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Long-term creep life prediction for Grade 22 (2.25Cr-1Mo) steels 

MT Whittaker and B Wilshire 

Materials Research Centre, School of Engineering, Swansea University, Swansea. SA2 8PP, UK. 

 

Abstract 

 

Using new data analysis procedures, 100,000h creep strengths are estimated by 

extrapolation of stress rupture values with creep lives less than 5000h for Grade 22 

tube as well as for annealed/tempered and quenched/tempered plates. In addition to 

allowing accurate prediction of long-term strengths, the resulting property sets can be 

discussed sensibly in terms of the deformation and damage processes controlling 

creep and creep fracture. 
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1. Introduction 

 

Large-scale components and structures in power and petrochemical plant are normally 

designed on the basis that creep fracture should not occur within the planned design 

life, usually 250,000h. Because of the long timescales involved, decisions are 

generally made from the ‘allowable tensile stresses’, which are the stresses which 

cause failure in 100,000h at the service temperatures. Even so, for reasons of 

economy and CO2 emissions, there are now international efforts being made to raise 

plant operating temperatures to reduce fuel consumption. Unfortunately, this requires 

new high-performance alloy steels, but the problems then remain of the high costs and 

extended durations of the creep testing programmes needed to obtain the necessary 

design data. 

 

Over the last 50 years and more, major attempts have been made to devise procedures 

which permit accurate estimation of long-term properties from short-term results. 

Beginning with the parametric relationships introduced in the 1950s [1-3], many 

alternative data extrapolation methods have been evolved more recently, but none of 

these have proved entirely successful [4]. However, a new approach has now been 



produced, termed the Wilshire equations [5-8]. This concept defines the dependence 

of the creep rupture life (tf) on stress () and temperature (T) as 

 

(/TS) = exp {-k1 [tf. exp (- /RT)]
u
}        (1) 

 

where R=8.314 Jmol
-1

K
-1

, tf is in secs and  is in MPa. Similar equations then 

quantify the minimum creep rates ( ) and the times to specific strains (t). In these 

cases, TS is the ultimate tensile strength determined in high-strain-rate (10
3
s

-1
) tests 

carried out at the various creep temperatures studied for each batch of material. 

Because TS is the highest stress which can be applied at the creep temperature, eqn 

(1) has the obvious advantage that tf → 0 as (TS) → 1, while tf → ∞ as (TS) → 

0. It is then a straightforward matter to compute the values of k1, u and Qc
*
 from the 

tf//T plots measured for any batch of material [5-8]. 

 

Eqn (1) has proved successful in allowing measured 100,000h creep strengths to be 

predicted from test results with maximum lives of 5000h for a range of power plant 

steels, including ferritic [8], bainitic [7] and martensitic products [6]. Even so, to 

verify this approach, the present work focuses on bainitic Grade 22 (2.25Cr-1Mo) 

steels, where a dispersion of fine molybdenum carbide precipitates provide the high 

temperature strength, while the chromium confers resistance to oxidation during plant 

exposure. 

 

Grade 22 steels have been extensively used for superheater and reheater tubing, as 

well as for high-temperature headers and piping for over half a century. Consequently, 

major sets of creep rupture data are already available to check the accuracy of the 

long-term predictions now made by extended extrapolation of short-term 

measurements. Moreover, information has been systematically gathered by the 

National Institute for Materials Science (NIMS), Japan, on Grade 22 steels supplied in 

different conditions, including 

a) quenched and tempered plate for pressure vessels [9],  

b) normalized and tempered plate for boiler and pressure vessels [10] and 

c) tube for boilers and heat exchangers [11], 



with the creep rupture properties supplemented by detailed microstructural studies of 

as-received and crept materials [12]. 

 

Using this broad range of information, the present aims are therefore to assess the 

predictive capabilities of eqn (1) in relation to the processes of deformation and 

failure which control the creep and creep fracture properties of Grade 22 steels. 

 

2. Power Law Creep Fracture Behaviour 

 

All of the materials considered by NIMS [12] were well within the composition limits 

(wt %) set for Grade 22 steels, namely, 0.05-0.15 C (max); 0.3-0.6Mn; 0.025 P (max); 

0.025 S (max); 0.5 Si; 1.9-2.6 Cr; 0.87-1.3 Mo. The heat treatments received were 

[12] 

a) 1203K for 6h before water quenching and tempering firstly for 6h at 908K 

then air cooling and secondly for 2h at 873K before furnace cooling of the 

quenched/tempered plate. 

b) 1203K for 1h and air cooled, 1013K for 2h then air cooled and 973K for 4h 

before furnace cooling of the annealed/tempered plate and 

c) 1203K for 20 mins, then cooled to 993K for 130 mins before air cooling of the 

tube, 

These schedules produced ferrite-bainite microstructures with around 80% ferrite 

regions in the tube and almost exclusively bainite microstructures with both the 

quenched/tempered and annealed/tempered plate [12,13]. 

 

The NIMS creep rupture tests were carried out [8-12] at 723 to 923K (450-650°C) at 

stresses such that the longest tests for all three product types lasted more than 

100,000h, so extrapolation was not necessary to calculate the allowable creep 

strengths. In line with common practice, the stress and temperature dependencies of 

the creep lives were then presented [12] using standard power law equations, as  

 

M/tf = m = A 
n
 exp (-Qc/RT)                              (2)                

 



where the parameters (A and M), the stress exponent (n) and the activation energy for 

creep (Qc) vary in different stress/temperature regimes. Thus, as evident from the 

results for the quenched and tempered material in Fig. 1, a decrease from n  14 to 

n  3.5 occurs with decreasing stress and increasing temperature over the ranges 

covered, with Qc varying from approximately 100 to 350 kJmol
-1

. 

 

As shown in Fig. 2, the results for all three product types were plotted [12] as 

functions of the Larson-Miller parameter [1], namely  

 

  PLM = TK (20 + log tf)       (3) 

 

where TK is in Kelvin and tf is in hours. Clearly, all three heat-treatments give similar 

performances at low stresses, with the quenched/tempered material producing longer 

creep lives at stresses above about 80MPa. 

 

Because of the long-term measurements completed by NIMS for all three products, 

the Larson-Miller method should allow accurate estimation of 100,000h creep rupture 

strengths. Even so, with TS values determined at the creep temperatures [9-11], it is 

interesting to consider the effects of amending eqn (2) to demonstrate the variations in 

tf with (TS) as  

 

M/tf =  m = A*(/TS)
n
 . exp (-Qc

*
/RT)    (4) 

 

where A*≠A and Qc
*
≠Qc. As illustrated in Fig.3, eqn (4) superimposes the data sets 

for each material onto single curves. Moreover, this procedure eliminates the 

variability in Qc found with eqn (1), producing a fixed Qc
*
 value of 280kJmol

-1
, 

coinciding with the activation energy for matrix self diffusion in the Grade 22 steels. 

Yet, while a fixed Qc
*
 value is obtained, eqn (4) does not eliminate the changes in n 

found with eqn (2), as evident from Figs. 1 and 3. These n value changes mean that 

the plots in Figs. 1, 2 and 3 all curve in an unpredictable manner, so that 250,000h 

creep strengths cannot be estimated unambiguously by extrapolation of tf values up to 

100,000h. 

 



3. Application of New Data Fitting Procedures 

 

To evaluate the effectiveness of eqn (1), the (TS)/creep life data at different 

temperatures for each heat treatment were superimposed onto single lines with 

Qc
*
=280kJmol

-1
 (as in Fig.3). The values of k1 and u in eqn (1) were then determined 

by plotting ln[tf.exp(-Qc
*
/RT)] as functions of ln[-ln(TS)]. Different behaviour 

patterns were found for each heat treatment. These can be summarised as follows. 

(a) For the quenched and tempered plate, a plot of ln[tf.exp(-Qc
*
/RT)] against 

ln[-ln(TS)] was essentially a single straight line, with k1= 49.1 and u = 0.157 (Fig. 

4). 

(b) For the normalized and tempered plate, only a single break was found in 

the ln[tf.exp(-Qc
*
/RT)] against ln[-ln(TS)] plot, with a change from k1= 65.5 and u 

=  0.165 at high stresses (when  > 0.4TS) to k1= 22.2 and u = 0.123  when  < 

0.4TS (Fig.5). Hence, the tf values when <0.4TS are longer than expected by 

extrapolation of data when >0.4TS. 

(c) For the tube material, the ln[tf.exp(-Qc
*
/RT)] against ln[-ln(TS)] plots 

showed three distinct regions (Fig.6). The high stress results (where TS) gave 

k1= 3584 and u = 0.307. In the intermediate stress range, as with the normalized and 

tempered plate, the tf values were longer than expected by direct extrapolation of the 

high stress tf measurements, with k1 = 6.45   and u = 0.071 . In the low stress range, 

(when <0.2TS), the tf data become significantly shorter than those estimated by 

direct extrapolation of the intermediate stress results, with k1= 624  and u= 0.294. 

 

Although Figs. 4, 5 and 6 show the stress rupture values recorded at all temperatures 

for the three different heat treatments, in all cases, the lines drawn to determine k1 and 

u were calculated for results with tf < 5000h. Even so, by inserting the values of k1, u 

and Qc
*
 into eqn (1), the predicted stress/creep life curves fit well with the measured 

data for all three product forms (Fig.7). Thus, as with other power plant steels [6-8], 

eqn (1) allows extended extrapolation of short term tf measurements to predict long-

term stress rupture properties accurately, provided that creep fracture is the dominant 

failure mode. Moreover, for Grade 22 steels, the 100,000h creep rupture strengths are 

very similar for all three starting microstructures (Fig.7). 

 



 

 

4. Creep Deformation Processes 

 

With n>4, it is universally agreed that creep occurs by diffusion-controlled generation 

and movement of dislocations. Indeed, recent studies have suggested that dislocation 

mechanisms are dominant even when n  1 [14]. However, the detailed dislocation 

processes taking place depend on microstructural changes during creep and on 

whether PS, where PS is the proof stress of each batch of material at the creep 

temperature [9-11]. Thus, as evident from the NIMS data [9-11] in Fig.8, the initial 

extensions on loading (0) are fully elastic up to about 0.85PS, but increase rapidly as 

the plastic component becomes progressively greater when >0.85PS (>0.4TS). 

 

It must be expected that PS is slightly greater than Y, where Y is the yield stress of 

each steel batch at the appropriate test temperature, seemingly with Y 0.85PS 

(Fig.8). As previously found for pure copper [5] and for a 1Cr-0.5Mo steel [8], with 

stresses such that Y, dislocations multiply rapidly during the initial plastic strain 

on loading. In contrast, when Y, creep must occur not by the generation of new 

dislocations but by the movement of dislocations pre-existing in the as-received 

microstructures, with deformation confined to the grain boundary zones, i.e. zone 

deformation comprises grain boundary sliding and associated dislocation movement 

in grain regions adjacent to the boundaries [5,8]. Thus, the creep rates are slower and 

the creep lives are longer when Y, compared with the values anticipated by linear 

extrapolation of data collected when Y. 

 

In the context that a break should occur in the log tf/log  plots when the stress falls 

from above to below Y (  0.85PS), it is a straightforward matter to rationalize the 

behaviour patterns found when eqn (1) is applied to the stress rupture data for Grade 

22 steels produced using different heat treatments: 

(a) With the quenched and tempered plate, all tests were carried out at stresses 

less than 0.85PS, so deformation is always confined to the boundary 

zones. Hence, there is no break in the plot of ln[tf.exp(-Qc
*
/RT)] against 

ln[-ln(TS)], as shown in Fig.4. Specifically, this material remains as 



bainite, but with the carbide particles coarsening significantly with 

increasing time and temperature, particularly on the grain boundaries [12]. 

(b) With the annealed and tempered plate, a single break occurs at   0.4TS 

 0.85PS (Fig.5), so the creep lives become longer when grain 

deformation is restricted so that creep occurs by grain boundary zone 

deformation. Again, the microstructures remain bainitic, but with the 

carbides coarsening as found for quenched and tempered plate [12]. 

(c) With the tube material, two breaks are found in the ln[tf.exp(-Qc
*
/RT)] 

against ln[-ln(TS)] plot (Fig.6). The first break occurs when  falls from 

above to below about 0.85PS, when longer creep lives are again observed 

when deformation is confined to the grain boundary zones at the lower 

stresses. Even so, a second break occurs when   0.35PS ( 0.2 TS ). This 

is a consequence of the bainitic regions degrading to ferrite and 

molybdenum carbide particles, with very coarse carbides along grain 

boundaries. As a result, when  TS, the creep rates are faster and the 

creep lives are substantially shorter in tests of long duration at 873K and 

above than would be expected by direct extrapolation of results when 

0.85PS > > 0.35 PS (Fig.6). 

 

The present analysis therefore shows that no break occurs in Fig.4 for the 

quenched/tempered steel (because  is always less than 0.85PS), whereas gradient 

changes occur when  falls from above to below 0.85PS (  Y) such that the low 

stress tf values are longer than those expected from the high stress results for the tube 

and annealed/tempered samples (Figs. 5 and 6). This observation is fully compatible 

with the behaviour pattern found using the Larson-Miller method (Fig.2). Even so, for 

all three heat treatments, the gradual loss of creep strength with increasing test 

duration at the higher creep temperatures is attributable to gradual coarsening of the 

molybdenum carbide particles. This is evident from the fact that plots of ln[tf.exp(-

Qc
*
/RT)] against both stress (Fig.7) and hardness within the gauge length after creep 

(Fig.9) are very similar.  

 

 

 



5. Creep Fracture Processes 

 

While creep occurs by diffusion-controlled dislocation movement, with the detailed 

processes dependent on microstructural changes and test conditions, distinct 

differences in creep fracture behaviour are found with the tube and annealed/tempered 

plate products and with the quenched/tempered material [9-11]. These differences in 

failure mechanism can be inferred from plots of the reduction in area at fracture 

(RoA) and the total creep elongation (f) as functions of log [tf.exp(-Qc
*
/RT)] in Figs. 

10 to 12 inclusive. 

 

With the tube and annealed/tempered plate samples, under all test conditions covered, 

the RoA values were usually in excess of 0.8, whereas the majority of the f results 

were in the range 0.2 to 0.6 (Fig.9 and 10). Thus, with RoA>f, extensive necking 

always precedes failure, which takes place in a transgranular manner [12]. Similar 

results were obtained at 723 and 923K for the quenched and tempered plate, but very 

different results were observed at 773 to 873K (Fig.11). Specifically, at 773 to 873K, 

selected stress levels gave very low values of both RoA and EL, suggesting that 

fracture occurs in an intergranular manner, a view supported by the NIMS 

metallographic studies [12]. Even so, these differences in failure mode are insufficient 

to significantly alter the long-term stress/creep life relationships, which appear to be 

similar for all three heat-treatments given to the Grade 22 testpieces (Fig.7). 

 

  

6. Conclusions 

 

A study has been made of the creep fracture behaviour at 723 to 923K of Grade 22 

(2.25Cr-1Mo) steels produced in the form of tube, annealed/tempered plate and 

quenched/tempered plate. For all three product forms, NIMS creep rupture properties 

[9-12] at stresses giving creep curves up to 5000h were analysed using the recently 

devised relationship [5-8]. 

 

   *

1/ exp exp( / )
u

TS f Ck t Q RT         

 



where TS is the ultimate tensile stress at each creep temperature for individual 

batches of steel. In this way, data sets at the different creep temperatures were 

superimposed onto single curves for each product, giving Qc
*
=280kJmol

-1
, the 

activation energy for matrix self diffusion. By determining the values of k1 and u for 

each batch of material, this relationship allowed extended extrapolation of results for 

creep lives up to 5000h to accurately predict NIMS stress rupture data for times 

exceeding 100,000h, provided that creep failure is the dominant failure mode. On this 

basis, it appears that this new procedure should allow cost-effective estimation of 

100,000h allowable stresses for newly developed steels. Moreover, consideration of 

the stress rupture properties, together with the reductions in area and total elongations 

to failure, permit the observed behaviour patterns to be discussed sensibly in terms of 

the dislocation processes controlling creep strain accumulation and the various 

damage processes causing fracture as the microstructures evolve with increasing test 

duration and temperature. 
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Figure captions 

 

 

Fig.1. The stress dependence of the creep rupture lives at 723 to 923K for quenched 

and tempered Grade 22 plate [9]. The solid lines are calculated using eqn (1).  



 

 

Fig. 2. The creep rupture strength plotted against the Larson-Miller parameter (eqn 

(3), with C=20) for Grade 22 tube and annealed/tempered plate, as well as for 

quenched/tempered plate [12]. Temperature TK is in Kelvin and tf is in hours. Similar 

curves are observed for the tube and annealed/tempered products, whereas the 

quenched/tempered material shows higher strengths in short term tests, while the 

results for all three heat treatments are comparable as the test durations approach 

100,000h. It should also be noted that the creep lives are longer at stresses less than 

about 150MPa than would be expected by direct comparison of the data collected 

when >150MPa for the tube and normalized/tempered samples. 

 

 



 

Fig.3. The dependencies of log [tf.exp(-Qc
*
/RT)], with Qc

*
=280kJmol

-1
, on log(TS) 

for Grade 22 tube and annealed/tempered plate, as well as for quenched/tempered 

plate. 

 

 



 

Fig.4. The dependence of ln[tf.exp(-Qc
*
/RT)]on ln[-ln(TS)], with Qc

*
=280kJmol

-1
, 

for quenched and tempered Grade 22 plate. 

 

Fig.5. The dependence of ln[tf.exp(-Qc
*
/RT)]on ln[-ln(TS)], with Qc

*
=280kJmol

-1
, 

for annealed and tempered Grade 22 plate. 



 

 

Fig.6. The dependence of ln[tf.exp(-Qc
*
/RT)]on ln[-ln(TS)], with Qc

*
=280kJmol

-1
, 

for Grade 22 tube. 

 



 

Fig.7. The stress dependence of log[tf.exp(-Qc
*
/RT)], with Qc

*
=280kJmol

-1
, for Grade 

22 tube and annealed/tempered plate, as well as for quenched/tempered plate. The 

curve (solid line) shows that eqn (1), using the derived values of k1, u and Qc
*, 

accurately describes the creep fracture behaviour of the quenched/tempered material.  

In contrast, the broken curve presents the averaged results obtained by applying eqn 

(1) to the data recorded for the tube [11] and annealed/tempered plate [10], illustrating 

the similarities in creep rupture strengths found for these two products. 

 



 

Fig.8. The dependence of the initial strain on loading (0) on PS, where PS is the 

proof stress determined from high-strain-rate tests at the creep temperatures for each 

batch of material. Clearly, 0 increases elastically with stress up to about 0.85PS, then 

increases very rapidly as the plastic component of 0 rises when >0.85PS. 

 



 

Fig.9 The dependencies of the hardness within the gauge length of crept specimens 

(Hv) on log [tf.exp(-280,000/RT)] for tube and annealed/tempered plate (broken line) 

and for quenched/tempered plate (solid line). As with the stress rupture behaviour 

(Figs. 2 and 7), the hardness values for all three heat treatments are very similar in 

tests of long duration, even though the hardness of the quenched/tempered plate 

exceeds the values recorded for the other two materials in tests of short duration [12]. 

 



 

Fig.10. The dependencies of the reduction in area (RoA) and total strain to failure (f) 

on log [tf.exp(-Qc
*
/RT)], with Qc

*
=280kJmol

-1
, for Grade 22 steel tube. 

 

 

Fig.11. The dependencies of the reduction in area (RoA) and total strain to failure (f) 

on log [tf.exp(-Qc
*
/RT)], with Qc

*
=280kJmol

-1
, for annealed and tempered Grade 22 

plate. 

 

 



 

Fig.12. The dependencies of the reduction in area (RoA) and total strain to failure (f) 

on log [tf.exp(-Qc
*
/RT)], with Qc

*
=280kJmol

-1
, for quenched and tempered Grade 22 

plate.  


