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Abstract: To date, the mechanical models of magnetoelectric couplings at finite strains have mainly
been limited to time-independent constitutive equations. This paper enhances the literature by
developing a time-dependent electromagnetic constitutive equation to characterise the mechanical
behaviour of soft solids at finite strains and take into account the full form of the Maxwell equations.
Our formulation introduces a symmetrical total stress and uses recently developed spectral invariants
in the amended energy function; as a result, the proposed constitutive equation is relatively simple
and is amenable to a finite-element formulation.

Keywords: symmetrical total stress; generalised mathematical formulation; nonlinear electro-
magneto-elastic solid; time-dependent

1. Introduction

Research in the areas of so-called smart and multifunctional materials has grown
exponentially in recent years. Smart materials can be defined as the innovative substances
that can alter their physical and mechanical attributes when exposed to one or more ex-
ternal stimuli. Some widely used external stimuli are temperature, humidity, light, pH,
and acoustic, electric, and magnetic fields [1,2]. Among other smart materials, electroactive
polymers (EAPs) and magnetoactive polymers (MAPs) have received unprecedented atten-
tion in recent years thanks to their myriad of potential applications. These ever-expanding
applications have reached many areas, including soft robotics for targeted drug delivery
and cancer therapy, flexible stretch-based sensors for wearable devices, materials for mor-
phing and shape-shifting structures, key ingredients for rapidly expanding metamaterials,
to mention a few [1–5]. For EAPs, while working as the so-called dielectric elastomers
(DEs), an electric voltage applied along the thickness direction of a thin structure will create
Coulomb forces as a result of the attractions of two opposite charges resulting in expansions
in the lateral directions [5]. This mechanism of converting electric input to a mechanical
output is the key in actuators for soft robotics. Furthermore, EAPs can be used in energy
harvesting using ambient motions, in which a mechanical input creates electric outputs
that could be the essential ingredients for creating clean and green sustainable energy.

In MAPs, a polymeric composite filled with magnetisable particles (micro or nano-
sized) can be activated upon the application of a remotely controlled magnetic field. De-
pending on the filler particles, MAPs can be decomposed into two groups, i.e., soft-magnetic
MAPs, where particles have less residual magnetisation and coercivity, while in hard-
magnetic MAPs, particles retain a high coercivity with a significant remanence magnetisa-
tion after the removal of the external magnetic field, see, for example, reference [6]. Note
that soft-magnetic MAPs are mainly used in areas where mechanical properties such shear
and loss moduli are to be tuned, while for applications in largely deformable and flexible
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shape-shifting structures, hard-magnetic MAPs are used. For various matrix materials,
fillers, manufacturing techniques, experimental characterisations, and the computational
modelling of both hard and soft MAPs, a few recent review papers can be consulted, see,
for example, [6].

The experimental study, mathematical modelling and simulations, and the search for
novel applications of EAPs and MAPs have so far been performed separately. However,
very recently, following the so-called multiferroic materials in which a magnetoelectric
coupling occurs simultaneously, the quest for largely deformable similar materials has
increased manifolds where magnetoelectric coupling is a common phenomenon. Note that
ceramic and metal-based magneto-electroactive hard materials have applications in pro-
ducing magnetoelectric random access memories [7,8]. An interesting counterpart to these
hard materials could be a soft polymeric material (elastomer or hydrogel), in which a poly-
meric matrix is filled with magnetisable (e.g., iron, neodymium–iron–boron) particles [9,10].
A typical application of such material is in hyperthermia for cancer patients, in which a
remotely controlled dynamic magnetic field will create localised heat as a result of vibrating
particles in a conductive polymeric matrix. All these nascent applications require the de-
velopment of appropriate mathematical frameworks to simulate magnetoelectric coupling
phenomena at finite strains.

Until recently, the mathematical modelling of magnetoelectric couplings at finite
strains has been limited, in the sense that models have discarded the time-dependence of
the electro-magneto-mechanically coupled problems in formulating the governing equa-
tions. In this contribution, we aim to present a generalised mathematical formulation for
magnetoelectrically coupled soft materials at finite strains that takes into account time-
dependent dynamical phenomena. Following our recent works [11,12] on electromagnetic–
elastic materials including the modelling of residual stresses appearing in magnetoelectric
elasticity, we briefly present the relevant and key governing equations that are essential to
represent a magneto-electro-mechanically coupled system at large strains. Afterwards, the
framework is extended to incorporate the time-dependent dynamical aspects. Finally, we
use an attractive set of spectral invariants [12] to mechanically characterise the proposed
amended energy function.

1.1. Remark

There are many coexisting theories and results on the subject of electromagnetic
continuum mechanics theory. The physics and mathematics of electromagnetic forces in
continuum mechanics are complex and tedious, and it is beyond the scope of this paper
to regurgitate them here. Readers are encouraged to read references [13–15] for the basic
concepts of electromagnetic forces in deformable continua. In this paper, we only focus
on a mathematical construction (which uses some fundamental equations and concepts
for a solid continuum in the presence of electromagnetic fields based on the work of
references [13–15]) to provide a relatively simple form of constitutive equation, which is
beneficial to obtain boundary value problem results (especially with the aid of the finite
element method) and for design purposes. We believe the mathematical construction and
proofs developed in this article are not found in the literature and hence could be employed
for future research.

An attractive set of spectral invariants and their derivatives are used in our proposed
model; readers may not be familiar with them and their physical concept, since their devel-
opment are only recent; see for example, references [16–18]. The concept and derivation of
spectral models are rather involved, and hence it is beyond the scope of this paper to repeat
them here. Readers are encouraged to read references [16–18] and references therein, for
details on spectral modelling.

1.2. Kinematics

The descriptions of the deformation tensor F, the right-stretch tensor U, right Cauchy–
Green tensor C = U2, and scalar J = det F > 0, where det denotes the determinant of a
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tensor, can be found in Ogden [19]. Unless stated otherwise, in this paper, all subscripts i, j,
and k take the values one, two, and three.

1.3. Electromagnetic Field Equations

Here, we briefly state some fundamental equations and concepts for a solid continuum
in the presence of electromagnetic fields based on the work of references [13–15].

1.3.1. Maxwell Equations

We use the notation qe for the density of electric charge per unit of volume and J
for the volume electric current. In the case qe = 0 and J = 0, the Maxwell equations are
(see [13,15]):

divB = 0, curlE+ Ḃ = 0, divD = 0, curlH = Ḋ, (1)

where B is the magnetic induction, E is the electric field, D is the electric displacement, H
is the magnetic field, and ˙( ) is the time derivative keeping x constant, i.e., for example

Ḃ =
∂B(x, t)

∂t
, div and curl are the divergence and curl operators in the current configuration.

For a vacuum, the following relations between the electric variables and the magnetic
variables are:

D = εoE, B = µoH, (2)

where εo is the electric permittivity in vacuum, and µo is the magnetic permeability in
vacuum. For a condensed matter two extra fields can be defined, which are the electric
polarization P and the magnetization M, i.e.,

D = εoE+ P, B = µo(H+M), (3)

1.3.2. Lagrangian Electric and Magnetic Variables

From [14,20,21] the expressions for the electric and the magnetic variables in the
reference configuration are

EL = FTE, DL = JF−1D, BL = JF−1B, HL = FTH. (4)

1.3.3. Continuity Conditions

The imposition of boundary conditions in electromagnetic boundary value problems
is not trivial, due to the requirement of Maxwell Equation (1) to be satisfied in the body
and also for the exterior surrounding, which is assumed to be a vacuum space. To make
the boundary conditions clear (see also Figure 1), we introduce the notation

[[a]] = a(o) − a(i) , (5)

where (o) is associated with the outside of the body and (i) is associated with the inside of
the body, which is very close to the surface of the body. The boundary conditions for the
electromagnetic fields require the following continuity conditions [14]

n · [[B]] = 0, n× [[E]] = vn[[B]], n · [[D]] = qS
e , n× [[H]] + vn[[D]] = JS, (6)

where vn = v · n is the normal component of the velocity field, n is the outward unitary
normal vector to ∂Bt (the surface of the body in the current configuration), qS

e represents a
surface distribution of free charges, and JS is a surface distribution of the electric current.
From now on, we assume that qS

e = 0 and JS = 0.
At the boundary, the generally nonsymmetric Cauchy stress tensor σ satisfies the

continuity condition
[[σ − σM]]n = t̂, (7)

where t̂ is the external mechanical traction and the Maxwell stress tensor σM has the
relation [13,14]
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σM =
1
2

(
εoE ·E+

1
µo

B ·B− 2M ·B
)

I−
(

εoE⊗E+ P⊗E+
1
µo

B⊗B−B⊗M
)

. (8)

t̂

x = χ(X, t) X

X

xX

Br

Bt

BBB

EEE

Figure 1. Deformation due to the application of electromagnetic fields B and E, boundary displace-
ment, and boundary traction t̂. Br is the reference (undeformed) configuration, Bt is the current
configuration, and X and x are, respectively, the position vectors of X in the reference and current
configurations, where X represents a generic particle of the solid body.

1.4. Balance of Mass and Equation of Motion

The mass balance equation is [19]

ρ̇ + div(ρv) = 0 , (9)

where v is the velocity and ρ is the density of the body. The density in the reference
configuration is denoted ρr and ρ = J−1ρr.

The first law of movement is[13]

ρ
Dv
Dt

= divσ + fe + f, (10)

where
Dv
Dt

is the acceleration and
D
Dt

is the total time derivative, fe is the body force
due to the electromagnetic interactions and f is the body force that is independent of the
electromagnetic fields. In the case qe = 0 and J = 0, the body force fe is given by [13]

fe = (gradE)TP+ (gradB)TM+ ˙P×B+ div [v⊗ (P×B)]. (11)

The second law of movement is stated as

εσ = L , (12)

where σ is the Cauchy stress tensor. It is clear from Equation (12) that if the vector field
L 6= 0, then the Cauchy stress σ is a nonsymmetric second-order tensor. We note that ε is
the permutation tensor and, in this paper, we use the operator

ε(b⊗ c) = c× b , (13)

where b and c are vectors.

2. Constitutive Equations
2.1. The Amended Energy Function and the Total Stress Tensor

If ψ is the Helmholtz potential and ψ = ψ(F,Ee,B) [13,14]), we have, for an isothermal
problem, the Clausius–Duhem inequality, which takes the form

σ : D− ρψ̇−Me · Ḃ− Ėe · P ≥ 0 , (14)
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where the superposed dot represents the time derivative, : denotes the inner product of two
second-order tensors, and D = gradv. In view of the relation σ : D =

(
F−1σ

)T : Ḟ, (14) takes
the form (

F−1σ − ρ
∂ψ

∂F

)T
: Ḟ−

(
ρ

∂ψ

∂B +Me
)
· Ḃ−

(
ρ

∂ψ

∂Ee + P
)
· Ėe ≥ 0 . (15)

Since Ḟ, Ḃ, and Ėe are arbitrary, we obtain the relations

σ = ρF
∂ψ

∂F
, P = −ρ

∂ψ

∂Ee , Me = −ρ
∂ψ

∂B , (16)

where
Ee = E+ Ē , Ē = v×B , Me = M+ M̄ , M̄ = v× P. (17)

and we use the convention
(

∂ψ

∂F

)
αi
=

∂ψ

∂Fiα
[19].

In order to define a “total symmetric stress tensor”, let us consider the following
relations. First, notice that from Equation(1) and (3) we have

div(D⊗E) = (gradE)D = εo(gradE)E+ (gradE)P, div
[
(E ·E)

2
I
]
= (gradE)TE. (18)

Using the relations[
(gradE)− (gradE)T

]
E = curlE×E,

[
(gradE)− (gradE)T

]
P = curlE× P, (19)

we have

div
[
D⊗E− 1

2
εo(E ·E)I

]
= (gradE)TP+ curlE× P+ εocurlE×E. (20)

In view of (1), we have the relation curlE = −Ḃ and from (18), we obtain

div
[
D⊗E− 1

2
εo(E ·E)I

]
= (gradE)TP− Ḃ× P− εoḂ×E = (gradE)TP− Ḃ×D, (21)

thus
(gradE)TP = div

[
D⊗E− εo

2
(E ·E)I

]
+ Ḃ×D. (22)

On the other hand, using the relations

div(B⊗B) = (gradB)B, div
[
(B ·B)

2
I
]
= (gradB)TB, (23)[

(gradB)− (gradB)T
]
B = curlB×B, (24)

we have, in view of (1) and (3):

1
µo

div
[
B⊗B− (B ·B)

2
I
]
=

1
µo

curlB×B = Ḋ×B+ (curlM)×B. (25)

Therefore, from (1), we have the relations

div [(M ·B)I] = (gradB)TM+ (gradM)TB, div(B×M) = (gradM)B. (26)

Using the relation [
gradM− (gradM)T

]
B = curlM×B, (27)

we obtain
div [(M ·B)I−B⊗M] = (gradB)TM− (curlM)×B. (28)
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and from (25) and (28), we have

(gradB)TM = div
{

1
µo

[
B⊗B− 1

2
(B ·B)I

]
+ (M ·B)I−B⊗M

}
− Ḋ×B. (29)

To facilitate our formulation, we let

ψ(F,Ee,B) = ψ

(
F, F−TEe

L,
1
J

FB
)
= φ(U,BL,Ee

L), (30)

where
Ee

L = FTEe. (31)

We note that φ is objective [19]. Consider the relations

∂Ee

∂F
= −F−T ⊗Ee,

∂B
∂F

= −1
J

(
−FBL ⊗ F−1 +

3

∑
i=1

ei ⊗BL ⊗ ei

)
, (32)

where {ei} is the unit orthogonal vector basis in Cartesian coordinates in the current
configuration.

Using the previous expressions in (16), we prove that

σ = 2ρF
∂φ

∂C
FT − P⊗Ee − (Me ·B)I +B⊗Me. (33)

Proof. From (30) (see (31) and (4)) and using the chain rule, we obtain,

F
∂φ

∂F
= F

(
∂ψ

∂F
+

∂ψ

∂B
∂B
∂F

+
∂ψ

∂Ee
∂Ee

∂F

)
. (34)

The mathematical derivations below require the operator

q(r⊗ s⊗w) = (q · r)(s⊗w) , (35)

where q, r, s, and w are vectors. From (16), we have

ρF
∂ψ

∂F
= 2ρF

∂φ

∂C
FT = σ − (FMe)

∂B
∂F
− (FP)∂Ee

∂F
, (36)

and using (35), we obtain,

2ρF
∂φ

∂C
FT = σ − (FMe)

1
J

(
−FBL ⊗ F−1 +

3

∑
i=1

ei ⊗BL ⊗ ei

)
+ (FP)F−T ⊗Ee. (37)

We then obtain the simplified form

2ρF
∂φ

∂C
FT = σ + (Me ·B)I−B⊗Me + P⊗Ee, (38)

which implies that σ = 2ρF
∂φ

∂C
FT − P⊗Ee − (Me ·B)I +B⊗Me.

We prove that P⊗ (v×B) = B⊗ M̄−
(
M̄ ·B

)
I + v⊗ (P×B). Considering Cartesian

coordinates, let
A = P⊗ (v×B) ⇔ Aij = Piεirsvrbs,

and

G = B⊗ M̄−
(
M̄ ·B

)
I + v⊗ (P×B)

⇔ Gij = BiεjrsvrPs − εkrsvrPsBkδij + viεjrsPrBs.
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For the case i 6= j, in particular when i = 1 and j = 2, we have

A12 = P1ε213v1B3 + P1ε231v3B1 = G12,

and the same results can be obtained for (i, j) = (1, 3), (i, j) = (2, 1), etc., then for i 6= j, we
have that Aij = Gij. For the case i = j, for example when i = j = 1, we have

A11 = P1ε123v2B3 + P1ε132v3B2 = G11,

and similar results are obtained for the cases i = j = 2 and i = j = 3.
Using the relation

P⊗ (v×B) = B⊗ M̄−
(
M̄ ·B

)
I + v⊗ (P×B), (39)

from (21) and (29), we have

(gradE)TP = div
[
D⊗E− 1

2
εo(E ·E)I

]
+ Ḃ×D, (40)

(gradB)TM = div
{

1
µo

[
B⊗B− 1

2
(B ·B)I

]
+ (M ·B)I−B⊗M

}
− Ḋ×B. (41)

For clarity, we restate (10) and (11), i.e.,

ρa = divσ + fe + f, (42)

fe = (gradE)TP+ (gradB)TM+ ˙P×B+ div [v⊗ (P×B)]. (43)

Noticing that

σ = 2ρF
∂φ

∂C
FT − P⊗Ee − (Me ·B)I +B⊗Me, (44)

then, from (42) and (43), considering (40), (41), and P = D− εoE, we obtain

ρa = div
{

2ρF
∂φ

∂C
FT + εo

[
E⊗E− 1

2
(E ·E)I

]
+

1
µo

[
B⊗B− 1

2
(B ·B)I

]}
+div

[
B⊗ M̄−

(
M̄ ·B

)
+ v⊗ (P×B)− P⊗ (v×B)

]
+ ˙P×B

+Ḃ×D− Ḋ×B+ f, (45)

and using (39), the above equation becomes

ρa = divT + ˙P×B+ Ḃ×D− Ḋ×B+ f, (46)

where

T = 2ρF
∂φ

∂C
FT +

1
µo

[
B⊗B− 1

2
(B ·B)I

]
+ εo

[
E⊗E− 1

2
(E ·E)I

]
. (47)

Using ˙P×B = Ṗ×B+B× Ṗ and (3), we have that

˙P×B+ Ḃ×D− Ḋ×B = −εo
˙E×B, (48)

then, from (46), we obtain
ρa = divT− εo

˙E×B+ f. (49)

The expression εσ = L given in (12) is given as follows: From (17) and (33), we have

εσ = −ε[P⊗ (E+ v×B)] + ε(B⊗Me), (50)

therefore
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εσ = −ε : (P⊗Ee) + ε(B⊗Me),

= P×E+M×B+ P× (v×B) + (v× P)×B, (51)

then, using the identity v× (P×B) = P× (v×B) + (v× P)×B in (51), we obtain

εσ = P×E+M×B+ v× (P×B) = L (52)

and (12) is satisfied, while TT = T.
Using (30) in (16), we obtain

P = −ρF
∂φ

∂Ee
L

, Me = −ρJF−T ∂φ

∂BL
, (53)

and from (3), considering that the independent electromagnetic variables are B and E,
we have,

D = εoE− ρF
∂φ

∂Ee
L

, H =
1

µo
B+ ρJF−T ∂φ

∂BL
− v×

(
ρF

∂φ

∂Ee
L

)
. (54)

We can further simplify the relation in (47) by letting

Ω = ρ0φ +
1

2µ0
JB · B +

ε0

2
JEL · C−1EL (55)

and following the work of Shariff [12], with some algebra, we have the simplified version

T = 2J−1F
∂Ω
∂C

FT . (56)

In the case of incompressible bodies, J = 1 and (56) becomes

T = 2F
∂Ω
∂C

FT − pI , (57)

where p is a Lagrange multiplier associated with the incompressible constraint J = 1.

2.2. Continuity Condition in Terms of the Total Stress

Using (57) in (33) and replacing that in (7), after some manipulations, we obtain

σ − σM = T + P⊗ (B× v) +B⊗ (v× P) + [(P× v) ·B]I. (58)

If we recall the use of the superscripts (o) and (i) for outside and inside the body,
respectively, (7) becomes

(
σ(o) − σ

(o)
M − σ(i) + σ

(i)
M
)
n = t̂. Considering that outside (in

vacuum) P = 0 and using (58) in the above equation, we obtain
{

T(i) + P(i) ⊗ (B(i) ×

v) + B(i) ⊗ (v× P(i)) +
[
(P(i) × v) · B(i)]I}n = T(o)n + t̂. Outside the body, for the sake

of simplicity, we add the contribution of T(o)n to t̂, and dropping the superscript (i), the
continuity condition (7) becomes{

T + P⊗ (B× v) +B⊗ (v× P) +
[
(P× v) ·B

]
I
}

n = t̂, (59)

and for incompressible bodies, we have,{
τ − pI + P⊗ (B× v) +B⊗ (v× P) +

[
(P× v) ·B

]
I
}

n = t̂ , τ = 2F
∂Ω
∂C

FT . (60)
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3. Spectral Invariants

We are interested in applications concerning the behaviour of electromagnetic, active,
incompressible, transversely isotropic, soft solids. We assume that the Helmholtz potential
to have the form

ψ(F,Ee,B, a0) = ψ

(
F, F−TEe

L,
1
J

FB, a0

)
= Φ(U,BL,Ee

L, a0), (61)

where in the absence of electromagnetic fields and deformations, a0 is the preferred unit
vector of a transversely isotropic solid. In this paper, we prefer to express Φ in terms of the
following unit vectors [16],

e =
1

Ee
L
Ee

L , b =
1

BL
BL , Ee

L =
√
Ee

L ·Ee
L , BL =

√
BL ·BL (62)

and express the energy function as

Φ(U, b, e, a0, BL, Ee
L) . (63)

The invariance under rigid rotations of the body in the reference configuration then
requires that

Φ(U, b, e, a0, BL, Ee
L) = Φ(QUQT , Qb, Qe, Qa0, BL, Ee

L) (64)

for any orthogonal tensor Q; hence, Φ can be expressed as an isotropic invariant of U, a0.
Following the work of Shariff [12,16] (see also references therein), the spectral basis for the
scalar-valued isotropic function Ω consists of only 14 spectral invariants

λi(U) = λi(QUQT), ℵi = a0 · ui = Qa0 ·Qui, bi = b · ui = Qb ·Qui,

ei = e · ui = Qe ·Qui, BL , Ee
L , (65)

where λi are the principal stretches and ui are the principal directions of the right-stretch
tensor U, i.e.,

U =
3

∑
i=1

λiui ⊗ ui . (66)

Since a0, and are unit vectors, we have the relations

3

∑
i=1

a0 · ui = 1 ,
3

∑
i=1

b · ui = 1 ,
3

∑
i=1

e · ui = 1 . (67)

In view of the relations in (67), only 11 of the 14 invariants in (65) are independent.
We can then express

Φ = Φ(λi,ℵi, bi, ei, BL, Ee
L). (68)

We strongly emphasize that the function Φ must satisfy the P-property as described
in [16]. The construction of a P-property Φ, where it is independent of the signs of a0, b,
and e, can be facilitated using the following list of invariants [17]:

λi , αi = (a0 · ui)
2, βi = (b · ui)

2, γi = (e · ui)
2, ζi = (a0 · b)ℵibi,

κi = (a0 · e)ℵiei, $i = (b · e)biei, ηi = (a0 · b)(a0 · e)biei,

χi = (a0 · b)(b · e)ℵiei, ιi = (b · e)(a0 · e)ℵibi, BL, Ee
L. (69)

In (69), only 11 of the 14 spectral invariants are independent [16]. The advantages
of spectral invariants over traditional (classical) invariants [22] are given in Appendix A.
The expressions for the derivatives of Φ in C, Ee

L, and BL are almost exactly the same
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as in [11] (see Section 3 therein), with the only difference in the use of Ee
L instead EL.

We present them here for completeness.
In the case of considering the list of invariants in (69), we have (see [11,18]):(

∂Φ
∂C

)
ii

=
1

2λi

∂Φ
∂λi

, (70)(
∂Φ
∂C

)
ij

=
1

(λ2
i − λ2

j )

[(
∂Φ
∂αi
− ∂Φ

∂αj

)
ℵiℵj +

(
∂Φ
∂βi
− ∂Φ

∂β j

)
bibj

+

(
∂Φ
∂γi
− ∂Φ

∂γj

)
eiej +

1
2
(a0 · b)

(
∂Φ
∂ζi
− ∂Φ

∂ζ j

)
(ℵibj + ℵjbi)

+
1
2
(a0 · e)

(
∂Φ
∂κi
− ∂Φ

∂κj

)
(ℵiej + ℵjei) +

1
2
(b · e)

(
∂Φ
∂$i
− ∂Φ

∂$j

)
(biej + bjei)

+
1
2
(a0 · b)(a0 · e)

(
∂Φ
∂ηi
− ∂Φ

∂ηj

)
(biej + bjei)

+
1
2
(a0 · b)(b · e)

(
∂Φ
∂χi
− ∂Φ

∂χj

)
(ℵiej + ℵjei)

+
1
2
(a0 · e)(b · e)

(
∂Φ
∂ιi
− ∂Φ

∂ιj

)
(ℵibj + ℵjbi)

]
, i 6= j, (71)

where in the above expressions there is no sum in i and j. These expressions can be used
in (47) and (57).

On the other hand(
∂Φ
∂BL

)
i

=
∂Φ
∂BL

bi +
1

BL

[
(I− b⊗ b)T ∂Φ

∂b

]
· ui, (72)(

∂Φ
∂Ee

L

)
i

=
∂Φ
∂Ee

L
ei +

1
Ee

L

[
(I− e⊗ e)T ∂Φ

∂e

]
· ui . (73)

The relations (72) and (73) can be used in (53).

4. Final Remarks

In this article, a finite strain-based time-dependent mathematical framework for mag-
netoelectrically coupled materials is proposed, where a simple constitution is presented,
as shown in Equations (49) and (56). Magnetoelectrically activated soft materials such as
smart polymers and hydrogels have become increasingly essential multifunctional ma-
terials with a myriad of potential applications ranging from drug delivery with the help
of tiny robots to developing energy-harvesting systems to meet the expanding demands
of clean and green renewable energy. In practical applications, such as robotic devices
or energy-harvesting systems, time-dependent dynamical effects must not be discarded
to appropriately model a smart system activated by a magnetoelectrically coupled field;
hence, the present model will fill the gap in the current literature, in the sense that, to
the best of our knowledge, existing finite-strain constitutive equations can only model
time-independent effects (see, for example, references [12,20]). We are currently develop-
ing the corresponding time-dependent finite-element formulation and will use it to solve
practical boundary value problems and to aid the development of specific expressions for
the amended energy function Ω via experimental data. Our time-dependent finite-element
formulation will aid smart material designs, such as designing robotic devices, etc.



Symmetry 2023, 15, 628 11 of 12

Author Contributions: Conceptualization, M.H.B.M.S., R.B. and M.H.; methodology, M.H.B.M.S.,
R.B. and M.H.; formal analysis, M.H.B.M.S., R.B. and M.H.; investigation, M.H.B.M.S., R.B. and
M.H.; writing—original draft preparation, M.H.B.M.S., R.B. and M.H.; writing—review and edit-
ing, M.H.B.M.S., R.B. and M.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Physical modelling often requires representations for isotropic functions [22]. A con-
cise and efficient modelling of complex material behaviours requires the representations of
constitutive equations to be as compact as possible and, in view of this, irreducible com-
plete representations [22,23] play an important role in facilitating constitutive equations.
However, Shariff [16] (see also references therein) showed that, in general, the numbers of
traditional (classical) isotropic invariants [22–24] in irreducible bases (or minimal integrity
bases [22]) were not minimal and, in general, some of them were not independent. Minimal
irreducible representations are attractive, in the sense that they reduce modelling complex-
ity. Established classical irreducible isotropic bases are generally not minimal and most
of them have no direct physical interpretation; hence, the resulting constitutive equations
are too complicated for practical applications (see for example reference [25]). In view of
the unclear physical interpretation of classical isotropic invariants, it is not clear how to
select an appropriate (or optimum) subset from the corresponding full set (which generally
contains numerous elements) of irreducible isotropic bases to represent a physical model.
However, using the spectral invariants developed in Shariff [16], not only is our irreducible
spectral basis minimal and the spectral invariants independent, but our spectral invariants
have a clear physical interpretation, which is attractive, as exemplified below.

For simplicity, we consider a strain energy for a transversely isotropic elastic solid
with the preferred direction a0 in the reference configuration. The classical invariants [22]
required to describe the strain energy function are

K1 = trC , K2 =
1
2

(
(trC)2 − trC2

)
,

K3 = det C , K4 = a0 · Ca0 , K5 = a0 · C2a0 , (A1)

where tr denotes the trace of a tensor. Any effort to construct a reasonable constitutive
equation using the invariants in (A1) is hindered due to the constraint that the invariants
in (A1) depend explicitly on C and the strain energy function generally depends explicitly
on these invariants; hence, it does not allow us to use more general invariants (that cannot
be explicitly expressed in terms of C) which could ease the construction of a superior
strain energy function. Furthermore, except for K3 and K4, the invariants in (A1) do not
have a direct physical interpretation; hence, they are not experimentally attractive in the
sense that they are not suitable for a rigorous experiment to obtain a specific form of strain
energy function that requires to vary one invariant while keeping the remaining invariants
fixed [26] (denoted by an R-experiment). However, using the spectral invariants λi and
a0 · ui, Shariff [27] showed that it was possible to construct an R-experiment.

To summarize, it is clear that, for a model that requires a large number of classical
invariants to characterize its constitutive equation, considering that most classical invariants
do not have a direct physical interpretation and some of them are not independent, it is far
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more difficult to construct an R-experiment using classical invariants than using spectral
invariants. In addition to this, as mentioned above, it is not clear how to select an optimum
subset from a corresponding full set of classical-invariant irreducible bases, which generally
contain numerous elements, in order to represent a physical model.

We strongly emphasize that spectral formulations are more general, since all classical
isotropic invariants [22,23] can be explicitly written in terms of spectral invariants [16].
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