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Estimating threshold stresses using parametric equations for creep:
application to low-alloy steels
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ABSTRACT
Thepower lawmodel produces both temperature varying andunreliable estimates for its param-
eters. Threshold stresses have been suggested as a solution. The power law andWilshire models
are modified to include this stress and estimation and error decomposition methods applied
to assess its importance in representing failure times. A statistically significant and temperature-
dependent threshold stresswas identified in two low-alloy steels. This threshold stresswas closer
to the operating stress in the Wilshire model. The inclusion of this stress reduced interpolation
errors, but this improvement was greater in the Wilshire model. The Wilshire model increased
the random component of these errors at all temperatures in one material, but only at some
temperatures for the other.
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Introduction

Low-alloy ferritic steels such as 1Cr–0.5Mo, 1Cr–1Mo–
0.25V, 2.25Cr–1Mo and 0.5Cr–1Mo–1V are exten-
sively used for high temperature applications in the
power generation and petro-chemical industries. This
is because they all have good creep strength together
with good resistance to oxidation and hydrogen embrit-
tlement at the elevated temperatures required within
these sectors. The main applications for these steels
are in components such as turbine rotors and steam
pipes/headers. Typically, the components used within
the power generation sector operate at a temperature
and stress of around 823K and 50MPa, respectively.
The minimum creep rate, ε̇m, and times to failure tF
for the above-mentioned materials have typically been
described using variants of a power law relationship of
the form

ε̇m = M
tF

∝ exp
(−Qc

RT

)
σ n (1)

where Qc is the activation energy for self diffusion in
the bulk matrix, R is the universal gas constant, T is the
absolute temperature and σ is the applied stress.M (the
Monkman-Grant parameter) and n (the stress expo-
nent) are model parameters requiring determination
from the experimental data. Other parametric mod-
els strongly based on this power law model include
those developed by Larson and Miller [1], Manson
and Haferd [2], Manson and Brown [3], Manson and
Muraldihan [4], Trunin et al. [5] and Orr et al. [6].

However, these power law-based approaches have
several known weaknesses that are now well docu-
mented and include the derivation of unrealistic values
for the activation energy and stress exponent (which
also appears to vary with both stress and tempera-
ture) when these models are applied to creep data on
materials used for high temperature applications. The
development of the Wilshire equations [7] was driven
by a desire to overcome this problem of an unrealistic
and varying stress exponent. A fundamental feature of
this new approach was the normalisation of the applied
stress through use of the ultimate tensile strength.What
was new about this stress normalisation was that the
approach constrained failure times to zerowhen the test
stress equalled the tensile strength and infinity when
stress equalled zero. This was done using a ‘Weibull’
type expression of the form:

σ/σTS = exp
{
−

[
tF
kF

exp(−Qc/RT)

]u}
(2)

where Qc is the activation energy for self diffusion in
the bulk matrix, σTS is the tensile strength measured at
temperature T and kF and u are the unknown parame-
ters of the model. Research efforts using this approach
have concentrated on the application of the model to
a wide variety of engineering alloys [8–11] and has
been partially successful in stabilising the unknown
parameters. The unknown parameters kF and u for
many materials appear more stable than in the power
law model – remaining constant over wider stress and
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temperature ranges – changing only at one or two crit-
ical stress values (often around the yield stress) where
a change in creep mechanism is identified. However,
variation in this model’s parameters still remains.

It has been suggested that observing unrealistic n
values of more than 5 is the result of not account-
ing for threshold stress. Williams and Wilshire [12],
for example, suggested that creep occurs not under the
full applied stress, but under a reduced effective stress
(σ − σ 0), so that the power lawmodel is more correctly
written as

ε̇m = M
tF

∝ exp
(−Qc

RT

)
(σ − σo)

m (3)

where σ 0 can be regarded as either a friction stress
by the proponents of dislocation climb [13,14], or as a
back-stress by the proponents of dislocation glidemod-
els of creep [15]. σ 0 is also commonly referred to as a
threshold stress. Such authors as those above have sug-
gested that with an appropriate choice for σ 0,m can be
made independent of test conditions with the activa-
tion energy then being equal to that for self-diffusion
through the crystal lattice. They argued that the inclu-
sion of σ 0 will result in m having a value between 5 and
7 for dislocation glide and a value between 3 and 5 for
diffusion-controlled dislocation climb.

If it is the effective stress that is important, then the
Wilshire equation should also be rewritten as

σ − σ0

σTS − σ0
= exp

{
−

[
(tF − ts)

kF
exp(−Qc/RT)

]u}
(4)

In this reformulation, failure will occur either instan-
taneously (if tF = ts = 0), or in a very short period of
time given by ts, when σ = σTS. σ 0 is a threshold stress
such that for specimen’s placed on test under such a
condition, the specimen will never fail. In this reformu-
lation, tF → ts as σ → σTS, i.e. as σ−σ0

σLS−σ0
→ 1. Further,

tF → ∞ as σ → σ 0, i.e. as σ−σ0
σLS−σo

→ 0.
The presence of a threshold stress is not aswell estab-

lished for creep failure as it is for fatigue, but authors
have tried to explain its existence in different ways
depending on the material under investigation. For
low-alloy ferritic steels,microstructural changes tend to
develop after prolonged service at high temperature and
this mainly consists of the coarsening of carbides, com-
positional and morphological changes in the carbides,
and increases in the inter-particle spacing formation
of new carbides. Research by Senior [16], Singh and
Banerjee [17,18] and Cheruvu [19] have revealed that
such microstructural changes only lead to a degrada-
tion in creep strength after long exposure at lower stress
levels (and so by implication also at lower temperatures)
– given the long exposure required for such coars-
ening. As a result of this, at low stresses (long-term
rupture strengths) virgin and service exposed materi-
als were hardly distinguishable, suggesting the presence

of a threshold stress induced by these microstructural
changes. A threshold stress has also been observed by
researchers working on Nickel-based super alloys. For
example, Benz et al. [20] observed, in their study of
Alloy 617, the presence of a threshold stress at tem-
peratures 1023K (and less). Such temperatures directly
correlate to the γ /precipitates, with these precipitates
providing an obstacle to continued dislocation motion
which result in the presence of a threshold stress. In
essence the γ /precipitates provide a barrier to the
movement of dislocations which at lower temperatures
and thermal energies require a minimum stress for
dislocations to overcome such barriers to furthermove-
ment.

In addition to using a threshold stress and or the
Wilshire equation to stabilise the stress exponent,
another approach is to take the more pragmatic view
that all these models are imperfect descriptors of creep
and so should only apply over a very limited range
of test conditions. An estimation procedure based on
localised data points will then provide good fits to the
data and it will then be possible to trace out the vari-
ation in a models parameters with test conditions to
identify changing creep mechanisms. If this parame-
ter variation is then well defined with respect to test
conditions it can also be used for predictive purposes.
The LOESS technique proposed by Cleveland [21] is
one such procedure as it performs a regression on data
points in amoving range around the transformed stress
suggested by the creep model that is required for lin-
earisation, where the values in the moving range are
weighted according to their distance from this value.

This paper therefore has several aims. First, the
papermoves away from the existing approach (e.g. [14])
of measuring σ o experimentally, towards new meth-
ods for estimating threshold stresses directly from the
observed failure times by making use of the power
law and Wilshire creep models – suitably re-expressed
to include a threshold stress. Second, the paper tests
the statistical significance of a threshold stress within
the power law model because the use of such stresses
is not well proven or established in the creep litera-
ture (unlike for fatigue). Third, the LOESS estimation
technique is assessed as a means of dealing with imper-
fections remaining within the creep model. LOESS is
applied to both the power law and Wilshire thresh-
old models to see if the model structure affects the
values for the estimated threshold stress. All assess-
ments are made using the measures of creep model
misspecification outlined in Appendix 1 of the paper.
With regards to these misspecification tests, the main
advancement contained in this paper is the decompo-
sition of Holdsworth’s Z parameter into random and
systematic components because a high Z value does
not necessarily mean a poorly performing creep model
if most of Z is made up of random errors. The paper
then uses data on 1Cr–1Mo–0.25V rotor steel and
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Figure 1. Stress and temperature dependence of failure times (averaged over all batches) for (a) 2.25Cr–1Mo steel (CreepData Sheet
3B &50A [22,23]) and (b) 1Cr–1Mo–0.25V (Creep Data Sheet 3B &50A [23,24]).

2.25Cr–1Mo steel to illustrate these modifications and
estimation procedures.

Public domain data sets

This paper makes uses of some extensive creep data
sets that are currently in the public domain. NIMS
Creep Data Sheet 3B &50A, published by the Japanese
National Institute for Materials Science (NIMS) [22,23]
provides extensive rupture data for 12 batches of
2.25Cr–1Mo steel where each batch has a different
chemical composition that underwent one of four dif-
ferent heat treatments, details ofwhich are given in [22].
Specimens for the tensile and creep rupture tests were
taken radially from the ring-shaped samples which
were removed from the virgin material. Each test spec-
imen had a diameter of 6mm with a gauge length
of 30mm. These specimens were tested at constant
load over a wide range of conditions: 333–22MPa and
723–923K. In addition tominimumcreep rate and time
to failure measurements, values are also given of the
times to attain various strains – 0.005, 0.01, 0.02 and
0.05 over a selected range of the above-mentioned test
conditions. Also reported are the values of the 0.2%
proof stress and the ultimate tensile strength deter-
mined from high strain tensile tests carried out at
the creep temperatures for each batch of steel inves-
tigated. Failure times are averaged over all batches at
each temperature, and these values are displayed in
Figure 1(a).

NIMS creep data sheets 9B & 50A, published by
the Japanese National Institute for Materials Science

(NIMS) [24,23], includes information on nine batches
of tempered bainitic 1Cr–1Mo–0.25V steel, where each
batch corresponded to a different heat treatment and
a different chemical composition, details of which are
given in [24]. Specimens for the tensile and creep rup-
ture tests were taken radially from the ring-shaped
samples which were removed from the virgin tur-
bine rotors. Each test specimen had a diameter of
10mm with a gauge length of 50mm. These speci-
mens were tested at constant load over a wide range
of conditions: 412–47MPa and 723–948K. In addi-
tion to minimum creep rate and time to failure mea-
surements, values are also given of the times to attain
various strains – 0.005, 0.01, 0.02 and 0.05 over a
selected range of the above-mentioned test conditions.
Also reported are the values of the 0.2% proof stress
and the ultimate tensile strength determined from
high strain tensile tests carried out at the creep tem-
peratures for each batch of steel investigated. Again,
the failure times are averaged over all batches at
each temperature, and these values are displayed in
Figure 1(b).

In addition to these data sheets, NIMS Creep Data
Sheet No. M-6 [25] is a detailed metallographic atlas,
containing additional information on hardness and
microstructural changes observed over time in a selec-
tion of test specimens.

Methodology

Based on Equation (3), the threshold-power law and
Monkman-Grant description of time to failure at any
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stress and temperature combination is given by

tF = B(σ − σo,v)
m exp

(
Qc

1
RT

)
v = 1 to p (5a)

In Equation (5a) the threshold stress is allowed to be
different at each of the p test temperatures. Again, and
in relation to Equation (3), B is a new constant . At
constant temperature this can be written as

tF = α(σ − σo,v)
m (5b)

With

ln(α) = ln (B) + Qc
1
RT

(5c)

Estimating the parameters of Equation (5a) requires
a combination of linear and non-linear least squares.
First, the threshold stress associated with each temper-
ature is set equal to zero. This linearises Equation (5a)
(once logs are taken on both side of the equation) so
that least squares can be used to estimate B, m and
Qc. These estimates will be associated with a residual
sum of squares – which will be a minimum given a
zero-threshold stress. Then a standard non-linear least
squares procedure is used to search for better values
for the threshold stresses. This search continues until,
when using the estimates for the threshold stress on the
last iteration of this non-linear search procedure, it is
impossible to lower the residual sum of squares from a
linear regression using these latest threshold stresses. In
this paper, the generalised reduced gradient non-linear
technique within Excel’s Solver [26] is used. As such
centralised derivatives are used to locate the minimum
residual sum of squares.

If this threshold power law model is correctly speci-
fied, the parameters B and m should be constants with
respect to stress and temperature. The constancy of B
andm in Equation (5a) can be tested statistically by car-
rying out the following regression over all temperatures

ln[tF] = ln(α) + m(τv) +
p−1∑
v=1

δvDv +
p−1∑
v=1

βvτvDv

(6)
where τ ν = ln(σ−σ 0,v) and where there are p differ-
ent temperatures. Dv = 1 if the test temperature cor-
responds to temperature Tv and zero otherwise. There
is no Dv for temperature Tv = 823K and so ln(α) is
the intercept of the best fit line put through all the data
points at 823K and m its slope. In this specification,
it can be shown that the values for βv equal the val-
ues that would be obtained for m when carrying out
a regression using Equation (5b) (after linearising by
taking logs through both sides of the equation) applied
separately to each temperature. The t statistic on δv and
βv then tests the null hypotheses that the intercepts and
slopes of the best fit lines at other temperatures are the
same as the intercept and slopes at 823K. Statistical

significance can then be measured using the p-values
associated with these t statistics.

The thresholdWilshiremodel can be semi-linearised
with respect to its unknown parameters using logs

ln(tF − ts) = ln(kF) + 1
u
ln(σ ∗) + Qc

1
RT

(7a)

where

σ ∗ =
[
− ln

(
σ − σ0,v

σTS − σ0,v

)]
(7b)

In its estimation, it is again assumed thatQc is a constant
with respect to test conditions and threshold stress only
varies with temperature. To estimate the parameters of
Equations (7), the threshold stress associated with each
temperature are first set equal to zero. Least squares can
be used to estimate kF , u and Qc. These estimates will
be associated with a residual sum of squares – which
will be a minimum given a zero-threshold stress. Then
Excel’s Solver [26] is used to find better values for the
threshold stresses in the same way as that described for
the power law model.

In either of thesemodels, the joint significance of the
threshold stresses can be tested using the F test given
by Equation [A13] in Appendix 2. The ability of Equa-
tions (5) and (7) to adequately describe failure times can
be assessed using the RESET test given in Appendix 1.
It can also be assessed using the performance statistics
discussed in more detail in Appendix 1.

Another approach to dealingwith any observed vari-
ation in m and u is to accept that these models are
an imperfect explanation of minimum creep rates and
failure times. That is, the model is only a realistic expla-
nation of creep over a reduced range of test conditions.
Oneway to implement this is to have an estimation pro-
cedure that only considers test conditions local to the
test condition of interest. Once repeated for all test con-
ditions of interest, this estimation procedure will then
reveal the nature of the variation in u and m with the
test conditions and so could reveal more information
on changing creep mechanisms. One such estimation
procedure is the locally weighted scatterplot smooth-
ing (LOESS) curve first proposed by Cleveland [21].
Here data points around a chosen test condition are
weighted with points further away from this chosen test
condition being given less weight in a standard least
squares estimation (i.e. weighted least squares are used).
A zero weight is then used for conditions beyond a
selected band width. This process is then repeated for
all stresses and temperatures revealing different values
for the model parameters B, m, kF and u at each test
condition. These can then be used to make interpola-
tions and/or extrapolations. To achieve this, the power
threshold and Wilshire models are rewritten as

ln(tF) − Qc
1
RT

= ln(B) + m ln(σ − σ0,v) (8a)
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ln(tF − ts) − Qc
1
RT

= ln(kF) + 1
u
ln(σ ∗) (8b)

More details of this technique are provided in
Appendix 2, where it is further assumed thatQcis a con-
stant – so that only the values for parameters B, m, u
and kF are dependent on test conditions. The threshold
stress only varies with temperature.

Results and discussion

Non-linear least squares estimation of the
threshold power lawmodel

2.25Cr–1Mo steel
Equation (9) shows the results of estimating Equa-
tion (5b) using the non-linear search procedure
described in the methodology section above

ln[tF] =

8.5815 −4.1575 ln(σ − σo,v) +178.4017
1000
RT

[6.40] [−23.23] [16.29]
{0} {0} {0}

723K : σ0,1 = 129MPa 748K : σ0,2 = 87MPa 773K : σ0,3 = 70MPa
798K : σ0,4 = 36MPa 823K : σ0,5 = 44MPa 873K : σ0,6 = 4MPa

923K : σ0,7 = 0

(9)

where the square brackets contain the t values associ-
ated with the null hypothesis that the parameter value
above it are zero, and the numbers in curly brackets the
p-value associated with this t test (and so give the prob-
ability of this null hypothesis being true). There are a
number of observations around Equation (9) that indi-
cate this representation of creep is reasonable. First, a
positive threshold stress is observed at all temperatures
except at 923K. The joint statistical significance of these
threshold stresses was tested using the F test given by
Equation (A13) in Appendix 2. This F value comes out
at 7.4, which is statistically significant even at the 1%
significance level. Thus, while the threshold stress may

not be present at all temperatures, there are threshold
stresses that are strongly dependent on temperature –
being highest at the lowest temperatures. Second, theR2

value for thismodel is 93.24%,which is quite reasonable
given the stochastic nature of creep.

However, there are also some features of this model
that suggest it is mis-specified or at least an imper-
fect descriptor of the observed failure times, First, the
estimated activation energy of around 178 kJmol−1 is
a little below the activation energy for self-diffusion
quoted by Whittaker and Wilshire [27] (of around
230 kJmol−1 for this material). Second, the estimation
of Equation (6) yielded

lntF =
11.95 −2.34D1 −0.16D2 −4.78D3 +4.01D4 −5.57D6 −6.76D7
[0] [0.03] [0.96] [0.02] [0.71] [0] [0.02]

−4.99τ5 +0.62τ1D1 +0.17τ2D2 +1.17τ3D3 −0.72τ4D4 +1.49τ6D6 +1.62τ7D7
[0] [0.49] [0.81] [0.01] [0.75] [0] [0.03]

(10)

and the p-values in parenthesis clearly show that the
stress exponent m and intercept term in Equation (9)
are not really constant with respect to all temperatures.
The value for m at 823K is −4.99, while at 773K it
is −4.99+ 1.17 and this difference is statistically sig-
nificant at the 5% significance level. The value for the
intercept (α) at 823K is 11.95, while at 773K it is
11.95-4.78 and this difference is again statistically sig-
nificant at the 5% significance level. As well as this,
m at 873 and 923K are statistically different from the
value at 823K. Equation (10) suggests then thatm varies
between−3 and−5 –values that are consistentwith dis-
location climb. The lack of constancy inm is visualised
in Figure 2(a).

In addition, when the squared predictions obtained
from Equation (9) are added as another variable to

Equation (9), the resulting RESET test gave a p-value
of 0.003 for the null hypothesis of no misspecification,
thus suggesting this threshold power law model is sta-
tistically mis-specified at the 1% significance level. This
misspecification can be seen in Figure 2(a), which plots
tF exp[178(1000/RT)] against (σ−σ 0,v) revealing data
points that define a curve rather than a line.

The top half of Table 1 gives further evidence that
while not perfect, the threshold power law model is a
reasonable but mis-specified description of the creep
failure times. The Z statistic is unacceptable high (>4)
at 823 and 873K. The MPSE is reasonable at most tem-
peratures – except at 873K. But on the plus side nearly
70% of this error is random in nature. Indeed the pro-
portion of the MPSE that is random in nature is quite
high (above 20%) except at 798K.
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Figure 2. Dependency of the temperature adjusted average failure times (calculated using Qc = 178 kJmol−1 in the threshold
power law model) for (a) 2.25Cr–1Mo and (b) 1Cr–1Mo–0.25V steels.

Table 1. Interpolative performance of the threshold power law model when applied to two different low-alloy steels.

948 K 923 K 898 K 873 K 848 K 823 K 798 K 773 K 748 K 723 K

2.25Cr–1Mo steel
Z – 3.4 – 13.8 – 4.9 2.0 2.3 2.4 1.6
MPSE – 31.7 – 105.7 – 38.7 4.7 10.3 9.7 2.3
RMPSE – 5.6 – 10.3 – 6.2 2.2 3.2 3.1 1.5
UM – 46.3 – 14.5 – 11.1 1.8 13.7 7.6 1.5
UR – 32.3 – 16.1 – 53.5 96.4 39.3 63.5 20.9
UD – 21.4 – 69.4 – 35.4 1.8 47.0 28.9 77.6

1Cr–1Mo–0.25V steel
Z 1.9 2.1 2.0 8.9 7.2 10.7 9.5 6.5 – 3.7
MPSE 146.9 7.1 5.4 8.4 51.6 75.1 59.9 50.0 – 12.9
RMPSE 12.1 2.7 2.3 9.2 7.2 8.7 7.7 7.1 – 3.6
UM 98.0 17.7 10.5 26.8 2.3 1.5 4.8 9.8 – 1.3
UR 2.0 26.7 85.5 36.5 0.7 1.1 47.4 51.1 – 98.7
UD 0.0 55.6 4.0 36.7 97.0 97.4 47.8 39.1 – 0.0

Z is defined by Equation (A5), MPSE through Equation (A3). RMPSE is the square root of MPSE. Both MPSE and RMPSE are in %. UM , UR and UD are defined by
Equation (A8) of Appendix 1 and are in % (decomposition of MPSE).

ln[tF] =

13.8710 −3.3083 ln(σ − σo,v) +121.58911000RT
[7.73] [−15.35] [9.39]
{0} {0} {0}

723K : σ0,1 = 223MPa 773K : σ0,2 = 186MPa 798K : σ0,3 = 161MPa
823K : σ0,4 = 109MPa 848K : σ0,5 = 82MPa 873K : σ0,6 = 24MPa

898K : σ0,7 = 19 923K : σ0,8 = 0MPa 948K : σ0,9 = 0MPa

(11)

Again, there are several observations around Equa-
tion (11) that indicate this representation of creep is
reasonable for this material. First, a positive thresh-
old stress is observed at all temperatures except above
898K. The F test for the joint significance of these

threshold stresses comes out at 6.3, which again is sta-
tistically significant even at the 1% significance level.
Thus, once again there are threshold stresses that
are strongly dependent on temperature. Compared to
2.25Cr–1Mo steel, these threshold stresses are much



MATERIALS SCIENCE AND TECHNOLOGY 7

Figure 3. Dependency of (a) ln(B) and (b)m in Equation (8a) on test conditions for 2.25Cr–1Mo steel.

larger, however. Second, the R2 value for this model is reasonably high at 86.2%. Thirdly, the estimation of
Equation (6) yielded

lntF =
14.54 +15.04D1 +4.07D2 +4.80D3 −1.16D5 −3.47D6 −3.34D7 −2.36D8 −3.91D9
[0] [0.52] [0.23] [0.28] [0.71] [0.17] [0.56] [0.60] [0.54]

−3.44τ5 −2.95τ1D1 −0.91τ2D2 −1.12τ3D3 +0.26τ5D5 +0.88τ6D6 +0.75τ7D7 +0.48τ8D8 +0.61τ9D9
[0] [0.52] [0.20] [0.25] [0.70] [0.11] [0.56] [0.63] [0.68]

(12)

and the p-values in parenthesis clearly show that the
stress exponent m and intercept term in Equation (11)
are constant with respect to all temperatures at the 10%
significance level (but at the 5% significance level, m
may be different at 873K compared to 823K). The value
form at 823K is−3.44, while at 873K it is−3.44+ 0.88
and this difference is not statistically significant at the
10% significance level. The value for the intercept (α) at
823K is 14.54 and at the 10% significance level the inter-
cept is no different at any other temperature. Equation
(12) suggests then that m is around −3.44 – a value
that is consistent with dislocation climb. The near con-
stancy in m is visualised in Figure 2(b). Fourthly, when
the squared predictions obtained from this equation are
added as another variable to Equation (11) the result-
ing RESET test gave a p-value of 0.053 for the null
hypothesis of no misspecification, Thus suggesting this
threshold power law model is not mis-specified using
a 5% significance level (but it is at the 1% significance
level).

However, there are also some features of this model
that suggest it is mis-specified or at least an imperfect

descriptor of the observed failure times, First, the esti-
mated activation energy of around 122 kJmol−1 is well
below the activation energy for self-diffusion quoted by
Scharning andWilshire [8] (of around 300 kJmol−1 for
this material). Second, the bottom half of Table 1 gives
further evidence for this material that the threshold
power law model is far from an ideal description of the
creep failure times. At all temperatures, the Z statistic
is unacceptable high (>4) at 773–873K. At these tem-
peratures theMPSE is highwith values between 8% and
60%. The random component of this MPSE remains
very low at 948, 898 and 723K.

Possible explanations for varying stress exponent
The reason for a smaller slope at high temperatures
could be down to the fact that some specimens tested
at these temperatures all remained exposed for the
longest periods of time because they were conducted
at the lowest stresses within the test matrix. An inspec-
tion of some of the images of the failed test spec-
imens in creep data sheet 3B [22] at these temper-
atures and long exposures revealed the presence of
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Figure 4. Temperature-adjusted failure times as a function of stress together with LOESS interpolations obtained using Equation
(8a) and parameter values in Figures 3 and 6(a,b), for (a) 2.25Cr–1Mo and (b) 1Cr–1Mo–0.25V–steels.

an oxidised surface that could weaken its load bear-
ing strength. Further, the NIMS Metallographic Atlas
[25] reveals that the received bainitic regions degrades
to Ferrite and Molybdenum carbide particles, with
very coarse carbides along grain boundaries. Both of
these phenomena would result in faster creep rates
and creep lives that are substantially shorter in tests
of long duration at 873K and above, than would be
expected by direct extrapolation of the best fit lines
seen in Figure 2(a,b) at the lower temperatures That
is, it would result in the bending of the curve seen in
the figures at the long exposure present at these high
temperatures and lower stresses. The second of these
two explanations would then be consistent with the
presence of a threshold stress below 873K – with car-
bide coarsening at the high temperatures removing the
need for a minimum stress required for dislocations
to move.

Explanation for the presence of threshold stresses
The presence of a threshold stress and its dependence
on temperature could reflect the fact that for this data
set, the longest exposed test specimens are at the high-
est two temperatures (due to the low stresses), where as
noted above, noticeable carbide coarsening takes place.
This will weaken the barriers to dislocation movement
and so remove the presence of a minimum or thresh-
old stress required for dislocation movement. Conse-
quently, the estimated threshold stresses are at 873 and
923K either zero or very close to it. Alternatively, the

presence of large threshold stresses at the lowest tem-
peratures may be the result of lower thermal energies
making creep more stress-dependent – i.e. requiring a
minimum stress before barriers to dislocation move-
ment can be overcome. This minimum is larger the
lower the thermal energy present – the lower is the
temperature.

LOESS estimation of the threshold power law
model

2.25Cr–1Mo steel
Figure 3(a,b) shows some results fromusing this LOESS
procedure to estimate the parameters of Equation (8a)
for 2.25Cr–1Mo data. Both B and m follow very simi-
lar patterns showing a very strong dependency on test
conditions. At temperatures of 823K and above and
with stresses less than around 150MPa, ln(B) increases
with stress andm decreases with stress. Between a stress
of around 150 and 250MPa both these parameters are
broadly constant at temperatures below 823K and for
higher stresses ln(B) starts to increase and m decrease
with stress.

The value for Qc was estimated at 306 kJmol−1,
again rather on the large side for this material, and the
threshold stresses were estimated at

723K : σ0,1 = 37MPa; 748K : σ0,2 = 25MPa;
773K : σ0,3 = 26MPa;
798K : σ0,4 = 10 MPa; 823K : σ0,5 = 17 MPa
873K : σ0,6 = 6MPa; 923K : σ0,7 = 0MPa
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Table 2. Interpolative performance of the threshold power law model estimated using the LOESS technique when applied to two
different low-alloy steels.

948 K 923 K 898 K 873 K 848 K 823 K 798 K 773 K 748 K 723 K

2.25Cr–1Mo steel
Z – 1.6 – 1.8 – 2.8 1.3 2.2 1.7 1.5
MPSE – 3.8 – 4.5 – 14.2 1.8 10.4 3.3 1.9
RMPSE – 2.0 – 2.1 – 3.8 1.3 3.2 1.8 1.4
UM – 29.6 – 2.2 – 2.0 53.5 18.0 6.9 3.0
UR – 70.0 – 3.3 – 30.5 37.6 62.0 70.5 74.6
UD – 0.4 – 94.5 – 67.5 8.9 20.0 22.6 22.4

1Cr–1Mo–0.25V steel
Z 2.2 1.2 1.5 3.0 2.2 1.7 2.8 2.4 – 1.0
MPSE 154.9 4.3 2.1 30.1 8.7 3.4 12.4 11.3 – 1.6
RMPSE 12.4 2.1 1.5 5.5 3.0 1.8 3.5 3.4 – 1.3
UM 97.0 88.6 30.8 48.2 3.4 0.2 4.4 8.9 – 99.8
UR 3.0 1.7 2.9 47.9 5.8 39.4 78.7 4.2 – 0.2
UD 0.0 9.7 66.3 3.9 90.7 60.4 16.9 86.9 – 0.0

Z is defined by Equation (A5), MPSE through Equation (A3). RMPSE is the square root of MPSE. Both MPSE and RMPSE are in %. UM , UR and UD are defined by
Equation (A8) of Appendix 1 and are in % (decomposition of MPSE).

which are much smaller in value than those obtained
in Equation (9). Nevertheless, they are jointly signifi-
cantly different from zero at the 1% significance level
with a F statistic value of 13.6. Figure 4(a) then plots
the interpolated time-adjusted failure times obtained
by substituting into Equation (8a) the values for ln(B)
andm shown in Figure 3(a,b), together with theQc and
threshold stress values are shown above. Compared to
Figure 2(a), an improvement is noticeable in terms of
reduced scatter in the data around a smooth continuous
interpolation curve that represents this data quite well.
This is further seen in the statistics shown in the top half
of Table 2. Compared to the threshold power lawmodel
estimated via non-linear least square, the Z values are
lower at all temperatures – especially at 873Kwhere this
LOESS estimated model is far superior in performance.
All the Z values are also much lower than the critical
value of 4. The MSPE is also considerably lower at all
temperatures (except at 773Kwhere they are the same).
In terms of howmuch of thisMPSE is random in nature
there is a mixed picture. The LOESS estimated model
has more random interpolative error at 873, 823 and
798K, but lower a lower random component at other
temperatures.

This is all visualised in Figure 5(a). The solid curves
show the interpolations of time to failure at each stress
and consistent with the statistics in Table 2, the interpo-
lations look poorest at 948K.

1Cr–1Mo–0.25V steel
Figure 6(a,b) shows some results fromusing this LOESS
procedure on 1Cr–1Mo–0.25V steel. Both B and m
are strongly dependent on test conditions but in a
more straightforward way than for 2.25Cr–1Mo steel.
Up to around 325MPa, ln(B) increases with stress
and m decreases with stress. At temperatures of 823K
and above with stress less than around 150MPa ln(B)
increases with stress and m decreases with stress. Tem-
perature then shifts the dependency in an almost paral-
lel fashion. Above 325MPa and for temperatures below

798K these parameters remain constant with respect to
stress.

The value for Qc was estimated at 133 kJmol−1,
again unrealistically small for this material, and the
threshold stresses were estimated at

723K : σ0,1 = 229MPa; 773K : σ0,2 = 176MPa;

798K : σ0,3 = 146MPa; 823K : σ0,4 = 119MPa;

848K : σ0,5 = 82MPa; 873K : σ0,6 = 38MPa;

898K : σ0,7 = 12MPa; 923K : σ0,8 = 0MPa;

948K : σ0,9 = 0MPa

which are much the same in value as in Equation (11).
Further, they are jointly significantly different from
zero at the 5% significance level with an F statistic
value of 2.9. Figure 4(b) then plots the interpolated
time-adjusted failure times obtained by substituting
into Equation (8a) the values for ln(B) and m shown
in Figure 6(a,b) together with the Qc and threshold
stress values shown above. Compared to Figure 2(b), an
improvement is noticeable in terms of reduced scatter
in the data around a smooth continuous interpolation
curve that represents these data quite well. The scatter
is not as small however as in the case of 2.25Cr–1Mo
steel. This is also apparent in the statistics shown in
the bottom half of Table 2. Compared to the threshold
power lawmodel estimated via non-linear least squares
(Table 1), the Z values are lower at all temperatures
except 948K – and at 848K and above this LOESS esti-
mated model is far superior in performance. All the Z
values are also much lower than the critical value of 4.
TheMSPE is also considerably lower at all temperatures
except at 948K. In terms of how much of this MPSE is
random in nature there is a mixed picture. This LOESS
estimated model has more random interpolative error
at 898 and 773K. This is all visualised in Figure 5(b).
The solid curves show the interpolations of time to fail-
ure at each stress using LOESS and are consistent with
the statistics in Table 2 – the interpolations look poorest
at 948 and 873K.
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Figure 5. Failure times as a functionof stress togetherwith this LOESS interpolations obtainedusing Equation (8a) for (a) 2.25Cr–1Mo
and (b) 1Cr–1Mo–0.25V steels.

Figure 6. Dependency of (a) ln(B) and (b)m in Equation (8a) on test conditions for 1Cr–1Mo–0.25V steel.

LOESS estimation of the thresholdWilshiremodel

2.25Cr–1Mo steel

Figure 7(a,b) contain the values for ln(kF) and 1/u
of Equation (8b) found at each test condition using
LOESS. Both ln(kF) and 1/u show a strong depen-
dency on test conditions. At temperatures of 823K
and above with stress levels less than around 125MPa,

ln(kF) decreases with stress and 1/u increases with
stress. Then at higher stresses and lower tempera-
tures, ln(kF) is broadly constant with respect to stress,
while 1/u shows a slight tendency to decline with
stress.

The value for Qc was estimated at 190 kJmol−1,
which is closer to the value of 230 kJmol−1 reported
byWilshire andWhittaker [27] than the value obtained
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Figure 7. Dependency of (a) ln(kF ) and (b) 1/u in Equations (8b) on test conditions for 2.25Cr–1Mo steel.

above using LOESS or non-linear least squares on the
threshold power lawmodel. The threshold stresses were
estimated as

723K : σ0,1 = 85MPa; 748K : σ0,2 = 35MPa;

773K : σ0,3 = 24MPa; 798K : σ0,4 = 1MPa;

823K : σ0,5 = 9MPa; 873K : σ0,6 = 6MPa;

923K : σ0,7 = 0MPa

It appears that the creep model used has only a min-
imal effect on the estimated threshold stress. The
only noticeable difference appears at 723K where the
Wilshire model has a threshold stress about twice as
large as in the threshold power law model. These
threshold stresses are jointly significantly different from
zero at the 1% significance level with and F statistic
value of 7.05.

Figure 8(a) then plots the interpolated time-adjusted
failure times obtained by substituting into Equation
(8b) the values for ln(kF) and 1/u shown in Figure 7(a,b)
together with the Qc and threshold stress values shown
above. Compared to Figure 4(a), there appears to be
more scatter around the model’s interpolated values,
especially at higher stresses, and the fit is not so good
at 823K in the LOESS estimated threshold Wilshire
model. In the threshold power law model deviations
from a straightish line occurs only once, while in the
threshold Wilshire model this happens twice. This is
further seen in the statistics shown in the top half
of Table 3. Compared to the threshold power law
model estimated via LOESS (Table 2), the Z values are
about the same or a little higher depending on the
temperature – especially at 823K where the LOESS

estimated threshold Wilshire model is far inferior in
performance. All the Z values are also the same or
much lower than the critical value of 4. The same
picture holds for the MSPE. The LOESS estimated
threshold Wilshire model has more random interpola-
tive error at all of the temperatures except at 823K
compared to the LOESS estimated threshold power
law model.

This is all visualised in Figure 5(a). The dashed
curves show the interpolated time to failures at each
stress for the thresholdWilshiremodel. Consistent with
the statistics in Tables 2 and 3, the threshold Wilshire
interpolations look better than the threshold power law
model at 873K but worse at 823K.

1Cr–1Mo–0.25V steel
Figure 9(a,b) contains the values for ln(kF) and 1/u
found at each test condition. Both ln(kF) and 1/u
show a very strong dependency on test conditions. At
temperatures of 848K and above and with stresses less
than around 250MPa, ln(kF) decreases with stress and
1/u increases with stress. Then at higher stresses and
lower temperatures ln(kF) and 1/u are broadly constant
with respect to stress.

The value for Qc was estimated at 245 kJmol−1,
again rather on the small side for this material, and the
threshold stresses were estimated at

723K : σ0,1 = 0MPa; 773K : σ0,2 = 68MPa;

798K : σ0,3 = 67MPa; 823K : σ0,4 = 57MPa;

848K : σ0,5 = 45MPa; 873K : σ0,6 = 24MPa;

898K : σ0,7 = 15MPa; 923K : σ0,8 = 0MPa;
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Figure 8. Temperature-adjusted failure times as a functionof stress togetherwith the LOESS interpolationsobtainedusingEquations
(8b) for (a) 2.25Cr–1Mo and (b) 1Cr–1Mo–0.25V steels.

Table 3. Interpolative performance of the threshold Wilshire model estimated using the LOESS technique when applied to two
different low-alloy steels.

94 8K 923 K 898 K 873 K 848 K 823 K 798 K 773 K 748 K 723 K

2.25Cr–1Mo steel
Z – 3.2 – 1.6 – 4.2 1.3 2.4 1.4 1.6
MPSE – 16.6 – 2.9 – 28.1 4.4 11.2 3.5 2.3
RMPSE – 4.1 – 1.7 – 5.3 2.1 3.3 1.9 1.5
UM – 8.8 – 0.7 – 1.9 86.0 9.6 53.4 1.0
UR – 82.3 – 0.2 – 61.7 3.2 49.7 22.8 23.8
UD – 8.0 – 99.1 – 36.4 10.8 40.7 23.8 75.2

1Cr–1Mo–0.25V steel
Z 1.7 1.1 1.3 2.1 1.7 1.5 2.4 3.7 – 1.3
MPSE 8.4 4.3 2.2 7.2 3.4 1.9 8.9 21.7 – 3.1
RMPSE 2.9 2.1 1.5 2.7 1.8 1.4 3.0 4.7 – 1.8
UM 74.3 97.5 59.3 6.9 0.8 4.8 0.1 0.1 – 85.3
UR 25.7 1.5 19.8 80.3 12.0 88.3 70.2 2.8 – 14.7
UD 0.0 1.0 20.9 12.8 87.2 6.9 29.7 97.1 – 0.0

Z is defined by Equation (A5), MPSE through Equation (A3). RMPSE is the square root of MPSE. Both MPSE and RMPSE are in %. UM , UR and UD are defined by
Equation (A8) of Appendix 1 and are in % (decomposition of MPSE).

948K : σ0,9 = 0MPa

For this material, model selection seems to make a big
difference to the estimated threshold stress at temper-
ature at or below 848K. At higher temperatures the
values are very similar. Unusually, the estimated thresh-
old stress at 723K is zero – but this may reflect the
small number of observations at this temperature (just
two data points). Nevertheless, these stresses are jointly
significantly different from zero at the 5% significance
level with and F statistic value of 2.12. Figure 8(b)
then plots the interpolated temperature-adjusted fail-
ure times obtained by substituting into Equation (8b)
the values for ln(kF) and 1/u shown in Figure 9(a,b),

together with the Qc and threshold stress values shown
above. Compared to Figure 4(b), there appears to be less
scatter around the model’s interpolated values, and the
relationship with stress appears more straightforward
than for 2.25Cr–1Mo steel. There also appears to be less
scatter around this models interpolated values and the
relationship with stress appears more straightforward
compared to the LOESS estimated threshold power law
model. This is further seen in the statistics shown in
the bottom half of Table 3. Compared to the threshold
power law model estimated via LOESS (Table 2), the Z
values are about the same or a little smaller depending
on the temperature (except at 773K where it is a lit-
tle higher). All the Z values are also much lower than
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Figure 9. Dependency of (a) ln(kF ) and (b) 1/u in Equations (8b) on test conditions for 1Cr–1Mo–0.25V steel.

the critical value of 4. The same picture holds for the
MSPE. The LOESS estimated thresholdWilshire model
has more random interpolative error at temperatures
of 873, 798 and 773K compared to the LOESS esti-
mated threshold power law model. The opposite is true
at other temperatures.

This is all visualised in Figure 5(b). The dashed
curves show the interpolated time to failure at each
stress for the thresholdWilshiremodel. Consistent with
the statistics in Tables 2 and 3 the threshold Wilshire
interpolations look better than the threshold power law
model at all temperatures except 923 and 898K.

Both the threshold power law and Wilshire mod-
els gave unreasonable values for the activation energy
irrespective of whether it was estimated via LOESS or
non-linear least squares. Despite this shortcoming, esti-
mation via LOESS resulted in improved interpolative
performance. The improved interpolations come about
because interpolations are based on restricted observa-
tions around the test condition of interest when using
LOESS. But the values for Qc still suggest the mod-
els are miss specified. These unrealistic Qc values likely
come from forcing Qc to be a constant over all test
conditions in the models used in the paper. The pos-
sibility of an activation energy being dependent on test
conditions would fit well with the LOESS methodology
and warrants future research.

Conclusion

This paper presented an investigation into the signifi-
cance of a threshold stress within a power law and the

Wilshire models. For both materials that were studied
in this paper, a statistically significant threshold stress
was found and that this stress varied with tempera-
ture. The choice of creep model had a much smaller
impact on the estimated threshold stress compared to
the estimation technique – LOESS vs non-linear least
squares. The values for the threshold stress at each tem-
perature in the LOESS estimated Wilshire model were
much closer to the typical operating stress for these
materials.

The use of Z together with its decomposition over-
comes the problem of using Z to assess interpolative
performance (large Z values are not necessarily bad if
all the interpolation errors are random).

When the LOESS estimation procedure was applied
to the threshold power law model an impro
ved interpolative capability was observed when com-
pared to that model estimated via non-linear least
squares. The scatter in the temperature-adjusted failure
times ware dramatically reduced yielding a smooth well
defined but non-linear relationship with stress.

When the LOESS estimation procedure was applied
to a threshold-modified Wilshire model an improved
interpolative capability (as measured by Z and MPSE)
compared to the threshold power law model was
observed at nearly all temperatures for both for
2.25Cr–1Mo and 1Cr–1Mo–0.25V steel. In terms of
how much of this MPSE was random in nature, a more
mixed picture emerged. For 2.25Cr–1Mo steel, the
LOESS estimated threshold Wilshire model produced
more random interpolation errors at all but one tem-
perature, while for 1Cr–1Mo–0.25V steel the LOESS
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estimated threshold power lawmodel performed better
in around two thirds of the temperatures studied.

The estimated activation energy was still unreason-
able in – especially for 1Cr–1Mo–0.25V steel – coming
out at just 190 kJmol−1. This may be an indication that
the creep models used are mis-specified.

The implications of including a threshold stress for
extrapolative capability remain to be assessed. In partic-
ular, the stability of the estimated threshold stress when
using failure times of up to 10,000 h or less remains to be
quantified and should form part of any future research
efforts.
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Appendices

Appendix 1

The following statistics will be used to assess how well each
creep model explains the experimental creep failure times.

https://office.microsoft.com/excel
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No extrapolation will be undertaken, and all predictions are
in the form of an interpolations over all data pints used for
model estimation.

The SA−RLT test for model adequacy

The starting point for more recent measures of creep
model specification is the interpolation or prediction error.
Holdsworth et al. [28] termed this error the residual log time

ei = ln[tFi] − ln[t̂Fi] (A1)

where tFi is the recorded failure time for the ith specimen
tested and t̂Fi the corresponding prediction of when this spec-
imen will fail based on a given creep model. The variance in
these residuals (labelled SA−RLT by Holdsworth et al. [28]) is
calculated as

SA - RLT = s2e =
∑d

i=1 [ei − ē]2

d
(A2)

where ē is the mean residual log time associated with all d
failed specimens. If the d values of tF are used to estimate
the unknown parameters of the model that yield correspond-
ing values for t̂Fi, then s2e (and the MPSE defined next) are
measures of interpolative performance, and this is the case
throughout the paper. This residual log time is very similar
to another measure of goodness of fit – the mean percentage
squared error (MPSE)

MPSE = 100
d

d∑
i=1

[(tFi − t̂Fi)/tFi]2 ∼= 100
d

d∑
i=1

[ei]2 (A3)

s2e and MPSE are different because the mean value for e may
not be zero – as would be the case if the model systemat-
ically over or underestimates the time to failure because it
is mis-specified. If the residual log times are assumed to be
normally distributed (implying failure times are log normally
distributed), and the standard deviation for the residuals are
independent of test conditions, the percentile (p) log failure
time can be calculated as

ln (tF)p = ln(t̂F) + sezp (A4)

where zp is the pth percentile of the standard normal distribu-
tion. Because of the assumed log normality of time to failure,
the predicted log failure time, ln(t̂F), can be interpreted as
the median (and therefore mean) log failure time. Then, as
an example, 99% of log times to failure will be in the range
ln(t̂F) ± se2.58, and so 99% of the failure times value will be
in the range t̂Fe±se2.58. Holdsworth et al. [28] have termed

ese2.58 (A5)

the Z parameter and suggested it provides a means of quan-
tifying model-fitting effectiveness. Ideally, for a single-batch
analysis, or failure times average over all batches,Z should not
exceed 2, whereas Z in excess of 4 [29] would be indicative
of a mis-specified creep model. Values of 3-5 are practically
acceptable.

The decomposition of MPSE as ameasure of
model adequacy

However, the above interpretation of what is efficacious,
assumes that the residual variation picked up by se (and thus
Z) is all systematic in nature and so the result of a poorly fit-
ting creep model. This will not always be the case. Granger

and Newbold [30] have shown that

s2e = (β − 1)2s2ln(t̂F)
+ s2v (A6)

where s2
ln(t̂F)

is the variance in the predicted failure times, β is

the slope of the best fit line on a cross plot of ln(tFi) v ln(t̂Fi)
and s2v the variance in the disturbances around this best fit
line given by

ln(tFi) = α + β ln(t̂Fi) + vi (A7)

So part of s2e is caused by β differing from 1, and so by the
best fit line being flatter or steeper than a 450 line on a scat-
ter plot of ln(tFi) v ln(t̂F) This is clearly systematic bias that
is caused by the chosen creep model itself, because in such a
situation the creep model is then consistently over (or under)
predicting ln(tF) at low failure times followed by consistently
under (or over) predicting at higher failure times – depend-
ing on whether β is above or below 1. On the other hand, υ i
is clearly random variation with sv being the standard devia-
tion and thus the size of this random variation. So, a correctly
specified creepmodel would correspond to onewhereβ = 1,
irrespective of the size of Z.

This suggests that a high value for Z would not be an
indication of a creep model making large systematic pre-
diction errors, provided β = 1. Rather, it would be due to
a large value for sv. In this extreme situation, all the varia-
tion being picked up by Z is purely random in nature and
reflects the stochastic nature of the creep testing of the mate-
rial under investigation – which for somematerials can result
in substantial scatter. The size of this random variation is pre-
determined, and no creep model can reduce it. Instead, it is
the result of things like microstructural variation in test sam-
ples, accuracy of test equipment, etc. At the other extreme, a
large value forZwould be an indicator of a poorly performing
creep model if s2v = 0 with β �= 1.

Another issue with Z is that it does not pick up a mis-
specified creepmodel that fails to predict the log failure times
even on the average. This can be seen by noting that theMPSE
can also be worked out as

MPSE = ē2 + s2e = ē2 + (β − 1)2s2ln(t̂F)
+ s2v (A8)

where ē is the mean residual over all test conditions and fail-
ure times. Thus, a proportion of the MPSE is due to the creep
model predicting the failure times incorrectly on the aver-
age, which is clearly a systematic error – UM = ē2/MPSE.
This is often referred to as the bias proportion. Another
proportion of the MPSE is due to the regression parameter
β �= 1, which again is due to a poorly performing creepmodel
– UR = (β − 1)2s2

ln(t̂F)
/MPSE. This is often called the new

regression proportion. Finally, a proportion of the MPSE is
due to UD = s2v/MPSE and is often called the random dis-
turbance proportion. A mis-specified creep model identifies
itself by having large values forUM andUR. Ideally, a correctly
specified creep model will also have a low MPSE but a large
value for this could just reflect the inherent stochastic nature
of the creep data if UD = 1.

The RESET test as ameasure of model
adequacy

Another test for model misspecification is that proposed by
Ramsey [31]. This so-called RESET test is based on looking
for non-linearities in the transformed creep data that should,
if correctly specified, only contain linear variation. While the
nature of any non-linearity in the event of misspecification
will not be known (unless the correct creep model is known),
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it can be empirically approximated using polynomials (as fits
to data can always be made better by adding high and higher
ordered polynomials – indeed if there are 5 data points, a
curve can be put through all 5 data points using a fourth-
order polynomial). To avoid such over fitting of the data a
low-order polynomial is best used – such as a quadratic. So,
the RESET test then takes the form of a standard t test that
γ = 0 in

ln[tFi] − ln(t̂Fi) = γ ln [t̂Fi]2 (A9)
where t̂Fi is the predicted time to failure obtained from the
chosen creep model. γ = 0 then implies the model is cor-
rectly specified because then t̂Fi squared drops out of the
model and so non-linear terms like ln[σ ]2, [1/RT]2 and
ln[σ ]x [1/RT] in the case of the power law model are not
required to predict failure times – i.e. the power law model
is correct. The advantage of using [t̂Fi]2 in Equation [A8]
instead of ln[σ ]2, [1/RT]2 and ln[σ ] x [1/RT] is that it frees
up degrees of freedom, and this ismore important when there
are many explanatory variables in the creep model and/or
when higher order polynomials are used.

Appendix 2

LOESS estimation

Many non-parametric estimation procedures exist in the lit-
erature including cubic splines together with varying Kernel
estimation procedures. An interesting approach that enables
the physical structure of the creep model to be maintained,
is a LOESS curve first proposed by Cleveland [21]. In this
model, it is assumed that the relationship between the log
time to failure and temperature and stress is well repre-
sented by the chosen creep model. Then instead of approx-
imating any non-linear relationship between, say, ln[tF −
ts] − Qc/RT and some modification of stress by a series
of segmented linear lines, a smoothed curve is used
instead.

This is achieved through the following sequential steps:

i. Create starting values for Qc, ts, and σ o. Use these
starting values to create N values for the variables
y = ln[tF − ts] − Qc/RT. Then in these case of the
threshold power law model, create N values for
x = ln[σ − σ0], or in the case of the Wilshire thresh-
oldmodel, createN values for− ln

[
σ−σ0

σTS−σ0

]
where the

threshold stress could also be made different for each
temperature. Plot y against x.

ii. Choose a value for the ‘smoothing parameter’ k that
must be between 0 and 1 (the larger the number, the
smoother will be the parametric curve). Select a data
point on the constructed plot and label these x–y val-
ues x∗ and y∗. From this, identify the Nk nearest data
points on this plot to this selected point using the
distance measure

distancei = |xi − x∗| (A10)

for the i = 1 to N− 1 remaining points on the plot (| |
stands for absolute value of).

iii. Select the Nk smallest distance values (after rounding
up to the nearest whole number) and scale them to take
on a value between 0 and 1 – by diving each value for

distance by the largest distance value in this subset of
data. Call these values d∗.

iv. Select all those data points having the smallest Nk val-
ues for d∗ and with these data points derive regression
weights defined by the tri cube weight function

w =
{

(1 − |d∗|3)3 for |d∗| < 1
0 for |d∗| > 1

(A11)

v. Carry out a weighted least squares by regressing the
product yw onw and the product xw (with no constant
or intercept term) for this subset of data points.

vi. Use the resulting best fit line to predict the value for y
corresponding to x∗, together with the squared resid-
ual (difference between the actual and predicted value
for y squared). This prediction is the point on the
parametric curve corresponding to x∗.

vii. Repeat steps 1–6 for all other values for x.
viii. Calculate the sum of all the squared residuals – RSS.
ix. Then use a non-linear search algorithm to find values

forQc, ts and σ o that result in the smallest of these RSS.

There are several suggestions in the literature as to the
best choice for the smoothing parameter k used in the above
steps. One class of method chooses the smoothing param-
eter value to minimise a criterion that incorporates both
the tightness of the fit and the model complexity. Such a
criterion can usually be written as a function of the RSS
and a penalty function designed to decrease with increasing
smoothness of the fit. An example of such a criteria is the
generalised cross-validation (GSV) developed by Craven and
Wahba [32]

GSV = RSS/[N − Trace(L)]2 (A12)

where Trace(L) is the diagonal of a matrix containing the
ratio of the actual to predicted value for y. In this paper,
a cross-validation procedure is used instead. The above-
described weighted regression is carried out but excluding
data point x∗ each time. The resulting residuals are then
summed.

An F test for the presence of a threshold stress

The following F statistic can be used to statistically test for the
presence of a threshold stress

F = [RSS1 − RSS2]/(k2 − k1)
RSS2/(N − k2)

(A13)

where RSS1 is the residual sum of squares for the restricted
creep model, i.e. one that contains no threshold stress, σ o.
RSS2 is the residual sum of squares for the unrestricted creep
model, i.e. one that contains threshold stresses, k2 is the num-
ber of estimated model parameters associated with RSS2, k1
is the number of estimatedmodel parameters associated with
RSS1 and N is the sample size. Under the null hypothesis
that the threshold stress at each temperature is zero, RSS1
and RSS2 will be very similar in value and so F is larger the
more unlikely the null hypothesis is to be true. That is, the
F statistic has an F distribution under this null hypothesis,
so its value can therefore be used to calculate a p-value for
this hypothesis – namely the probability of the null hypothesis
being true.
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