver field theories in three and 
five dimensions preserving eight Poincare supercharges. This is the framework in which this 
paper should be read.

In the case of three dimensional N = 4 SCFTs, the field theoretical aspects of linear quivers 
presented in [2] were discussed holographically in [3–9] among other works. The case of N = 1
five dimensional linear quiver SCFTs (with eight Poincaré supercharges) was initially analysed 
holographically in [10]. A non-exhaustive list of papers testing the correspondence and analysing 
predictions derived for this case is [10–20].

In this work, we are mainly interested on Wilson loops. These gauge invariant observables 
are of outmost importance and have been profusely studied in the context of AdS/CFT. See 
[21–33], for a brief collection of papers on the topic. In SUSY gauge theories, the Wilson loop is 
a particularly interesting observable, as it can be computed exactly. Their relevance to AdS/CFT 
is the addition they make to the already rich dictionary between gauge theory and string theory. 
Studies in four dimensional N = 4 SYM have been done for over twenty years. Less understood 
is the case of SUSY Wilson loops in three or five dimensional SCFTs. This paper focuses on this 
particular problem.

In three dimensions, the Wilson loop in N = 4 supersymmetric field theories is labelled by a 
representation R of a given gauge group,

WR = TrRPe
i
∮ (

Aμẋμ+σ3

√
−ẋ2

)
dτ

. (1.1)

Where σ3 is one of the three scalars in the vector multiplet. The original bosonic symmetry of the 
SCFT SO(2, 3) × SU(2)L × SU(2)R is broken by the presence of the operator in eq. (1.1) into 
SU(1, 2) ×U(1) ×SU(2)L ×U(1)R . This is the algebra of superconformal quantum mechanics. 
At low energies, when the three dimensional QFT reaches a fixed point, the Wilson loop becomes 
2
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a conformal line operator. For further studies on three dimensional SCFTs and their Wilson loops 
see [30–33].

The situation in five dimensional SCFTs is similar. The Wilson loop is given by eq. (1.1), 
where σ3 is in this case the adjoint scalar in the vector multiplet. The Wilson loop in five dimen-
sional SCFTs preserves the SU(2)R of the theory and breaks SO(2, 5) → SU(1, 1) × SO(4). 
For further studies on Wilson loops in five dimensional SCFTs see [27].

In this paper we rely on the calculations with Wilson loops described in [16], [26]. We use 
the electrostatic formalism described in [9], [20], translating the results of [16], [26] into the
electrostatic formulation. An advantage of the formalism presented here is that some other cal-
culations and the interpretation of the solutions may be easier to perform using our electrostatic 
viewpoint. Also, the electrostatic formalism makes clear certain analogies between systems in 
different dimensions. We discuss mirror symmetry in the three dimensional case, proposing a 
relation between Wilson Loops in both mirror descriptions.

The organisation of the material in this paper is the following: in Section 2 we summarise the 
electrostatic formalism to construct holographic duals to balanced-quiver SCFTs in dimensions 
five and three, with emphasis on the analogies between these two cases. The general charac-
teristics described in this section extend to SCFTs in 1,2,4 and 6 dimensions. In Section 3 we 
summarise the result of the works [16], [26] in the electrostatic language, relegating to an ap-
pendix the careful derivation of these results. We discuss two examples in full detail, clarifying 
and connecting different results in the bibliography. In Section 4 we discuss aspects of Mirror 
symmetry, as seen by the electrostatic formalism. In particular, we derive an expression relating 
the Wilson loops in a given representation in both electric and magnetic description. In Section 5, 
we summarise and close this paper, proposing some topics for further study.

In the appendixes, we briefly elaborate on the matrix model perspective of our results and we 
describe precisely the translation between the ‘holomorphic’ formalism of [3] and the electro-
static perspective pushed in this paper, making clear the connection with S-duality.

2. Supergravity backgrounds

In this section, we discuss the supergravity solutions used in this paper. We summarise the 
backgrounds preserving eight Poincare supercharges (N = 1 SUSY in five dimensions and N =
4 in three dimensions). Supersymmetry is preserved subject to a linear PDE being satisfied. We 
solve the PDE and briefly comment on the quantised charges and the associated dual CFTs.

2.1. The Type IIB backgrounds dual to 5d SCFTs

We present an infinite family of Type IIB backgrounds preserving eight Poincaré supersym-
metries with an AdS6 factor. The space also contains a two sphere parameterised by coordinates 
(θ, ϕ). The isometries of this manifold correspond with the SO(2, 5) × SU(2)R bosonic global 
symmetry of the dual N = 1 five dimensional SCFTs.

The full configuration consists of a metric, dilaton, B2-field in the NS sector and C2 and C0
fields in the Ramond sector. The configuration is written in terms of a potential function V5(σ, η)

that solves a linear partial differential equation written below. The type IIB background in string 
frame is [20],

ds2
10,st = f1(σ, η)

[
ds2(AdS6) + f2(σ, η)ds2(S2) + f3(σ, η)(dσ 2 + dη2)

]
,

e−2� = f6(σ, η),
3
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B2 = f4(σ, η)Vol(S2), C2 = f5(σ, η)Vol(S2), C0 = f7(σ, η), (2.1)

f1 = 3π

2

√
σ 2 + 3σ∂σ V5

∂2
ηV5

, f2 = ∂σ V5∂
2
ηV5

3

, f3 = ∂2

ηV5

3σ∂σ V5
,


 = σ(∂σ ∂ηV5)
2 + (∂σ V5 − σ∂2

σ V5)∂
2
ηV5,

f4 = π

2

(
η − (σ∂σ V5)(∂σ ∂ηV5)




)
,

f5 = π

(
V5 − σ∂σ V5



(∂ηV5(∂σ ∂ηV5) − 3(∂2

ηV5)(∂σ V5))

)
,

f6 = 12
σ 2∂σ V5∂

2
ηV5

(3∂σ V5 + σ∂2
ηV5)2 
, f7 = 2

(
∂ηV5 + (3σ∂σ V5)(∂σ ∂ηV5)

3∂σ V5 + σ∂2
ηV5

)
.

The function V5(σ, η) solves

∂σ

(
σ 2∂σ V5

)
+ σ 2∂2

ηV5 = 0. (2.2)

The paper [20] proves that this infinite family of backgrounds is in exact correspondence with 
the solutions discussed in [10–12].

Let us briefly summarise the study of [20] for the PDE, with boundary conditions leading to a 
proper interpretation of the solutions, with quantised Page charges and avoiding badly-singular 
behaviours.

2.1.1. Resolution of the PDE and quantisation of charges

We make the change V5(σ, η) = V̂5(σ,η)
σ

, which implies that the PDE in (2.2) reads like a 
Laplace equation in flat space,

∂2
σ V̂5 + ∂2

η V̂5 = 0. (2.3)

We choose the variable η to be bounded in the interval [0, P ] and σ to range over the real axis 
−∞ < σ < ∞. We impose the boundary conditions,

V̂5(σ → ±∞, η) = 0, V̂5(σ, η = 0) = V̂5(σ, η = P) = 0.

lim
ε→0

(
∂σ V̂5(σ = +ε, η) − ∂σ V̂5(σ = −ε, η)

)= R(η). (2.4)

These can be interpreted as the boundary conditions for the electrostatic problem of two con-
ducting planes (at zero electrostatic potential) as depicted in Fig. 1. The conducting planes extend 
over the σ -direction and are placed at η = 0 and η = P . We also have a charge density R(η) at 
σ = 0, extended along 0 ≤ η ≤ P , as indicated by the difference of the normal components of 
the electric field. The function R(η) can be taken to satisfy

R(η = 0) = R(η = P) = 0. (2.5)

We refer to this in eq. (2.5) as a situation without offsets. Otherwise, if R(η) is non-zero at either 
η = 0 or η = P we refer to as a situation with offsets.

The solution is found by separating variables; see [20] for the details. It is convenient to 
Fourier expand the function R(η) as,
4
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σ

η

0 P

R(η)

Fig. 1. Depiction of the electrostatic problem for V̂5. The two conducting planes at η = 0, P have zero potential, while 
at σ = 0 we have a charge distribution equal to R(η).

R(η) =
∞∑

k=1

Rk sin

(
kπ

P
η

)
, Rk = 2

P

P∫
0

R(η) sin

(
kπη

P

)
dη. (2.6)

Following [20], the solution reads,

V̂5(σ, η) =
∞∑

k=1

ak sin

(
kπ

P
η

)
e− kπ

P
|σ |, ak = P

2πk
Rk. (2.7)

Notice that we can introduce a complex variable

z = σ − iη,

and write the potential V̂5 = σV5 as a harmonic function for both σ > 0 and σ < 0

V̂5(σ, η) =
⎧⎨⎩
∑∞

k=1
ak

2i

(
e− kπ

P
z − e− kπ

P
z̄
)

σ ≥ 0,∑∞
k=1

iak

2

(
e

kπ
P

z − e
kπ
P

z̄
)

σ < 0.
(2.8)

V̂5 can therefore be expressed as the real part of a holomorphic function, and regularity is broken 
at σ = 0 due to the charge density in the electrostatic problem. See [20] and Appendix B, for 
translation between our formalism and the holomorphic one in [10,11].

The reader can check that the potentials in eqs. (2.7)-(2.8) solve the equations (2.2), (2.3)
subject to the conditions in eq. (2.4).

Imposing the quantisation of the conserved Page charges in eq. (2.1), the authors of [20] found 
that the function R(η) must be a convex piecewise linear function.

R(η) =

⎧⎪⎨⎪⎩
N0 + (N1 − N0)η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)(η − l) l ≤ η ≤ l + 1, l := 1, ....,P − 2

NP + (NP−1 − NP )(P − η) (P − 1) ≤ η ≤ P.

(2.9)

For N0 = NP = 0 this is a rank function without off-sets. Otherwise, it has off-sets. In the case of 
no-offsets, the values of the quantised brane charges in each interval [k, k + 1] and in the system 
as a whole have been computed in [20],
5
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N1 N2 . . . NP−1NP−2

F1 F2

. . .

FP−1FP−2

Fig. 2. Long quiver of length P − 1 with gauge nodes Ni and flavour nodes Fi . The quiver is balanced if Fi = 2Ni −
Ni−1 − Ni+1.

QNS5,total = P (2.10)

QD7[k, k + 1] = R′′(k) = (2Nk − Nk+1 − Nk−1),

QD7,total = (N1 + NP−1) =
P∫

0

R′′(η)dη,

QD5[k, k + 1] = R(η) −R′(η)(η − �) = Nk , QD5,total =
P∫

0

R dη.

For the generic rank function R(η) quoted in eq. (2.9), the supergravity background is proposed 
to be dual to the strongly coupled, UV-fixed point of the quiver in Fig. 2 for which Fi = 2Ni −
Ni+1 − Ni−1. In other words, the quiver is balanced.

We now discuss the Type IIB backgrounds dual to three dimensional SCFTs preserving eight 
SUSYs. The formalism is very much analogous to the five dimensional one, hence we will be 
more sketchy. All the details can be found in [9].

2.2. The Type IIB backgrounds dual to 3d SCFTs

We are after solutions dual to 3d N = 4 super-conformal field theories. Matching the global 
symmetries of the field theory implies that the background must have isometries SO(2, 3) ×
SU(2)C × SU(2)H and preserve eight Poincaré supercharges. Our geometries must contain an 
AdS4 factor and a couple of two spheres S2

1(θ1, ϕ1) and S2
2(θ2, ϕ2). There are two extra directions 

labelled by (σ, η). The presence of SO(2, 3) × SU(2)C × SU(2)H isometries allow for warp 
factors that depend only on (σ, η). The Ramond and Neveu-Schwarz fields must also respect the 
above-mentioned isometries.

The preservation of eight Poincaré supersymmetries implies that the generic type IIB back-
ground can be written in terms of a function V3(σ, η). In string frame the solution reads [9],

ds2
10,st = f1(σ, η)

[
ds2(AdS4) + f2(σ, η)ds2(S2

1) + f3(σ, η)ds2(S2
2)

+ f4(σ, η)(dσ 2 + dη2)
]
,

e−2� = f5(σ, η), B2 = f6(σ, η)Vol(S2
1), C2 = f7(σ, η)Vol(S2

2),

C̃4 = f8(σ, η)Vol(AdS4),
6
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f1 = π

2

√
σ 3∂2

ησ V3

∂σ (σ∂ηV3)
, f2 = −∂ηV3∂σ (σ∂ηV3)

σ

, f3 = ∂σ (σ∂ηV3)

σ∂2
ησ V3

, f4 = −∂σ (σ∂ηV3)

σ 2∂ηV3
,

f5 = −16

∂ηV3

∂2
ησ V3

, f6 = π

2

(
η − σ∂ηV3∂

2
ηV3




)
, f7 = −2π

(
∂σ (σV3) − σ∂ηV3∂

2
ηV3

∂2
ησ V3

)
,

f8 = −π2σ 2

(
3∂σ V3 + σ∂ηV3∂

2
ηV3

∂σ (σ∂ηV3)

)
, 
 = ∂ηV3∂

2
ησ V3 + σ

(
(∂2

ησ V3)
2 + (∂2

ηV3)
2
)

.

(2.11)

Where the fluxes are defined from the potentials as follows,

F1 = 0, H3 = dB2 F3 = dC2, F5 = dC̃4 + ∗dC̃4. (2.12)

The configuration in eq. (2.11) is solution to the Type IIB equations of motion, if the function 
V (σ, η) satisfies,

∂σ

(
σ 2∂σ V3

)
+ σ 2∂2

ηV3 = 0. (2.13)

As proven in [9] and in detail in Appendix B, this infinite family of solutions is equivalent to the 
backgrounds described by D’Hoker, Estes and Gutperle in [3].

2.2.1. Resolution of the PDE and quantisation of charges

Following [9], define V3(σ, η) = V̂3(σ,η)
σ

and V̂3(σ, η) = ∂ηŴ (σ, η). Consider the coordinates 
to range in 0 ≤ η ≤ P , where P is a real number, and −∞ < σ < ∞. The differential equation 
(2.13) must be supplemented by boundary and initial conditions. In terms of Ŵ(σ, η) the problem 
reads

∂2
σ Ŵ (σ, η) + ∂2

ηŴ (σ, η) = 0, (almost everywhere) (2.14)

Ŵ (σ, η = 0) = 0, Ŵ (σ, η = P) = 0,

∂σ Ŵ (σ = 0+, η) − ∂σ Ŵ (σ = 0−, η) = −R(η).

In analogy with the five dimensional case discussed above, the function R(η) is the input deter-
mined by the dual quiver field theory. Notice that, since Ŵ is a harmonic function, we have that 
also V̂ is harmonic, which in turn implies (2.13).

Using a Fourier decomposition for the rank function R(η) as in the five-dimensional case- see 
eq. (2.6), the solution to the problem in eq. (2.14) is,

V̂3(σ, η) =
∞∑

k=1

bk cos

(
kπη

P

)
e− kπ |σ |

P ,

Ŵ (σ, η) =
∞∑

k=1

bk

(
P

kπ

)
sin

(
kπη

P

)
e− kπ |σ |

P . (2.15)

bk = 1

P

P∫
0

R(η) sin

(
kπη

P

)
= Rk

2
.

The study of the quantised charges for Neveu-Schwarz five branes, imposes that the size of 
the interval P is an integer–consistently with the boundary conditions in eq. (2.14), exactly as 
7
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it occurs in the five dimensional system. Also, in analogy with the 5d-case, to have quantised 
numbers of D3 and D5 branes, the rank function must be a piece-wise linear and continuous 
function of the exact same form as in the five dimensional case–see eq. (2.9).

In the case without offsets, N0 = NP = 0, the number of D3 (colour) branes and D5 (flavour) 
branes in the interval [k, k + 1] and the total number of branes are given in [9],

ND3[k, k + 1] = Nk, ND5[k, k + 1] = 2Nk − Nk+1 − Nk−1, (2.16)

N total
D3 =

P∫
0

R(η)dη, N total
D5 = R′(0) −R′(P ), N total

NS5 = P.

The rank function R(η) encodes the ‘kinematic data’ of the dual conformal field theory. The 
presence of P NS5 branes along the η-direction suggests that we should place one NS5 at each 
integer value of η. In between the kth and (k + 1)th NS5-branes, we have Nk D3 branes and 
Fk = 2Nk − Nk+1 − Nk−1 D5 branes as indicated in eq. (2.16).

The N = 4 quiver field theory, for the rank function without offsets is the same as that in 
the five dimensional system, drawn below eq. (2.10). This balanced QFT is proposed to reach a 
strongly coupled IR fixed point described by the background in eq. (2.11).

2.3. Summary

Consider the balanced quiver field theory, preserving eight Poincare SUSYs depicted in the 
Fig. 2. In the case the field theory is five-dimensional, it is conjectured to reach a strongly coupled 
fixed point at high energies (compared with the scale defined by the gauge coupling). Conversely, 
if defined in three dimensions the interacting fixed point will be at low energies.

The quiver can be associated with a rank function. In this section, we consider for generality 
the situation with offsets as indicated in eq. (2.9).

We calculate the Fourier coefficient of this rank function using eq. (2.6). We find,

Rk = 2

kπ
(N0 + (−1)k+1NP )

[
1 − P

kπ
sin

(
kπ

P

)]
+ 2P

k2π2

P−1∑
j=1

Fj sin

(
kπj

P

)
. (2.17)

F1 = 2N1 − N2, FP−1 = 2NP−1 − NP−2, Fj = 2Nj − Nj+1 − Nj−1.

We use the expressions in eqs. (2.7) and (2.15) to calculate the potentials V̂5(σ, η) and V̂3(σ, η)

in terms of which the supergravity backgrounds in eqs. (2.1), (2.11) are defined. Notice that the 
input, namely the quiver field theory is the same in both cases (d = 5 or d = 3). The differences 
in the dynamics are encoded in the coefficients ak and bk , the potentials V̂5 and V̂3 and the 
different expressions for the functions fi(σ, η) in each of the backgrounds in eqs. (2.1), (2.11)
respectively.

It is convenient to define the complex variable

ξ = e− π
P

[|σ |−iη], −P

π
log |ξ | = |σ |, e− π

P
[|σ |−i(η±J )] = ξe± iπJ

P . (2.18)

In terms of this complex variable, we find for the five dimensional V̂5(σ, η),

V̂5(σ, η) = N0
[
P Im( Li2(ξ) ) + P 2

Re( Li3(ξe
iπ
P ) − Li3(ξe− iπ

P ) )
]

π2 2π

8



A. Fatemiabhari and C. Nunez Nuclear Physics B 989 (2023) 116125
−NP

π2

[
P Im( Li2(−ξ) ) + P 2

2π
Re( Li3(−ξe

iπ
P ) − Li3(−ξe− iπ

P ) )
]

+ P 2

2π3

P−1∑
J=1

FJ Re( Li3(ξe− iπJ
P ) − Li3(ξe

iπJ
P ) ). (2.19)

In the case N0 = NP = 0 (no offsets) this should be compared with the particular expressions 
obtained in [20].

By comparing eqs. (2.7) and (2.15) we find that the three-dimensional quantity Ŵ(σ, η) is 
equal to the five dimensional potential V̂5(σ, η) in eq. (2.19). The three dimensional potential 
V̂3(σ, η) is,

V̂3(σ, η) = N0

4π2

[
− 2π log[(1 − ξ)(1 − ξ̄ )] − 2P Im( Li2(ξe

iπ
P ) − Li2(ξe− iπ

P ) )
]

− NP

4π2

[
− 2π log[(1 + ξ)(1 + ξ̄ )] − 2P Im( Li2(−ξe

iπ
P ) − Li2(−ξe− iπ

P ) )
]

+ P

2π2

P−1∑
J=1

FJ Im( Li2(ξe
iπJ
P ) − Li2(ξe− iπJ

P ) ). (2.20)

The analogy observed in this section between the problems in five and three dimensions is not 
a coincidence. An analysis for the free energy, reducing the problem to matrix models, was per-
formed by Uhlemann in the five dimensional case [15] and by Coccia and Uhlemann in the 
three-dimensional one [7]. This analysis also reveals the analogies between both problems. In 
Appendix A, we briefly summarise these matrix models and link them to the electrostatic prob-
lems we discussed in this section.
In the coming section, we briefly write the formulation of the Wilson Loops in generic antisym-
metric representations in the electrostatic language discussed above.

3. Wilson loops in d = 5 and d = 3

In this section we re-state, in our electrostatic language, the result obtained in [16], [26] for 
the Wilson loops in a given antisymmetric representation. The precise mapping used in this 
translation is given in Appendix B. After this, we discuss two examples in great detail. This 
makes interesting connections between different results in the bibliography.

Consider first five dimensional linear quiver gauge theories flowing to a SCFT in the UV. The 
field theory is realised in the low energy regime of stacks of D5 branes (on which the gauge 
groups are realised) extending between NS five branes with (p, q) five branes. There are also 
stacks of D7 branes realising the flavour symmetries of the quiver.

The Wilson loop is calculated using a D3 probe extending in the time direction and a direction 
perpendicular to the stack of colour D5 branes. This D3 probe preserves the SU(2) R-symmetry 
of the SCFT. On this probe, charges of D1 brane and of fundamental string F1 are induced. 
The F1 extends between the D3 probe and k of the Nl D5 colour branes. The s-rule (Pauli 
principle) indicates that either one or no F1 stretch between the probe D3 and a give D5. The low 
energy description of such F1, as found in [27], is given by a one-dimensional N = 4 conformal 
quantum mechanics in terms of a massive Fermi multiplet. Integrating out these Fermi multiples 
as in [29] generates the Wilson loop for the group SU(Nl) in the k-antisymmetric representation. 
The charge of D1 brane induced on the D3 indicates the number of NS-five branes the D3 probe 
has ‘gone through’, hence is in correspondence with the position of the SU(Nl)-colour group.
9
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The holographic calculation of these Wilson loops in the k-antisymmetric representation re-
quires the calculation of the on-shell action of a D3 probe that extends along AdS2 inside AdS6 in 
the background of eq. (2.1). The two sphere S2(θ, ϕ) representing the R-symmetry of the SCFT 
is also wrapped, hence preserved. An SO(4) isometry realised in the remaining direction inside 
AdS6 is also preserved. There are fluxes switched on the probe D3,

F2 = felvolAdS2 + fmagvolS2. (3.1)

This flux induces the above mentioned charge of F1 and D1 on the D3 probe world-volume. 
The D1 charge is in correspondence with the position of the l-stack of D5 branes, hence the 
position in the η-coordinate is η∗ = l. The F1 charge is associated with the number k, labelling 
the representation. This can be thought of as the position σ∗ in the σ -direction.

This probe was studied by Uhlemann in [16], finding the conditions to preserve SUSY that 
are imposed on the charges in eq. (3.1). The on-shell action for the probe D3 was found (after a 
Legendre transform).

The result for the VEV of Wilson loops for a given k-antisymmetric representation ∧ in the 
electrostatic language is succinct,

ln〈W∧〉 = 3π

∞∑
k=1

Rk

2

(
P

kπ

)
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗| + 1). (3.2)

ND1 = η∗, NF1 =
∞∑

k=1

Rk

2
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗| Sgn(σ ∗).

The gauge node for which the Wilson loop is computed is labelled by the position along the 
quiver η∗ = 1, 2, 3, 4..... The antisymmetric representation of the Wilson loop k coincides with 
the number of F1 strings. One should determine |σ ∗| by solving the equation for NF1 = k for 
the particular value of η∗ given by the chosen gauge node. These values used in eq. (3.2) give the 
VEV of the Wilson loop.

Let us now consider the same type of Wilson loop in the case of three dimensional SCFTs. 
These 3d low energy SCFTs are realised on stacks of D3 branes that extend between NS five 
branes. There are also stacks of D5 branes, representing the flavour groups. As found in [30], the 
Wilson loop in the k-antisymmetric representation is calculated by a probe D5’ brane, extending 
along time, preserving one of the SU(2) of the R-symmetry and also preserving a U(1) part 
of the R-symmetry. Hence, this probe does not extend along the same directions of flavour D5 
branes. The probe preserves SO(1, 1) ×SU(2)R ×U(1)L inside the (bosonic part of) the original 
symmetry group of the 3d SCFT SO(2, 3) × SU(2)L × SU(2)R . It should also preserve four 
SUSYs.

This probe D5’ is introduced in between the NS five branes that limit the l-stack of colour 
D3 branes. Like in the five dimensional situation above analysed, the parameter k labelling the 
antisymmetric representation is realised by the charge of F1 induced on the D5’. A very similar 
procedure—the integration of a one dimensional Fermi multiplet describing the dynamics of 
these F1 strings leads to the insertion of a Wilson operator in the k-antisymmetric representation. 
See [29], [30].

In the holographic dual background of eq. (2.11) the VEV of the Wilson loop is calculated by 
the on-shell action of a D5’ that wraps AdS2–to realise SO(1, 1), the two sphere S2(θ1, ϕ1)–to 
realise the SU(2)R and a circle inside S2(θ2, ϕ2). This is achieved by the D5’ extending along 
a direction parametrised by y and choosing η(y), σ(y), θ2(y). Like in the five dimensional case 
10
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a world-volume flux on the D5’ is needed to preserve SUSY, see eq. (3.1). Imposing SUSY 
preservation on this probe, Coccia and Uhlemann [26] found the relation between the position of 
the D5’ probe in the (σ, η) plane and the induced charges of F1 and D3. From there the authors 
of [26] calculated the Legendre transformed on-shell action for the D5’.

In our electrostatic language, we find calculating with the background in eq. (2.11),

ln〈W∧〉 = π

∞∑
k=1

Rk

2

(
P

kπ

)
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗| + 1), (3.3)

ND3 = η∗, NF1 =
∞∑

k=1

Rk

2
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗| Sgn(σ ∗).

A similar explanation as in the five dimensional case applies here: the value of ND3 = η∗ =
1, 2, 3, 4, .... labels the gauge node along the quiver. The number of fundamental strings, identi-
fied with the k labelling the antisymmetric representation determine the value of |σ ∗|. These two 
values used in eq. (3.3) give the VEV of the Wilson loop. Below, we discuss examples.

Notice that both expressions (3.2)-(3.3) are virtually identical. This is confirmed by the matrix 
model treatment of these Wilson loops, that shows as discussed in Appendix A, that from a field 
theory viewpoint both expressions differ only in proportionality factors. It would be interesting 
to learn about sub-leading corrections to this result. Notice also that the result can be written 
both in five and in three dimensions, using the fact that the three dimensional quantity Ŵ(σ, η)

is identical to V̂5(σ, η) in five dimensions,

μ−1 ln〈W∧〉 = V̂5(σ
∗, η∗) + |σ ∗|Sgn(σ ∗)NF1. (3.4)

μ3d = π, μ5d = 3π.

The expression for V̂5(σ
∗, η∗) can be read from eq. (2.19), whilst NF1 Sgn(σ∗) can be computed 

using eq. (2.17) to be,

NF1 Sgn(σ ∗) = − P

2π2

P−1∑
J=1

FJ Re
[
Li2( ξ∗e

iπJ
P ) − Li2( ξ∗e− iπJ

P )
]

(3.5)

+N0

2π

[
2Im[ Li1(ξ∗) ] + P

π
Re[ Li2( ξ∗e

iπ
P ) − Li2( ξ∗e− iπ

P ) ]
]

−NP

2π

[
2Im[ Li1(−ξ∗) ] + P

π
Re[ Li2(−ξ∗e

iπ
P ) − Li2(−ξ∗e− iπ

P ) ]
]

We have defined ξ∗ = e− π
P

[|σ ∗|−iη∗].
For the reader’s convenience we write explicitly eq. (3.4),

μ−1 ln〈W∧〉 = (3.6)

P 2

2π3

P−1∑
J=1

Fj Re
[
Li3(ξ∗e− iπJ

P ) − Li3(ξ∗e
iπJ
P ) + log |ξ∗|

(
Li2(ξ∗e

iπJ
P ) − Li2(ξ∗e− iπJ

P )
)]

+PNP

π2

[
− Im[ Li2(−ξ∗) − log |ξ∗|Li1(−ξ∗) ]

+ P

2π
Re

[
Li3(−ξ∗e− iπ

P ) − Li3(−ξ∗e
iπ
P ) +

+ log |ξ∗|( Li2(ξ∗e
iπ
P ) − Li2(−ξ∗e− iπ

P ) )
]]+
11
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+PN0

π2

[
Im[ Li2(ξ∗) − log |ξ∗|Li1(ξ∗) ] + P

2π
Re

[
Li3(ξ∗e

iπ
P ) − Li3(ξ∗e− iπ

P ) +

− log |ξ∗|( Li2(ξ∗e
iπ
P ) − Li2(ξ∗e− iπ

P ) )
]]

.

The reader should compare this expression (in the case of no offsets N0 = NP = 0), with the 
field theoretical expression (obtained with matrix models calculation) in equation (4.53) of [26].
In the rest of this section we evaluate in two examples, the expressions for the potentials V̂5 = Ŵ , 
V̂3 and ln〈W∧〉 in eqs. (2.19), (2.20) and (3.6) respectively. We focus on the cases of the TM,N

and +M,N both in 3d and in 5d. Whilst these are non-generic examples, they are very used in 
the existing bibliography. We will work them out using rank functions with and without offsets, 
finding relations between these cases that clarify previous results in the bibliography.

3.1. Example 1

Let us consider a five dimensional gauge theory called T̃N,P . The gauge theory is described 
(in the IR) by the quiver

N 2N 3N . . . PN(P-1)N

In the case of this same quiver being considered in three dimensions, the above quiver is the UV 
description of the QFT, flowing to a SCFT in the IR. Let us study all the quantities discussed 
above.

First, we consider the case without offsets, the rank function associated with this quiver is,

R(η) =
{

Nη 0 ≤ η ≤ (P − 1)

N(P − 1)(P − η) (P − 1) ≤ η ≤ P.

If the quiver is five dimensional, the number of D7-branes can be read either from R′′ =
NPδ(η − P + 1), or from eq. (2.10) which gives QD7 = PN . The number of D5 branes at the 
positions η = 1, 2, 3, 4, etc, is the value of R(η) at those points. This coincides with the ranks 
of the first, second, third, fourth node, etc. In total, we have 

∫ P

0 Rdη = NP(P−1)
2 D5 branes. We 

also have a total of P NS-five branes.
In the three dimensional case, we use eq. (2.16). The number of D5 branes (flavours) is NP . 

The number of D3 branes in each interval coincides with the values of the rank function and 
there are a total of NP(P−1)

2 D3 branes. The number of NS five branes is also P .
Given the rank function above, the coefficient Rk can be read from eqs. (2.6), (2.17), with 

N0 = NP = 0 (no offsets) and Fj = NPδj,P−1. We find,

Rk = 2NP 2

k2π2 sin

(
kπ

P

)
(−1)k+1. (3.7)

The five dimensional Fourier coefficient ak as defined in eq. (2.7) and the Fourier coefficient of 
the three dimensional potential bk in eq. (2.15) are,

ak = (−1)k+1 NP 3

3 3 sin

(
kπ

)
, bk = NP 2

2 2 sin

(
kπ

)
(−1)k+1. (3.8)
k π P k π P

12
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Using eqs. (2.7) and (2.19) the potential V̂5(σ, η) is

V̂5(σ, η) = NP 3

2π3 Re
(

Li3(−ξe
iπ
P ) − Li3(−ξe− iπ

P )
)

. (3.9)

For the three dimensional case, we find Ŵ = V̂5(σ, η) and using eqs. (2.15) and (2.20)

V̂3(σ, η) = NP 2

2π2 Im
(

Li2(−ξe− iπ
P ) − Li2(−ξe

iπ
P )

)
. (3.10)

We now calculate the Wilson loop using eq. (3.4). The part corresponding to V̂5(σ
∗, η∗) is read 

from eq. (3.9). The part corresponding to NF1 is calculated explicitly from eqs. (3.2)-(3.3) or 
read from eq. (3.5). We find,

NF1 Sgn(σ∗) = NP 2

π2 Re
[
Li2

(
−ξ∗e

iπ
P )

)
− Li2

(
−ξ∗e− iπ

P )
)]

. (3.11)

We write the full result for the Wilson loop, using eq. (3.6). In dimensions three (μ = π ) and in 
five (μ = 3π ),

μ−1 ln〈W∧〉 = NP 3

2π3 Re
[
Li3(−ξ∗e

iπ
P ) − Li3(−ξ∗e

−iπ
P )

− log |ξ∗|
(

Li2(−ξ∗e
iπ
P ) − Li2(−ξ∗ie

−iπ
P )

)]
. (3.12)

It is instructive to repeat the calculation for a rank function with offset. In this case, we choose,

R(η) =
{
Nη 0 ≤ η ≤ P.

Implying N0 = 0, NP = NP . In this case the number of flavour branes will be found from the 
derivative R′(η) = NPδ(η − P + 1). In other words Fj = NPδj,P−1. The Fourier coefficient 
of the rank function is computed using eq. (2.6) or equivalently, setting N0 = 0, NP = PN in 
eq. (2.17). The result is,

Rk = 2
NP

kπ
(−1)k+1, ak = NP 2

k2π2 (−1)k+1, bk = NP

kπ
(−1)k+1. (3.13)

The potential in five dimensions can be calculated using eq. (2.7) or read from eq. (2.19). Using 
the variable ξ defined in eq. (2.18), the result is,

V̂5(σ, η) = −P 2N

π2 Im [Li2(−ξ)] . (3.14)

For the three dimensional potential V̂3 we calculate using eq. (2.15) or read from eq. (2.20) the 
result,

V̂3(σ, η) = −NP

2π
log[(1 + ξ)(1 + ξ̄ )]. (3.15)

For the Wilson loop, both in 3d and in 5d, we find calculating from eqs. (3.2)-(3.3), or using the 
generic result in eq. (3.6),

μ−1 ln〈W∧〉 = −NP 2

π2 {ln |ξ |[Arg(1 − ξ∗)] + Im [Li2(−ξ∗)]}. (3.16)

The goal of this carefully developed example is to show that if we perform the limit of P → ∞, 
keeping |σ | and η fixed, the results without offsets —see eqs. (3.9), (3.10), (3.12) at leading 
P P

13
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order, reproduce the results computed with the rank function with offsets in eqs. (3.14), (3.15)
and (3.16) respectively.

More precisely, eq. (3.9) would lead to eq. (3.14) in the limit of P → ∞
NP 3

2π3 Re
(

Li3(−e− π
P

(|σ |−i−iη)) − Li3(−e− π
P

(|σ |+i−iη))
)

−→ −P 2N

π2 Im [Li2(−ξ)] ,

(3.17)

eq. (3.10) will give eq. (3.15)

NP 2

2π2 Im
(

Li2(−e− π
P

(|σ |+i−iη)) − Li2(−e− π
P

(|σ |−i−iη))
)

−→ −NP

2π
log[(1 + ξ)(1 + ξ̄ )],

(3.18)

and eq. (3.12) will result in eq. (3.16)

NP 3

2π3 Re
[
Li3(−ξe

iπ
P ) − Li3(−ξe

−iπ
P ) − log |ξ |

(
Li2(−ξe

iπ
P ) − Li2(−ξe

−iπ
P )

)]
−→

− NP 2

π2

[
ln |ξ |[Arg(1 − ξ)] + Im [Li2(−ξ)]

]
. (3.19)

This observation is interesting as it explains differences in results for the potentials V̂5 found in 
[15] (that used rank functions with offsets) compared with those in [20] (that used rank functions 
without offsets). This also explains some differences for the Wilson loops VEV computed in 
[16] (with offsets) compared with some of the field theoretical results in [26] (without offsets). 
Interestingly, the free energy (or holographic central charge) does not differ at leading order for 
rank functions with or without offsets; the difference appears only at sub-leading orders in the 
length of the quiver P .

3.1.1. A numerical study
For the benefit of the reader, we discuss an example of the calculation of log < Wk > in nu-

merical detail. Let us consider the T̃N,P example of this section (with no offsets) for the particular 
values

N = 10, P = 20,

The quiver is SU(10) × SU(20) × .... × SU(190) with flavour group SU(200).

In the three dimensional case, the groups are unitary U(N). We calculate the Wilson loop for the 
l-gauge group (for l = 1, 2, 3, 4, ..., 19) in the k-antisymmetric representation for the values k =
2, 3, 4, 5. For this, we need to count NF1 = 2, 3, 4, 5 fundamental strings extending between the 
probe and the stack of colour branes. The position of the probe in the η-coordinate is η∗ = l. The 
position in the σ -coordinate is obtained by solving eq. (3.11) for σ ∗. The numerical solution for 
different values of η∗ = 1, ...19 is plotted in Fig. 3. Choosing a concrete η∗ we find the value of 
σ ∗ making NF1 = 2, 3, 4, 5 colour coded in the figure. The result for the VEV of the Wilson loop 
is obtained by replacing these values (σ ∗, η∗) in eq. (3.12)–remind that ξ∗ = e− π

P

(|σ ∗|−iη∗)
. The 

results are shown in Fig. 4. It is also instructive to plot NF1(σ
∗, η∗) in terms of η∗ for different 

values of σ ∗. This is found in inset (a) of Fig. 5. In fact, for σ ∗ = 0 we see the function R(η∗)
2 , 

while for σ ∗ → ∞ we find a vanishing value. This is in agreement with eqs. (3.2), (3.3). The 
inset (b) of the same figure shows NF1(σ

∗, η∗). Only the integer values of NF1 are acceptable 
14
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Fig. 3. The values of σ∗ for Wilson loops in the representation k= 2,3,4,5.

Fig. 4. The value of ln〈W∧〉. The colour code is the same as in Fig. 3.

(as this coincides with the representation) for integer values of η∗ (indicating the gauge node). 
Let us discuss a different example in a more succinct fashion.

3.2. Example 2

We consider a second example, known as the +P,N theory. We start, as above with discussion 
without offsets. The rank function is,

R(η) =

⎧⎪⎨⎪⎩
Nη 0 ≤ η ≤ 1

N 1 ≤ η ≤ (P − 1)

N(P − η) (P − 1) ≤ η ≤ P.

In the five dimensional case, we have N D7-branes localised at η = 1 (the first gauge group) and 
N D7 branes at η = P − 1 (the last gauge group). This follows from R′′ = Nδ(η − 1) + Nδ(η −
15
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Fig. 5. The values of σ∗ for Wilson loops in the representation k= 2,3,4,5.

(P −1)). There are a total of (P −1)N D5-branes, as calculated by 
∫ P

0 Rdη. The number comes 
from N D5 branes for each integer value of η between [1, P − 1]. In the three dimensional case, 
we have N D5-branes localised at η = 1 and N D5 branes at η = P − 1, a total of (P − 1)N

D3-branes and P NS five branes.
This is equivalent to a linear quiver field theory (in 5d it flows to a SCFT in the UV, in 3d it 

flows to a SCFT in the IR),

N N . . . NN

P-1

We calculate the Fourier coefficients,

Rk = 2
NP

k2π2 sin

(
kπ

P

)(
1 + (−1)k+1

)
, ak = NP 2

k3π3 sin

(
kπ

P

)(
1 + (−1)k+1

)
,

bk = NP

k2π2 sin

(
kπ

P

)(
1 + (−1)k+1

)
, (3.20)

which leads to the potentials

V̂5(σ, η) = NP 2

2π3 Re
[
Li3(ξe− iπ

P ) − Li3(ξe
iπ
P ) + Li3(−ξe

iπ
P ) − Li3(−ξe− iπ

P )
]
, (3.21)

V̂3(σ, η) = NP

2π2 Im
[
Li2(ξe

iπ
P ) − Li2(ξe− iπ

P ) + Li2(−ξe− iπ
P ) − Li2(−ξe

iπ
P )

]
.

Finally, the result for the VEV of the Wilson loop is,

μ−1 ln〈W∧〉 = NP 2

2π3 Re
[
Li3(ξ∗e− iπ

P ) − Li3(ξ∗e
iπ
P ) + Li3(−ξ∗e

iπ
P ) − Li3(−ξ∗e− iπ

P ) +
+ log |ξ |

(
Li2(ξ∗e

iπ
P ) − Li2(ξ∗e

−iπ
P ) + Li2(−ξ∗e− iπ

P ) − Li2(−ξ∗e− iπ
P )

)]
. (3.22)

We now work out the same results for the situation with offsets. We have
16
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R(η) =
{
N 0 ≤ η ≤ P.

In this case we set Fj = Nδj,1 + Nδj,P−1 and N0 = NP = N . The Fourier coefficients of the 
rank function and the potentials in 5d and 3d are,

Rk = 2
N

kπ

(
1 + (−1)k+1

)
, ak = PN

k2π2

(
1 + (−1)k+1

)
, bk = N

kπ

(
1 + (−1)k+1

)
.

(3.23)

The potentials read

V̂5(σ, η) = PN

π2 Im [−Li2(−ξ) + Li2(ξ)] , V̂3(σ, η) = N

2π
log

[
(1 + ξ)(1 − ξ̄ )

(1 − ξ)(1 + ξ̄ )

]
.

(3.24)

For the Wilson loop, we find

μ−1 ln〈W∧〉 = PN

π2 {ln |ξ∗|[Arg(1 − ξ∗) − Arg(1 + ξ̄∗)] + Im [Li2(ξ∗) − Li2(−ξ∗)]}.
(3.25)

As pointed out in the first example, in the limit P → ∞, keeping the quotients |σ |
P

and η
P

, we 
find that the results without offsets in eqs. (3.21), (3.22) at leading order in 1/P are approximated 
by the results with offsets in eqs. (3.24) and (3.25).

4. Mirror symmetry and Wilson loops

The material in this section applies primarily to the 3d SCFTs and their string duals in 
eq. (2.11).

It is known that three dimensional SUSY QFTs with eight supercharges enjoy a symmetry 
called Mirror symmetry. The idea is that given two partitions ρ and ρ̂ of the number M the 
two theories T ρ̂

ρ [SU(M)] and T ρ
ρ̂ [SU(M)] are conjectured to flow to the same IR SCFT. In the 

language of Hanany-Witten setups, mirror symmetry is realized as an S-duality (we will discuss 
more about this in Appendix B.2.3).

In contrast, in the electrostatic language described in Section 2.2, the manifestation of mirror 
symmetry is in terms of a diffeomorphism; see the paper [9] for explanations. In fact, as explained 
in [9] for balanced quivers with one flavour node the mirror is also balanced and with one flavour 
node, hence suitable to be described by the language in Section 2.2.

In what follows, we analyse the effect of a mirror symmetry transformation on the VEV of 
a Wilson loop in the antisymmetric ∧-representation We show below that if the electric theory 
has Nel

f flavours and the magnetic theory has Nmag
f flavours (in both cases with a single flavour 

node) the calculation of the Wilson line in the same representation ∧ satisfies,

Nel
f ln〈Wel∧ 〉 = N

mag
f ln〈Wmag

∧ 〉. (4.1)

To see this, let us consider a generic, balanced, one flavour node linear quiver field theory. The 
quiver, rank function (with no offsets) and Fourier coefficient of this electric theory are,1

1 For the generic triangular rank function the quotient N is taken to be integer.

(P−S)
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N 2N
· · ·

SN

SN(P−S−1)
P−S

SN(P−S−2)
P−S

· · ·
SN

P−S

NP
P−S

Re(η) =
{

Nη 0 ≤ η ≤ S
NS

(P−S)
(P − η) S ≤ η ≤ P,

and the Fourier coefficient of the rank function,

Re
k = 2NP 2

(P − S)π2k2 sin

(
kπS

P

)
. (4.2)

Using eq. (3.3), the VEV of the Wilson line for this quiver is

ln〈Welec∧ 〉 = π

∞∑
k=1

(
NP 3

(P − S)π3k3

)
sin

(
kπS

P

)
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗|+1). (4.3)

Finally, the combination Nel
f ln〈Wel∧ 〉 is

Nel
f ln〈Welec∧ 〉 = π

∞∑
k=1

(
N2P 4

(P − S)2π3k3

)
sin

(
kπS

P

)
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗| + 1).

(4.4)

Now, let us perform the same analysis for the mirror magnetic system. Following the prescription 
in [9], the mirror system is described by a magnetic quiver, rank function and Fourier coefficient,

P − S

2(P − S)

· · ·
S(N + 1) − P

SN

S(N − 1)

· · ·
S

P

Rm(̂η) =
{

(P − S)̂η η̂ ∈ [0, SN
P−S

]
S
(

NP
P−S

− η̂
)

η̂ ∈ [ SN
P−S

, NP
P−S

] (4.5)

R(m)
k = 2(P − S)

NP

NP
P−S∫
0

Rm(̂η) sin

(
kπ(P − S)̂η

NP

)
dη̂ = 2NP 2

(P − S)π2k2 sin

(
kπS

P

)
. (4.6)

Notice that R(e)
k = R(m)

k . Also, note that the range of the ‘electric’ coordinate is 0 ≤ η ≤ P , 
whilst for the ‘magnetic’ coordinate we have 0 ≤ η̂ ≤ NP

P−S
. Finally, observe that in both mirror 

descriptions

electric description: NNS5 = P, ND5 = NP

(P − S)
,

magnetic description: NNS5 = NP
, ND5 = P.
(P − S)
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Following [9], we perform the identifications between electric variables (σ, η) and their magnetic 
counterparts (̂σ , ̂η),

η ↔ NNS5

ND5
η̂ = (P − S)

N
η̂, σ ↔ NNS5

ND5
σ̂ = (P − S)

N
σ̂ . (4.7)

The VEV of the magnetic Wilson loop is found by carefully using eq. (4.6) in eq. (3.3),

ln〈Wmag
∧ 〉 = π

∞∑
k=1

(
N2P 3

(P − S)2π3k3

)
sin

(
kπS

P

)
sin

(
kπ(P − S)

PN
η̂∗
)

× e− kπ(P−S))
PN

|̂σ ∗|
(

kπ(P − S)

PN
|̂σ ∗| + 1

)
. (4.8)

As above, the combination

N
mag
f ln〈Wmag

∧ 〉 = π

∞∑
k=1

(
N2P 4

(P − S)2π3k3

)
sin

(
kπS

P

)
sin

(
kπ(P − S)

PN
η̂∗
)

× e− kπ(P−S))
PN

|̂σ ∗|
(

kπ(P − S)

PN
|̂σ ∗| + 1

)
. (4.9)

For a given electric node (labelled by η∗) in a given antisymmetric representation (labelled by 
∧), we find the Wilson loop in eq. (4.3). We compare this with the magnetic Wilson loop in the 
same ∧-representation calculated for a different magnetic node labelled by η̂∗. If these nodes 
satisfy

electric node = P − S

N
× magnetic node −→ η∗ = P − S

N
η̂∗,

then, using the identification in eq. (4.7), we find that eq. (4.4) equals eq. (4.9), which is the 
relation in eq. (4.1).

Another way to arrive to eq. (4.1) is to start from eq. (3.6). Notice that for the electric and 
magnetic quivers above, we have

ξ∗,el = e− π
P

(|σ ∗
el |−iη∗

el

)
, FJ = δJ,S

NP

(P − S)
, quiver length = P. (4.10)

ξ̂∗,mag = e
− π(P−S)

PN

(
|̂σ ∗

mag |−iη̂∗
mag

)
= ξ∗,el , FJ = δ

J, SN
(P−S)

P , quiver length = NP

(P − S)
.

We have used the rescaling in eq. (4.7). Then, using eq. (3.6)–for the case of no offsets, N0 =
NP = 0, and multiplying the electric (magnetic) result by the electric (magnetic) number flavours 
we get eq. (4.1).

Within the class of balanced linear quiver with one flavour node discussed in this section, 
one special subclass is those quivers that are self-mirror. They are characterised by the condition 
N = (P − S). This implies that electric result in eq. (4.3) and the magnetic result in eq. (4.8) are 
identical (same node, same representation, same number of flavours) and eq. (4.1) is automati-
cally satisfied.

5. Conclusions

Let us start with a brief overview of the contents of this paper. In Section 2 we summarised the 
electrostatic description of an infinite family of Type IIB backgrounds dual to SCFTs in five and 
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three spacetime dimensions, preserving eight Poincare supercharges. The electrostatic point of 
view is complementary to the ‘holomorphic’ one developed in [3], [10], that we review carefully 
in Appendix B. The electrostatic description of Section 2 makes the connection with quantum 
field theory (in particular, with the matrix-model/localisation) more transparent. We discuss this 
briefly in Appendix A.

In Section 3 we write (using the formalism of Section 2) the result for the VEV of Wilson 
loops for a given gauge group in a given antisymmetric ∧-representation. We make clear that this 
observable takes the same expression in five and in three spacetime dimensions. Whilst this was 
already clear from a purely field theoretical/matrix model perspective [26], from the holographic 
point of view, this becomes more transparent, when written in the electrostatic formalism. Two 
examples were worked out in full detail to address a somewhat unclear situation in the existing 
bibliography. In fact, we showed the relation between results when the rank function is taken with 
(without) offsets is a limit procedure. This translates in field theory language to the presence of 
offsets in the matrix model eigenvalue distribution. We have resolved this potentially unclear 
issue in the bibliography.

In Section 4, we have discussed the action of mirror symmetry on three dimensional quiver 
field theories and how the holographic description of balanced quivers with one flavour node 
realises this symmetry. This leads us to propose a relationship between the Wilson loops; the 
one computed in a given antisymmetric representation for a certain gauge node in the electric 
description becomes equivalent (up to a precise multiplicative factor) with the Wilson loop in the 
same representation for a different gauge node in the magnetic description of the same system.

The very detailed Appendix B is of special note. There, we show many details and derivations 
of the map between the holomorphic and the electrostatic description of these systems, with 
worked out examples. This might prove useful for colleagues working on these topics.

For the future, it would be interesting to extend the study of Wilson loops to other systems 
in different dimensions, also admitting electrostatic description. In fact, for SCFTs in dimension 
six–see [35], four–see [36], two–see [37] and one–see [38] for a small sample of references, there 
is a well developed electrostatic formalism. Also, the calculation of Wilson loops in symmetric 
representations or products of various representations seems a feasible problem to study. It should 
also be nice to further study the relation between Wilson Loops in both mirror descriptions, 
expressed by eq. (4.1).

We hope that the ‘translation character’ of this work can show the analogies between the 
problem in different dimensions. We anticipate that other analogies, similar to those pointed out 
in this paper, will be encountered when discussing different observables. We believe that the 
formalism of Section 2, and references [35], [20], [36], [9], [37] and [38] is the best suited to 
look for coincidences in observables for systems in diverse dimensions. The analogies suggested 
by the holographic studies, in turn, may find a field theoretical understanding of their own.
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Appendix A. Summary of the matrix model associated with the SCFTs

In this appendix, we discuss matrix model calculations of certain observables in QFTs that 
flow to SCFTs. We will phrase quantities in the electrostatic language using harmonic potentials. 
Five and three dimensional linear quiver QFTs flowing to SCFTs are considered below. This 
appendix is a (very) brief summary of certain aspects of the paper [39].

Various quantities in 5d SCFTs are studied using matrix model calculations in [15,16]. One 
can check that the free energy calculations of the theory in terms of the function �(z, x) =
N(z)ρ̂(z, x), satisfying the saddlepoint equation

1

4
∂2
x�(z, x) + ∂2

z �(z, x) + P 2k(z)δ(x) = 0, (A.1)

can be related to our language with the mapping (explained in [39]),

N(z)ρ̂(z, x) = 2P∂2
η V̂5(σ, η) z = η/P x = σ/(2P) N(z) = R(η). (A.2)

For 5d antisymmetric Wilson loops with association with gauge node at location z in the 
quiver in k-antisymmetric rank, using these relations, the matrix model calculation would read

ln〈W∧〉 = −6πPN(z)

b(k,z)∫
b(0,z)

bρ̂(z, b)db ≡ −6πP

b(k,η)∫
b(0,η)

σ/(2P)2P∂2
η V̂ (σ, η)dσ/2P

(A.3)

= −3π(

b(k,η)∫
b(0,η)

−∂σ V̂ (σ, η)dσ + σ∂σ V̂ (σ, η)
∣∣(σ∗,η∗)

∞ )

= −3π(−V̂5(σ, η) + σ∂σ V̂5(σ, η))
∣∣
(σ∗,η∗)

. (A.4)

The Laplace equation and by part integration are used in the second line. The above equation 
must be evaluated at the point σ ∗ = b(k, η∗) which is determined by the integral equation

k ≡ N(z)y = N(z)

∞∫
b(z,y)

dxρ̂(z, x) ≡
b(k,η)∫

b(0,η)

2P∂2
η V̂ (σ, η)dσ/2P = ∂σ V̂5(σ, η)

∣∣(σ∗,η∗)
.

(A.5)

Hence, by choosing the representation k and the gauge node, (σ∗, η∗) will be determined, and 
the Wilson loop can be calculated.

For the 3d field theory calculations [7,26] with a similar map

N(z)ρ̂(z, x) = 2P∂2
η V̂ (σ, η) z = η/P x = σ/(2P) N(z) = R(η), (A.6)
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we have

ln〈W∧〉 = 2πPN(z)

b(k,z)∫
b(0,z)

bρ̂(z, b)db ≡ 2πP

b(k,η)∫
b(0,η)

σ/(2P)2P∂2
ηŴ (σ, η)dσ/2P (A.7)

= π(−Ŵ (σ, η) + σ∂σ Ŵ (σ, η))
∣∣(σ∗,η∗)

, (A.8)

and a similar condition for evaluation point

k ≡ N(z)y = N(z)

∞∫
b(z,y)

dxρ̂(z, x) ≡
b(k,η)∫

b(0,η)

2P∂2
η V̂ (σ, η)dσ/2P = ∂σ Ŵ (σ, η)

∣∣
(σ∗,η∗)

.

(A.9)

Again, by choosing the representation k and the gauge node, (σ∗, η∗) will be determined.

Appendix B. Map between holomorphic and electrostatic formalisms

In this appendix, we will consider the details of the mapping between the backgrounds of 
supergravity solutions in terms of holomorphic and electrostatic real functions. The backgrounds 
dual to 5d and 3d SCFTs are examined below.

B.1. The DGKU solution dual to 5d SCFTs

The mapping between the background eq. (2.1) to the DGKU solution [10] are described in 
[20]. The DGKU solution parameterises the Riemann surface in the internal space with a complex 
coordinate w, and it is entirely specified by two holomorphic functions A±(w). The metric in 
string frame

ds2
10 = e

�
2 f1(w, w̄)

[
ds2(AdS6) + f2(w, w̄)ds2(S2) + f3(w, w̄)dwdw̄

]
(B.1)

is defined in terms of the following warping functions

f1 = |∂wG|√1 − R2

κ
√

R
, f2 = 1

9

(
1 − R

1 + R

)2

, f3 = 4κ4R

|∂wG|2(1 − R2)2 (B.2)

where

G = |A+|2 − |A−|2 + 2ReB , κ2 = −∂w∂w̄G = |∂wA−|2 − |∂wA+|2 ,

∂wB = A+∂wA− −A−∂wA+ , R + R−1 = 2 + 6κ2G
|∂wG|2 ,

(B.3)

while the fluxes are given by:

τ = C0 + ie−� = − i
∂w(A+ +A−)∂w̄G − R∂w̄(Ā+ + Ā−)∂wG
∂w(A+ −A−)∂w̄G + R∂w̄(Ā+ − Ā−)∂wG

,

B2 + iC2 =2

3
i

((
1 − R

1 + R

)2
∂wA+∂w̄G + ∂w̄Ā−∂wG

3κ2 − Ā− −A+

)
Vol(S2) .

(B.4)

The AdS6 radius is set equal to one.
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The general form of the functions A± was derived in [34,16],

A± = A0± +
L∑

�=1

Z�± ln(w − r�) , A0± = −A0∓ , Z�± = −Z�∓ . (B.5)

The poles are on the real line at r�, with residues Z�±. These requirements of G to be single-valued 
and positive in the interior of �, and vanishing on the boundary would lead to the regularity 
conditions

A0+Zk− −A0−Zk+ +
L∑

�=1
��=k

Z[�,k] ln |r� − rk| = 0 , k = 1, · · · ,L , (B.6)

where Z[�,k] ≡ Z�+Zk− − Zk+Z�−. The residues Z�± encode the charges of the (p, q) 5-brane 
emerging at the pole r�.

The entire solution is invariant under reparameterization of the complex coordinate w →
z(w). Then, we can use one of the holomorphic functions (or a combination of them) as a defi-
nition of the complex coordinate.

B.1.1. Matching the solutions
In this section we will show how to match eq. (2.1) with eq. (B.2)-eq. (B.4). By equating the 

warping functions f1, f2 we get the following conditions

G = 9π2

4
σ 2∂σ V5 ,

κ2

|∂wG|2 = 2

9π2σ 2

∂2
ηV5


 − 3∂2
ηV5∂σ V5

. (B.7)

One needs to keep the metric factor in making a comparison for f3ds2(C). Using the definition 
of R in eq. (B.3), we have

2

3

κ2

G
dwdw̄ = ∂2

ηV5

3σ∂σ V5
(dσ 2 + dη2). (B.8)

Therefore, from equations (B.7) we can write

|∂wG|2dwdw̄ =
((

∂ηG
)2 + (∂σG)2

)
(dσ 2 + dη2) . (B.9)

By defining a complex variable z = σ − iη, this consistency relation is automatically solved. 
Since the DGKU solution is defined up to a change of complex variables, we identify w = z

from now on.
Considering the fluxes from eq. (2.1)

B2 +iC2 = 2

3
i

(
6π

4
V5 − i

3π

4
η − iσ∂σ V5

(− 1
3 − 2

3 i∂ηV5
)
∂2
σηV5 + 2i∂σ V5∂

2
ηV5




)
Vol(S2)

(B.10)

and comparing it with eq. (B.4), the two expressions match if we set

A+ + Ā− = i
3π

4
η − 3π

2
∂σ (σV5) . (B.11)

Where, σV5 = V̂5 is the harmonic function defined in eq. (2.3) and, since it is also real, it defines 
just one holomorphic function V(z)
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σV5 = V(z) + V(z). (B.12)

Using this condition and the fact that A+ is holomorphic while Ā− is anti-holomorphic, we see 
that eq. (B.11) completely defines A± in terms of σV5 and the new coordinate z

A± = ∓3πz

8
− 3π

2
∂z(σV5) . (B.13)

With these definitions, the reader can check that the axion-dilaton expressions are identical.
In order to compare the two backgrounds, we had to impose w = z. As a consequence, the 

two holomorphic functions A± are defined just in terms of one of the holomorphic function (V) 
and the coordinate z.

It should be noted that one can do the rescaling V5 = νV5,old and (σ, η) = (μσold, μηold) with 
corresponding changes in the background to make quantised Page charges of the branes integers. 
In [20], this rescaling is done to quantise charges properly. In the case of holomorphic functions, 
this can also be done to get integer charges which match with the ones obtained from the Rank 
function in the real formalism. One can also perform the inverse of that rescaling again on our 
potential and coordinates to match the results. From now on we do the change (σ, η) → 2(σ, η)

and V5 → V5 to compare results.

B.1.2. Example: TP theory
In this section, we consider solutions with three poles, mapped in terms of our potential V5. 

We refer to [15] for the specific form of the solutions we are considering.
The TP theory is given by the three-pole solution

A± = 3P

4
(± log(w − 1) + (∓1 − i) log(w + 1) + i log(2w)) , (B.14)

where the poles are at w = 1, 0, −1 and we set α′ = 1. The coordinate z = σ − iη is defined as

z = − 2

3π
(A+ −A−) = N

π
log

(
1 + w

1 − w

)
⇒ w = coth

( πz

2P

)
. (B.15)

Notice that the imaginary axis for w becomes the interval η ∈ (0, N) at σ = 0, while the real 
axis, which is the space-time boundary, is mapped as follows

w ∈ (−1,1) ⇒ η = P , σ ∈ (−∞,∞) ,

w ∈ (−∞,−1) ∪ (1,∞) ⇒ η = 0 , σ ∈ (−∞,∞) .

So the space-time boundary in the w coordinate is consistently mapped in the space-time bound-
ary in σ and η coordinates.

The potential is defined by the following equation

∂z(σV5) = −A− +A+
3π

= − iP

2π
log

(
e− πz

P + 1
)

(B.16)

which can be integrated leading to

V5 = iP 2

2π2σ

(
Li2

(
−e− π(|σ |+iη)

P

)
− Li2

(
−e

−π(|σ |−iη)
P

))
= P 2

π2σ

∞∑
k=1

(−1)k+1

k2 sin

(
kπ

P
η

)
e− kπ

P
|σ | ; (B.17)
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the integration constant is set to zero as required by the boundary conditions. Eq. (B.17) is exactly 
of the form eq. (2.7), and we can identify the coefficient of the Fourier expansion:

ak = P 2

π2

(−1)k+1

k2 . (B.18)

This result can be compared with eq. (3.13) for N = 1, which exactly matches.

B.1.3. Wilson loops
Interestingly, the Wilson loop expectation value in kth anti symmetric representation is pro-

portional to G [16] which in the real formalism from eq. (B.7) is simply proportional to σ 2∂σ V5, 
evaluated at a point determined by gauge node and anti symmetric representation chosen

ln〈W∧〉 = −2

3
TD3VolAdS2VolS2G = 3πσ 2 ∂σ V5|(σ∗,η∗) , (B.19)

with TD3VolAdS2 VolS2 = −4π/(2πα′)2. So the Wilson loop is

ln〈W∧〉 = 3π (σ∂σ V̂ − V̂ )
∣∣
(σ∗,η∗)

= 3π

∞∑
k=1

Rk

2
(

P

kπ
) sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗| + 1).

(B.20)

The only calculation needed is the location on the �-plane, which this function should be calcu-
lated. So

NF1 + iND1 = 2

3π

[ i

3
(
9π

2
)η∗ − 6(

π

4
) ∂σ (V̂ )

∣∣
(σ∗,η∗)

]
(B.21)

NF1 and ND1 are related to the gauge node and anti symmetric representation chosen. Hence,

ND1 = η∗, NF1 =
∞∑

k=1

Rk

2
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗| Sgn(σ ∗). (B.22)

B.2. The DEGK background dual to 3d SCFTs

The DEGK solutions [3] in the string frame is defined in terms of complex functions in the 
variable w:

ds2
10,st = f1(w, w̄)

[
ds2(AdS4) + f2(w, w̄)ds2(S2

1) + f3(w, w̄)ds2(S2
2)

+ f4(w, w̄)dwdw̄
]
,

e−2� = f5(w, w̄), B2 = f6(w, w̄)Vol(S2
1), C2 = f7(w, w̄)Vol(S2

2), (B.23)

where

f1 = 2

√
−N2

W
, f2 = −h2

1W

N1
, f3 = −h2

2W

N2
, f4 = −2

W

h1h2
, f5 = N1

N2

f6 = 4
h2

1h2Im(∂wh2∂w̄h1)

N1
+ 2hD

2 , f7 = 4
h1h

2
2Im(∂wh2∂w̄h1)

N2
− 2hD

1 . (B.24)

The five-form field is given by
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F5 = Vol(AdS4) ∧ df8 + ∗(Vol(AdS4) ∧ df8), (B.25)

and

f8 = 4

(
6Re(C) − 3D − 2

h1h2

W
Im(∂wh1∂wh2)

)
. (B.26)

All these functions could be defined in terms of two holomorphic functions A1,2(w), in particular 
h1,2 and hD

1,2 are the dual real harmonic functions

h1 = 2Im(A1) , hD
1 = 2Re(A1) , h2 = 2Re(A2) , hD

2 = −2Im(A2). (B.27)

Also, we have the following definitions

W = ∂w∂w̄(h1h2) , Ni = 2h1hi |∂whi |2 − h2
i W , D = 2Re(A1Ā2) ,

∂wC = A1∂wA2 −A2∂wA1. (B.28)

A more detailed background solution description could be found in [26].
Solutions with different holographic interpretations can be constructed depending on the 

choice of h1/2 and �. We would be interested in duals of 3 d SCFTs. All solutions here de-
scribe D3-branes suspended between, ending on, or intersecting combinations of D5 and NS5 
branes. For these solutions, the harmonic functions h1, h2 on the strip

� =
{
w ∈ C | 0 ≤ Im(w) ≤ π

2

}
would read

h1 = −α′

4

A∑
a=1

N
(a)
D5 ln tanh

(
iπ

4
− w − δa

2

)
+ c.c.

h2 = −α′

4

B∑
b=1

N
(b)
NS5 ln tanh

(
w − δb

2

)
+ c.c.

These solutions describe A-groups of D5-branes with N(a)
D5 D5-branes in the ath group and 

B-groups of NS5-branes with N(b)
NS5 NS5-branes in the bth group. D3-branes are suspended 

between the 5-branes for 3d SCFTs.
The background is invariant under conformal transformations w → f (w) ≡ z; specifically, 

one can choose one of the holomorphic functions as a coordinate. The second holomorphic func-
tion can be defined in terms of an auxiliary harmonic function V̂3(z, ̄z) as follows

A1 = π∂zV̂3 , A2 = π

8
z . (B.29)

In order to match these backgrounds with those in eq. ((2.11)), we can set

z = σ − iη , V̂3 = σV3 . (B.30)

With these identifications,

h1 = πσ∂ηV3 , hD
1 = π∂σ (σV3) , h2 = π

4
σ , hD

2 = π

4
η , (B.31)

W = π2

8
∂σ (σ∂ηV3) , N1 = π4

8
σ 3∂ηV3
, N2 = − π4

128
σ 3∂2

ησ V3 . (B.32)

These expressions will match eq. (B.24) with eq. (2.11). For the same reason as the 5d case, we 
do the change (σ, η) → 2(σ, η) and V3 → V3 to quantize the Page charges properly and match 
the backgrounds.
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B.2.1. Example: generic balanced quivers
The backgrounds dual to generic balanced quivers are given by

h1 = −α′

4

A∑
a=1

N
(a)
D5 ln tanh

(
iπ

4
− w − δa

2

)
+ c.c. (B.33)

h2 = −α′

4
NNS5 ln tanh

(w

2

)
+ c.c.

The dual is a quiver with NNS5 − 1 nodes and N(a)
D5 flavours at gauge nodes ta with

ta = 2

π
NNS5 arctan eδa

Since all nodes are balanced and N0 = NL+1 = 0, the entire quiver can be reconstructed from 
this information. These functions can be written in terms of

A1 = −i
α′

4

A∑
a=1

N
(a)
D5 ln tanh

(
iπ

4
− w − δa

2

)
(B.34)

A2 = −α′

4
NNS5 ln tanh

(w

2

)
.

It must be noted that one can multiply the argument of logarithm in A1 and A2 functions with 
a phase |c| = 1 (for instance, A2 → −α′

4 ND5 ln c tanh
(−w

2

)
), while h1,2 functions remain the 

same.
If we take z to be the new coordinate, our transformation will read (set α′ = 1)

z = − 1

π
NNS5 ln tanh

(w

2

)
. (B.35)

This change of coordinates could be done also in the following steps. First, w′ = ew sends the 
strip to the upper right quadrant with NS5 on reals and D5s on the imaginary axis. Second, 
w′−1
w′+1 = −u u′ = −u sending the upper right quadrant to the upper half disk with NS5 on zero 
and D5s on the circumference. Lastly, z = − 1

π
NNS5 ln(u) which maps upper half disk to an 

strip 0 ≤ Re(z′) < ∞ and 0 ≤ Im(z′) < −NNS5. The Neveu-Schwarz five branes are mapped to 
a vertical line at infinity, and D5s are on Re(z′) = 0. By taking z = σ − iη and the condition 
V (−σ, η) = −V (σ, η) the solution would be well defined on 0 ≤ η ≤ +NNS5.

After the mapping, the holomorphic functions are

A1(z) = − i

4

∑
a

N
(a)
D5

[
ln

(
1 − e

−π
2α′NNS5

z′
/σa

)
− ln

(
1 − σae

−π
2α′NNS5

z′)]
≡ π∂zV̂3 (B.36)

A2(z) = π

4
z, (B.37)

with σa = ieδa −1
ieδa +1

= e
−iπta
NNS5 . Then∫

A1(z)d z = i

4
(
−NNS5

π
)
∑
a

N
(a)
D5

[
Li2

(
σae

−π
NNS5

z
)

− Li2
(
e

−π
NNS5

z
/σa

)]
≡ f (z), (B.38)

hence V̂3 = 1
π
f (z) + c.c. The integration constant is chosen to make the V̂3 function harmonic 

and the constants ca = 1/σa are chosen to keep the boundary conditions after mapping. Then,
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V̂3 = (
NNS5

2π2 )
∑
a

N
(a)
D5 Im

[
Li2

(
σae

−π
NNS5

z
)

− Li2
(
e

−π
NNS5

z
/σa

)]
, (B.39)

which matches with the last line of eq. (2.20) with identification NNS5 ≡ P , N(a)
D5 ≡ FJ and 

ta ≡ J .

B.2.2. Wilson loops
With V̂ D

3 dual to V̂3 and ∂ηŴ = V̂3 the Wilson loop computed in [26] would read

ln 〈W∧〉 = 8

π2α′3

∫
dξh1h2 (∂zh2) z′ = π

[∫
σ∂ηV̂3(σ, η)dσ

](σ∗,η∗)

(∞,η∗)

(B.40)

= π

[
σ

∫
∂ηV̂3(σ, η)dσ −

∫ ∫
∂ηV̂3dσdσ ′

](σ∗,η∗)

(∞,η∗)

= π
[−σ∂σ Ŵ (σ, η) + Ŵ (σ, η)

](σ∗,η∗)

(∞,η∗)
.

An integration by parts is done in the second line and one can check that ∂σ Ŵ (σ, η) =
− 
∫

∂ηV̂3(σ, η)dσ . The limits can be computed easily from the rank and node of the Wilson 
loop in

NF1 = 4

π2α′2 [Im (A1A2 + C)](σ∗,η∗)

(∞,η∗) =
[
V̂ D

3

](σ∗,η∗)

(∞,η∗)
, ND3 = 4

πα′ h
D
2 ≡ η∗. (B.41)

α′ = 1 is chosen as above. It can be deduced from the second equation that the integration limits 
are along constant η. Indeed, the rank and node of the Wilson loop determine the NF1 and ND3
on the probe D5 brane, which should be embedded in the background geometry to calculate 
the expectation value. Hence, its trajectory on the � surface is calculated to satisfy the BPS 
conditions. z0 and z1 are endpoints of this trajectory, and integrals are along this curve. More 
details can be found in the given references.

In terms of the Fourier expansion of potential fields with definitions

V̂ (σ, η) =
⎧⎨⎩
∑∞

k=1
ak

2

(
e− kπ

P
z + e− kπ

P
z̄
)

= Re
∑∞

k=1 ak

(
e− kπ

P
z
)

σ ≥ 0,∑∞
k=1

ak

2

(
e

kπ
P

z + e
kπ
P

z̄
)

= Re
∑∞

k=1 ak

(
e

kπ
P

z
)

σ < 0,
(B.42)

and for V̂ D we have (Re �→ Im)

V̂ D(σ, η) =
⎧⎨⎩
∑∞

k=1 ak sin
(

kπη
P

)
e− kπσ

P σ ≥ 0,

−∑∞
k=1 ak sin

(
kπη
P

)
e

kπσ
P σ < 0.

(B.43)

Hence the Wilson loop is

ln〈W∧〉 = π

∞∑
k=1

Rk

2
(

P

kπ
) sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗|(kπ

P
|σ ∗| + 1). (B.44)

The evaluation point is

ND3 = η∗, NF1 = V̂ D =
∞∑ Rk

2
sin

(
kπ

P
η∗
)

e− kπ
P

|σ ∗| Sgn(σ ∗). (B.45)

k=1
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B.2.3. An example of mapping S-dual backgrounds
In this section, we consider mappings of the triangular quivers considered in section 4. For 

the triangular quiver, one has

h1 = − i

4
ND5 ln

∣∣∣∣tanh

(
iπ

4
− w − δ

2

)∣∣∣∣ ,
h2 = −1

4
NNS5 ln

∣∣∣tanh
w

2

∣∣∣ ,
A1 = − i

4
ND5 ln tanh

(
iπ

4
− w − δ

2

)
,

A2 = −1

4
NNS5 ln tanh

(w

2

)
.

Our mapping would be

z = − 1

π
NNS5 ln tanh

(w

2

)
, (B.46)

giving

A1(z
′) = − iα′

4

∑
a

N
(a)
D5

[
ln

(
1 − e

−π
2α′NNS5

z′
/σ̃a

)
− ln

(
1 − σ̃ae

−π
2α′NNS5

z′)]
≡ π∂z′ V̂ ,

(B.47)

A2(z
′) = π

8
z′, (B.48)

with σ = ieδ−1
ieδ+1

= e
−iπt
NNS5 and t is the gauge node for which the flavour is inserted. Here the 

constant c = 1/σ̃ is chosen to keep the boundary conditions after mapping. Then from eq. (B.39)
one finds

V̂ elec
3 = (

NNS5

2π2 )ND5 Im
[
Li2

(
σe

−π
NNS5

z
)

− Li2
(
e

−π
NNS5

z
/σ

)]
. (B.49)

The S-dual configuration can be obtained from exchanging h1 and h2

A1 = − i

4
NNS5 ln tanh

(w

2

)
,

A2 = −1

4
ND5 ln tanh

(
iπ

4
− w − δ

2

)
.

The desired transformation is

z = −2α′

π
NNS5 ln tanh

(
iπ

4
− w − δ

2

)
. (B.50)

The transformation can be done in two steps

z′

2
= iπ

4
− w − δ

2
, z = − 1

π
NNS5 ln tanh

(
z′

2

)
. (B.51)

After the first step, the holomorphic functions would be
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A1 = − i

4
NNS5 ln tanh

(
iπ

4
− z′ − δ

2

)
,

A2 = −1

4
ND5 ln tanh

(
z′

2

)
,

which is exactly the one before S-duality with NNS5 ←→ ND5. The range of η under final trans-
formation would be (0, ND5) instead of (0, NNS5) but the gauge node insertion relative to the 
range would be the same as before S-duality,

V̂
mag
3 = (

ND5

2π2 )NNS5 Im
[
Li2

(
σe

−π
ND5

z
)

− Li2
(
e

−π
ND5

z
/σ

)]
. (B.52)

The relation between eqs. (B.49) and (B.52) can otherwise be obtained by applying the generic 
expression for the potential V̂3 in eq. (2.20), in the case of no-offsets, and using eqs. (4.10). This 
makes the point that the electrostatic version of mirror symmetry, encodes S-duality.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 
1113; Adv. Theor. Math. Phys. 2 (1998) 231, arXiv :hep -th /9711200.

[2] D. Gaiotto, E. Witten, S-duality of boundary conditions in N=4 super Yang-Mills theory, Adv. Theor. Math. Phys. 
13 (3) (2009) 721, arXiv :0807 .3720 [hep -th].

[3] E. D’Hoker, J. Estes, M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, 
J. High Energy Phys. 0706 (2007) 022, arXiv :0705 .0024 [hep -th];
E. D’Hoker, J. Estes, M. Gutperle, D. Krym, Exact half-BPS flux solutions in M-theory. I: Local solutions, J. High 
Energy Phys. 0808 (2008) 028, arXiv :0806 .0605 [hep -th].

[4] B. Assel, C. Bachas, J. Estes, J. Gomis, Holographic duals of D=3 N=4 superconformal field theories, J. High 
Energy Phys. 1108 (2011) 087, arXiv :1106 .4253 [hep -th].

[5] C. Bachas, M. Bianchi, A. Hanany, N = 2 moduli of AdS4 vacua: a fine-print study, J. High Energy Phys. 08 (2018) 
100, arXiv :1711 .06722 [hep -th];
C. Bachas, I. Lavdas, B. Le Floch, Marginal deformations of 3d N = 4 linear quiver theories, J. High Energy Phys. 
10 (2019) 253, arXiv :1905 .06297 [hep -th].

[6] Y. Lozano, N.T. Macpherson, J. Montero, C. Nunez, Three-dimensional N = 4 linear quivers and non-Abelian 
T-duals, J. High Energy Phys. 1611 (2016) 133, arXiv :1609 .09061 [hep -th].

[7] L. Coccia, C.F. Uhlemann, J. High Energy Phys. 06 (2021) 038, arXiv :2011 .10050 [hep -th].
[8] P. Merrikin, R. Stuardo, Phys. Lett. B 833 (2022) 137350, arXiv :2112 .10874 [hep -th].
[9] M. Akhond, A. Legramandi, C. Nunez, J. High Energy Phys. 11 (2021) 205, arXiv :2109 .06193 [hep -th].

[10] E. D’Hoker, M. Gutperle, A. Karch, C.F. Uhlemann, J. High Energy Phys. 1608 (2016) 046, arXiv :1606 .01254
[hep -th].

[11] E. D’Hoker, M. Gutperle, C.F. Uhlemann, Phys. Rev. Lett. 118 (10) (2017) 101601, arXiv :1611 .09411 [hep -th];
E. D’Hoker, M. Gutperle, C.F. Uhlemann, Warped AdS6 × S2 in Type IIB supergravity II: global solutions and 
five-brane webs, J. High Energy Phys. 1705 (2017) 131, arXiv :1703 .08186 [hep -th];
M. Gutperle, C. Marasinou, A. Trivella, C.F. Uhlemann, J. High Energy Phys. 09 (2017) 125, arXiv :1705 .01561
[hep -th];
E. D’Hoker, M. Gutperle, C.F. Uhlemann, Warped AdS6 × S2 in Type IIB supergravity III: global solutions with 
seven-branes, J. High Energy Phys. 11 (2017) 200, arXiv :1706 .00433 [hep -th].

[12] M. Gutperle, A. Trivella, C.F. Uhlemann, Type IIB 7-branes in warped AdS6: partition functions, brane webs and 
probe limit, J. High Energy Phys. 1804 (2018) 135, arXiv :1802 .07274 [hep -th];
M. Fluder, C.F. Uhlemann, Precision test of AdS6/CFT5 in Type IIB string theory, Phys. Rev. Lett. 121 (17) (2018) 
171603, arXiv :1806 .08374 [hep -th].

[13] O. Bergman, D. Rodriguez-Gomez, C.F. Uhlemann, J. High Energy Phys. 1808 (2018) 127, arXiv :1806 .07898
[hep -th].

[14] Y. Lozano, N.T. Macpherson, J. Montero, J. High Energy Phys. 01 (2019) 116, arXiv :1810 .08093 [hep -th].
[15] C.F. Uhlemann, Exact results for 5d SCFTs of long quiver type, arXiv :1909 .01369 [hep -th].
30

http://refhub.elsevier.com/S0550-3213(23)00054-8/bib185F6803DDFE4D434B59757C0B2FCD42s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib185F6803DDFE4D434B59757C0B2FCD42s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibB49D728E717F9A84F07D6AFAC8883E24s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibB49D728E717F9A84F07D6AFAC8883E24s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib45A6A4DC5D06B70AE86B15746B895248s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib45A6A4DC5D06B70AE86B15746B895248s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib45A6A4DC5D06B70AE86B15746B895248s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib45A6A4DC5D06B70AE86B15746B895248s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib795869370491AA72BFAB81FC38700872s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib795869370491AA72BFAB81FC38700872s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7C76FCF71F0172C46E8A9CE7FC5F596Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7C76FCF71F0172C46E8A9CE7FC5F596Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7C76FCF71F0172C46E8A9CE7FC5F596Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7C76FCF71F0172C46E8A9CE7FC5F596Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibFC2C0EFF995B0D31C9DDA2F892B5743Ds1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibFC2C0EFF995B0D31C9DDA2F892B5743Ds1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib703CE26036088469C9E31D726C1A54C2s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib77FD989248E267E9DF719D5BC0D3C2E7s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7828BD6A61F3B949409EFDB95C51DFDBs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib18EE9594A51F52022049C6EFB3E15E05s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib18EE9594A51F52022049C6EFB3E15E05s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib54AA3D36BB7ACD7CB9FE2C9CCC58F672s4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib86519661A6E36A4BCA515A3ABB824619s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib86519661A6E36A4BCA515A3ABB824619s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib86519661A6E36A4BCA515A3ABB824619s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib86519661A6E36A4BCA515A3ABB824619s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib21DA1B42031AF2D6B53431227A053E29s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib21DA1B42031AF2D6B53431227A053E29s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib55844763BF966F4D51E8601FB6DD3A4Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7EA4656EDED8963450761233A751A866s1


A. Fatemiabhari and C. Nunez Nuclear Physics B 989 (2023) 116125
[16] C.F. Uhlemann, J. High Energy Phys. 09 (2020) 145, https://doi .org /10 .1007 /JHEP09(2020 )145, arXiv :2006 .01142
[hep -th].

[17] L. Santilli, Phases of five-dimensional supersymmetric gauge theories, arXiv :2103 .14049 [hep -th].
[18] M. Gutperle, C.F. Uhlemann, arXiv :2012 .14547 [hep -th].
[19] G. Alencar, M.O. Tahim, arXiv :2106 .11288 [hep -th];

D. Roychowdhury, Phys. Rev. D 104 (8) (2021) 086010, arXiv :2106 .10646 [hep -th].
[20] A. Legramandi, C. Nunez, Nucl. Phys. B 974 (2022) 115630, arXiv :2104 .11240 [hep -th].
[21] J.M. Maldacena, Phys. Rev. Lett. 80 (1998) 4859–4862, arXiv :hep -th /9803002 [hep -th].
[22] S.J. Rey, J.T. Yee, Eur. Phys. J. C 22 (2001) 379–394, arXiv :hep -th /9803001 [hep -th].
[23] N. Drukker, J. High Energy Phys. 10 (2013) 135, arXiv :1203 .1617 [hep -th].
[24] D. Correa, J. Henn, J. Maldacena, A. Sever, J. High Energy Phys. 06 (2012) 048, arXiv :1202 .4455 [hep -th].
[25] N. Drukker, D.J. Gross, H. Ooguri, Phys. Rev. D 60 (1999) 125006, arXiv :hep -th /9904191 [hep -th].
[26] L. Coccia, C.F. Uhlemann, J. High Energy Phys. 03 (2022) 127, arXiv :2112 .14648 [hep -th].
[27] B. Assel, A. Sciarappa, J. High Energy Phys. 10 (2018) 082, arXiv :1806 .09636 [hep -th].
[28] D.H. Correa, J. Aguilera-Damia, G.A. Silva, J. High Energy Phys. 06 (2014) 139, arXiv :1405 .1396 [hep -th];

J. Aguilera-Damia, D.H. Correa, G.A. Silva, J. High Energy Phys. 03 (2015) 002, arXiv :1412 .4084 [hep -th].
[29] J. Gomis, F. Passerini, J. High Energy Phys. 08 (2006) 074, arXiv :hep -th /0604007 [hep -th];

J. Gomis, F. Passerini, J. High Energy Phys. 01 (2007) 097, arXiv :hep -th /0612022 [hep -th].
[30] B. Assel, J. Gomis, J. High Energy Phys. 11 (2015) 055, arXiv :1506 .01718 [hep -th].
[31] A. Dey, J. High Energy Phys. 07 (2022) 114, arXiv :2103 .01243 [hep -th].
[32] N. Drukker, D. Trancanelli, J. High Energy Phys. 02 (2010) 058, arXiv :0912 .3006 [hep -th].
[33] N. Drukker, D. Trancanelli, L. Bianchi, M.S. Bianchi, D.H. Correa, V. Forini, L. Griguolo, M. Leoni, F. Levkovich-

Maslyuk, G. Nagaoka, et al., J. Phys. A 53 (17) (2020) 173001, arXiv :1910 .00588 [hep -th].
[34] E. D’Hoker, M. Gutperle, C.F. Uhlemann, J. High Energy Phys. 05 (2017) 131, arXiv :1703 .08186 [hep -th].
[35] S. Cremonesi, A. Tomasiello, J. High Energy Phys. 1605 (2016) 031, arXiv :1512 .02225 [hep -th];

C. Nunez, J.M. Penin, D. Roychowdhury, J. Van Gorsel, J. High Energy Phys. 1806 (2018) 078, arXiv :1802 .04269
[hep -th];
K. Filippas, C. Nunez, J. Van Gorsel, J. High Energy Phys. 1906 (2019) 069, arXiv :1901 .08598 [hep -th];
O. Bergman, M. Fazzi, D. Rodriguez-Gomez, A. Tomasiello, arXiv :2002 .04036 [hep -th];
F. Apruzzi, M. Fazzi, A. Passias, A. Rota, A. Tomasiello, Phys. Rev. Lett. 115 (6) (2015) 061601, arXiv :1502 .06616
[hep -th].

[36] D. Gaiotto, J. Maldacena, The gravity duals of N=2 superconformal field theories, J. High Energy Phys. 1210 (2012) 
189, arXiv :0904 .4466 [hep -th];
R.A. Reid-Edwards, B. Stefanski Jr., On Type IIA geometries dual to N = 2 SCFTs, Nucl. Phys. B 849 (2011) 549, 
arXiv :1011 .0216 [hep -th];
O. Aharony, L. Berdichevsky, M. Berkooz, 4d N=2 superconformal linear quivers with type IIA duals, J. High 
Energy Phys. 1208 (2012) 131, arXiv :1206 .5916 [hep -th];
Y. Lozano, C. Nunez, J. High Energy Phys. 05 (2016) 107, arXiv :1603 .04440 [hep -th];
C. Nunez, D. Roychowdhury, D.C. Thompson, J. High Energy Phys. 1807 (2018) 044, arXiv :1804 .08621 [hep -th];
C. Nunez, D. Roychowdhury, S. Speziali, S. Zacarias, Nucl. Phys. B 943 (2019) 114617, arXiv :1901 .02888 [hep -th].

[37] A. Legramandi, N.T. Macpherson, arXiv :1912 .10509 [hep -th];
C. Couzens, H.h. Lam, K. Mayer, S. Vandoren, arXiv :1904 .05361 [hep -th];
Y. Lozano, N.T. Macpherson, C. Nunez, A. Ramirez, J. High Energy Phys. 01 (2020) 129, arXiv :1908 .09851 [hep -
th];
Y. Lozano, N.T. Macpherson, C. Nunez, A. Ramirez, J. High Energy Phys. 01 (2020) 140, arXiv :1909 .10510 [hep -
th];
Y. Lozano, N.T. Macpherson, C. Nunez, A. Ramirez, Phys. Rev. D 101 (2) (2020) 026014, arXiv :1909 .09636
[hep -th];
Y. Lozano, N.T. Macpherson, C. Nunez, A. Ramirez, J. High Energy Phys. 12 (2019) 013, arXiv :1909 .11669 [hep -
th];
C. Couzens, Y. Lozano, N. Petri, S. Vandoren, Phys. Rev. D 105 (8) (2022) 086015, arXiv :2109 .10413 [hep -th].

[38] Y. Lozano, C. Nunez, A. Ramirez, S. Speziali, J. High Energy Phys. 03 (2021) 277, arXiv :2011 .00005 [hep -th];
Y. Lozano, C. Nunez, A. Ramirez, S. Speziali, J. High Energy Phys. 03 (2021) 145, arXiv :2011 .13932 [hep -th];
Y. Lozano, C. Nunez, A. Ramirez, J. High Energy Phys. 04 (2021) 110, arXiv :2101 .04682 [hep -th].

[39] M. Akhond, A. Legramandi, C. Nunez, L. Santilli, L. Schepers, arXiv :2211 .09824 [hep -th];
M. Akhond, A. Legramandi, C. Nunez, L. Santilli, L. Schepers, arXiv :2211 .13240 [hep -th].
31

https://doi.org/10.1007/JHEP09(2020)145
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib79EB0D77B97DC9ED879285D50932EDF9s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib819E742D1A840CD83436B6832FB820EFs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibDFD72F7A874A308AF369065C165038E6s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibDFD72F7A874A308AF369065C165038E6s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibC6462EADC04EA3879B4F301EDDC8DCD6s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE9E03D71AA9E467EF48877B705CACC3Ds1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib66CB25BFCA7C514EDD7359BECCD9BB55s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibA515BF2CE759A66BFE367B6215D08B4Es1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibBA7A9F3240042F345494A5C54040E9E9s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib3979DE6339941232C0E29C25AF59058Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibD8004018BC31EC64E726E20D82185EA9s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib548A2CC301AE4C0B1C0B034ED09228C8s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib53D22893834E92CEB3E227B5AFB1DA86s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib53D22893834E92CEB3E227B5AFB1DA86s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7A0B262B80B8A6202D1EA9E265BA23A8s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib7A0B262B80B8A6202D1EA9E265BA23A8s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib1BE691D01FFBDAD658DCF5DD13083F75s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE2915ADF009B5CD1262E1BE2557957A2s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibA27894D3B581D3F17A87F9B0ACBEAE46s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib919291A1F341EE7645B97B8521E551D3s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib919291A1F341EE7645B97B8521E551D3s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib78BA9A78F5A82B28FC9824056C6FC953s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs5
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibE0B2AC691E5C2382CBD73B9EC6777C3Fs5
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs5
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib5A05CAE4F14FF5B392F468CAFDCF0F3Fs6
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs4
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs5
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs5
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs6
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs6
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib61E8B65E285581C03EE303431E7DC3DEs7
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibA3C2171DC9141D8E9E99CAC195AF5A58s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibA3C2171DC9141D8E9E99CAC195AF5A58s2
http://refhub.elsevier.com/S0550-3213(23)00054-8/bibA3C2171DC9141D8E9E99CAC195AF5A58s3
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib1D1B5A45CE4BEBDFA8925E66AB51A7D6s1
http://refhub.elsevier.com/S0550-3213(23)00054-8/bib1D1B5A45CE4BEBDFA8925E66AB51A7D6s2

	Wilson loops for 5d and 3d conformal linear quivers
	1 Introduction
	2 Supergravity backgrounds
	2.1 The Type IIB backgrounds dual to 5d SCFTs
	2.1.1 Resolution of the PDE and quantisation of charges

	2.2 The Type IIB backgrounds dual to 3d SCFTs
	2.2.1 Resolution of the PDE and quantisation of charges

	2.3 Summary

	3 Wilson loops in d=5 and d=3
	3.1 Example 1
	3.1.1 A numerical study

	3.2 Example 2

	4 Mirror symmetry and Wilson loops
	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Summary of the matrix model associated with the SCFTs
	Appendix B Map between holomorphic and electrostatic formalisms
	B.1 The DGKU solution dual to 5d SCFTs
	B.1.1 Matching the solutions
	B.1.2 Example: TP theory
	B.1.3 Wilson loops

	B.2 The DEGK background dual to 3d SCFTs
	B.2.1 Example: generic balanced quivers
	B.2.2 Wilson loops
	B.2.3 An example of mapping S-dual backgrounds


	References


