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Abstract

This thesis explores two main topics: the effects of the temperature on several
Quantum Chromodynamics mesonic observables, with a concrete focus on the tem-
perature dependence of the mesonic mass spectrum, and numerical spectral recon-
struction of lattice correlation functions employing deep neural networks. In the first
two chapters, a brief introduction to standard lattice Quantum Chromodynamics and
non-zero temperature field theory is provided. Using the tools presented in the intro-
ductory chapters, a complete spectroscopy analysis of the temperature dependence
of several mesonic ground state masses is developed. From this study, novel results
in the restoration of chiral symmetry as a function of the temperature are obtained
by studying the degree of degeneracy between the ρ(770) and a1(1260) states. Ad-
ditionally, a complete study of the thermal effects affecting the mesonic D(s)-sector
below the pseudocritical temperature of the system is provided. A self-contained
chapter discussing the pion velocity in the medium is also included in the document.
The pion velocity is estimated as a function of the temperature using non-zero tem-
perature lattice Quantum Chromodynamics. In addition, after providing a detailed
introduction to the field of neural networks, their application to numerical spectral
reconstruction is studied. A simple implementation in which deep neural networks
are applied to numerical spectral reconstruction is tested in order to explore its limits
and applicability.





Structure of the document

This document is structured as follows.
In Chapter (1), Quantum Chromodynamics and its lattice regularisation are

briefly introduced, as all studies included in this thesis are performed on, or are
related to, the framework of lattice Quantum Chromodynamics at non-zero temper-
ature. In this first chapter, the effects of the temperature on the system are not taken
into account — we review non-zero temperature quantum field theory in Chapter (2).
After shortly introducing the basic concepts of quantum field theory and its lattice
regularisation, we discuss how lattice quantum field theories can be simulated in a
computer. From this discussion, we learn how one could estimate correlation func-
tions on the lattice, one of the fundamental objects in the study of quantum field
theories. We conclude this chapter analysing the so-called spectral decomposition of
correlation functions.

In Chapter (2), thermal field theory is briefly reviewed; non-zero density thermal
field theory is not discussed in this document. After introducing the basic con-
cepts of thermal field theory, we define and analyse spectral functions, which are
essential in the study of non-static quantities in thermal field theory, such as trans-
port coefficients or viscosities. At the end of this chapter, we explore a connection
between low temperature spectral functions and the spectral decomposition defined
in Chapter (1).

Chapter (3) contains the bulk of studies performed of lattice correlation functions.
In this chapter, we aim at exploring the temperature dependence of several meson
masses from the analysis of different lattice correlation functions. Due to the fact
that extracting meson masses from lattice correlation functions is inherently difficult,
we develop an original methodology to analyse lattice correlation functions in order
to extract their ground state masses. After the methodology is introduced in detail,
we present some results obtained in our lattice setup, introduced in Appendix (A).
In addition, a detailed discussion of the mesonic correlation functions analysed is
provided in Appendix (B).

From the results obtained by applying our novel methodology, we are able to



analyse the temperature dependence of mesonic ground state masses before and
after the pseudocritical temperature of the system. The results are divided into
three main parts: in the first one, we discuss general trends encountered in the
temperature dependence of ground state masses, which allows us to set some limits
in the viability of the methodology as a function of the temperature; in the second
part, we analyse the restoration of chiral symmetry as a function of the temperature
from the degeneracy of the physical mesonic states ρ(770) and a1(1260); to conclude,
we perform a complete study over the mesonic D(s) sector across the hadronic phase
of Quantum Chromodynamics. Our results in the restoration of chiral symmetry
from a mesonic point of view, and the D(s) mesonic sector represent one of the few
first-principles analysis on these two topics across multiple temperatures.

Chapter (4) presents a self-contained analysis of the pion velocity in the medium
at different temperatures: the pion velocity is a chiral limit expression that describes
the effects of the temperature on the pion dispersion relation. This chapter includes
a complete derivation of the pion velocity expression, as well as a collection of results
estimated in our lattice setup.

A brief introduction to the field of neural networks is provided in Chapter (5). In
addition to presenting neural networks, this chapter also discusses how to train neural
network models in order to apply them to real-world problems. A small introduction
to convolutional neural networks is also provided in this chapter. This chapter serves
as an introduction to Chapter (6).

To conclude, Chapter (6) presents a case-study in which neural networks are
applied to the field of spectral reconstruction. After shortly introducing the inherent
problems of spectral reconstruction, we construct a methodology that employs neural
networks as the core objects to construct spectral functions. Once the methodology
is presented, we report and discuss the results obtained from the application of the
methodology to the problem in question in a controlled environment. Appendices (C)
and (D) serve as complements to this chapter.

In this document, all quantities are expressed in natural units:

h̄ = c = kB = 1.
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Chapter 1

Quantum-chromodynamics and its
lattice regularisation

The strong force between quarks and gluons is described by the theory of Quantum
Chromodynamics (QCD) [1]. Since its advent in the 1970s, it has proven to provide
an exceptional description of the vast majority of hadronic matter encountered in
experiments [2]. Even though a perturbative analysis of QCD at relatively low tem-
perature is not possible, due to its confining nature, some techniques, such as lattice
QCD [3], allow for a reliable and systematic first-principles study of the theory at
zero temperature.

However, no single theoretical method is known to reliably explore QCD at non-
zero temperature and density. As a result, the complete phase-diagram of the system
is unknown; see Ref. [4] for a sketch of the QCD phase-diagram. Fortunately, lattice
QCD simulations can be employed to explore QCD at non-zero temperature and
zero density. The temperature is strongly believed [5, 6] to make the QCD system
transition from the so-called hadronic phase, where QCD is expected to be a confining
theory, to the Quark-Gluon Plasma (QGP) phase, where thermal effects dominate
and, therefore, quarks might not form bound states. In fact, some lattice studies [7–
9] suggest that the transition from one phase to the other is indeed analytical: no
order parameter is present in the transition.

In this thesis, we continue to explore QCD at non-zero temperature through
the analysis of mesonic observables extracted from lattice simulations. We restrict
ourselves to zero chemical potential. Before diving into the relevant studies per-
formed, QCD and its lattice regularisation are briefly introduced. Once the lattice
regularisation of QCD is presented, we discuss how to simulate it in a computer in
order to extract meaningful information from the theory. In this chapter, we intro-
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Chapter 1. Quantum-chromodynamics and its lattice regularisation

duce zero temperature quantum field theory; the addition of the temperature on the
system is discussed in Chapter (2).

1.1 Introduction to QCD
In QCD, the strong force is modelled by an SU(3) Yang-Mills interaction, in which
fermionic quark fields interact with each other through a vector field carrying colour
charge: the gluons. In QCD, the quark fields transform as the fundamental repres-
entation of the SU(3) group. There exist several species of quark fields, called quark
flavours. The non-abelian nature of SU(3) permits bosonic self-interactions, which
are not possible in abelian theories, such as quantum-electrodynamics. Throughout
this document, the electroweak interaction between quark fields is assumed to be
negligible when compared to the effects of the strong force and the temperature on
the system. The local QCD lagrangian density defining the dynamics of QCD is:

LQCD(x) =

Nf=6∑
f=1

ψ̄f (x)
[
γµDµ +mf

q

]
ψf (x)−

1

4
F i
µν(x)F

µν,i(x). (1.1)

In the equation above ψf (x) represents a fermionic quark field of flavour f ; ψ̄f (x) =
ψf (x)

† γ0 is an anti-quark field of flavour f ; γµ represents one of the Dirac gamma-
matrices; and F i

µν(x) is the gluonic field strength, defined for each of the 8 gluon
species i, one per generator of the SU(3) Lie algebra. The gluonic field strength
governs the dynamics of the gluon fields and their self-interaction. The covariant
derivative in eq. (1.1), Dµ, is defined as

Dµ = ∂µ + ig0 TiA
i
µ(x), (1.2)

where ∂µ is the 4-dimensional partial derivative; g0 is the coupling parameter; Ti
represents one of the 8 generators of the SU(3) Lie algebra; and Aiµ(x) is a gluonic
vector field with colour index i. The covariant derivative ensures that the lagrangian
is gauge invariant. Note that the QCD lagrangian contains several free-parameters:
the coupling constant g0, and the quark masses mf

q .
The complete QCD lagrangian in eq. (1.1) contains Nf = 6 different flavours,

which are usually denoted by the names (labels): up (u), down (d), strange (s),
charm (c), bottom (b) and top (t). The flavours are ordered by their masses.

At relatively low energies and temperatures, the strong interaction is known to
be confining. As a result, a perturbative analysis of the theory is not possible; we
are forced to employ non-perturbative tools. In standard conditions, quarks cannot
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Chapter 1. Quantum-chromodynamics and its lattice regularisation

be detected in isolation; they always form bound states, called hadrons. There are
two types of common hadrons: mesons, defined as the bound state of a quark and
an antiquark; and baryons, which are generated through the cohesive interaction of
three quarks. In this document, we are mainly interested in mesonic hadrons. More
information about QCD can be found in Refs. [10–14].

In field theory, the main object defining the dynamics of the system is the action,
defined as the integral of the lagrangian density over all Minkowskian space-time:

S =

∫
d4xL(x). (1.3)

The lagrangian is related to the hamiltonian operator through a Legendre transform
on the fields. Although the hamiltonian describes the dynamics of a physically
measurable quantity, the energy of the system, it is barely employed in field theory
as it does not explicitly display the symmetries of the theory.

1.1.1 Quantising a field theory
The action of a field theory defines its classical dynamics. In order to include
quantum corrections to the quantities extracted from the theory, it must be quant-
ised. There are several formalisms available to quantise a theory, being the so-called
canonical formalism the most common one presented in introductory courses, as it
can be interpreted as an extension of non-relativistic quantum mechanics.

Before briefly describing some aspects of quantum field theory, we start by re-
viewing non-relativistic quantum mechanics. In quantum mechanics, the set of states
in which a particular system can be, correspond to states in a Hilbert space. By di-
agonalising the hamiltonian defining the dynamics of the system, we are able to
generate a privileged complete set of states for which their energy is known; the
measurable energy of the system always corresponds to one of the eigenvalues of
the hamiltonian. The superposition principle states that the system can be in any
possible linear combination of those states.

In quantum mechanics, for every experimentally measurable quantity, such as
the momentum of a particle, its position or its angular momentum, there exists a
hermitian operator acting on the Hilbert space of states; those hermitian operators
are called observables. The link between experiment and theory is the expectation
value of an observable, denoted as

〈ψ|Ô|ψ〉.

The expectation value corresponds to a scalar product between a bra state, 〈ψ|,
and a ket state, produced by the action of the operator Ô over an initial state |ψ〉.

3
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The expectation value defines the average outcome of experimentally measuring the
physical quantity represented by Ô.

To merge quantum mechanics with a special relativity covariant field theory using
the canonical quantisation formalism, the starting point is to promote the fields
defining the lagrangian as operators acting on some space of states. The operators
are functionals of the space-time coordinates, which implies that space and time are
placed on an equal footing. This differs from the quantum mechanical case, in which
the spatial coordinates are treated as operators, while the time is assumed to be a
free-parameter of the theory. In the case of non-interacting quantum field theory, the
space of states corresponds to a Fock space: a direct sum of Hilbert spaces, each of
them representing a fixed number of particles. It is worth stressing that one can try
to construct a relativistic single-particle quantum mechanics similar to Schrödinger’s
equation, e.g. Dirac and Klein-Gordon equation. However, only by quantising a
field theory, one is able to naturally deal with the fact that, due to the energy-mass
equivalence of special relativity, particles can be created and destroyed.

In this new formalism, the field operators take the role of the quantum mechanical
observables, therefore, we can compute their expectation values,

〈∅|Ô(~x, t)|∅〉,

where |∅〉 represents the vacuum state, that is, the state in which no external ex-
citations are present on the system. The action of Ô(~x, t) over the vacuum creates
an excitation at a given space-time coordinate. In the non-interacting limit, the
operator Ô(~x, t) can be decomposed into an infinite sum of creating and annihilat-
ing operators, similar to the ones emerging in the quantum mechanical harmonic
oscillator.

We can extend the expectation value to several field operators. In quantum field
theory, as the operators are functionals of the space and time, the expectation value
of several operators is referred to by the name correlation function, formally written

〈∅|Ôn(~xn, tn) · · · Ô1(~x1, t1)|∅〉.

In the equation above, the operators defining the correlation function are assumed
to be time-ordered: t1 ≤ t2 ≤ · · · ≤ tn. In the particular case in which the equation
above only contains two operators, then the expectation value is called a 2-point cor-
relation function. Only 2-point correlation functions are discussed in this document.

Correlation functions are essential objects in the description of complex systems,
such as quantum field theories and statistical mechanics. They are key to under-
standing phase transitions, spectroscopy, transport phenomena and scattering amp-
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litudes. An example showing their importance is the so-called Lehmann-Symanzik-
Zimmermann (LSZ) formula [14–18], which directly relates theoretically computable
correlation functions to experimentally measurable scattering amplitudes.

Another formalism employed in quantum field theory is the so-called path integral
formulation [19–21]. In this formulation, the field operators are treated as integration
variables, and the correlation functions of the theory are defined as integrals over
the complete space of configurations of the system. The path integral of a general
action is defined as

Z =

∫
DψDψ̄DAµ exp

(
i S[ψ, ψ̄, Aµ]

)
. (1.4)

We do not discuss the technical aspects of the path-integral formalism, such as the
convergence of eq. (1.4), or the definition of the measures appearing in the integral.

The path integral can be viewed as a weighted (complex) average over all possible
configuration paths in which the system can be; the weight of each path is determined
through the complex phase in eq. (1.4). Provided that we analytically continue from
real time t to imaginary-time, τ = −i t, then, the argument in the exponential
becomes real and negative. The imaginary-time transformation is usually called a
Wick rotation, and it implies that the Minkowskian space-time of special-relativity
is replaced with an Euclidean one.

In the path-integral formalism, Euclidean correlation functions of n operators are
computed as follows:

〈∅|Ôn(~xn, tn) · · · Ô1(~x1, t1)|∅〉 =
1

Z

∫
DψDψ̄DAµOn(~xn, tn) · · · O1(~x1, t1) exp

(
− S[ψ, ψ̄, Aµ]

)
. (1.5)

1.2 Short introduction to lattice field theory
As stated before, non-perturbative tools are required to extract meaningful inform-
ation about QCD. At the time in which this document is being written, regularising
the 4-dimensional Minkowskian space-time on a Euclidean lattice is the only known
method that allows a systematic and reliable first-principles analysis of QCD at low
energies. Replacing the continuous space-time of a field theory with a discrete mesh
imposes a natural cut-off in the energy through the inverse of the lattice spacing, a;
the lattice spacing corresponds to the minimum distance between two neighbouring
points in the lattice. The regularisation of the space-time on a lattice combined with
the path-integral formalism of quantum field theory allows the estimation of QCD
observables at a given lattice spacing.
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The first step towards extracting quantum observables on the lattice is the regu-
larisation of the Euclidean space-time. This involves replacing the continuous space-
time with a 4-dimensional finite lattice. The lattice contains a volume of N3

s Nτ

points, where Ns represents the size (number of points) of the lattice in each of the
three spatial directions, and Nτ represents the size of the lattice in the temporal
direction. In principle, Ns could be different for each spatial direction. The lattice,
labelled Λ, is defined as a set of 4-dimensional sites n,

Λ = {n = (nx, ny, nz, nτ ) | 0 < nx, ny, nz < Ns ; 0 < nτ < Nτ}. (1.6)

All lattice coordinates are expressed in terms of the lattice spacing, for example:
τ = nτ a and x = nx a. The length of the lattice in each direction is: Ls = Ns a,
Lτ = Nτ a.

As in any finite system, boundary conditions need to be defined. Fermionic fields
respect anti-periodic boundary conditions, while bosonic field fulfil periodic boundary
conditions.

As the lattice is discrete and finite, its Fourier representation is also discrete and
finite. The set of all available frequencies is called the Brillouin zone, and they depend
on the boundary conditions. In general, the allowed frequencies are kµ = (2π/Lµ)n,
with n an even (odd) natural number for periodic (anti-periodic) fields.

The lattice spacing is a parameter that needs to be fixed. Setting the scale
can be done by fixing an observable measurable on the lattice to its corresponding
experimental value. Once the lattice spacing is fixed, all other measurable quantities
extracted from the lattice become predictions. For more information about how the
scale is set in lattice QCD simulations, we refer to Ref. [22]. All quantities measured
on the lattice are computed in terms of the lattice spacing, which implies that they
are expressed in lattice units. Setting the scale requires the analysis of some lattice
measurements, as a result, the lattice spacing is affected by statistical uncertainty.

Extracting observables that do not depend on the lattice spacing requires a con-
tinuum limit extrapolation of the lattice observables. Initially, one could think that
any action defined on the lattice, and whose functional form recovers a particular
desired continuum action in the limit a → 0, is a sufficient condition to estimate
quantities in the reference continuum action as a → 0. However, a proper scaling
law with the lattice spacing is also required. Consequently, for a lattice action to
have the desired continuum limit, two conditions must be fulfilled: first, it has to
recover the functional form of the reference continuous action in the limit of a→ 0;
second, the observables measured on the lattice must scale with the lattice spacing
accordingly, that is, they must approach a fixed point as the lattice spacing decreases.

There exist an infinite number of lattice actions whose limiting functional forms
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are equivalent. To see this, imagine including second-order operators to a lattice
lagrangian:

Llat = L+ aL′ + . . . (1.7)

Under some general conditions, those higher-order artefacts vanish in the limit of
a → 0 faster than any lattice linear operator, thus recovering the same functional
form. All actions whose continuum limit functional is the same to a target continuum
action are said to naively recover a continuous action.

In order to ensure that a lattice action corresponds to a given continuum action
in the limit of a→ 0, we use the fact that experimentally measurable quantities are
finite. Now, imagine that there exist an observable θ measurable both experimentally
and on the lattice; this observable has mass dimensions dθ. We refer to the exper-
imental value of θ as θphys, while its lattice estimate is labelled θ̂. The relationship
between θ and θ̂ is

θ = a−dθ θ̂, (1.8)

where a is the lattice spacing. In principle, lattice actions contain free parameters,
such as the bare quark masses mf

q , or the coupling constant g0. Consequently, the
lattice measurement θ̂ can also depend on the values of the parameters:

θ = a−dθ θ̂(g0,m
f
q , . . . ). (1.9)

In the continuum limit, the left-hand side of eq. (1.9) remains finite, and its value
is θphys. However, the right-hand side vanishes as a→ 0. As we do want the equality
to hold in the continuum limit, there must be a set of values of the parameters
(g?0,mf,?

q ) that keeps the lattice measurement finite as the lattice spacing reaches its
continuum limit value. This corresponds to a phase transition in which the system
loses its lattice nature to reach its continuum form. The values g?0,m?

q are known as
the fixed-points of the renormalisation group equations.

In practice, in order to reach the continuum limit, one measures the same ob-
servable at different lattice spacings close to the critical point, and then performs a
numerical extrapolation. As the lattice spacing shrinks, the volume spanned by the
lattice also tends to zero. Consequently, in order to reach the continuum limit, the
volume of the lattice must grow as the lattice spacing shrinks. This is called the
thermodynamic limit of the theory, and reaching it is computationally expensive.
More information about the lattice continuum limit can be found in Refs. [23–25].

All results presented in this document are measured at finite lattice spacing; no
continuum limit is taken.
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Chapter 1. Quantum-chromodynamics and its lattice regularisation

1.2.1 Building lattice actions
In order to demonstrate how to regularise the continuum QCD action on the lattice,
the standard starting point is the limit of non-interacting fermions, which can be
achieved by setting g0 = 0 or Aµ = 1 in the lagrangian density defined in eq. (1.1).
In the non-interacting limit, the continuum action is

Sfree =

∫
d4x ψ̄(x)

[
γµ∂µ + 1mq

]
ψ(x). (1.10)

As we work in discrete space-time, the integrals become sums over lattice sites. In
addition, we need to replace the partial derivative operator with the corresponding
finite difference operator, whose definition is not unique. We employ the following
definition:

∂µf(x)→
f(n+ µ)− f(n− µ)

2a
. (1.11)

The naive version of the free lattice fermionic action corresponds to

Slat
free = a4

∑
n

ψ̄(n)

[ 4∑
µ=0

γµ
ψ(n+ µ)− ψ(n− µ)

2a
+ 1mq ψ(n)

]
. (1.12)

By analysing this lattice action, we can find a fundamental problem of lattice field
theories containing fermionic matter. To encounter this problem, we start by defining
the Dirac operator as the operator that acts on the quark bilinear in eq. (1.12):

ψ̄ Dψ.

The Dirac operator of eq. (1.12) is just

D(n,m) =
4∑

µ=0

γµ
δn+µ,m − δn−µ,m

2a
+mδn,m. (1.13)

This operator can be Fourier transformed on the lattice and then inverted, which
generates the propagator of a non-interacting fermionic field:

S(k) = D−1(k) =
mq1− ia−1

∑
µ γµ sin(kµa)

m2
q + a−2

∑
µ sin2(kµa)

. (1.14)

The poles of the propagator, corresponding to the zeroes in the denominator, are
interpreted as propagating particles. In general, we expect only one pole in the
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quark propagator, corresponding to a quark of mass mq. However, the propagator
in eq. (1.14) describes 16 different particles, as there are 16 poles in the propagator:
one located at k = (0, 0, 0), and the other ones located at the corners of the lattice
in Fourier space. These 15 clones are called doublers, and they share the same mass
mq.

Doublers are unwanted and should be removed from the propagator, as they lead
to wrong physics [25].

A common way of removing the doublers in eq. (1.12) is through the inclusion
of the so-called Wilson term [25] in the action. The Wilson term corresponds to a
discretisation of the following operator

WT = −r
2
∂µ∂µ (1.15)

where ∂µ is the derivative operator and r is the Wilson r-parameter, usually set to
r = 1. Adding the Wilson term to the action in eq. (1.12) implies that the Dirac
operator in momentum space is

D(k) = m1+
i

a

∑
µ

γµ sin(kµa) + 1
r

a

∑
µ

[1− cos(kµa)]. (1.16)

The inverse of this operator is similar to eq. (1.14). However, it contains a dynamic
mass contribution in the denominator. This dynamic mass term is zero at k = (0, 0, 0)
but non-zero in all other corners of the Brillouin zone. Therefore, the Wilson term
eliminates all doublers at the cost of explicitly breaking chiral symmetry. There is
an important theorem, called the Nielsen-Niyomiya no-go theorem [26, 27], which
states that one cannot create a local lattice action that does not explicitly break
chiral symmetry and, at the same time, does not include doublers.

Other fermionic lattice formulations allow the exclusion of doublers from the
propagator: an example is the staggered fermion formulation [28]. As stated be-
fore, there are infinitely many lattice actions that share the same naive continuum
action. Consequently, the lattice community has worked for years trying to find dif-
ferent lattice formulations with desirable properties. Some examples of these lattice
formulations include the Symanzik’s improvement scheme, in which higher order op-
erators, such as the so-called clover term, are added to the action to cancel second
order discretisation effects on the lattice observables [29–31]; the domain-wall fer-
mionic formulation, in which a new space-time dimension is added to the fermions
to avoid explicitly breaking chiral symmetry [32, 33]; or the twisted mass formula-
tion, in which a complex term is added to the quark masses to remove second order
discretisation effects on the masses of the states [34, 35].
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Chapter 1. Quantum-chromodynamics and its lattice regularisation

In order to build lattice actions whose continuum limit naively corresponds to the
interacting QCD action in eq. (1.1), we need to impose two postulates: first, lattice
fermionic quark fields belong to the fundamental representation of the SU(3) colour
group; and second, the action must be invariant under local SU(3) rotations on the
fields, that is, it must be SU(3) gauge invariant. To fulfil both postulates, the lattice
quark fields must transform under local SU(3) rotations in the following way:

ψ(n)→ Ω(n)ψ(n); ψ̄(n)→ ψ̄(n)Ω†(n), (1.17)

where Ω(n) is an element of SU(3) and Ω† represents its hermitian conjugate. The
mass term in eq. (1.12) is invariant under the transformations shown above. However,
the kinetic term is not. To enforce complete gauge invariance, a new field Uµ(n) is
introduced, that as

Uµ(n)→ Ω(n)Uµ(n)Ω
†(n+ µ). (1.18)

The gauge fields Uµ are called link variables, and are elements of SU(3). They
connect two lattice sites under a gauge transformation, as defined in eq. (1.18). The
complete QCD lattice action is not derived in this document, but can be found in
Refs. [23, 25]. The simplest lattice action that naively recovers the complete QCD
lagrangian shown in eq. (1.1) is

Slat
QCD = SF [ψ, ψ̄, Uµ] + SG[Uµ], (1.19)

where
SF = a4

∑
n∈Λ

ψ̄(n)D[Uµ](n)ψ(n), (1.20)

being

D[Uµ](n) =
4∑

µ=0

γµ
Uµ(n)δn,n+µ − U †

µ(n− µ)δn,n−µ
2a

+mq, (1.21)

and
SG =

2

g2

∑
n∈Λ

∑
µ<ν

Re Tr
[
1− Uµν(n)

]
, (1.22)

with Uµν(n) being the plaquette operator, defined as

Uµν(n) = Uµ(n)Uν(n+ µ)U †
µ(n+ ν)U †

ν(n). (1.23)

Figure (1.1) shows how link variables and fermionic variables interact on the lattice.

10
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n

n+ ν

n+ µ

n+ µ+ ν

ψ̄(n) ψ(n+ µ)

a

Uµ(n)

U †
µ(n+ ν)

U †
ν(n) Uν(n+ ν)

Figure 1.1: Diagram depicting a lattice cell and the relevant fermionic fields and
gauge links. The fermionic fields, ψ̄(n) and ψ(n+ µ), occupy the lattice sites n and
n+ µ respectively. These fields interact through the gauge link Uµ(n) pointing from
n to n+ µ. The green arrows show the plaquette operator, defined in eq. (1.23).

1.2.2 Quantising a lattice field theory
Equation (1.19) corresponds to the standard implementation of the QCD action on
the lattice. It contains three fundamental fields: the quark and antiquark fields,
respectively represented by ψ(n) and ψ̄(n), and the gluonic link variables, Uµ(n).

Regularising an action on the lattice is the first step towards its complete analysis;
the next step is to quantise it. As in the continuous case, the Euclidean path integral
on the lattice treats the lattice fields as integration variables. The importance of each
field configuration is determined by its action. An example of a lattice Euclidean
path-integral is

Z =

∫
Dψ(n)Dψ̄(n)DUµ(n) exp

(
− S[ψ(n), ψ̄(n), Uµ(n)]

)
. (1.24)

We can compute any correlation function of Euclidean lattice operators as

〈Ôm(nm) . . . Ô2(n2) Ô1(n1)〉 =
1

Z

∫
Dψ(n)Dψ̄(n)DUµ(n)Om(nm) . . . O1(n1) exp

(
− S[ψ, ψ̄, Uµ]

)
. (1.25)

Lattice correlation functions resemble continuous correlation functions, defined in
eq. (1.5), after the substitution the space-time coordinate x with Euclidean lattice
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Chapter 1. Quantum-chromodynamics and its lattice regularisation

site n, and the gluon field Aµ with the gauge links Uµ. Additionally, one must take
care of the definition of the gauge link integration measure, DUµ, as the integration
must be performed over the SU(3) group [25]. Furthermore, to ensure fermionic
statistics, fermionic fields are treated as Grassmann variables [25].

An important result derived from the properties of Grassmann numbers is the
atthews-Salam formula [25], which reads

Z =

∫
dψdψ̄ exp

(
ψ̄D[Uµ]ψ

)
= det

[
D[Uµ]

]
. (1.26)

This relationship implies that the integral of any bilinear operator, such as the Dirac
operator, of a combination of Grassmann variables is the determinant of the operator.
Applying the Matthews-Salam relationship to eq. (1.24) allows us to obtain

Z =

∫
DUµdet

[
D[Uµ]

]
exp

(
− S[Uµ]

)
. (1.27)

In the case in which several flavours are included in the action, each flavour contrib-
utes with a factor of the determinant to the path integral.

To compute eq. (1.25), the following probability distribution function is defined:

ρ(Uµ(n)) =
1

Z
det
[
D[Uµ(n)]

]
exp

(
− S[Uµ(n)]

)
. (1.28)

Employing the definition above, one computes eq. (1.25) as

〈Ôm(nm) . . . Ô2(n2) Ô1(n1)〉 =
∫
DUµ(n)Om(nm) . . . O1(n1)ρ(Uµ(n)). (1.29)

1.2.3 Simulating lattice field theories
We know how to regularise an action on the lattice, and also the basic recipes to
quantise it. As a result, we are in the position to start discussing how we could
simulate a lattice quantum field theory on a computer. The main goal is to integrate
eq. (1.25). A correlation function is the expectation value of a function depending on
a set of random variables, in our case, the fields living in a 4-dimensional space-time.

We assume that all integrable fields in eq. (1.25) can be viewed as random vari-
ables living on a 4-dimensional lattice, whose probability distribution function is
eq. (1.28). Provided that we sampled enough realisations of these random variables,
then, we could use those artificially generated samples to compute the sample aver-
age of some observables. From the central limit theorem, we can be sure that the
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sample average converges in probability to the expected value of a random variable
as the number of samples increases. The question is: how do we sample the fields?

Naively, we could try generating random SU(3) elements, one per each point in
the lattice. Those randomly generated configurations can be employed to compute
the fermion determinant at each configuration. After having collected numerous
ensembles, we can estimate eq. (1.25) as long as we know how to evaluate correl-
ation functions on a collection of ensembles. Once all estimates are generated, we
can compute their sample average. This estimate will converge in probability to
the population expected value as long the number of samples is large enough, and
the samples are independent and identically distributed. The variance of this estim-
ator decreases with the number of configurations available, as it corresponds to the
variance of the sample mean.

There are two problems with this algorithm: it is completely inefficient, and it is
not ensured to produce reliable estimates of the studied observables. Generally, in
most probability distributions, there are some values of the random variables that
will weight more than others. Consequently, we should try sampling those important
configurations more frequently. To do so, we need to generate configurations of
the fields that are correctly distributed. In statistics, this is called Monte Carlo
sampling, a standard procedure used to generate samples with known distribution.
This technique is widely used to simulate systems in material sciences, condensed
matter or chemistry [36–38].

The basic goal behind Monte Carlo sampling in the context of lattice QCD is
to generate a set of random variables Y distributed according to P (Y ) starting
from a randomly selected initial configuration Y0. In our case, the random variables
are the gauge links, whose distribution is eq. (1.28). The ensemble generation is
performed iteratively by updating the configurations treated as quasi-independent
random variables. The dynamics of the evolution are modelled using a Markov chain.
A Markov chain is a sequence of random variables Y0 → Y1 → · · · → Yn satisfying

P (Y0, Y1, . . . ) = P (Y0)P (Y1|Y0)P (Y2|Y1) . . . P (Yn|Yn−1), (1.30)

where P (Y ) represents the probability distribution of the variable Y ; P (Y,X) rep-
resents the joint distribution; and P (Y |X) is the conditional distribution of Y on X.
The equation above is satisfied for all values of the random variables.

In our setup Yt and Yt+1 represent two sequential configuration updates; an up-
date is also called a Markovian step or Monte Carlo time step. Equation (1.30) simply
implies that the chain has short-term memory: the value of a random variable Yt only
depends on the previous random variable in the chain Yt−1; the conditional probab-
ility is sometimes called the transition probability. As we want all configurations to
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be accessible at every Monte Carlo update, the transition probability must satisfy∑
y∈Y

P (Yt = y|Yt−1 = x) = 1, (1.31)

where Y is the set of all possible realisations of Yt: in our particular case, the set of
all possible configurations of the gauge links.

In addition, we would like our chain to eventually reach the equilibrium probab-
ility distribution: P (Y = y), where Y is independent of all previous configurations.
This can be ensured through the so-called detailed balance equation:

P (Yt = y|Yt−1 = x)P (Yt−1 = x) = P (Yt−1 = x|Yt = y)P (Yt = y). (1.32)

The detailed balance equation implies that jumping from configuration Yt−1 = x to
Yt = y is as likely as jumping from configuration Yt = y to Yt−1 = x. Summing
over all possible values of Yt−1 in eq. (1.32) and making use of eq. (1.31) allows us to
prove that we will eventually reach the equilibrium distribution P (Yt = y):

P (Yt = y) =
∑
x∈X

P (Yt = y|Yt−1 = x)P (Yt−1 = x). (1.33)

Monte Carlo sampling suffers from two important limitations: thermalisation and
correlation. Thermalisation means that we should allow the system to evolve towards
its equilibrium distribution. As we start from a random initial configuration, the first
sampled configurations are usually far from being distributed according to the desired
equilibrium distribution. As a result, one should always let the Markov chain evolve
for several iterations before saving the configurations. One can track the status of
the Markov chain by measuring some quantities on the generated configurations.
Once the chain is thermalised, we can start saving the configurations to compute
any desired quantity with them.

However, note that, as the configurations are generated in a Markov chain, they
are sequentially highly correlated: previous configurations are employed to generate
new configurations — see eq. (1.30). The fact that the configurations are correl-
ated has severe consequences, as correlated random variables are not independent
and, therefore, they do not comply with the central limit theorem, thus generating
biased expected value estimates. Correlation among Monte Carlo configurations can
be reduced by either waiting some Markovian iterations between sequential meas-
urements, or by binning contiguous configurations into a single estimate. In this
context, binning is equivalent to computing the sample average. Information about
the ensembles employed in the analysis presented in this document can be found in
Ref. ([39]) and Appendix A.
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An algorithm that employs uniformly distributed pseudo-random numbers in or-
der to generate ensembles of an arbitrary random variable Y distributed according
to P (Y = y) is the Metropolis algorithm [40]. A simple Metropolis algorithm is suffi-
cient to simulate a quenched approximation of QCD on the lattice. In the quenched
approximation, the fermion determinants in eq. (1.28) are set to 1.

Including the fermion determinant in the simulations is expensive and difficult,
as it involves the computation of the determinant of a large matrix that directly
depends on the gauge fields. As a result, the determinant must be evaluated at each
Monte Carlo step. Additionally, each distinguishable quark field contributes with a
different determinant to eq. (1.28). In lattice simulations, it is common to include
the determinant for some selected flavours, and leave some other flavours quenched,
usually heavier quarks.

A standard way of including dynamical fermions in the simulations is through the
concept of pseudo-fermions [41]. Including pseudo-fermions evades the computation
of the fermion determinant but implies that the newly introduced pseudo-fermion
action is non-local. As a result, the Monte Carlo transition probability depends
globally on both the previous and the newly generated configurations, which makes
its estimation computationally expensive. A standard algorithm applied to generate
lattice QCD with dynamic quarks is the Hybrid Monte Carlo (HMC) algorithm [42,
43].

Nowadays, lattice QCD simulations treat the three lightest quark flavours (u, d, s)
as dynamical quarks; this is sometimes called a 2+1 simulation, as the u and d quarks
are assumed degenerate. Lattice simulations including dynamical charm quarks are
becoming more and more common. The heaviest quarks, top and bottom, are nor-
mally inaccessible due to their large masses.

Computing correlation functions from lattice configurations

The result of our Monte Carlo sampling algorithm is a collection of Nb nearly in-
dependent configurations. Those configurations could have been generated in the
quenched approximation, or taking into account several dynamic flavours. From the
ensemble of configurations, any desired quantity can be computed on the lattice.

From now on, we assume that the Nb configurations are generated from a therm-
alised Markov chain. Additionally, the correlation between configurations is sup-
posed to be minimal. Therefore, we can treat the configurations as independent and
identically distributed random variables.

We would like to evaluate eq. (1.25) on the sample of configurations; this can
be done independently for each configuration. Each measurement leads to an in-
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dependent estimate of a particular correlation function, and the combination of all
measured correlation functions into a single sample allows the computation of the
ensemble average, which corresponds to an unbiased estimate of the population cor-
relation function. Due to the fact that all analysis presented in this document deal
with mesonic correlation functions, we restrict this discussion to correlation functions
constructed from mesonic operators.

A mesonic operator is composed by a quark-antiquark pair located at a given
space-time coordinate x. In principle, both quark fields could have different fla-
vours. Additionally, in order to generate mesonic operators with different quantum
numbers, we project the quark fields using different operators, for example, using the
Dirac γ-matrices. In principle, other operators can be included depending on the im-
plementation, such as derivatives or operators belonging to other spaces, e.g. flavour
space. A general mesonic operator composed of a quark field ψ and an antiquark
field ψ̄′ is defined as

M(x) = ψ̄′
a,α(x) Γab,αβ ψb,β(x), (1.34)

where a and b are colour indices, and α and β are spinor indices. Note that ψ and ψ̄′

might represent different quark flavours. The colour space part of Γ is δab to ensure
colourless bounded states.

The conjugate of M(x) is denoted by M †(x), and it is defined as

M †(x) = ψ†(x)Γ†ψ̄′†(x) = ψ̄(x)γ0Γ
†γ0ψ

′(x) = ψ̄(x)Γ̄ψ′(x), (1.35)

where Γ̄ = γ0Γγ0. In the derivation displayed above, we have employed

ψ̄ = ψ†γ0, (1.36)

The action of both mesonic operators on the system can be regarded as respect-
ively creating an excitation of the same quantum numbers of M and M †. One can
obtain the quantum numbers of the operator by studying how it transforms under
different symmetries, such as charge conjugation or parity. Some information about
different operators used in our simulations can be found in Appendix (B).

A mesonic 2-point correlation function is defined as the action of two mesonic
operators at different points of the space-time. To simplify the derivation, we restrict
ourselves to the continuous case. However, the final expression is always evaluated
on the lattice by replacing all the integrals with sums, all the coordinates with
lattice coordinates, and any operator with its lattice analogous. A mesonic 2-point
correlation function is defined as

C(y, x) = 〈∅|M(y)M †(x)|∅〉. (1.37)
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Due to translation invariance of systems in equilibrium, 2-point correlation function
depend on the distance: C(y, x) = C(y−x). The first operator, M †(x), is called the
source operator, and it is generally placed at the origin of coordinates: x = 0. The
second operator, M(y), is called the sink operator. All physical states with the same
quantum numbers contribute to the correlation function.

We can replace the mesonic operators with their definitions in terms of quark
fields using both eq. (1.34) and eq. (1.35):

C(y − x) = ±〈ψ̄(y)ΓAψ′(y) ψ̄′(x)Γ̄Bψ(x)〉. (1.38)

where ΓA can be, in principle, different to ΓB. We can use Wick’s theorem [25] on
the fermionic fields to contract them and obtain the following expression:

C(y − x) = −Tr
[
ΓASψ(y − x)Γ̄BSψ′(x− y)] (1.39)

where Sψ(y− x) is the quark propagator of flavour ψ, computed through the inverse
of the Dirac operator. A derivation of eq. (1.39) can be found in Ref. [25]. This
expression is only valid for non-singlet mesonic operators. In the case in which
singlet operators are present, eq. (1.39) also contains disconnected contributions,
which are terms dependent on only one propagator. Disconnected contributions are
mandatory when simulating charge-neutral mesons, such as the neutral pion. They
are difficult to compute as they are inherently noisy. No disconnected contributions
are computed in our simulations.

Without loss of generality, we can place the source operator at the origin of
coordinates, x = 0, leading to

C(y) = −Tr
[
ΓA Sψ(y) Γ̄B Sψ′(−y)

]
. (1.40)

It is common to work in a time-momentum representation of C(y), which implies
that the correlation function depends on the Euclidean time τy = τ and the external
momenta of the system ~k: C(y) → C(τ,~k). This representation can be achieved
through:

S(τ,~k) =

∫
d3y ei

~k~yS(τ, ~y). (1.41)

Using the Fourier transform of eq. (1.40), introducing the time-momentum repres-
entation of both propagators, and manipulating the integral, allows to obtain the
time-momentum representation of the correlation function:

C(τ,~k) = −Tr
∫
d3k
[
ΓASΦ(τ,~k)ΓBSψ(−τ,~k)

]
. (1.42)
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In order to evaluate mesonic correlations on a given configuration Uµ, we com-
pute two quark propagators, defined as the inverse of the Dirac operator in eq. (1.21).
Computing the quark propagator involves the inversion of a huge and sparse mat-
rix [25]. Consequently, one does not compute the whole quark propagator, as it is
expensive both computationally and memory-wise. Instead, we can take advantage
of the fact that the source operator is placed at a fixed space-time coordinate x in
order to only compute the propagator from that source point to all possible sink
locations on the lattice, represented by y; the sliced propagator represents a column
of the Dirac operator. Note that, for each space-time coordinate x, there are 12
different values of the propagator, corresponding to the combinations of 3 colours
and 4 spinor indices. One can select a column of the propagator employing a source
vector G through

Sα0,β
i0,j

(y − x0) =
∑
x,α,i

Sα,βi,j (y − x)Gα0
i0
(x− x0). (1.43)

In the case in which

Gα0
i0
(x− x) = δ(x− x0)δi,i0δα,α0 , (1.44)

then only one column of S is used in the computation of the propagator. These
source vectors are called local sources. Non-local sources can be employed by defining
different source vectors, for example Gaussian source vectors. Non-local sources can
enhance the signal of the propagator as they include more information coming from
the Dirac operator. Non-local sources are called smeared sources [25, 44, 45].

Local sources tend to uniform the influence of all states to the total correlation
function, which sometimes hinders the analysis of the estimated correlation func-
tions. Instead, smeared sources tend to improve the influence of asymptotic and
stable states, which usually correspond to lower energy states. Including smeared
sources is generally encouraged as it corresponds to adding more information to
the approximated correlation functions. In our simulations, we generate correlation
functions using both local and Wuppertal-smeared sources [46], combined with APE
smearing of the link variables [47]. More information about the parameters defining
our smeared sources can be found in Appendix (A).

The standard algorithm employed to compute propagators is the so-called con-
jugate gradient method [48].

Spectral decomposition of correlation functions at zero temperature

To conclude, we present an important result of quantum field theory, the so-called
spectral decomposition of a correlation function. Through this decomposition, one
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can study the spectroscopy of the theory from estimated correlation functions. The
spectral decomposition of a correlation function reads

〈Ô2(τ,~k = ~0)Ô1(0,~0)〉 =
∞∑
n=0

〈∅|Ô2|n〉〈n|Ô1|∅〉e−En τ . (1.45)

The states contributing to the spectral decomposition are assumed to be hierarchic-
ally ordered in energy: Es > Es′ , ∀ s > s′.

Equation (1.45) can be derived by working in the Heisenberg picture of quantum
mechanics and inserting a complete set of states that diagonalise each field operator.
In Euclidean time, the spectral decomposition can be interpreted as a model for
the contribution of each state to the total correlation function: the contribution of
higher-order states will be exponentially suppressed as the temporal distance between
both mesonic operators increases. This interpretation is only valid in the imaginary-
time formalism of quantum mechanics; in the real-time formalism, the exponential
weights in the spectral decomposition become complex. Figure (1.2) shows some real
correlation functions extracted from lattice simulations at different temperatures.
The complete derivation of the spectral decomposition can be found in Ref. [25].
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Figure 1.2: Example of simulated mesonic correlation functions in our lattice setup,
described in detail in Appendix (A). The correlation functions correspond to the sc
meson (strange-charm) in the pseudoscalar channel. Information about the physical
states simulated can be found in Appendix (B).

From eq. (1.45), we learn that the correlation function should be dominated by
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the lowest energy state at large temporal separations between the sink and the source
operators, as long as E0 � Es>0. In contrast, at τ → 0, the contribution of all states
is non-negligible. In this region, the correlation function is said to be contaminated
by excited states.
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Chapter 2

Introduction to thermal field
theory

The system presented in the previous chapter does not fully correspond to the one
we are interested in, as the effect of the temperature is not taken into account.

Understanding how the temperature affects the observables of a quantum field
theory is a topic of long-standing interest. First, because we do live in a non-zero
temperature universe: experimental quantities are never measured at zero temper-
ature; the average temperature of the universe is non-zero, as indicated by cosmic
microwave background radiation studies [1]. Second, as the temperature plays an
important role in the description of most systems, then, so it does for QCD. For
instance, in QCD, the temperature is directly responsible of the transition from a
strongly interacting confining state, usually called the hadronic phase, to a weakly
interacting system with the properties of a plasma, which is usually referred to as
the Quark-Gluon Plasma (QGP) [2]. The reverse transition is believed to have
taken place instants after the Big Bang [3], which implies that non-zero temperature
QCD is crucial in our understanding of early-universe physics. Moreover, from an
experimental point of view, the temperature is believed to be fundamental in the
description of heavy-ion collisions, and the interior of dwarf stars [4–6].

2.1 The canonical ensemble of a quantum field
theory

In order to immerse a quantum field theory in a thermal bath at temperature T ,
two formalisms are required: statistical mechanics and quantum field theory. The
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combination of both formalisms is referred to as thermal field theory. The canonical
ensemble of statistical mechanics [7], which describes the dynamics of a system placed
in a thermal bath at fixed temperature T and volume V . The chemical potential is
assumed to be zero for all species considered. Non-zero density thermal field theory
can be formulated [8] using the grand-canonical ensemble [7], but it leads to severe
complications when formulated as a lattice field theory. In this document, we restrict
ourselves to zero density and non-zero temperature thermal field theory.

One of the fundamental objects in the canonical ensemble formulation of statist-
ical mechanics is the density operator, defined as

ρ(Ĥ, β) = exp
(
− βĤ

)
, (2.1)

where Ĥ represents the hamiltonian describing the dynamics of the underlying sys-
tem, and β is the inverse of the temperature:

β =
1

kB T
, (2.2)

where kB is the Boltzmann constant, which is equal to 1 in natural units. The density
operator is sometimes called the Boltzmann weight factor, as it can be interpreted
as weighting the likelihood of every state of the system. At low temperature, or
large β, the states with high energy are suppressed as their probability is small due
to the exponentially decaying nature of the density operator. In contrast, at large
temperature, the contribution of all states is non-negligible as the exponential decay
in eq. (2.1) is damped by the temperature.

From the density operator, we can compute the partition function, defined as

Zβ = Tr
[
ρ(Ĥ, β)

]
=
∑
n

〈n|e−βĤ |n〉, (2.3)

where the states |n〉 form a complete set. The partition function can be interpreted
as the sum of the probabilities of all states in the system. As a result, it can be
viewed as a cumulative distribution function in probability theory, similar to the
path integral in quantum field theory. The partition function of a discrete system is
shown in eq. (2.3). In the case in which the hamiltonian allows continuous energy
states, then, the sum in eq. (2.3) is replaced by an integral.

From the partition function, one can study any static thermodynamic quantity
describing the bulk properties of the system [7], for example: its entropy, pressure,
total internal energy, or enthalpy. Those quantities can be defined as the moments of
the cumulative distribution function. In contrast, the study of non-static quantities,
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that is, quantities that depend on the space-time coordinates, requires the analysis of
statistical correlation functions. Correlation functions allow the study of important
properties of the system, such as: production rates from a plasma, the spectroscopy
of the theory, transport coefficients or shear and bulk viscosities [9–15].

In statistical mechanics, the expectation value of an operator at temperature T
is defined as

〈Ô〉β =
1

Z
Tr
[
e−β ĤÔ

]
. (2.4)

We can extend this definition to 2 operators,

〈ÂB̂〉β =
1

Z
Tr
[
e−β ĤÂB̂

]
. (2.5)

The operators are time-ordered: tA < tB. In thermal field theory, the operators
correspond to field operators depending on the space-time. In this context, a 2-point
correlation function is defined as

〈Ô(~y, t)Ô†(~x, 0)〉β =
1

Z
Tr
[
e−βĤÔ(~y, t)Ô†(~x, 0)

]
. (2.6)

We can manipulate the 2-point correlation function definition in eq. (2.6) to
investigate some of its properties:

〈Ô(~y, t)Ô†(~x, 0)〉β =
1

Z
Tr
[
e−βĤÔ(~y, t)Ô†(~x, 0)

]
=

1

Z
Tr
[
e−βĤÔ(~y, t)e−βĤeβĤÔ†(~x, 0)

]
=

1

Z
Tr
[
Ô(~y, t)e−βĤei(−iβ)ĤÔ†(~x, 0)e−i(−iβ)Ĥ

]
=

1

Z
Tr
[
Ô(~y, t)e−βĤÔ†(~x,−iβ)

]
= ± 1

Z
Tr
[
e−βĤÔ†(~x,−iβ)Ô(~y, t)

]
= ±〈Ô†(~x,−iβ)Ô(~y, t)〉β. (2.7)

In the derivation above, we have made use of the invariance of the trace operator
under cyclic permutations. The final sign of the correlation function depends on the
spin statistics of the fields, as interchanging two fermionic fields leads to an overall
change of sign due to the exclusion principle of fermions.

Equation (2.7) is fundamental in thermal field theory. To see this, we can work
in Euclidean space-time by performing a Wick rotation: t = −iτ . Substituting it
with τ in eq. (2.7) leads to the following identity:

〈Ô(~y, τ)Ô†(~x, 0)〉β = ±〈Ô†(~x, β)Ô(~y, τ)〉β. (2.8)
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Using the standard notation for correlation functions:

〈Ô(y, τ)Ô†(x, 0)〉 = C(~y − ~x, τ). (2.9)

We can write eq. (2.8) as

C(~y − ~x, τ) = ±C(~y − ~x, τ − β). (2.10)

The identity above states that Euclidean thermal field theory correlation functions
are periodic or anti-periodic in time depending on the fields: bosonic correlation
functions are periodic, while fermionic are anti-periodic. On the lattice, in order
to ensure that this condition is fulfilled, it is common to impose periodic boundary
conditions in the time direction for bosonic fields, and anti-periodic conditions for
fermionic fields. Additionally, eq. (2.8) implies that the Euclidean time can only take
values in the region τ ∈ [0, β], where β represents the inverse of the temperature.

Placing a quantum field theory in a thermal bath is equivalent to working in
a finite Euclidean time, where the maximum time is equal to the inverse of the
temperature. The temperature of the system increases as the time direction gets
compressed. The limit β →∞ corresponds to zero-temperature field theory.

In order to quantise a thermal field theory, it is common to work in the path
integral formalism of quantum mechanics, introduced in Chapter (1). The path
integral computed from an initial to a final configuration of the fields is interpreted
as the probability of the transition between both states. The transition probability
from configuration Φa to configuration Φb of a system is defined as

〈Φa|e−itĤ |Φb〉 =
∫ Φb

Φa

DΦeiS[Φ], (2.11)

where Ĥ is the hamiltonian of the system, and S[Φ] its action. We can compare the
path-integral with the continuous version of the partition function in eq. (2.3), which
reads

Zβ = Tr
[
ρ(Ĥ, β)

]
=

∫
DΦ 〈Φ|e−βĤ |Φ〉. (2.12)

Both identities are equivalent once we perform a Wick rotation over the time com-
ponent in eq. (2.11):

〈Φa|e−τĤ |Φb〉 =
∫ Φb

Φa

DΦe−S[Φ] =

∫ Φb

Φa

DΦe−
∫
dτd3xLE [Φ], (2.13)

where LE represents the Euclidean version of the lagrangian density. Due to the fact
that fields are periodic or anti-periodic in time, the time integral in the equation
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above is only defined from τ = 0 to τ = β. Applying this condition leads to the
definition of the thermal path integral,

Zβ =

∫
DΦ exp

(
−
∫ β

0

dτ

∫
d3xLE[Φ]

)
. (2.14)

More information about thermal field theory can be found in Refs. [16–18].
The canonical partition function is almost identical to the Euclidean path integral

in eq. (1.24) once periodic/anti-periodic boundary conditions on the fields are im-
posed. Including the effects of the temperature in lattice field theory is just a matter
of imposing a set of boundary conditions on the fields, and interpreting the inverse
of the temporal lattice length as the temperature. Therefore, the temperature of a
lattice system can be computed using

T =
1

Lτ
=

1

Nτ a
. (2.15)

As a result, we can modify the temperature of the system by either varying the
number of points in the temporal direction while keeping the lattice spacing fixed,
or by modifying the lattice spacing maintaining a constant temporal size.

The previously introduced thermal field theory formalism is expressed in terms of
a complex time τ . However, we are not restricted to Euclidean thermal field theory.
A standard introduction to real-time thermal field theory can be found in Ref. [16].
A recent review of the topic can be found in Ref. [19]. It is worth noting that the
Euclidean time formalism is the most popular one in lattice field theory.

2.1.1 Thermal and screening correlation functions
In thermal field theory, for each particular pair of field operators defining a 2-point
correlation function, there exist two different projections of the same correlation
function. These projections contain different physics due to the fact that placing the
system in a thermal bath breaks Lorentz invariance: the system treats differently
temporal and spatial directions. The projections are called the thermal projection
and the screening projection, which respectively lead to the so-called thermal correl-
ation functions and screening correlation functions. To construct these projections,
we use the fact that 2-point correlation functions are functions of the space-time:
C(τ, ~y).

We can project the bare correlation function C(τ, ~y) into different representations
by Fourier transforming the coordinates. One can Fourier transform both space and
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time coordinates:
C(ω,~k) =

∫
dτd3x

(2π)4
C(τ, ~x)eiωτei

~k~x, (2.16)

which produces the energy-momentum representation of the correlation function. As
correlation functions are periodic in time, the frequency space forms a discrete set
called the Matsubara frequencies [16–18]. For the shake of simplicity, in our current
discussion, we treat the frequency space as continuous. However, the integral over ω
should be replaced by a sum over the Matsubara frequencies, which correspond to
ωn = 2πnT ; n ∈ N for bosonic correlation functions.

In addition, a mixed representation of the correlation function can be obtained
by integrating the temporal or spatial components of the correlation function. For
example, the so-called thermal projection of the correlation function is obtained by
Fourier transforming only the spatial coordinates of the original function,

C(τ,~k) =

∫
d3x

(2π)3
C(τ, ~x)ei

~k~x. (2.17)

In contrast, the screening projection is generated by only Fourier transforming the
temporal coordinates,

C(ω, ~x) =

∫
dτ

2π
C(τ, ~x)eiωτ . (2.18)

An example stressing the difference between thermal and screening correlation
functions is the so-called Debye mass, which is exclusively accessed from the analysis
of screening correlations in thermal field theory. More information about the Debye
mass and screening correlation functions can be found in Ref. [16].

2.2 Spectral functions
As stated before, Euclidean thermal field theory correlation functions can be used
to investigate the non-static properties of the medium. However, in order to access
the real-time dynamics of the system, we need to perform an analytic continuation
from complex time τ to real time t. This can be done through the so-called spec-
tral function. In addition to allowing the analytic continuation from Euclidean to
Minkowskian space-time, spectral functions also grant access to the whole spectrum
of states contributing to the correlation function, which is particularly useful to un-
derstand how the properties of the medium, such as the temperature, affect the
physical states described by the theory.
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The formal definition of a spectral function of a pair of operators Ô and Ô† is

ρ(t, ~x) = 〈[Ô(t, ~x), Ô†(0,~0)]〉. (2.19)

Note that the same label, ρ, is employed to refer to the density operator in eq. (2.1),
but both quantities are completely unrelated. The equation above is specific for
bosonic field operators. The fermionic version replaces the commutator, [A,B] =
AB − BA, with the anti-commutator, {A,B} = AB + BA. As our interest lies in
mesonic operators, which are indeed bosonic, we only discuss the former case. In
the spectral function definition, we place the source operator Ô† at the origin of
coordinates. This is possible due to translational invariance of systems in thermal
equilibrium.

One can decompose eq. (2.19) into two independent real-time correlation func-
tions,

ρ(t, ~x) = 〈Ô(t, ~x)Ô†(0,~0)〉 − 〈Ô†(0,~0)Ô(t, ~x)〉. (2.20)
These two correlation functions are related to the so-called retarded and advanced
correlation functions, defined as

CR(t, ~x) = iθ(t)〈[Ô(t, ~x), Ô†(0,~0)]〉 = CA(−t,−~x), (2.21)

where θ(t) is the step function:

θ(t) =

{
1 if t ≥ 0
0 otherwise

}
. (2.22)

Substituting the definitions of CR and CA into eq. (2.19) allows us to write

ρ(t, ~x) = −i[CR(t, ~x)− CA(t, ~x)]. (2.23)

From the equation above, we learn that all real-time correlation functions can be
written in terms of the spectral function. More information about these identities
can be found in Refs. [16, 18, 20].

Manipulating eq. (2.21) allows us to write a relationship between the spectral
function and the retarded correlator,

CR(t, ~x) = iθ(t)ρ(t, ~x). (2.24)

The energy-momentum representation of the equation above can be obtained by
computing the following Fourier transform:

CR(ω,~k) =

∫
dωd3k

(2π)4
iθ(t)ρ(t, ~x)eiωtei

~k~x. (2.25)
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To compute the integral above, we employ the following identity

iθ(t) = −
∫ ∞

−∞

dω

2π

e−iωt

ω + iε
, (2.26)

where ε is a positive real number. The identity above allows us to perform the
integrals in eq. (2.25), and arrive to

CR(ω,~k) =

∫ ∞

−∞

dω′

2π

ρ(ω′, ~k)

ω′ − ω − iε
. (2.27)

The equation above is the dispersion relation, whose name comes from the fact that
it looks like a continuous sum of propagating particles at different energies ω — recall
the interpretation of poles in the quantum field theory propagators as particles. In
principle, for the same set of field operators, there is a different spectral function at
each temperature. This implies that having access to the spectral function of a par-
ticular 2-point correlation function at different temperatures grants us information
about the possible effects of the temperature on the system.

There exists a similar integral relationship relating spectral functions and ad-
vanced correlation functions. More information about this can be found in Refs. [18,
20].

In addition, we can define the Euclidean version of a bosonic 2-point correlation
function,

CE(τ, ~x) = 〈Ô(τ, ~x)Ô†(0,~0)〉. (2.28)
This definition is equivalent to the one written in eq. (2.6). Note that τ satisfies
0 ≤ τ ≤ β, being β the inverse of the temperature. Equation (2.28) can be Fourier
transformed:

CE(ωn, ~k) =

∫ β

0

dτeiωnτCE(τ,~k). (2.29)

The Fourier frequencies ωn are the previously introduced Matsubara frequencies.
The time-momentum mixed representation of eq. (2.28) can be computed by

summing over all the Matsubara frequencies in eq. (2.29),

C(τ,~k) = T
∑
n

e−iωnτCE(ωn, ~k), (2.30)

which is equivalent to performing a discrete Fourier transform. In the equation above
T represents the temperature.

As there must exist an analytic continuation from imaginary-time to real-time
that links both real-time and imaginary-time correlation functions, then, there should
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be a connection between CE and ρ. This relationship is similar to the one written in
eq. (2.27), and reads

CE(ωn, ~k) =

∫ ∞

−∞

dω

2π

ρ(ω,~k)

ω − iωn
, (2.31)

which implies that
CR(ω,~k) = CE(iωn → ω + iε,~k). (2.32)

As a result, the spectral function can be used to access both real-time and imaginary-
time correlation functions: it serves as a link between both formalisms.

However, obtaining the associated spectral function from a Euclidean correlation
function is difficult, as Euclidean correlation functions are typically not accessible
analytically. This complicates the computation of the integral in eq. (2.31) due to
its complex and diverging nature. To make eq. (2.31) numerically tractable, we start
by substituting it into eq. (2.30), leading to

CE(τ,~k) =

∫ ∞

−∞

dω′

2π
T
∑
n

e−iωnτ

ω′ − iωn
ρ(ω′, ~k). (2.33)

To proceed, we define the following quantity

K̃(τ, ω) = T
∑
n

e−iωnτ

ω′ − iωn
. (2.34)

The right-hand side of K̃ is a well-known identity in thermal field theory [16, 17],
which can be rewritten as

K̃(τ, ω) = e−ωτ
[
1 +

1

eω/T − 1

]
. (2.35)

In the case in which the field operators Ô and Ô† are hermitian, then the spectral
function is odd,

ρ(−ω,~k) = −ρ(ω,~k), (2.36)
which means that we can restrict the integral in eq. (2.33) to the positive real num-
bers. We can use this information to arrive at the integral relationship connecting
spectral functions with their associated Euclidean correlation functions:

CE(τ,~k) =

∫ ∞

0

dω K(τ, ω)ρ(ω,~k), (2.37)

where K(τ, ω) is known as the kernel of the transformation, whose definition is

K(τ, ω) = K̃(τ, ω)− K̃(τ,−ω) =
cosh(ω (τ − 1

2T
))

sinh(ω/2T )
. (2.38)
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2.2.1 Low temperature spectral functions
There exists a connection between the spectral function relationship and the spec-
tral decomposition shown in eq. (1.45). To simplify this discussion, the spectral
decomposition is introduced again:

CE(τ,~k) =
∑
n

〈∅|O2|n〉〈n|O1|∅〉e−En τ . (2.39)

In the case in which hermitian sink and source operators are employed, we have

CE(τ,~k) =
∑
n

|〈∅|Ô|n〉|2e−Enτ . (2.40)

To find the connection between both eq. (2.40) and eq. (2.37), we can start by
taking the low temperature limit of eq. (2.38),

lim
T→0+

K(τ, ω) = exp(−ωτ). (2.41)

Inserting this limit into eq. (2.37) allows us to write

CE(τ,~k) =

∫ ∞

0

e−ωτρ(ω,~k). (2.42)

This expression looks very similar to the spectral decomposition if we define the
following low-temperature spectral function:

ρ(ω,~k) =
∑
n

|〈∅|O|n〉|2 δ(ω − En) (2.43)

Substituting this spectral function into eq. (2.42), and performing the Dirac delta
integrals, we arrive at eq. (2.40).

The low-temperature relationship between eq. (2.40) and eq. (2.37) implies that
the spectral function corresponds to a sum of independent and isolated peaks in this
regime: each peak in the spectral function is located at a different energy. In the case
in which the external momentum is zero, then the peaks are placed at the masses of
the different states. Figure (2.1) contains a visual representation of this connection,
where a randomly generated spectral function is employed to obtain its Euclidean
correlation function through the application of eq. (2.40).
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Figure 2.1: Example of a low-temperature Euclidean correlation function and its
corresponding spectral function. The spectral function is randomly generated, while
the Euclidean correlation function is computed using eq. (2.42).
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Chapter 3

Meson thermal masses at non-zero
temperature

The fate of hadrons under extreme conditions is one of the outstanding questions in
the theory of strong interactions, QCD. As the temperature of the system increases,
the low-temperature hadronic gas [1]— with confined quarks and broken chiral sym-
metry — evolves into a quark-gluon plasma (QGP), in which the lightest quarks are
deconfined and chiral symmetry is restored. Evidence for this phenomenon comes
from non-perturbative simulations of QCD on the lattice: from analysis of the pres-
sure, entropy and quark number susceptibility across several temperatures, to studies
on the chiral condensate and its susceptibility [2–7].

Due to the aforementioned evidence that such a transition exists in QCD, then, a
first-principles study on the spectrum of mesonic states across several temperatures is
expected to grant us meaningful information about the medium. Understanding how
the temperature affects the spectrum of QCD is key to exploring deconfinement, as
well as the restoration of SU(2)A chiral symmetry — the quark mass term in QCD
explicitly breaks the invariance of the lagrangian under arbitrary SU(2) rotations
on the right-handed and left-handed quark spinors [8]. As a result, the goal of our
studies is to investigate the temperature dependence of the ground state masses of
several mesonic states. We do not focus on baryon matter, as some results in this
sector can already be found in Refs. [9–11].

It is worth noting that we only deal with thermal correlation functions, that
is, correlation functions expressed in their time-momentum representation: C(τ ;~k).
Consequently, the targets of our analysis are the thermal masses of different mesonic
correlation functions; see Chapter (2) for more information.

In order to investigate the temperature dependence of the masses of mesonic
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QCD states, we analyse 2-point Euclidean thermal correlation functions extracted
from lattice QCD simulations; information about the simulations can be found in
Appendix (A) and references therein. In principle, the complete spectrum of states
contained in a correlation function computed at an arbitrary temperature can be
accessed through its associated spectral function; for a short introduction to spectral
functions in thermal field theory, see Chapter (2). However, building reliable spectral
functions at arbitrary temperatures is not possible at the date in which this document
is being written. As a result, we restrict ourselves to a simpler and conservative
spectroscopy analysis in which simulated correlation functions are fitted to functional
models that try mimicking the contribution of each state to the correlation function.
This regression-based analysis is common in lattice field theory simulations, and,
although conceptually simple, it is difficult to apply in practice due to several factors,
such as: the lack of prior information while building the models, the presence of
multi-state contributions to the correlation functions, or the fact that Monte Carlo
data is correlated.

The goal of the analysis presented in this chapter is to extract the ground state
mass of a given mesonic 2-point thermal correlation function at a particular tem-
perature T : C(τ ;T ). Although we allow multi-state contributions to our models,
we do not aim to estimate any excited states. As a consequence, higher-order states
can be regarded as control variables in our models; we do not report any excited
states in our results. In order to estimate the ground state mass from a given correl-
ation function, we apply a data analysis procedure derived from the one presented
in Ref. [12]. In our methodology, no final result is manually selected, all estimates
are systematically produced according to some predefined metrics.

This chapter is organised into two main sections: in the first one, we discuss
in detail the methodology employed to analyse our mesonic correlation functions;
once the methodology is presented, we present and discuss some results extracted
employing the aforementioned methodology The results section is divided into three
main subsections: the first one contains some general comments on the estimated
temperature dependence of mesonic ground state masses; the second one discusses
the restoration of the SU(2)A chiral symmetry through the degeneracy of the ρ(770)
and a1(1260) states; the last one contains a detailed analysis of the D(s) mesonic
sector in the hadronic phase of QCD.

3.1 Methodology
The main goal of our analysis is to generate the best possible estimate of the popula-
tion ground state mass M0 contributing to a particular thermal correlation function
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C(τ, T ). The methodology derived in this section can also be applied to correlation
functions with non-zero external momenta.

In order to estimate the ground state mass from a particular Euclidean correlation
function, first, we need to specify how each state contributes to it. In our context,
the contribution of each state is modelled employing a parametric function, referred
to as a 1-state model. By combining several 1-state models, we generate a global
model that hopefully captures the relevant information contained in the correlation
function.

At zero temperature, the contribution of each state to the correlation function
is well-described by the spectral decomposition of the correlation function — see
eq. (1.45). At low temperature, correlation functions can be described in terms
of independent asymptotic and isolated states. As a result, their zero-temperature
spectral function can be decomposed into an infinite sum of separable δ-distributions
of varying amplitudes, each of them located at a different energy:

ρ(ω;T = 0) =
∞∑
s=0

As δ(ω −Ms). (3.1)

Through the following integral transform, sometimes called the spectral relation-
ship,

C(τ ;T ) =

∫ ∞

0

dωK(τ, ω;T )ρ(τ, T ), (3.2)

we can associate spectral functions and Euclidean correlation functions. In the equa-
tion above, K represents the kernel of the transformation, defined as

K(τ, ω;T ) =
cosh(ω (τ − 1

2T
))

sinh( ω
2T
)

, (3.3)

where T represents the temperature of the system. In Chapter (2), we learnt that
the temperature of the system is related to the inverse of the temporal length. As a
result, on the lattice,

T =
1

Nτaτ
, (3.4)

where Nτ is the number of points in the temporal direction and aτ is the lattice
spacing in the temporal direction.

Integrating the right-hand side of eq. (3.2) with eq. (3.1) and eq. (3.3) leads to
the following correlation function functional form:

C(τ ;T ) =
∞∑
s=0

As cosh
(
Ms (τ −

1

2T
)
)
. (3.5)
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The amplitudes in eq. (3.5) absorbed the τ -independent denominator of the kernel
to simplify the notation.

From eq. (3.5), we can model the contribution of each independent state to the
correlation function using the following 1-state parametric model:

fs(τ ;Ms, As) = As cosh
(
Ms (τ −

1

2T
)
)
. (3.6)

Sometimes, the parameters defining a 1-state model are encapsulated using a tuple:
θs ≡ (Ms, As). The equation above depends on the temperature through Nτ — see
Chapter (2).

Without loss of generality, the masses in eq. (3.5) can be hierarchically ordered:
Ms > Ms′ if s > s′. In this ordered version of eq. (3.5), the lowest mode (s = 0)
represents the ground state. All other states are referred to as excited states.

As stated before, the QCD medium is expected to be on two different phases: the
hadronic phase, encountered at temperatures below the pseudocritical temperature
of the system, Tc, and the QGP, found at T > Tc. The pseudocritical temperature is
defined using the inflection point of the chiral condensate; see Appendix (A) for more
information. The model displayed in eq. (3.5) is expected to be valid at low temper-
atures. However, its reliability is compromised as the temperature increases. Due
to in-medium thermal effects, the independent states encountered at low temperat-
ure can broaden and mix, making the 1-state models in eq. (3.6) inadequate. This
problem is even more severe at T � Tc, where non-hadronic collective excitations
are expected to dominate the lightest degrees of freedom of the system.

Understanding the general functional form that models the contribution of each
state to a QCD 2-point correlation function at an arbitrary temperature is still an
open problem. Currently, not enough information is available to accurately model
high temperatures. Consequently, we adopt a conservative approach in which the
same functional model, corresponding to eq. (3.5), is assumed to be valid at all
temperatures. We acknowledge that this simplistic model cannot capture all the
information contained in a particular correlation functions once the temperature
increases. However, we believe it is necessary to test the limits of the model with
the temperature as a step towards further progress.

It is worth stressing that accepting the validity of eq. (3.5) at all temperatures is
equivalent to assuming that the only way in which the states contributing to a par-
ticular correlation function can be affected by the temperature is through a possible
shift in their masses and amplitudes: θ = θ(T ). As a result, under this assumption,
the functional form of the spectral function does not vary with the temperature: all
states remain independent and separable at all temperatures. From now on, we omit
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all references to the temperature in our models, as the Nτ -dependence of eq. (3.5)
implies that all models are temperature dependent.

The global model in eq. (3.5) contains an infinite number of states. Nevertheless,
the information available in correlation functions simulated on the lattice is finite. As
a result, the decomposition in eq. (3.5) must be truncated. A truncation of eq. (3.5)
at order e models the contribution of the first e states to the correlation function;
each state contributes according to eq. (3.6). A truncated version of eq. (3.5) at order
e contains Nθ = 2 e free parameters. An index s is used to label each independent
state in an e-state model; the label runs from s = 0, representing the ground state,
to s = e− 1, representing the highest-order state in the model.

A truncation of eq. (3.5) at order e is labelled

Fe(τ ; θ) =
e−1∑
s=0

fs(τ ; θs) =
e−1∑
s=0

As cosh
(
Ms (τ −

1

2T
)
)
, (3.7)

where θ = {θs | s ∈ [0, e−1]} is the set of all free-parameters in the model. The order
at which eq. (3.5) is truncated is a trade-off between bias and variance: including
numerous states in the model makes the model more realistic, but, at the same time,
it also increases the number of free-parameters to be determined, which complicates
the regression.

In our analysis, we fix the maximum number of states in a given model to be
Ne = 4, which implies that our largest model is

Fe=4(τ ; θ) =
3∑
s=0

fs(τ ; θs). (3.8)

Once the largest model is selected, we can construct several sub-models by trun-
cating the largest model at all previous orders: j < Ne. The set composed by all
sub-models of FNe is

M[Ne] =

{
Fe(τ ; θ) | e ∈ [1, Ne]

}
. (3.9)

In our particular case, Ne = 4, and our collection of sub-models is

M[Ne = 4] =

{
F1(τ ; θ), F2(τ ; θ), F3(τ ; θ), F4(τ ; θ)

}
. (3.10)

The fact that the masses are distinguishable and ordered in eq. (3.5) allows the
definition of a useful concept: the fit window. A fit window starting at time τ0 and
finishing at time τf is defined as the following discrete interval:

FW [τ0, τf ] = [τ0, τf ] = {τ0, τ0 + aτ , τ0 + 2aτ , . . . , τf}. (3.11)
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A particular fit window defines a set of correlation function values: different fit win-
dows select different regions in the correlation function. The biggest fit window
available in our analysis is FW [0, Nτ ], which contains the complete correlation func-
tion. Figure (3.1) displays some fit windows over an artificial correlation function.

0 50 100

τ/aτ

10−2

10−1

100

C
(τ

)

[2, 25] [40, 70] [80, 128]

Figure 3.1: Visual examples of three fit window defined on an artificial correlation
function of size Nτ = 256. As bosonic correlation functions are periodic in time with
period Nτ/2, only half of the correlation function is displayed. The fit windows are
defined according to eq. (3.11).

In the case in which the ground-state mass is significantly lighter than any other
mass in eq. (3.7), M0 � Ms>0, then C(τ) is dominated by its lowest energy mode
at fit windows close to the middle of the lattice: FW [τ0 → Nτ/2, τf = Nτ/2]. In
contrast, close to the source operator, τ0 → 0, the contribution of all states is non-
negligible. In this situation, the correlation function is said to be contaminated by
excited states.

When the correlation function is dominated by its lowest energy state, it exhib-
its a plateau. In this plateau, the logarithm of the correlation function shows an
approximate linear dependence:

log[C(τ → Nτ/2)] ' −M0 τ. (3.12)

To see this, take the logarithm of eq. (3.5) at τ → Nτ/2, where all excited states are
exponentially suppressed. Provided that a clear plateau is present, then, a simple
1-state model should be sufficient to completely model the large-τ region of the
correlation function, which enables the extraction of a good estimate of the ground
state mass. However, this situation is rarely encountered in most real correlation
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functions. The absence of clear plateaus, combined with the fact that no prior
information on the values of the parameters is available, implies that only employing
1-state models in the analysis is likely to lead to an incorrect estimate of the ground
state mass, as unreasonable bias is included in the analysis. Hence, one should always
take into account multi-state contributions to the correlation function, even when
the target is only the ground-state mass.

From now on, in order to simplify our notation, we assume that τf is kept fixed to
τf = Nτ/2 in eq. (3.11) for all fit windows considered. This implies that the notation
FW [τ0] is equivalent to FW [τ0, τf = Nτ/2]. We analyse the effects of varying τf in
Subsection (3.1.5).

Our methodology can be classified as a non-linear parametric regression ana-
lysis in which all correlation functions considered are modelled using a truncation of
eq. (3.5) at order Ne. However, due to the peculiarities of the data, a naive regression
analysis is unlikely to produce reliable estimates of the parameters. As a result, it is
important to understand the properties of lattice correlation function data in order
to build a correct regression analysis.

3.1.1 Definitions and properties of lattice correlation func-
tion data

After computing the mesonic thermal correlation functions from the quark propag-
ators evaluated via a sparse matrix inversion on some lattice configurations, we have
access to Nb different estimates of a given population thermal correlation function
C(τ ;T ). For each of these estimates, there are Nτ different Euclidean times at which
the correlation function is measured. With the interest of simplifying the notation,
we drop the temperature label T in the correlation function. The following discussion
is T -independent.

We assume that our sample of estimates of C(τ) are generated in a thermal-
ised Monte Carlo chain. Moreover, we also assume that the elapsed computer time
between sequential configuration measurements is long enough so that the Markovian
autocorrelation within ensembles is small. Both assumptions imply that, at fixed
τ , all estimates of C(τ) can be treated as independent and identically distributed
random variables. However, since the same ensemble is employed to measure all
Euclidean times in a particular estimate of C(τ), the data is expected to be highly
correlated in τ . Figure (3.2) shows an example of the correlation encountered in a
real lattice correlation function. The correlation matrix Ξ is defined as

Ξij =
Σij

σiσj
, (3.13)
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where Σ represents the covariance matrix and σi the standard deviation of the ith
estimate in the signal. The correlation matrix has a value of 1.0 for perfectly linearly
correlated variables, and −1.0 for linearly anti-correlated variables. In general, we
expect Monte Carlo data to be positively correlated: Ξij > 0.
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Figure 3.2: Correlation matrix of a real lattice QCD simulated correlation function.
The correlation matrix is computed using eq. (3.13).

The sample composed by all estimates of the population correlation function can
be viewed as a collection of Nb signals of size Nτ . An unbiased estimate of C(τ) can
be computed through their sample average, Ĉ(τ), defined as

Ĉ(τ) =
1

Nb

Nb∑
b=1

Cb(τ). (3.14)

The variance of Ĉ(τ) can be estimated using the standard error of the sample mean.
The variance of the sample mean decreases proportionally with the number of samples
available.

As stated before, we model C(τ) using a truncation of eq. (3.5) at order e, which
implies that we assume

C(τ) = FNe(τ ; θ), (3.15)

that is, FNe is assumed to be the correct model of the population correlation function.
We also assume that all discrepancies between the computed data, Ĉ(τ), and model,
C(τ), are due to statistical errors, which can be modelled using an additive noise
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random variable u(τ). In general,

Ĉ(τ) = C(τ) + u(τ) = FNe(τ ; θ) + u(τ) =
Ne−1∑
s=0

fs(τ ; θs) + u(τ) (3.16)

Due to the fact that Ĉ(τ) is an unbiased estimator of C(τ), the expected value of
the noise is zero:

E[u(τ)] = 0 ∀ τ. (3.17)
The standard deviation of u(τ) is equal to the standard error of Ĉ(τ). As a result,
the noise is not assumed homoskedastic, that is, it is not conditionally independent
on τ : the standard errors of Ĉ(τ) tend to depend on τ , as can be seen in Figure (3.3).
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Figure 3.3: Lattice estimate of the axial vector (strange-strange) ss correla-
tion function computed at the lowest temperature available in our simulations,
T = 47 MeV. The correlation function is only plotted up to τ/aτ = Nτ/2. Detailed
information about our simulations can be found in Appendix (A), while information
about the physical states included in the simulations can be found in Appendix (B).

Having defined our model, we are in the position to discuss how we can estimate
the values of the parameters θ that make eq. (3.16) as realistic as possible given
the available data. To do so, we employ the framework of maximum likelihood.
In this framework, we aim to find the values of the parameters that maximise the
probability of having computed our particular estimate of C(τ) assuming that Fe is
the true underlying population model with parameter values θ; the estimate Ĉ(τ) is a
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collection of Nτ random variables, one per Euclidean time. The likelihood of having
obtained the data is represented by P (Ĉ(τ)|θ), which is equivalent to P (u(τ)|θ).

−1.440 −1.435 −1.430 −1.425 −1.420

log[Ĉ(τ)]
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Figure 3.4: Empirical distribution of the correlation function central value, Ĉ(τ),
at three randomly selected Euclidean times. The data corresponds to the ss axial
vector correlation function computed at T = 47 MeV. The empirical distribution is
estimated using bootstrap [13]. All three Euclidean times displayed are randomly
selected.

As the number of measured ensembles is large enough, and the samples are as-
sumed independent and identically distributed at fixed τ , we can apply the central
limit theorem to Ĉ(τ), which implies that the sample average is expected to be
normally distributed at each independent τ . Figure (3.4) shows the empirical distri-
bution of Ĉ(τ) at three randomly selected Euclidean times for the (strange-strange)
ss axial vector mesonic correlation function computed at T = 47 MeV. As Ĉ(τ) is
normally distributed, then u(τ) is also normally distributed with mean ~0 and cov-
ariance Σ, equal to the covariance Ĉ(τ). The total likelihood of the data can be
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modelled using a correlated multivariate normal distribution:

P (u|θ) = N (µ = ~0,Σ) = N (Ĉ(τ)− Fe(τ ; θ),Σ). (3.18)

In the equation above, µ = Ĉ(τ) − Fe(τ ; θ) = ~0 has dimension Nτ , and Σ has
dimensions Nτ ×Nτ .

The multivariate normal likelihood distribution is well-known, and maximising it
is equivalent to minimising the following target function:

L(θ) =
Nτ∑

τ,τ ′=0

[
Ĉ(τ)− Fe(τ, θ)

]
Σ−1
τ,τ ′

[
Ĉ(τ ′)− Fe(τ ′, θ)

]
. (3.19)

Equation (3.19) corresponds to minus the logarithm of the likelihood distribution
function. In this context, the maximum likelihood estimate of the model parameters
are the parameters that minimise eq. (3.19):

θ̂ = argmin
θ

L(θ). (3.20)

Due to the inherent complexity of the parameter estimation, the minimisation of the
target function in eq. (3.20) must be performed numerically.

Once the maximum likelihood parameters are estimated, their uncertainties can
be approximated using the Fisher information [14]. In our particular case, we can
approximate the covariance of the estimated parameters θ̂ using

Cov(θa, θb) =
Nτ∑

τ,τ ′=0

J(θa, τ) Στ,τ ′ J(θb, τ
′), (3.21)

where J represents the Jacobian of Ĉ(τ) with respect to θ, which can be computed
using the first derivatives of eq (3.7):

J(θa, τ) =
∂Ĉ(τ)

∂θa
=
∂Fe(τ, θ)

∂θa
. (3.22)

In order to improve the stability of the regression, we fold the correlation function
estimates around the midpoint in the temporal direction:

ĈF (τ) =
Ĉ(τ) + Ĉ(Nτ − τ)

2
. (3.23)

This can be viewed as a data augmentation procedure, justified by the symmetry of
the mesonic propagators under Euclidean time inversions.
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In addition, all correlation functions samples Cb(τ) are divided by G = Ĉ(τ =
Nτ/2), which ensures that A0 ' 1 in eq. (3.7). The normalisation constant is treated
as a real number, which avoids the computation of complicated ratios of random
variables.

3.1.2 Initial parameters estimation
Correlated fits tend to be unstable due to the sometimes sparse nature of the cov-
ariance matrix in eq. (3.19). This implies that the estimated parameters can largely
depend on the initial values provided to the minimisation routine. As a result,
minimising the target function starting from initial parameters θ̃ close to the true
population parameters θ is key to obtaining reliable estimates. However, with almost
no prior information about θ, the initial parameters must be estimated from scratch
using the information at our disposal. To obtain a reliable initial estimate θ̃, we
propose an algorithm based on the one described in Ref. [12].

To avoid any confusion, we stress that θ̃ represents the set of all parameters in a
model composed by Ne states:

θ̃ = {θs = (As,Ms) | s ∈ [0, Ne − 1]} (3.24)

The algorithm employed to estimate the initial parameters of the regression needs
two starting hyperparameters: the maximum number of states included in the model,
Ne, and the initial Euclidean time at which the correlation function is expected to be
well described by those Ne states; we refer to this initial time with the label τ̃0(Ne).
As stated before, we fix the maximum number of states in our model to be Ne = 4.
In our analysis, we vary τ̃0(Ne) from 2 to 5 depending on the temperature and the
properties of the correlation function: for instance, high temperature correlation
functions only use τ̃0(Ne) = 2, 3 as initial times. It is worth noting that τ̃0(Ne) also
defines the largest fit window used in the regression:

FW [τ̃0(Ne)] = [τ̃0(Ne), τf ]. (3.25)

As explained before, the correlation function might show a plateau at τ → Nτ/2.
This is just a consequence of the exponential nature of the contribution of each state:
lighter states survive at large τ , whereas heavier states get heavily suppressed as τ
increases. As a consequence, there are regions in τ where different sub-models in
M[Ne] can reliably describe the data. For example, close to Nτ/2, one-state or two-
state models are expected to model the data with high accuracy. A visual example
of this behaviour is presented in Figure (3.5).

49



Chapter 3. Meson thermal masses at non-zero temperature

0 10 20 30

τ/aτ

10−6

10−4

10−2

100

C
(τ

)

1234

Fe=1(τ ; θ)

Fe=2(τ ; θ)

Fe=3(τ ; θ)

Fe=4(τ ; θ)

True

(a) Correlation function

0 10 20 30

τ/aτ

10−17

10−12

10−7

10−2

|C
(τ

)
−
F
e
(τ

;θ
)|

1234

Fe=1(τ ; θ)

Fe=2(τ ; θ)

Fe=3(τ ; θ)

Fe=4(τ ; θ)

(b) Absolute difference

Figure 3.5: Example of an artificial correlation function and the ability of some
models Fe(τ) to represent the correct data. The figure on the left shows the pop-
ulation correlation function, C(τ), and some approximate models Fe(τ). The fig-
ure on the right shows the absolute difference between C(τ) and the simplified
models. The vertical lines are located at the first Euclidean time τ0(e) holding
|C(τ)− Fe(τ)| ≤ 1 · 10−5.

Our goal is then to build an algorithm that automatically selects the approximate
Euclidean time at which the correlation function can be properly described by a sub-
model of FNe . Using those initial times, we can iteratively estimate the parameters
of each state in the largest model: FNe(τ ; θ). In order to select the approximate
initial Euclidean times, which we label τ̃0(e), we use the following recursive formula:

τ̃0(e) =

{
τ̃0(e = Ns) if e = Ns

1
ω1+ω2

[ω1τ0(e+ 1) + ω2Nτ/2] if e < Ns.
(3.26)

For instance, we expect the fit window FW [τ̃0(e = 1)] to contain the Euclidean times
at which the correlation function can be well described by only one state. The values
of ω1 and ω2 in eq. (3.26) also depend on the number of states in the model. Their
definitions, taken from Ref. [12], are shown in Table (3.1). Small variations of the
values of ω1 and ω2 had no impact in the final results.
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Table 3.1: Definitions of ω1 and ω2 as a function of the number of states e.

e = 1 e = 2 e > 2

ω1(e) 2 4 6
ω2(e) 1 1 1

Once the initial times are generated, we proceed with the estimation of the initial
parameters. To do so, we build an algorithm based on two key ingredients: the
effective mass of a correlation function, and fits to models with different numbers of
states at different fit windows.
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Figure 3.6: Effective mass of the lowest temperature lattice estimate of the lightest
pseudoscalar correlation function. The results are expressed in lattice units. Two
estimates of the ground state mass are present in the figure: M̂0, computed using
our methodology; and M̂ eff

0 , corresponding to the median of M eff (τ).

The effective mass M eff of a correlation function at a fixed τ is defined as the
mass of the ground state of a correlation function assuming that only one state
contributes to the correlation function; the effective mass represents the combined
contribution of all states in the correlation function. In the hadronic phase, and due
to the fact that higher-order states are exponentially suppressed as τ increases, the
effective mass should be similar to the actual ground state mass at Euclidean times
close to the middle of the lattice: τ → Nτ/2. Figure (3.6) contains an example of a
real effective mass calculation. The effective mass can be extracted by solving the
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following transcendental equation:

Ĉ(τ)

Ĉ(τ + aτ )
=

cosh
(
M eff (τ − Nτ

2
)
)

cosh
(
M eff (τ + aτ − Nτ

2
)
) . (3.27)

Once the effective mass is defined, we can iteratively estimate the masses of all
Ne states in ascending order: from the ground state, s = 0, to the heaviest state in
the model, s = Ne − 1. To do so, we employ the effective mass as the starting guess
for the mass of each state. In order to compute an initial estimate of a higher-order
state mass using the effective mass, we subtract the contribution of the previously
estimated lighter states to the correlation function.

X̂e(τ) = Ĉ(τ)− Fe−1(τ, θ = θ̃), (3.28)

where Fe corresponds to a truncation of eq. (3.5) evaluated at the already estimated
lower order parameters. In order to make eq. (3.28) valid for all states, the following
convention must be adopted:

F0(τ ; θ) = 0, (3.29)
which implies that X̂1(τ) = Ĉ(τ).

The newly generated subtracted correlation function, X̂e(τ), should contain the
s = e−1 state in Ĉ(τ) as its lowest energy state. As a result, eq (3.27) can be applied
to X̂e(τ) at τ → Nτ/2 in order to estimate the mass of this state. For example, in
the case in which we already have access to an estimate of the ground-state mass and
amplitude, then, the second-order subtracted correlation function, X̂2(τ), is defined
as

X̂e=2(τ) = Ĉ(τ)− Fe=1(τ ; θ = θ̃). (3.30)
As long as the model accurately describes the data, and the previously estimated
parameters are correctly estimated, the ground state of X̂2(τ) is expected to be the
first excited state of Ĉ(τ). As uncertainties propagate, extracting the effective mass
of higher-order subtracted correlation functions X̂e�1 can be difficult and unreliable.
Consequently, we use 1.5 M̃s−1 as the initial guess for the mass for all states with
s ≥ 2.

After the initial masses are estimated using the effective mass, we employ a
sequence of different fits to X̂e and Ĉ(τ) to improve our estimates of the initial
parameters. In this process, the amplitudes of each state are also estimated, starting
with a flat initial guess of Ãs = 1 for all s. The minimisation routine used to estimate
θ̃ uses eq. (3.19) as the target function to minimise, i.e. it takes correlations in the
data into account. The complete algorithm employed to estimate the initial values
of the parameters is described in detail in Algorithm (1).
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Once the initial parameters of the regression are estimated through the applic-
ation of Algorithm (1), we need to generate our final estimate of the ground state
mass. To do so, we proceed by extracting an estimate of the ground state mass for
each available fit window smaller or equal to FW [τ̃0(Ne)], that is, our largest fit win-
dow. The fit windows included in the analysis can be built by iteratively shrinking
τ̃(Ne) by one lattice spacing.

Algorithm 1: Algorithm designed to estimate the initial parameters of all states
in the largest model considered in the analysis: FNe(τ ; θ). All the operations can
be performed in-place over a hash-map-like data structure: θ̃. The notation θ̃[X]
implies that we are accessing the element X from θ̃.

Data: Ĉ(τ), Ne, τ̃0(Ne). Optional: M̃ g
0 .

Result: Initial estimates of the parameters: θ̃
Initialise: θ̃ ← {(Ãs = 1, M̃s = M̃ g

0 or 1)∀ s}
for e← 1; e ≤ Ne; e++ do

# Set variables for this sub-model: Fe(τ ; θ)
s← e− 1
τ0(e)← Compute using eq. (3.26)
X̂e ← Compute using eq. (3.28)

# Update model's parameters iteratively
θ̃[Ms]← if e ≤ 2 then M eff

s using X̂e else 1.5 M̂s−1

θ̃[Ms], θ̃[As]← fit F1(τ ; θ) on X̂e(τ) over FW [τ̃0(e = 1)]
if e > 1 then

θ̃[Ms], θ̃[As]← fit Fe(τ ; θ) on Ĉ(τ) over FW [τ̃0(e)] keeping
fixed {Ãs′ M̃s′ | s′ < s}

θ̃[Ms], θ̃[As]← fit Fe(τ ; θ) on Ĉ(τ) over FW [τ̃0(e)]

end
end
return θ̃ = {θ̃s | s ∈ [0, Ne − 1]}
In order to reduce any possible bias included by insisting that only a certain

number of states e contribute in a particular fit window, we perform a multimodel
analysis. The models employed correspond to a subset of all models in M[Ne].
For each model included in a fit window, an estimate of the ground state mass is
computed. We systematically compare all estimated ground state masses to generate
our best final estimate within the current fit window in terms of some predefined
metrics. Finally, once we have generated the best estimate of the ground state mass
for all fit windows considered, we produce a final estimate of the ground state mass
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independent of the fit window.

3.1.3 Regression at fixed fit window: FW [τ0]

In this subsection, we discuss how we compute our estimate of the ground state
mass on a particular fit window FW [τ0], where τ̃0(Ne) ≤ τ0 ≤ Nτ/2. To produce
the ground state mass at the current fit window, we propose fitting the data to a
subset of all models contained in M[Ne]. We do not include all models in all fit
windows because simple models are not realistic at τ → 0, due to the fact that the
contribution of excited states cannot be ignored in this region; and also due to the
fact that complex models contain numerous free-parameters, which complicates their
analysis as the number of points included in the fit window decreases, that is, for
FW [τ0 → Nτ/2]. As a result, a model with e states is only included at a particular
fit window if the following two conditions are met: first, the starting point of the fit
window must satisfy

τ0 ≥ τ̃0(e),

where τ̃0(e) is computed using eq. (3.26); second, the number of free parameters in
the model, Nθ, is smaller than the number of points included in the fit window:

Nθ = 2 e < |FW [τ0]| = |τf − τ |.

Having selected a collection of models that are included in a particular fit window,
we proceed by fitting all those models to the same correlation function data. To
increase the accuracy in the regression, and to avoid possible instabilities, we fit
each model twice: first using the initial parameters extracted from the application of
Algorithm (1), and then employing the final parameters obtained from the previous
fit window as the initial parameter in this fit window; the second fit is only available
from the second-largest window: FW [τ̃0(Ne) + 1]. As a result of our analysis, for
each fit window, we produce 2Nm estimates of the ground state mass, where Nm is
the number of models included in the regression; in principle, Nm can be different
at each fit window. We label the resulting ground state masses using M̂F

0 (FW [τ0]),
where F denotes a particular model.

Although the states in the models are hierarchically ordered in mass, the resulting
fitted states might not be. For instance, in a 3-state model, the third state might
represent the ground state. As a consequence, we cannot blindly select the first state
in the model as the ground state. In order to systematically order the states and
correctly select the ground state, we apply the following sorting algorithm, similar
to the one employed in Ref. [12]: we swap the order of two consecutive states in a
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given model in the case in which the second state has a smaller amplitude than the
first one; in the case in which the second state has a smaller mass than the first one;
or if the first state mass is unreasonably small or large compared to the scale of the
simulation, represented by a−1

τ .
After producing the estimate of the ground state mass for all available models

at the current fit window, we compare them to compute the best possible estimate
of the ground state mass. The models are compared in terms of their predictability,
that is, how well each model is able to explain the measured data; this is equivalent
to measuring the likelihood of the model. The metric used to compare all models is
the so-called corrected Akaike information criterion (AICc) [15–17].

The AICc has its roots in information theory, and measures the expected di-
vergence between a model and an unknown ground truth model; the divergence is
measured using the Kullback-Leibler (KL) divergence [18]. In our definition of the
AICc, the model with the lowest AICc among all is the most likely to correctly
describe the data:

AICc(Fe) = Nθ − log(L̂) + N2
θ +Nθ

|FW [τ0]| −Nθ − 1
, (3.31)

where Nθ corresponds to the number of free-parameters of the model; L̂ is the object-
ive function defined in eq (3.19), and evaluated at the maximum likelihood parameter
estimates: θ̂; and |FW [τ0]| represents the number of points included in the current
fit window. The AICc depends on the model through Nθ and L̂.

From the AICc, we can compute the relative likelihood between two models F
and F ′

l(F ′, F ) = exp
(
− 1

2

[
AICc(F ′)− AICc(F )

])
. (3.32)

This quantity measures how likely F ′ is to correctly model the data when compared
to F . Note that l does not include global information. As a result, there exists the
possibility that models not included in the analysis might be better at describing the
measured data at the current fit window.

The model with the lowest AICc among all available models represents the model
with the highest likelihood, we refer to this model with the label Fb. From this
model, we compute the relative model quality of all models in the collection through
eq. (3.32), fixing F to be Fb. The relative model quality can be employed to obtain
a final estimate of the ground state mass in the current fit window by taking into
account all masses in a weighted average, where the weights correspond to l(Fi, Fb),
computed using eq. (3.32). This technique allows us to promote the influence of
higher quality models in the final result while avoiding manually discarding any mod-
els; the contribution of low quality models are exponentially suppressed. We label
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the estimate of the ground state mass at the current fit window using M̂0(FW [τ0]).
The uncertainty of this estimate can be approximated using bootstrap [13].
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Figure 3.7: Estimated ground state mass as a function of the fit window M̂0[FW ]
in the lightest vector channel meson, whose lowest energy mode corresponds to the
ρ(770) physical state. The data is computed at the second-lowest temperature avail-
able (T = 97 MeV), corresponding to a lattice of Nτ = 64 points in the temporal
direction. The horizontal line corresponds to the fit-window independent final estim-
ate of the ground-state mass: M̂0.

3.1.4 Extracting the final estimate of the ground state mass
M̂0

As a result of our analysis, for each available fit window, we are able to produce
an estimate of the ground state mass, M̂0(FW [τ0]). The goal is then to compute a
final estimate of M0 independent of the fit window. This quantity, labelled M̂0 is
computed using the median of all M̂0(FW [τ0]) available. Although the median is
indeed a robust statistic, we decided to discard the outliers in the sample, as they
can impact the final estimate of the mass; outliers can be identified using standard
techniques, such as the Interquartile Range (IQR) interval. The uncertainty of the
median statistic can be approximated using bootstrap [13]. A real example of the
results obtained with our analysis can be found in Figure (3.7). The artefacts spotted
in the figure at 19 ≤ τ ≤ 23 are sometimes encountered at fit windows where higher
order models are difficult to regress (large number of degrees of freedom), and lower
order models are not realistic enough (contribution of excited states). Their presence
demonstrates why a variational analysis is required when performing a spectroscopy
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analysis over lattice correlation functions.

3.1.5 The effect of varying τf on the ground state mass
As stated before, all fit windows included in the analysis are constructed from an
initial time, τ0, and a final time, τf . In the discussion of the methodology, we
stressed that τf was always kept fixed to Nτ/2 as a way of simplifying the notation.
As a consequence, all fit windows employed in the analysis can be generated by
just varying τ0 while keeping τf constant to its maximum value: τf = Nτ/2. This
is generally desired, as keeping τf to its largest value maximises the amount of
information included in the regression. However, for some correlation functions, it
may be desirable to avoid including the last few Euclidean times in the analysis
as they can be highly noisy. For example, this is the case for some axial-vector
correlation functions at low temperature; see Figure (3.8). Note that varying τf in
the methodology presented before is trivial, as the only modification is the number
of fit windows available in the fit, defined in eq. (3.11).
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Figure 3.8: Lattice estimate of the lightest axial-vector mesonic correlation func-
tion. The correlation function represents the a1(1260) physical state.

In our particular case, we compute τf using a proportion of the maximum number
of Euclidean times that can be included in the analysis, that is, Nτ/2. We refer to
the proportion with the label p, whose definition is

τf = p
Nτ

2
. (3.33)
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By selecting different τf , we can exclude noisy points in the analysis. However,
one of our premises is to generate a methodology that avoids manually selecting any
results. In order to remain honest to our promise, we use the following procedure
to compute a systematic τf -independent ground state mass: first, we independently
apply the previously discussed methodology using different fixed values of τf , which
generates a set of ground state estimates depending on τf , M̂0[FW ; τf ]; then, we
combine all the estimates into a single sample; to conclude, we compute the median
estimate of the combined sample after removing the outliers outside the IQR interval.
No fit window is included more than once in the sample.
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Figure 3.9: Analysis performed over the a1(1260) correlation function shown in
Figure (3.8) using different values of τf . The different values of τf are constructed
using p = 0.8, 0.9 and 1.0 in eq. (3.33).

The median of the combined sample represents the best estimate of the ground
state mass that we can produce. This procedure can be applied as we are always
extracting an estimate of the same underlying population ground state mass, M0,
independently of τf ; the spectral function of C is independent of τ , and therefore,
the same model is valid at all Euclidean times.
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Figure (3.9) contains an experiment in which τf is varied to compute the mass of
the a1(1260) physical state — the ground state of the lightest axial vector correlation
function shown in Figure (3.8). The experiment demonstrates that varying τf leads
to an improvement in the estimation of the ground state mass, as the extracted mass
converges to the expected 1260 MeV of the a1(1260) state.

In our particular analysis, we vary τf using p = 0.8, 0.9 and 1.0 according to
eq. (3.33). We do not shrink p more than 0.8 to enable a systematic analysis through-
out all temperatures. As we employ a fixed-scale approach in our lattice simulations,
the higher the temperature, the smaller the extent of the lattice in the temporal
direction. As a result, shrinking p to values lower than 0.8 implies that we fit high
temperature correlation function to less than 5 points.

3.1.6 Comments on uncertainties
The final outcome of our analysis on mesonic correlation functions is an estimate
of the population ground state mass M0, which we label M̂0. We can treat M̂0 as
a random variable with expectation value µM = median M̂0[FW ; τf ] and standard
deviation σM equal to the standard error of the median, which can only be approx-
imated using bootstrap [13]. M̂0 is expressed in lattice units.

We would like to express our ground state mass estimate in physical units, as it
allows a direct comparison between theory, experiments and other theoretical pre-
dictions coming from non-lattice models. To do so, we require the inverse of the
temporal lattice spacing a−1

τ , which allows us to compute the following ground state
mass:

M̂ph
0 = M̂0 a

−1
τ . (3.34)

This quantity is expressed in physical units, as the inverse of the lattice spacing
has units of energy/space. As detailed in Appendix (A), our lattice spacing in the
temporal direction has a value of a−1

τ = 6079 ± 13 MeV. We treat a−1
τ as a random

variable of expected value µa = 6079 MeV and standard deviation σa = 13 MeV.
Equation (3.34) implies that M̂ph

0 is a product of two random variables, M̂0 and
a−1
τ . We assume that both random variables are independent, which implies that the

expectation value of M̂ph
0 is just

µph
M = µM µa. (3.35)

In addition, the uncertainty of M̂ph
0 , measured in terms of its standard deviation,

can be calculated using the product of two independent random variables:

σph
M =

√
(µ2

M + σ2
M) (µ2

a + σ2
a)− (µM µa)

2. (3.36)
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This formula can be approximated using

σph
M ' µM µa

√(σM
µM

)2
+
(σa
µa

)2
. (3.37)

From now on, if a mass is expressed in physical units, then its central value is
computed using eq. (3.35), and its uncertainty is approximated using eq. (3.36).

3.2 Results
In this last section, we present some results extracted from the application of the
previously discussed methodology over mesonic correlation functions computed at
different temperatures, flavour combinations and channels. Additionally, for each
specific combination of quark content, channel and temperature, we have access to
two correlation functions: one in which the sources employed in the computation
of the quark propagator are local, which we denote with ll, and the other one us-
ing Gaussian smeared sources, which we denote with ss. Unless unclear, we use
the same label to refer to smeared sources estimates, and the mesonic correlation
function with flavour content strange-strange. More information about our lattice
setup can be found in Appendix (A). In principle, the analysis on both estimates
should yield similar masses in the low temperature regime, although smeared es-
timates are expected to be more accurate. As a result, we mainly report smeared
estimates for the temperature dependence of the meson masses. However, we study
the differences between both estimates in some particular cases. Information about
the mesonic correlation functions available can be found in Appendix (B).

This section is divided into three parts. In the first one, we outline general
trends encountered in the temperature dependence of mesonic ground state masses
obtained through the application of the previously discussed methodology over lattice
correlation functions. In this first part, we also discuss possible limits on the validity
of the methodology as a function of the temperature. The second part mainly focuses
on the restoration of the SU(2)A chiral symmetry through the degeneracy of the
ρ(770) and a1(1260) states as a function of the temperature. Additionally, we perform
some fit-independent analysis over the SU(2)A-related correlation functions to detect
possible degeneracies. To conclude, the third and last part discusses in detail the
D(s) mesonic sector throughout the hadronic phase, that is, states with uc and sc
flavour content at T < Tc.
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3.2.1 General trends in the ground state masses
The first set of results presented is the temperature dependence of the ground state
mass of the pseudoscalar and vector channels; the pseudoscalar channel has quantum
numbers JPC = 0−+, while the vector channel has quantum numbers JPC = 1−−

— see Appendix (B). Due to the fact that in our simulations both light quarks are
assumed degenerate, we only have access to 6 flavour combinations. As a result, for
each channel, we plot the ground state masses for all 6 flavour combinations available,
which are: uu, us, uc, ss, sc and cc1. In our analysis, we vary τf to diminish the
possible impact of noise in the tail of the correlation function. The results of the
analysis can be found in Figure (3.10).
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Figure 3.10: Temperature dependence of the ground state mass of all 6 flavour
combinations available in the pseudoscalar and vector channels. The vertical line
shows the pseudocritical temperature of the system: Tc = 166± 2 MeV. The results
are generated from correlation functions estimated from smeared sources.

The temperature dependence of the ground state masses shows two different
trends: one at low temperature, T < Tc, and another present at high temperature,
T > Tc. In the low temperature regime, where the QCD system is believed to
be in its hadronic phase, minimal temperature dependence is encountered in the
mass estimates: in the hadronic phase, eq. (3.5) is expected to accurately model
the contribution of each state to the correlation function, as QCD is a confining
theory. In this regime, the masses of the low-energy states might be affected by the

1The notation sc refers to a mesonic correlation function with quark content s and c.
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temperature, but the overall functional form of the spectral function should remain
unaltered. The validity of eq. (3.5) as a model of the contribution of each state
to the correlation function becomes questionable as the temperature of the system
approaches the pseudocritical temperature. Once above Tc, the extracted quantities
depend on the temperature. At these temperatures, the masses of the light mesons
increase with T until becoming degenerate. Although the temperature dependence
of charmed quarks above Tc is smaller, as the inherent energy scale of the charm
quark is larger, the results show a slight temperature dependence on the D-meson
states, uc and sc.

The abrupt increase in mass and the degeneracy of light mesons might be a
consequence of the dominant collective excitations induced by the temperature: as
the temperature increases, collective excitations and screening are expected to impact
the mesonic spectrum. Due to the fact that the inherent light quark energy scales
are smaller than the scale set by the temperature, the spectrum of those correlation
functions is expected to be dominated by collective excitations, which lead to the
degeneracy spotted at T > Tc in the uu, us and ss mesons. It is important to
stress that, due to the presence of thermal effects, one should interpret with caution
the light mesons quantities extracted at T > Tc as masses. If the system loses its
confining properties, then light quarks might not create bound mesonic states, which
implies that the corresponding spectral functions might not contain a distinguishable
lowest energy mode. At high temperature, the concept of ground state is ill-defined.
This behaviour questions the validity of eq. (3.5) at high T , at least in the light quark
sectors. Although charmed states might survive in the QGP due to their inherent
energy scale, one should also be cautious when interpreting results extracted using
eq. (3.5) as masses at T � Tc.

Furthermore, as T increases, the uncertainty in our estimates also grows. The
origin of this behaviour is two-fold. First, as we employ a fixed-scale approach in
our ensemble generation, then the higher the temperature, the lower the number of
Euclidean times at which the target correlation function is measured. Consequently,
the number of degrees of freedom included in the regression increases with the tem-
perature, thus making the estimation of the ground state mass at high temperature
difficult. This problem is combined with the fact that the model used to fit the data
at high temperature is not completely correct, which also impacts the uncertainty in
the estimates; in principle, at high T , we are forcing the data to fit an invalid model.

Figure (3.11) contains the difference between the ground state mass extracted
from local correlation functions and a smeared ones. It supports the idea that
eq. (3.5) becomes invalid as the temperature of the system increases. In the low
temperature regime, as expected, Figure (3.11) shows that both sources yield similar
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ground state estimates. However, once the temperature of the system increases, local
and smeared estimates diverge. This can be a consequence of the fact that smeared
sources are specifically built to suppress the contributions from higher order states
to the correlation function. Once the correlation function describes a plasma where
collective excitations dominate, and no clear ground state is definable, the two types
of sources produce completely different results. At high temperature, where the
spectrum might be continuous due to thermal effects, smeared sources might impact
the estimation of the correlation function unexpectedly. More research exploring the
possible consequences of employing smeared sources in the computation of the quark
propagator at high temperature is required.
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Figure 3.11: Difference between local, M ll
0 , and smeared, M ss

0 , estimates of the
ground-state mass for the pseudoscalar and vector channels as a function of the
temperature. The vertical line shows the pseudocritical temperature of the system:
Tc.

The results displayed in Figure (3.11) demonstrate that local and smeared es-
timates start diverging around the pseudocritical temperature for both channels. A
finer resolution at temperatures close to the critical temperature could allow us to
discern the exact point at which both estimates diverge.

We would like to stress that, although the model in eq. (3.5) is not valid at high
temperature, and, therefore, the quantities extracted at high T cannot be interpreted
as masses, the results extracted still contain meaningful information about the sys-
tem. For instance, the clear degeneracy in the light quark sector spotted in both
plots contained in Figure (3.10) suggests that thermal effects dominate this sector.
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3.2.2 Restoration of SU(2)A chiral symmetry
The restoration of chiral symmetry at finite temperature in QCD has been studied
for decades, both in the mesonic sector [19], and the baryonic sector [9–11]. Mesonic
studies are based on the analysis of the pion and scalar meson susceptibilities [20],
while baryonic analysis focus on the temperature dependence of screening masses [21,
22], and the evolution of parity partners with the temperature [9–11]. In our par-
ticular case, we study chiral symmetry restoration by analysing the degeneracy of
the lowest energy modes of the lightest vector and axial vector correlation functions,
which respectively correspond to the ρ(770) and the a1(1260) physical states. These
two states are mixed under an SU(2)A chiral rotation, which implies that in the case
in which the symmetry is restored, then both states should become degenerate; see
Appendix (B) for more information. Equivalent analysis coming from chiral effective
theories are also available in the literature; see Refs. [23–25] and references therein.
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Figure 3.12: Smeared and local ground state mass of the SU(2)A-related states:
ρ(700), and a1(1260). The vertical line shows the pseudocritical temperature of the
system: Tc. The zero-temperature estimates correspond to the latest results reported
in Ref. [26].

Our results suggest that a degeneracy between both states is indeed present
at T > Tc; the results are presented in Figure (3.12) for both local and smeared
sources. The results display a clear degeneracy between both SU(2)A-related states
for both type of sources. With our limited temperature resolution, the temperature
at which the symmetry is restored is close to Tc. Nevertheless, a higher temperature
resolution around the pseudocritical temperature is required in order to find the
exact temperature of the transition.

We would like to stress that our first-principle results on the degeneracy of the
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SU(2)A chiral symmetry show a similar trend to several results extracted from ef-
fective theory calculations [23–25]. All effective theory calculations agree in a non-
negligible temperature dependence in the a1(1260) at relatively low temperature.
Additionally, all effective theories produce a downwards shift of the a1(1260) mass
below Tc, and a small upwards shift of the ρ(770) mass; it is at T ' Tc, where the
states meet.

In addition, as expected from Figure (3.11), local and smeared estimates lead to
completely different results above the pseudocritical temperature.

It is worth discussing the lowest temperature estimate of the a1(1260) mass ob-
tained from a local correlation function. The data shows a clear problem in that
particular estimate. This is possibly caused by the large level of noise encountered
in the lowest temperature axial correlation function around the middle of the lattice.
While testing the methodology, we found that excluding the tail of the correlation
function from the fit led to a ground state mass closer to the expected 1260 MeV.
However, if we want to keep our analysis independent of the temperature, we should
also remove the same proportion of points at higher temperatures, which implies
that we increase the degrees of freedom in the regression at high temperature. As
a consequence, we decided to maintain relatively large τf values in the analysis:
p = 0.8, 0.9, 1.0 in eq. (3.33). Although this choice makes the lowest temperature
estimate of the local a1(1260) mass unreasonable, it allows a systematic exploration
of the high temperature regime.

As stated before, the high temperature results should be interpreted as masses
with caution. In an attempt to support the idea that estimated ground state masses
contain information about the properties of the system even though they might
not be regarded as isolated states, we study the degeneracy of the vector and axial
channels at the level of the correlation function, that is, we perform a fit-independent
analysis.

Degeneracy in the correlation functions

In order to look for degeneracies at the level of the correlation function, which in-
directly test the results presented in Figure (3.12), we define a simple ratio between
two correlation functions computed at the same temperature: V (τ ;T ) and A(τ ;T ),
where V stands for vector and A stands for axial vector; both V and A correlation
functions refer to the lightest flavour combination available, uu. The ratio, labelled
D(τ ;T ), is a function of the Euclidean, defined as

D(τ ;T ) =
V (τ ;T )A(Nτ/2;T )

A(τ ;T )V (Nτ/2;T )
. (3.38)
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This statistic can be estimated using our lattice vector and axial vector lattice cor-
relation functions. The uncertainty in D can be estimated using bootstrap [13].

In eq. (3.38), the correlation functions evaluated at the middle point of the tem-
poral direction avoid any possible required renormalisation. We treat A(Nτ/2;T ) and
V (Nτ/2;T ) as numeric constants to avoid the computation of a ratio of 4 random
variables.

We can analyse eq. (3.38) in order to understand its properties. To do so, we
start by assuming that correlation functions involved in the computation of D(τ ;T )
can be modelled by the same functional form: eq. (3.5). As we are interested in
the degeneracy of the ground state masses, we assume that close to the middle of
the lattice, the correlation functions are dominated by their lowest energy mode.
Consequently,

V (τ ;T ) ' Aρ0 cosh(Mρ (τ −
Nτ

2
)), (3.39)

and
A(τ ;T ) ' Aa10 cosh(Ma1 (τ −

Nτ

2
)), . (3.40)

Substituting eq (3.39) and (3.40) into eq. (3.38), and performing a Taylor expan-
sion around Nτ/2 allows us to write

D(τ ;T ) ' 1 +
1

2
(τ − Nτ

2
) (M2

ρ −M2
a1
). (3.41)

Around the middle of the lattice, the ratio is proportional to the difference of vector
and axial vector ground state masses squared. Provided that the SU(2)A symmetry
is restored, then both ρ(770) and a1(1260) states are degenerate, which implies that
D(τ ;T ) should be 1 around the middle of the lattice. This interpretation only applies
as long as A(τ ;T ) and V (τ ;T ) are correctly modelled by eq. (3.5): T < Tc.

The estimated ratio computed from lattice correlation functions at different tem-
peratures is shown in Figure (3.13) for both local and smeared sources. The lowest
temperature available in our simulations, corresponding to a lattice of temporal size
Nτ = 128, is not included in the figures due to the fact that the lightest axial cor-
relation function is extremely noisy around the middle of the lattice, as shown in
Figure (3.8).

Figure (3.13) shows two different trends. First, below the pseudocritical temper-
ature, located at T = 166 ± 2 MeV, the ratio shows a concave shape (∩), which is
consistent with the experimental fact of the a1(1260) state being heavier than the
ρ(770) state. This behaviour is equivalent for both sources, and it is consistent with
the temperature dependence of the ground state masses displayed in Figure (3.12).
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Second, both sources lead to a ratio consistent with 1 close to the pseudocritical
temperature — T ' 166 MeV, which suggests that a degeneracy is present in both
channels at the level of the correlation function. Again, this behaviour is consistent
with the high temperature estimates contained in Figure (3.12).
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Figure 3.13: D(τ ;T ) ratio computed using our lattice estimates of the ρ(770) and
the a1(1260) correlation functions at different temperatures. The labels represent
the temperatures in MeV.

Above the pseudocritical temperature of the system, each source produces a dif-
ferent behaviour in the ratio: smeared sources produce a ratio consistent with 1
across all temperature above Tc, which implies that both channels are completely
degenerate at the level of the correlation function — up to a normalisation constant;
instead, local sources show a convex behaviour (∪) above Tc. This difference sup-
ports the idea that the effects of smearing at high temperature should be further
studied, as local and smeared estimates do not agree on the same behaviour.

3.2.3 D(s) mesons ground state masses in the hadronic phase
In this last collection of results, we focus on the temperature dependence of the
charmed D and Ds mesonic ground state masses in the hadronic phase of QCD:
T < Tc. The D mesons have quark content uc, while the Ds mesons replace a
light quark with a strange quark, sc. Since the dawn of the field, charmed hadrons
have been of interest to QGP phenomenology, with J/ψ suppression being one of
the signatures of the formation of the plasma [27]. At high temperature, the charm
quark is known to yield insight into the transport properties of the plasma [28, 29],
while at low temperature the formation of open charmed states provides information
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on charm-quark interaction in the medium [30]. As a result, D mesons have been
investigated in Refs. [31–33].

As the D(s) mesons are formed by a combination of a charm quark and a light
quark — u or s, their inherent energy scales allow them to show some relevant
temperature dependence in the hadronic phase, while, at the same time, displaying
a clear plateau in the effective mass. Light mesons, for example, can be affected
by collective effects even at temperatures close to the transition temperature, while
charmonium states (cc) tend to be too heavy to experience any thermal effects in
the hadronic phase — see Figure (3.10). In addition, D(s) mesons are of interest in
the hadronic effective theory community [34–40]. Consequently, the analysis of these
states from a first-principles calculation is relevant both phenomenologically and due
to the fact that they serve as a benchmark for effective theory calculations. Previous
studies of open charm using lattice QCD include: an analysis of cumulants of net
charm fluctuations [41], the extraction of screening masses in the Ds meson channel
in the QGP [42], and the study of spectral functions obtained from D and Ds meson
correlators on anisotropic lattices [43].

The results are presented in two parts: the first one focuses on the pseudoscalar
and vector correlation function, while the second one is formed by the axial vector and
scalar channels. In general, the pseudoscalar and vector correlation functions tend
to yield better estimates than the scalar and axial vector correlation functions. This
is a consequence of their inherently good signals, and the fact that their relatively
low masses and quantum numbers do not allow them to decay into other states. We
only report results extracted from smeared correlation functions in the D(s) mesonic
sector.

Table (3.2) contains our lowest temperature results, extracted at T = 47 MeV,
for both D and Ds mesons in all channels available. In addition, the most recent
experimental masses extracted from Ref. [26] are also reported in the table. Our
results are consistent with Ref. [44], which were measured at T = 24 MeV, generated
by a lattice of size Nτ = 256. It is worth mentioning that our uncertainties are gener-
ally smaller than the ones contained in Ref. [44], even when our lowest temperature
lattice contains Nτ = 128 different Euclidean times, half the value employed in the
compared publication. Although their analysis uses a complex distillation algorithm
where several correlation functions with the same quantum numbers are employed
to isolate the states contributing to a particular correlation function, the analysis
on each distilled correlation function is simpler than ours, which might explain the
larger uncertainties in their estimates.

In order to assert that the results presented in Table (3.2) are plausible, we
perform a simple analysis on our correlation functions. The analysis is based on
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Table 3.2: D and Ds meson masses for all states available computed at the low-
est temperature available: T = 47 MeV. The table shows the most recent PDG
masses [26]. The results are expressed both in lattice units, as well as in physical
units (MeV). The uncertainties of the results in MeV take into account the system-
atic uncertainty of the scale setting, as well as the statistical uncertainty generated
by our methodology.

State Channel JP PDG MeV aτm m MeV

D Pseudoscalar 0− 1869.65(5) 0.3086(1) 1876(4)
D∗ Vector 1− 2010.26(5) 0.3291(1) 2001(4)
D∗

0 Scalar 0+ 2300(19) 0.3656(14) 2222(10)
D1 Axial-vector 1+ 2420.8(5) 0.3823(70) 2325(43)

Ds Pseudoscalar 0− 1968.34(7) 0.3243(3) 1972(5)
D∗
s Vector 1− 2112.2(4) 0.3442(1) 2092(4)

D∗
s0 Scalar 0+ 2317.8(5) 0.3479(46) 2115(29)

Ds1 Axial-vector 1+ 2459.5(6) 0.3479(46) 2512(6)

the assumption that eq. (3.5) is a valid model for the contribution of each state
to the correlation function. As a result, we model the behaviour of a particular
low-temperature correlation function C(τ ;T ) close to the middle of lattice using the
following:

C(τ ;T ) = A0 cosh(M0 (τ −
Nτ

2
)) + Ae cosh(Me (τ −

Nτ

2
))

= C0(τ ;T ) + Ce(τ ;T ). (3.42)

In the equation above, C0 models the contribution of the lowest energy mode, and Ce
can be interpreted as encapsulating the effective contribution of all excited states to
the correlation function. As M0 �Me, then Ce is a second-order effect at τ → Nτ/2:
C(τ ;T ) ' C0(τ ;T ).

From our simple model, we can construct the following ratio

R(τ ;T ) =
C(τ ;T )

G(τ ;T )
, (3.43)

where G(τ ;T ) is defined as

G(τ ;T ) = A0 cosh(MR (τ − Nτ

2
)), (3.44)
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that is, a simple correlation function extracted from a 1-peak spectral function with
zero width whose mass is equal to a given reference mass MR — see eq. (3.2) with

ρ(ω) = A 2π δ(ω −MR), (3.45)

where A is the amplitude of the spectral function. G(τ ;T ) is a so-called reconstructed
correlator [45–47].

Substituting eqs. (3.42) and (3.44) into eq. (3.43) leads to

R(τ ;T ) =
C0(τ ;T ) + Ce(τ ;T )

G(τ ;T )
. (3.46)

In the case in which MR =M0, then, the ratio behaves as

R(τ ;T ) = 1 +
Ce(τ ;T )

G(τ)
. (3.47)

Due to the fact that higher-order states are exponentially suppressed at 0 � τ <
Nτ/2, we can expand the rightmost ratio using the Taylor expansion of a quotient
of two hyperbolic cosines, leading to

Ce(τ ;T )

G(τ ;T )
' Ae
A0

[1 +
1

2
(τ −Nτ )

2 (M2
e −M2

R)]. (3.48)

A consequence of eq. (3.48) is that, if MR = M0 and Me � M0, then R(τ ;T )
evaluated at τ → Nτ/2 is approximately

R(τ ;T ) ' 1 +
Ae
A0

, where 0� τ < Nτ/2. (3.49)

Provided that the ground state mass of a low temperature correlation function is
close to a given reference mass, then the ratio R(τ ;T ) behaves like a constant.

Through the computation of R(τ ;T ) in our correlation function data, we are able
to visually validate our results, as R(τ ;T ) is sensitive to small changes in MR:

C0(τ ;T )

M(τ ;T )
' 1 +

1

2
(τ −Nτ )

2 (M2
0 −M2

R). (3.50)

As in the previously introduced D-ratio — eq. (3.38) — R(τ ;T ) is a first-principles
quantity that does not require any analysis on the correlation functions.

Figure (3.14) shows R(τ ;T ) as a function of τ/aτ computed for both D and
Ds mesons in the pseudoscalar and vector channels using the two lowest estimated
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ground state masses as reference masses in G(τ). The correlation function employed
in the calculation, C(τ ;T ), corresponds to our lowest temperature estimate: Nτ =
128. As expected, the results show that our estimated masses correctly model the
large τ region of the correlation function.
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Figure 3.14: Pseudoscalar (top) and vector (bottom) ratios R(τ) using the fitted
ground states masses at the two lowest temperatures: Nτ = 128, 64. The correlation
function employed in the computation of R(τ ;T ) corresponds to Nτ = 128: T =
47 MeV.

Moreover, in Figure (3.15), we present R(τ ;T ) computed for the axial-vector and
scalar channels. The data shows that extracting a reliable ground state mass for these
two channels is difficult even at low temperature. The fact that the second-lowest
temperature estimated ground state mass produces a ratio closer to a constant than
the one extracted at lower temperature suggests that large temperature effects are
affecting both channels. The presence of large temperature effects at low temperature
was already encountered in the a1(1260) estimated masses, displayed in Figure (3.12).
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The large difference in uncertainties encountered in the different subplots of Fig-
ure (3.15) is a consequence of the fact that the error in the estimated ground state
masses employed as reference masses in G is taken into account when estimating
R(τ ;T ). Due to the fact that our lowest temperature ground state estimate is less
accurate than our second lowest temperature, R(τ ;T ) is noisier when computed when
M0[T = 47] than when computed with M0[T = 97]. We estimate the error in R(τ ;T )
using Monte Carlo error propagation.
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Figure 3.15: Axial-vector (top) and scalar (bottom) ratios R(τ) using the fitted
ground states masses at the two lowest temperatures: Nτ = 128, 64. The correlation
function employed in the computation of R(τ ;T ) corresponds to Nτ = 128: T =
47 MeV.

Pseudoscalar and vector channels

The lattice correlation functions employed in the extraction of the ground state
masses for both the pseudoscalar and vector channels at different temperatures are
presented in Figure (3.16). As expected, the correlation functions are periodic around

72



Chapter 3. Meson thermal masses at non-zero temperature

the middle point of the lattice in the temporal direction. Additionally, all correlation
functions show a clear plateau at Euclidean times 0 � τ < Nτ/2, which suggests
that the spectral decomposition should validly model the correlation function data.
As previously discussed, both channels yield good signals, which can be seen in the
relatively low noise present in all signals.
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Figure 3.16: Pseudoscalar (top) and vector (bottom) correlation functions as a
function of τ/aτ . The labels represent the temperature in MeV.

Figure (3.17) contains the temperature dependence of all D and Ds mesons in
both the pseudoscalar and vector channels. As expected, the data shows minimal
temperature dependence in all ground state masses at temperatures below the critical
temperature. Once the temperature of the system approaches the pseudocritical
temperature, all states display a downwards shift in mass.
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Figure 3.17: Temperature dependence of the ground state mass of the D and
Ds mesons in the pseudoscalar and vector channels. The vertical line denotes the
pseudocritical temperature of the system.

Table (3.3) presents the values of the ground state masses at all temperatures
considered. The results are in agreement with the ones reported in Ref. [34].

Table 3.3: D and Ds ground state masses (in MeV) as a function of the temperature
in the hadronic phase for both pseudoscalar and vector channels. The uncertainty
in the ground state masses combines the statistical uncertainty generated in our
methodology and the systematic uncertainty from the scale setting.

JP PDG T =47 MeV 95 109 127 152 169

D 0− 1869.65(5) 1876(4) 1878(4) 1876(4) 1869(5) 1856(6) 1800(11)
D∗ 1− 2010.26(5) 2001(4) 2004(4) 2005(5) 1986(11) 1958(9) 1841(28)

Ds 0− 1968.34(7) 1972(5) 1966(4) 1965(4) 1963(4) 1948(5) 1913(6)
D∗
s 1− 2112.2(4) 2092(4) 2091(5) 2092(5) 2086(5) 2060(6) 1989(16)

In order to validate the results presented in Figure (3.17), we can compute a
similar ratio to the one presented in eq. (3.43) across all temperatures available.
This new ratio is defined as

S(τ ;T, T0) =
C(τ ;T )

G(τ ;T )

/C(τ ;T0)
G(τ ;T0)

=
R(τ ;T )

R(τ ;T0)
. (3.51)

Provided that the ground state mass of C(τ ;T ) is equal to the ground state mass of
another reference correlation function C(τ ;T0), then S(τ ;T, T0) should be consistent
with 1. Note that we divide each correlation function with a model in order to
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suppress the bending produced by the hyperbolic cosines. The masses of G(τ ;T )
and G(τ ;T0) are equal, the only difference between both models is the temperature
dependence induced by Nτ .
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Figure 3.18: Pseudoscalar (top) and vector (bottom) ratio S(τ ;T, T0) as a function
of τ/aτ . The mass defining the models corresponds to our second-lowest temperature
estimate, extracted on a lattice with T = 97 MeV. The labels in the figures represent
the temperature in MeV.

A departure from 1 in S(τ ;T, T0) suggests that M0[T ] 6= M0[T0]. If this is in-
deed the case, then the temperature dependence of the correlation function is solely
induced by Nτ , which implies that the spectral function of C(τ ;T ) is equivalent to
the spectral function of C(τ ;T0). In this scenario, the correlation function is only
modified by the temperature through Nτ — see eq. (3.2) and eq. (3.3). In contrast,
if S(τ ;T, T0) is not consistent with 1, then we know that the temperature is affecting
the correlation function non-trivially. However, from eq. (3.51), we cannot know if
the thermal effects induce a mere shift in the ground state mass, or a complete change
in the functional form of the spectral function. Nevertheless, as we work below the
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pseudocritical temperature of the system, we expect small departures from S(τ) ' 1
to be mainly caused by shifts in the mass of the lowest energy mode contributing to
C(τ ;T ) in the pseudoscalar and vector channels.
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Figure 3.19: Axial vector (top) and scalar (bottom) correlation functions as a
function of τ/aτ . The labels in the figures represent the temperature in MeV.

Figure (3.18) contains S(τ ;T, T0) computed on the pseudoscalar and vector chan-
nels in all relevant states. The data is consistent with the behaviour displayed by
the ground state masses in Figure (3.17): at low temperature, the ground state
masses are independent of the temperature, and, therefore, the spectral function is
unaltered; however, once the temperature of the system approaches Tc, the masses
of the states change with the temperature, which leads to a non-constant S(τ ;T, T0).
The more S deviates from 1, the more we are certain that M0[T ] 6= M0[T0]. The
transition from constant to non-constant ratio is spotted around T = 151 MeV. In
our simulations, the pseudocritical temperature of the system, which is computed
using the inflection point of the chiral condensate, has a value of Tc = 166± 2 MeV;
more information about the computation of Tc can be found in Appendix (A). As
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in the previously defined ratios — eq. (3.38) and eq. (3.43), the computation of the
ratio S(τ ;T, T0) does not involve any fitting.

Axial vector and scalar channels

Figure (3.19) displays the axial vector and scalar correlation functions employed in
the extraction of the ground state masses. Although the scalar and axial vector
correlation functions tend to suffer from an inherent signal loss as τ increases, which
complicates the extraction of ground state masses, the D(s) meson correlation func-
tions do not show this problem: a clear plateau is present at all temperatures. As
a result, the difficult extraction of the ground state mass even at low temperature
must be caused by another source — see Figure (3.15).

The temperature dependence of the estimated ground state masses in both rel-
evant channels is shown in Figure (3.20). The results display large variations in the
masses even at low temperatures: T → 0. As stated before, this was already seen in
the low-temperature estimates of the a1(1260) masses — see Figure (3.12). Although
not entirely understood, we suspect that our scalar and axial vector operators might
allow contributions from bound states, such as a pair ρ-π in the D1 meson correlation
function. The energy scales and quark numbers of the D mesons allow them to de-
cay into other states, which might pollute the lowest energy mode of the correlation
function. This phenomenon requires further investigation. The unstable nature of
the estimated masses could also imply that the spectral decomposition is not a valid
model of the correlation function even in the hadronic phase.
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Figure 3.20: Temperature dependence of the ground state mass of the D and
Ds mesons in the axial vector and scalar channels. The vertical line denotes the
pseudocritical temperature of the system.
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As a first-principle test in Figure (3.20), we study the temperature dependence of
the S-ratio defined in eq. (3.51) for both axial vector and scalar correlation functions.
The results are presented in Figure (3.21), computed using the estimated ground
state mass at T = 97 MeV as the reference mass for the models in S(τ ;T, T0). The
results displayed in Figure (3.21) demonstrate that a clear temperature dependence
is present at all temperatures: the lowest temperature correlation function does not
produce a constant S-ratio; this was previously suggested by Figure (3.15). As the
temperature increases, the deviation from a constant S is clearer.
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Figure 3.21: Axial vector (top) and scalar (bottom) ratio S(τ ;T, T0) as a function
of τ/aτ . The mass defining the models corresponds to our second-lowest temperature
estimate, extracted on a lattice with T = 97 MeV. The labels in the figures represent
the temperature in MeV.

Whether the drastic τ -dependence encountered in the estimated S-ratio is due to
a large shift in the ground state masses contributing to the correlation functions, as
the results contained in Figure (3.20) suggest, or due to a change in the functional
form of the spectral function in the hadronic phase, we cannot know with our current

78



Chapter 3. Meson thermal masses at non-zero temperature

tools and knowledge. However, from the computation of the S-ratio, we are sure that
the temperature dependence of the correlation functions in these two channels cannot
be merely induced by the mesonic kernel in eq. (3.2).

3.3 Conclusions
The methodology presented in this chapter allows a systematic exploration of the
temperature dependence of ground state masses across a variety of channels, flavour
combinations and temperatures. Our regression methodology does not rely on visual
analysis of results, and reduces the bias introduced by choosing some hyperparamet-
ers of the analysis by varying those parameters as much as possible. By applying
the methodology to our simulated thermal mesonic correlation functions, we are able
to obtain results on different mesonic sectors. It is worth stressing that our results
represent one of the few examples available in which mesonic states are systemat-
ically analysed at temperatures below and above the pseudocritical temperature of
the system.

The temperature dependence of the pseudoscalar and vector channels ground
state masses — see Figure (3.10) — are in agreement with the expected behaviour:
at low temperature, eq. (3.5) validly models the contribution of each state to the
correlation function; however, at T > Tc, the model becomes questionable, as the
spectral function is no longer described by a sum of independent and isolated peaks.
In the hadronic phase, minimal temperature dependence is present in the estimated
ground state masses, which suggests that the temperature dependence of the correl-
ation functions is mainly caused by kinetical effects, that is, it is only induced by the
kernel in eq. (3.2). At high temperature, the light sector masses become degenerate,
which implies that large collective effects are present in the system. As expected,
these collective effects are suppressed in the heavy quark sector.

An important result of our analysis is the ubiquitous difference between local and
smeared correlation functions at high temperature: both estimates lead to incompat-
ible and diverging estimates at T > Tc, see Figure (3.11). This problem is spotted in
the pseudoscalar and vector estimates, as well as in the axial vector channel. Further
research in this direction is required to assert that smearing is acting as expected in
high-temperature lattice simulations.

One of the main results of our analysis is the clear degeneration encountered
in the SU(2)A-related channels: ρ(770) and a1(1260). This degeneration is spotted
for both local and smeared sources, and in the masses as well as in the correlation
functions: see Figure (3.12) and Figure (3.13) respectively. Our analysis suggest
that the temperature at which the SU(2)A chiral symmetry is restored is close to the
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pseudocritical temperature of the system.
In addition, due to the phenomenological interest surrounding these mesonic fam-

ilies, we studied the temperature dependence of the D and Ds mesons. Our analysis
on these mesons represent the first systematic lattice QCD study performed through-
out the whole hadronic phase of QCD. As Figure (3.17) suggests, the temperature
dependence of the pseudoscalar and vector states is minimal at T � Tc; some tem-
perature dependence is present at T ' Tc. These thermal effects are likely to be
caused by a small shift in the ground state mass: Figure (3.16) and Figure (3.18)
support this hypothesis. An analysis on the spectral functions of those states should
allow a direct test on these results. In contrast, the axial vector and scalar states are
heavily affected by the temperature even at T → 0. This is suggested by both the
masses, and the S-ratio: Figure (3.20) and Figure (3.21) respectively. We suspect
that this large temperature dependence could be caused by the presence of bound
states of lighter mesons in the correlation function, that is, the D-mesons decay into
multiple states even at relatively low temperatures. Further research in this direction
is required, for example by analysing equivalent correlation functions computed from
different mesonic operators.
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Chapter 4

The pion velocity in the QCD
medium

In this chapter, we introduce and analyse the pion velocity in the QCD medium
as a function of the temperature. The pion velocity, labelled u, is a dimensionless
quantity that describes the temperature dependence of the pion dispersion relation
in the chiral limit of light quarks — mq → 0 — and small external momenta —
~k → ~0. The thermal dispersion relation measures the energy that a pion particle
carries at a particular external momentum ~k and temperature T . We label this
quantity using ω(Mπ, ~k;T ), where Mπ represents the rest mass of the pion. In the
previously mentioned limits, the pion velocity and the thermal dispersion relation
relate through

ω(Mπ, ~k; T ) = u2(T )ω(Mπ, ~k;T = 0). (4.1)

A chiral limit expression of the pion velocity expressed in terms of static quantities
is

u2(T ) = −
4m2

q

M2
π

CPP (τ,~k = ~0; T )

CAA(τ,~k = ~0; T )

∣∣∣∣∣
τ=Nτ/2

. (4.2)

This expression was first derived in Ref. [1], and its roots lie in the analysis of pion
dynamics in the chiral limit of QCD presented in Refs. [2, 3].

In eq. (4.2), mq represents the light quark mass, Mπ is the pion mass, CPP
corresponds to the pseudoscalar (γ5) thermal correlation function , and CAA is the
temporal axial vector (γ0γ5) thermal correlation function. The precise definitions of
the pseudoscalar and axial vector correlation functions can be found in Appendix (B).
Throughout this chapter, we make use of the Euclidean Dirac γ-matrices: γ0, γ1, γ2
and γ3, where γ0 is the temporal γ-matrix.
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Chapter 4. The pion velocity in the QCD medium

This chapter is divided into two sections. In the first one, we explicitly derive
the pion velocity expression following Ref. [1]. To do so, we first introduce the so-
called Ward-Takahashi identities. Once the pion velocity expression is constructed,
we estimate its temperature dependence in our lattice setup, described in detail in
Appendix (A).

4.1 Derivation of the pion velocity
In order to construct eq. (4.2), the so-called Ward-Takahashi identities are required.
These identities relate different correlation functions through symmetries of their
action. As a result, they play a similar role to Noether’s conserved currents for
correlation functions. In addition to being essential in the derivation of the pion
velocity expression, the Ward-Takahashi identities also allow the estimation of light
quark masses on the lattice.

4.1.1 Ward-Takahashi identities
The Euclidean Ward-Takahashi identities emerge from the analysis of the variation
of expectation values of field operators Ô under infinitesimal field transformations.
In our particular case, we assume that Ô is a composite operator constructed from
two fermionic fields: Ô = Ô[ψ, ψ̄]. The Euclidean expectation value of Ô is defined
as

〈Ô[ψ, ψ̄]〉 = 1

Z

∫
DψDψ̄ O[ψ, ψ̄] exp

(
− SE[ψ, ψ̄]

)
, (4.3)

where SE represents the Euclidean action defining the dynamics of the system, and
Z is the normalising partition function defined in eq. (1.4). As we are interested in
the chiral limit of QCD, the fermionic fields, ψ and ψ̄, represent the light quarks u
and d, which in our particular case are assumed to be degenerate: mu = md = mq.

The fermionic quark fields transform under an infinitesimal transformation as

ψ′ = ψ + δψ and ψ̄′ = ψ̄ + δψ̄. (4.4)

We can insert the transformed fermionic fields into all field-dependent objects in
eq. (4.3) in order to construct the variation of 〈Ô〉 with respect to both fermionic
fields. The result is:

〈Ô〉′ = 〈Ô〉+ 〈δÔ〉+ 〈Ô δSE〉+ 〈Ô J〉+
δZ

Z
〈Ô〉. (4.5)
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Chapter 4. The pion velocity in the QCD medium

In the expansion above, the first term represents the variation of the field operator
Ô; the second term corresponds to the variation of the Euclidean action; the third
term represents the variation of the integration measures, Dψ and Dψ̄, described by
the determinant of the Jacobian matrix of the transformation, J ' ∂ψ/∂ψ′; lastly,
the last term corresponds to the variation of the partition function Z in eq. (4.3).
Due to the infinitesimal nature of eq. (4.4), higher-order terms in δψ and δψ̄ vanish.

As we are mainly interested in transformations that leave the action invariant, we
can safely discard the last term in eq. (4.5): δZ ' 〈δSE〉 = 0. Moreover, we only focus
on non-anomalous transformations, that is, transformations that leave the measure
invariant. This implies that the Jacobian term in eq. (4.5) is also discarded.

Assuming that the symmetry transformations leave the expectation value invari-
ant, then

〈Ô′〉 = 〈Ô〉, (4.6)

which leads to:
〈Ô δSE〉 = −〈δÔ〉. (4.7)

We continue our analysis by characterising the transformations defined in eq. (4.4)
as infinitesimal local variations depending on a real function ω(x), and belonging to
the algebra of a Lie symmetry group. This class of transformations can be expressed
as

ψ′ = ψ + iω(x)T̂ ψ(x) and ψ̄′ = ψ̄ − iω(x)ψ̄(x)T̂ , (4.8)

where T̂ corresponds to a generator of the group transformation. Additionally, we
assume that ω(x) is infinitesimally small, |ω(x)| � 1 for all x, and only non-zero
in a small neighbourhood of the Euclidean space-time coordinate x. This locality
condition ensures that no boundary terms emerge in our derivation.

To proceed, we apply the transformations defined in eq. (4.8) to the standard
Euclidean fermionic action, defined as

SE =

∫
d4x ψ̄(x)

[
γµ∂µ +mq

]
ψ(x). (4.9)

The variation of the Euclidean action at first order in ω(x) is just

δSE = i

∫
d4x ψ̄

[
∂µωγµT̂ + ω

[
γµT̂ + T̂ γµ

]
∂µ + ω

[
mqT̂ + T̂mq

]]
ψ, (4.10)

where all space-time dependences have been omitted to simplify the notation. In
principle, the quark mass mq and the group generators T̂ might not commute: an
example of this can be found when the fermionic action is formulated in terms of a
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non-degenerate SU(2)I isospin doublet, ψ = (u, d). However, in our particular case,
we treat mq as a scalar parameter, which leads to

δSE = i

∫
d4x ψ̄

[
∂µωγµT̂ + ω

[
γµT̂ + T̂ γµ

]
∂µ + 2mqT̂ ω

]
ψ. (4.11)

The right-hand side of the equation above can be integrated by parts in order to
eliminate the first term, which depends on the derivative of ω(x). To do so, we
employ the following identity

∂µ[ω(x)Φ(x)] = ∂µω(x)Φ(x) + ω(x)∂µΦ(x), (4.12)

where Φ(x) = γµT̂ψ(x). Integrating the equation above over all the Euclidean space-
time, labelled R, and applying Gauss’s theorem, allows us to arrive at the following
expression: ∫

R
d4x ∂µ[ω(x)Φ(x)] =

[
ω(x)Φ(x)

]
∂R

= 0. (4.13)

The last step is a consequence of the locality of ω(x): in the boundary of the region
of integration (∂R), ω(x) vanishes.

The non-zero term in eq. (4.12) can be plugged into eq. (4.11) to produce

δSE = i

∫
d4xω

[
− ∂µ[ψ̄γµT̂ψ] + ψ̄(γµT̂ + T̂ γµ)∂µψ + 2mqψ̄T̂ψ

]
. (4.14)

By inserting eq. (4.14) into eq. (4.7), we are able to build the following Ward-
Takahashi identity:

〈i
∫
d4xω(x)

[
− ∂µ[ψ̄γµT̂ψ] + ψ̄(γµT̂ + T̂ γµ)∂µψ + 2mqψ̄T̂ψ

]
Ô〉 = 0. (4.15)

To obtain the identity above, we have assumed that 〈δÔ〉 = 0 in eq. (4.7). The
equation above must be true independently of ω(x).

In the particular case in which the group generators satisfy

T̂ γµ + γµT̂ = 0, (4.16)

then, we obtain one of the so-called Ward-Takahashi identities:

〈∂µ[ψ̄(x)γµT̂ψ(x)]Ô(y)〉 = 2mq 〈[ψ̄(x)T̂ψ(x)]Ô(y)〉. (4.17)

Note that the source operator in eq. (4.17), Ô(y), must strictly be located outside
the neighbourhood of the sink operator: y 6= x. This condition ensures that no
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boundary terms are present in the previously derived identities. A violation of this
restriction implies that Ô(y) emerges in all integrals, making eq. (4.13) non-valid.

A particularly useful Ward-Takahashi identity is obtained by supposing that the
action is invariant under an SU(2)A infinitesimal chiral transformation, defined as

ψ′ = ψ + iω(x)γ5
τa

2
ψ(x) and ψ̄′ = ψ̄ + iω(x)ψ̄(x)γ5

τa

2
, (4.18)

where τa represents one of the Pauli matrices. For this particular symmetry, T̂ is
just γ5τa/2 in eq. (4.17). We can substitute the group generator T̂ in eq. (4.17) with
the appropriate version, and make use of the pseudoscalar and axial vector densities,
defined as

P a = ψ̄γ5
τa

2
ψ and Aaµ = ψ̄γµγ5

τa

2
ψ, (4.19)

to construct the following identity:

〈∂µAaµ(x)Ô′(y)〉 = 2mq 〈P a(x)Ô′(y)〉. (4.20)

The identity above is sometimes referred to with the name partially conserved axial
current (PCAC) identity.

Two important things can be learned from eq. (4.20). The first one is that, in
the chiral limit, all correlation functions containing the axial divergence are zero. In
this limit, it is said that the axial current is conserved. This is similar to stating that
the following current equation is satisfied:

∂µA
a
µ(x) = 0. (4.21)

The second consequence is that, close to the chiral limit, eq. (4.20) allows a direct
estimation of the light quark masses as a function of two measurable correlation
functions.

On the lattice, in order to obtain a precise measure of mq, the pseudoscalar
density is usually placed in the source operator of eq. (4.20) as it produces accurate
correlation function estimates. Although eq. (4.20) might seem to be valid for all
quark flavours, it is not. To derive it, we have assumed that the action is invariant
under SU(2)A transformations. This is only possible in the limit of small quark
masses. As a result, only light quark masses can be estimated through the application
of eq. (4.20). It is common to refer to the estimation of a quark mass computed using
the PCAC relationship as its PCAC mass: mPCAC

q .
In the case in which 〈δÔ〉 6= 0, then eq. (4.7) transforms into:

〈i
∫
d4xω

[
− ∂µ[ψ̄γµT̂ψ] + ψ̄(γµT̂ + T̂ γµ)∂µψ + 2mqψ̄T̂ψ

]
Ô〉 = 〈δÔ〉, (4.22)
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where δÔ is computed using the transformation defined in eq. (4.8). We can select
ω(x) = eikx and Ô(y) = P b(x) to obtain

δab

2
〈ψ̄ψ〉 = ikµ

∫
d4xe−ikx〈P b(y)Aaµ(x)〉+ 2mq

∫
d4xe−ikx〈P b(y)P a(x)〉. (4.23)

The integrals in the equation above can be eliminated in order to obtain the following
relationship:

1

2
δabδ4(x− y)〈ψ̄ψ〉 = 〈P b(y)∂µA

a
µ(x)〉+ 2mq 〈P b(y)P a(x)〉. (4.24)

More details on the derivation of the Ward-Takahashi identity defined above can be
found in Ref. [1].

4.1.2 The pion velocity expression
Having derived the Ward-Takahashi identities, we are in the position of building
the pion velocity expression shown in eq. (4.2). We follow the derivation present in
Ref. [1]. To derive eq. (4.2), we start from the following ansatz,∫

dτ〈P a(0) ~Ab(τ, ~x)〉 = δabf(r)ûr, (4.25)

where ûr represents the radial unit vector: ûr = ~r/|~r|.
To continue with the derivation, we take the chiral limit of eq. (4.24),

〈P b(0)∂µA
a
µ(x)〉 =

1

2
〈ψ̄ψ〉δabδ4(x). (4.26)

The equation above can be integrated over the Euclidean space-time

R = lim
R→∞

{0 ≤ r ≤ R; 0 ≤ τ ≤ β} (4.27)

in order to obtain∫ β

0

∫
r<R

dτd3x 〈P b(0)∂µA
a
µ(x)〉 =

∫ β

0

∫
r<R

dτd3x
1

2
〈ψ̄ψ〉δabδ4(x). (4.28)

Note that the left-hand side in the equation above can be transformed using

∂µ[〈P b(0)Aaµ(x)〉] = 〈∂µP b(0)Aaµ(x)〉+ 〈P b(0)∂µA
a
µ(x)〉, (4.29)
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where the first term in the right-hand side is zero as it is independent of x. Plug-
ging the above equation into the left-hand side of eq. (4.28) produces the following
relationship:

∂µ〈P b(0)Aaµ(x)〉 = ∂τ 〈P a(0)Ab0(x)〉+ ~∇〈P a(0) ~A(x)〉, (4.30)

where the index 0 represents the time component τ of the vector field: A0 = Aτ .
Integrating this new relationship over the same Euclidean space-time in eq. (4.28)
leads to ∫

d4x ∂µ〈P b(0)Aaµ(x)〉 =∫
d3x 〈P a(0)Ab0(x)〉

∣∣∣∣β
0

+

∫
dτd3x ~∇〈P a(0) ~Ab(x)〉. (4.31)

The first term in the right-hand side is zero as the correlation function is periodic in
time for bosonic operators. Gauss’s theorem can be applied to the equation above in
order to perform the integral of the second term in the right-hand side. The result is∫

dτd3x ~∇〈P a(0) ~Ab(x)〉 =
∫
r2dτdθdφ 〈P a(0) ~Ab(x)〉

=

∫
r2dσdφ f(r) = 4πr2f(r), (4.32)

which can then be inserted into eq. (4.25), to find

f(r) = −〈ψψ̄〉
8πr2

. (4.33)

Furthermore, another useful expression required in the derivation of the pion
velocity can be obtained. To do so, we start by integrating eq. (4.24) over the
Euclidean space-time: ∫

R
d3x 〈P a(0)∂µA

b
µ(x)〉. (4.34)

Again, we integrate this equation by parts to obtain∫
R
d3x 〈P a(0)∂µA

b
µ(x)〉 =

∂τ

∫
R
d3x 〈P a(0)A0(x) +

∫
∂R
d~σ 〈P a(0) ~Ab(x)〉, (4.35)
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which must be equal to eq. (4.26) in the chiral limit.
Integrating the right-hand side of eq. (4.26) allows us to obtain

1

2
〈ψ̄ψ〉δabδ4(τ − 0) =

∂τ

∫
R
d3x 〈P a(0)A0(x)〉+

∫
∂R
d~σ 〈P a(0) ~Ab(x)〉. (4.36)

In the case in which τ 6= 0, this expression reduces to

∂τ

∫
R
d3x 〈P a(0)A0(x)〉 = −

∫
∂R
d~σ 〈P a(0) ~Ab(x)〉. (4.37)

In Ref. [1], a useful relationship for the pseudoscalar temporal axial vector cor-
relation function in the chiral limit is introduced:∫

d3x 〈P a(0)Ab0(x)〉 = δab
〈ψψ̄〉
2β

(τ − β/2). (4.38)

To continue our journey towards the construction of eq. (4.2), we require some
spectral function definitions. In particular, we need the following spectral functions:

δabCPP (τ,~k) =

∫
d3x e−i

~k~x〈P a(0)P b(τ)〉 =

δab
∫ ∞

0

dω ρPP (ω,~k)
cosh(ω (β/2− τ))

sinh(ωβ/2)
, (4.39)

δabCAP (τ,~k) =

∫
d3x e−i

~k~x〈P a(0)Ab0(τ)〉 =

δab
∫ ∞

0

dω ρAP (ω,~k)
sinh(ω (β/2− τ))

sinh(ωβ/2)
, (4.40)

δabCAA(τ,~k) =

∫
d3x e−i

~k~x〈Aa0(0)Ab0(τ)〉 =

δab
∫ ∞

0

dω ρAA(ω,~k)
sinh(ω (β/2− τ))

sinh(ωβ/2)
. (4.41)

The pseudoscalar Ward-Takahashi identity in eq. (4.24) can be applied to the
spectral function definitions above to construct the following relationships:

2mq ρPP (ω,~0) = −ω ρAP (ω,~0), (4.42)
ω ρAA(ω,~0) = 2mq ρAP (ω,~0). (4.43)
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Through the combination of both identities, a third identity can be generated,

ω2 ρAA(ω,~k = ~0) = −4m2
q ρPP (ω,

~k = ~0) (4.44)

In Ref. [1], the following chiral limit ρAP spectral function model is presented,

ρAP (ω,~k = ~0) = −〈ψψ̄〉
2

δ(ω). (4.45)

We would like to show that the spectral function defined above is, in fact, the exact
spectral function for CAP in the chiral limit and for no external momenta. To do so,
we plug it inside eq. (4.40), which leads to the following expression∫

d3x 〈P a(0)Ab0(x)〉 = −δab
〈ψψ̄〉
2

∫ ∞

0

dω δ(ω)
sinh(ω (β/2− τ))

sinh(ωβ/2)
. (4.46)

The right-hand side of the equation above can be integrated using the Dirac delta
distribution and the following limit

lim
ω→0

sinh(ω (β/2− τ))
sinh(ωβ/2)

= 2
(β/2− τ)

β
. (4.47)

As desired, after integration, we arrive to eq. (4.38).
The previous derivation allows us to learn that ρAP — see eq. (4.45) — couples to

a massless excitation in the chiral limit. As a result, the same coupling is expected
to be present in the limit of small momenta and quark masses. Moreover, eq (4.42)
dictates that this coupling must also be present in the pseudoscalar correlation func-
tion. Using this information, a model for ρPP (ω,~k) is proposed in Ref. [1]. The
model is derived from previous results in hydrodynamic and zero temperature chiral
expansion calculations [2–4]. The suggested model for ρPP is:

ρPP (ω,~k) = sign(ω)Π(k2) δ(ω2 − ω2
~k
) + . . . (4.48)

where Π(k2) is a normalisation function, possibly dependent on the norm of the
external momenta k2 = ~k · ~k.

In Ref. [1], the authors claim that, close to the chiral limit, ω2
~k
, can be approx-

imately described by a damped dispersion relation:

ω2
~k
' u2 (M2

π +
~k2) (4.49)

This chiral model was first presented in Refs. [2, 3]. In the identity shown above,
u2 represents the pion velocity squared. At zero temperature u2 is expected to be 1,
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which recovers the standard relativistic energy-mass equivalence in which massless
particles move at the speed of light. However, when the temperature increases, the
pion velocity might decrease due to thermal effects. u2 can be viewed as a damping
coefficient that the medium imposes on the propagating pions. In this picture, we
would expect u2 to decrease as the temperature of the system increases. For more
information about eq. (4.49), we refer to Ref. [1].

In addition, the authors of Ref. [1] derive an expression for the normalising func-
tion Π(k2) in eq. (4.48) in the limit of small quark masses and zero momenta. It
reads

Π(k2) = u2
M2

π〈ψψ̄〉
4mq

. (4.50)

This expression can be plugged into the definition of ρPP to produce the chiral limit
pseudoscalar spectral function:

ρPP (ω,~k = ~0) = sign(ω)u2 m
2
π〈ψψ̄〉
4mq

δ(ω2 − ω2
~0
) + . . . (4.51)

From the pseudoscalar spectral function, ρAP and ρAA can be derived in the limit
of small quark mass and zero external momenta through the spectral Ward-Takahashi
identities present in eq. (4.42) and eq. (4.44) respectively:

ρAP (ω,~k = ~0) = −ω~0〈πψ̄〉
2

δ(ω2 − ω2
~0
) + . . . (4.52)

ρAA(ω,~k = ~0) = −sign(ω)mq〈ψψ̄〉 δ(ω2 − ω2
~0
) + . . . (4.53)

We are finally in the position of constructing the pion velocity expression. To
proceed, we make use of the following correlation function identity:

∂20C(τ) =

∫ ∞

0

dω ω2ρ(ω)
cosh(ω (β/2− τ))

sinh(ωβ/2)
, (4.54)

which can be easily derived from eq. (4.39). In the case in which C(τ) = CAA(τ),
then the identity defined in eq. (4.44) produces the following equality:

∂20CAA(τ) = −4m2
qCPP (τ). (4.55)

The integral in the right-hand side of eq. (4.54) can be performed analytically
using eq. (4.53). The result is

∂20CAA(τ) = −
mq〈ψψ̄〉
2ω~0

ω2
~0

cosh(ω~0 (β/2− τ))
sinh(ω~0β/2)

. (4.56)
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To compute the integral above, the following Dirac delta distribution property is
required,

δ(f(x)) =
∑
xi

δ(x− xi)
|f ′(x = xi)|

, (4.57)

where xi represents one of the roots of f(x) and f ′ is the first derivative of f(x).
Employing eq. (4.56), the following ratio can be constructed,

∂20CAA(τ)

CAA(τ)
= ω~0. (4.58)

In the limit of zero external momenta, ω~0 = u2Mπ from eq. (4.49). As a consequence,
we arrive at the pion velocity expression:

u2 =
1

M2
π

∂20CAA(τ,
~k = ~0)

CAA(τ,~k = ~0)
= −

4m2
q

M2
π

CPP (τ,~k = ~0)

CAA(τ,~k = ~0)
. (4.59)

In the last step, eq. (4.55) was employed. In Ref. [1], the authors set τ = β/2 = Nτ/2
in the pion velocity expression, leading to

u2 = −
4m2

q

M2
π

CPP (τ,~k = ~0)

CAA(τ,~k = ~0)

∣∣∣∣∣
τ=Nτ/2

. (4.60)

In principle, we are not bounded to estimate u2 using correlation function evaluated
at τ = β/2 = Nτ/2. The only requirement is to position the sink operator defining
correlation functions used in the estimation of u2 far from the source operator, usu-
ally located at x = (τ, x, y, z) = (0, 0, 0, 0), to avoid the presence of contact terms.
For thermal correlation functions, this implies that τ � 0. However, in thermal
field theory, bosonic correlation functions are periodic in time with period Nτ . As
a consequence, another source operator is placed at τ = Nτ . This implies that
the maximum distance between sink and source operator in a thermal correlation
function is obtained at τ = Nτ , which might explain why the pion velocity is only
evaluated at τ = Nτ/2 in Ref. [1].

4.2 Lattice measurement of the pion velocity
Having derived the pion velocity expression, we are now in the position of estimating
its temperature dependence in our lattice setup. Note that u2 is only defined in
the limit of small quark mass, which constrains the possible correlation functions
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that could be employed in the estimation of u2. In practical terms, estimating u2

implies computing the ratio of the pseudoscalar correlation function, CPP , and the
axial vector correlation function, CAA. Additionally, the pion mass Mπ and the light
quark mass mq are required in the computation of u2.

In order to study the temperature dependence of u2, we use correlation functions
measured at different temperatures. Details about the simulated correlation func-
tions can be found in Appendix (A). In the estimation of u2, the same masses mq and
Mπ are employed at all temperatures: these masses correspond to our estimate at the
lowest temperature available, generated in a lattice of temporal extent Nτ = 128. By
doing this, we ensure that the temperature dependence of u2 is completely contained
in the correlation functions. Additionally, we avoid possible inconsistencies in the
definition of both mq and Mπ at different temperatures. Due to thermal effects, once
the system has undergone a transition from the low temperature hadronic phase to
the high temperature quark gluon plasma state, the pion mass might not be well-
defined as thermal effects might dominate, and the spectrum of the theory might
become continuous.

In our simulations, we produce two equivalent estimates of each correlation func-
tion: one simulated using local sources in the inversion of the quark propagator, and
the other one using Gaussian smeared sources. More information about smearing can
be found in Appendix (A). As a result, we can produce an estimate of u2 employing
both estimates of the same correlation function. To allow a fair comparison between
both sources, we estimate mq and Mπ independently in each case.

From our analysis of mesonic ground state masses — see Chapter (3) — we know
that the lowest temperature estimate (T = 47 MeV) of the pion mass, Mπ, extracted
using correlation functions computed from local sources is M ll

π = 245 ± 2 MeV.
Additionally, the pion mass estimated from smeared correlation functions is M ss

π =
236.0± 0.5 MeV.

4.2.1 Measuring the quark mass mq on the lattice
In addition to the pion mass, we require an estimate of the light quark mass mq to
correct the dimensions of u2. We can estimate this light quark mass using the PCAC
mass, defined as a rearrangement of eq. (4.20):

mPCAC
q =

1

2

〈∂µAaµ(x)Ô′(y)〉
〈P a(x)Ô′(y)〉

. (4.61)
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Applying eq. (4.29) to the equation above, we can express the PCAC mass as a
function of a global derivative in the numerator:

mPCAC
q =

1

2

∂µ〈Aaµ(x)Ô′(y)〉
〈P a(x)Ô′(y)〉

. (4.62)

In order to avoid inherently noisy correlation functions, we restrict ourselves to
pseudoscalar densities in the source operator: Ô(y) = P b(y), where the pseudoscalar
density P (y) is defined in eq. (4.19). As a result,

mPCAC
q =

δab

2

∂µ〈Aaµ(x)P b(y)〉
〈P a(x)P b(y)〉

. (4.63)

As we are interested in thermal correlation functions, we need to apply a Fourier
transform over the spatial coordinates of each correlation function in eq. (4.19). A
non-trivial transformation is encountered in the numerator, as it contains a derivative
operator. Nevertheless, it can be easily manipulated to obtain:

lim
~k→~0

∫
d3x

(2π)3
e−i

~k~x∂µ〈Aaµ(x)P b(y)〉 =∫
d3x

(2π)3

[
∂0〈Aa0(x)P b(y)〉+ ~∇〈 ~Aa(x)P b(y)〉

]
. (4.64)

The second term in the right-hand side vanishes due to Gauss’s theorem: all correl-
ation functions decay to zero in the boundary of the space-time. Note that we are
projecting our correlation functions to zero external momenta: ~k = ~0. As a result,
the space-integrated correlation functions will only be functions of the Euclidean
time τ , which allows us to write

mPCAC
q =

δab

2

∂0〈Aa0(τ,~k = ~0)P b(0, ~k = ~0)〉
〈P a(τ,~k = ~0)P b(0, ~k = ~0)〉

=
δab

2

∂0CAP (τ)

CPP (τ)
, (4.65)

where the definitions of CAP and CPP in eq. (4.40) and (4.39) are used respectively.
In order to estimate mPCAC

q , eq. (4.65) is evaluated on the lattice using correlation
functions measured at the lowest temperature available, which in our case implies
that we use a lattice of temporal extent Nτ = 128: T = 47 MeV. In principle, the
PCAC mass is defined at a variety of different Euclidean times τ . However, to avoid
contact terms, we exclude all Euclidean times close to the source operator, located
at τ = 0 and τ = Nτ , due to the periodicity of bosonic correlation functions. As
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a result, in our analysis, we extract the PCAC mass at all Euclidean times from
τ = 30 to τ = 98. At all Euclidean times selected, we are able to produce an
estimate of the PCAC mass, m̂PCAC

q (τ). Assuming that each m̂PCAC
q (τ) represents

a random sample of the population PCAC mass, then the median of the sample
corresponds to an estimate of mPCAC

q independent of τ . The standard error of the
median can be approximated using bootstrap. The median is used as a measure
of central tendency to avoid the impact of outliers. This analysis is performed for
both type of sources using local and smeared correlation functions. The results
are presented in Figure (4.1), and they yield the following quark mass estimates in
physical units:

Local sources: M̂PCAC
q = 10.28± 0.02 MeV,

Smeared sources: M̂PCAC
q = 19.89± 0.04 MeV.

The time derivative present in eq. (4.65) is estimated numerically using the for-
ward finite differences operator, which explains the artefact located at the middle
point of the lattice, where a bend in the correlation function data is present due to
the symmetry of bosonic correlation functions. In the computation of the PCAC
mass in physical units, the systematic uncertainty generated in the scale setting of
our simulations is taken into account.
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(a) Local sources
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(b) Smeared sources

Figure 4.1: Estimates of the degenerate light quark masses m̂PCAC
q for both type

of sources available in the simulations. The orange line corresponds to the median of
all samples, while the orange shaded band covers the standard error of the median,
approximated using bootstrap. The results are expressed in lattice units.
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4.2.2 Renormalisation of the pion velocity
Due to the fact that the pion velocity is constructed using a ratio of two distinct
correlation functions, then, in principle, it should be renormalised. The pseudoscalar
operator should be rescaled by its specific renormalisation constant ZP , while the
axial vector should use its appropriate constant, ZA. As a result, the renormalised
version of the pion velocity reads,

ū2 = −Z
2
P

Z2
A

4m2
q

M2
π

CPP (τ,~k = ~0)

CAA(τ,~k = ~0)

∣∣∣∣∣
τ=Nτ/2

. (4.66)

The same principle can be applied to our estimate of the quark mass, the PCAC
mass:

m̄PCAC
q =

ZAZP
Z2
P

mPCAC
q . (4.67)

Substituting mq in ū2 with m̄PCAC
q leads to

ū2 =

(
Z2
P

Z2
A

)(
Z2
AZ

2
P

Z2
PZ

2
P

)
u2, (4.68)

which is equal to
ū2 = u2, (4.69)

as long as the same density operators are applied in the sink and source operators.
For example, employing local operators in the sink and smeared operators in the
source breaks this condition, as smeared and local operators could have different
renormalisation constants for the same operator.

As a result, the pion velocity does not need to be renormalised. However, the
PCAC masses presented in Figure (4.2) should be. It is worth stressing that no
renormalisation constants are computed in our simulations. A correct renormalisa-
tion of the PCAC masses might explain the drastic differences between local and
smeared estimates encountered in Figure (4.1).

4.2.3 The pion velocity on the lattice
Using the estimated PCAC quark mass and the pion mass for each source, we can
finally compute the pion velocity at all temperatures available. The temperature
dependence of the pion velocity is shown in Figure (4.2). For each temperature and
source available, an estimate of the pion velocity is extracted. The lowest temper-
ature estimate of the quark mass and pion mass are employed in all temperatures
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analysed. The standard error of each measurement is estimated using Monte-Carlo
error propagation.

100 200 300
T [MeV]

0.0

0.5

1.0
u

2
local-local

smeared-smeared

Figure 4.2: Estimate of the pion velocity squared u2 as a function of the temper-
ature for both sources. The green vertical band corresponds to the pseudocritical
temperature Tc of the system. The presence of a right-shift in the temperature for
local sources is merely visual.

The results in Figure (4.2) shows equivalent trends for both sources at all temper-
atures. The pion velocity estimates can be divided into two clearly distinct categories:
one composed by all estimates whose temperature is lower than the pseudocritical
temperature of the system, located at Tc = 166±2 MeV; and another group generated
by all pion velocities measured at temperatures above Tc. The first group roughly
corresponds to the confining hadronic phase of QCD, while the second group repres-
ents the QCD quark-gluon plasma state. In the hadronic phase, the pion velocity
barely depends on the temperature; this is a constant trend present in some physical
quantities measured in the hadronic phase of QCD. Moreover, in this region, the pion
velocity agrees with the expected zero temperature value: u2 = 1. However, once the
temperature increases, the pion velocity departs from its zero temperature value. It
is close to the critical temperature of the system where the pion velocity drastically
changes. As far as the data shows, u2 seems to stabilise at high temperature:

lim
T→∞

u2(T ) ' 0.1. (4.70)

An analysis of the pion velocity at higher temperatures would allow a direct test of
this limit.
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It is worth mentioning that our results agree with the ones present in Ref. [1],
although we have access to higher temperatures. The uncertainties of their low
temperature estimates are lower than ours, this is a consequence of our noisy low
temperature axial vector correlation functions.

In Figure (4.2), low temperature estimates seem to have larger uncertainties
than the high temperature measurements. However, it is generally expected a larger
uncertainty in the high temperature estimates. As a consequence of this unexpected
behaviour, an analysis of the source of this difference is performed. Note that the
source of the difference must be in the lattice estimates of the thermal correlation
functions used in the computation of u2, that is, either in ĈAA or in ĈPP . The effect
cannot be produced by the estimates of Mπ and mq as they are independent of the
temperature: the same values are employed at all temperatures.
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Figure 4.3: Relative uncertainties in the lattice estimates of the CAA and CPP
correlation functions measured at the middle point of the lattice in the temporal dir-
ection. Results are presented for all temperatures available. The lowest temperature
estimate of the AA correlation function is divided by 10 as its relative uncertainty is
considerably higher than the rest.

Figure (4.3) contains the relative uncertainty of the lattice estimates of both
correlation functions, AA and PP , as a function of the temperature. The relative
uncertainty is measured at the middle point of the lattice in the temporal direction
and for both sources. The results show that the relative uncertainty of the AA correl-
ation function decreases with the temperature, which directly impacts the estimation
of the ratio between both correlation functions involved in the computation of the
pion velocity. In our fixed-scale simulation, the relative uncertainty of axial vector
correlation functions tends to decrease with the temperature. This suggests that the
correlation function signal might be lost as the distance between sink and source
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operators increases. This problem directly impacts the analysis of low temperature
axial-vector properties, as T−1 ∼ Nτ .

Additionally, as stated in the derivation of the pion velocity, there is no constraint
on the Euclidean time τ at which the pion velocity is measured as long as it is far
from the source. Figure (4.4) tests this statement by extracting u2 evaluating the
correlation functions at different Euclidean times. Note that all used Euclidean times
should be close to the middle point of the temporal direction of the lattice to avoid
the presence of contact terms. The results are in agreement at all temperatures and
for both types of sources.
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Figure 4.4: Temperature dependence of the estimation of the pion velocity at
different Euclidean times τ for both type of sources used in the calculation: local
and smeared. The shift in temperature for different τ is merely visual.

As we measure the same pion velocity at different Euclidean times, we could
collect all the estimates into a single sample. From this combined sample, one can
compute a final estimate of the target population parameter, u2. This can be seen
as data-augmentation technique in which the amount of information about the pop-
ulation parameter is increased. Such a procedure could lead to lower uncertainties
in our estimates.

4.2.4 Conclusions
The pion velocity derived in eq. (4.2) corresponds to an effective theory calculation,
which implies that it only works in the chiral limit of light quarks, and with small ex-
ternal momenta ~k. However, the pion velocity can be explored in a complete thermal
QCD lattice calculation through the study of the dispersion relation of the pseudo-
scalar correlation function at different temperatures. The dispersion relationship can
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be analysed at a given temperature by studying the dependence of the ground state
energy E0(Mπ, ~k) with the external momenta ~k of the system. To do so, several
correlation functions must be produce at the same temperature with different ex-
ternal momenta. For each correlation function, the ground state energy E0 must be
extracted, for example, through the analysis of the ground state contribution to a
given pseudoscalar correlation function using the spectral decomposition defined in
eq. (1.45). The inclusion of external momenta on the lattice can be done employing
Fourier modes in the computation of thermal correlation functions or by applying
the so-called partially-twisted boundary conditions [5, 6]; this second option allows
the inclusion of arbitrary units of external momenta in the system.

In this first-principles analysis, a collection of different ground state energies
would be produced at each temperature: E0(Mπ, ~k;T ). In order to study the thermal
dependence of the pion velocity, an independent estimate of the pion velocity at each
temperature can be extracted by fitting the measured ground state energies to the
pion dispersion relation model proposed in eq. (4.49):

E0(Mπ, ~k)
2
= u2 (M2

π +
~k). (4.71)

For each temperature, we would estimate the pion velocity u2. This analysis suffers
from similar problems to ones encountered in the study of the spectrum of QCD
from thermal correlation functions: at high temperature, thermal effects dominate,
which obstructs the definition and computation of the ground state energy. As a
consequence, the proposed analysis might be difficult to apply to really large tem-
peratures: T � Tc. However, this method is not based on effective field theory
assumptions. As a result, it can be used to estimate the thermal dependence of the
velocity of different mesonic states, such as kaons (ss) or D-mesons (uc). Further-
more, this procedure could also be easily extended for baryonic states.
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Chapter 5

Introduction to neural networks

During the last decade, the theoretical developments and practical applications of
neural networks to both academic and industry problems have witnessed a large
increase. Their outstanding impact in most scientific fields can be understood in
terms of their adaptability, flexibility, expressiveness, and computational efficiency.
Additionally, the fact that collecting, manipulating, and storing large amounts of
data has become easier and more affordable in the last few years generates an envir-
onment in which neural networks can thrive. As a result, nowadays, neural network
models are applied to a variety of complex tasks, such as: standard classification and
regression problems [1, 2], reinforcement learning [3, 4], graph theory [5], and natural
language processing [6, 7]. The list of possible tasks to which neural networks can
be applied is continuously growing as more research is performed to understand, and
enhance, their inherent properties. In addition, the increase in computational power
of graphical processing units (GPUs), and, more recently, the arrival of dedicated
tensor processing units (TPUs), combined with the availability of highly optimised
open-source software libraries [8–10] allows an almost straightforward application of
most state-of-the-art neural network models to computationally demanding tasks.

This chapter is divided into two main sections. The first one contains a short
introduction to the field of neural networks for which no previous knowledge about
machine learning nor neural networks is required. In this section, we also discuss
how to efficiently train neural network models. The second section contains a small
introduction to convolutional neural networks, which are employed in Chapter (6).
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5.1 Standard neural networks
The roots of neural network models can be traced to the decade of the 1950s, when re-
searchers were trying to mathematically model decision-making. One of the simplest
decision-making models is the perceptron [11], which is a simplified model of the
behaviour of neurons in the brain. The perceptron unit proposes a deterministic
output, also called the neuron’s action, depending on some input variables.

Figure (5.1) contains a diagram showing a perceptron unit defined on an input
of 4 dimensions, labelled x = (x1, x2, x3, x4), and a 1-dimensional output, labelled y.
Although the output in Figure (5.1) is 1-dimensional, perceptrons are also able to
handle multidimensional outputs.

x1

x2

x3

x4

y

Figure 5.1: Diagram representing a perceptron unit. A vector of inputs x =
(x1, x2, x3, x4) is processed by the perceptron in order to produce an output signal y.

To see how the perceptron unit can be used to automate decision making, we
focus on a particular task. Imagine that we wanted to decide whether we should go
to the office or work from home on one particular morning. In this simple case, the
decision space is binary: either we go, corresponding to an activated output, y = 1; or
we stay at home, corresponding to a turned off outcome, y = 0. We assume that the
process of making a decision is not irrational: we deliberately make a decision based
on some reasonable conditions, and, moreover, the results are consistent for a fixed
input. In addition, suppose we knew that only 4 independent variables affect our
final decision. For instance, those 4 variables could represent: the distance between
our home and the office; the weather that morning; the amount of work we need to
do that precise day; and the current risk level of COVID-19 in our area. Note that
all input variables should be mappable to a numeric value; this is called embedding
a variable.
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It is clear that each input variable should have a different impact in our final
decision. For example, a high risk level of COVID-19 should encourage us to stay
at home independently of all the other conditions. To model the importance of each
input, we use some weights W . Each independent weight acts on a particular input
variable, weighting its relevance in the final decision. The dimensions of the weights
are not important, as we are not trying to measure a physically relevant quantity.
However, we should normalise the inputs in order to avoid including artificial numer-
ical bias towards any input variable. The scales of the inputs should be comparable
so as not to artificially benefit any input variable. This is a constant requirement in
machine learning: inputs should always be scaled appropriately.

Given some inputs x = (x1, . . . , xn) and some weights W = (w1, . . . , wn), the
simplest non-trivial mathematical model that can be used to make decisions is

y = W T ◦ x, (5.1)

where W T denotes the transpose of W , and ◦ represents the standard matrix mul-
tiplication operator. The output of eq. (5.1) is a real number, but in our particular
task, the decision space is binary. In order to transform the real output into a binary
variable, we can introduce a threshold b, which implies that the mathematical model
of the perceptron is transformed to

y =

{
0 if W T ◦ x < b
1 if W T ◦ x ≥ b

(5.2)

The threshold is called the bias of the model, as it represents our own personal bias
in the task in question: some people might enjoy going to the office more than others,
so they will accept smaller values of y as an activated output. The bias defines the
boundary that dictates whether W T ◦ x is regarded as an activated or turned off
outcome. The standard way of modelling a binary perceptron unit with a scalar bias
b is:

y =

{
0 if (W T ◦ x− b) < 0
1 if (W T ◦ x− b) ≥ 0

(5.3)

Equation (5.3) is the mathematical definition of the perceptron unit. In the case in
which the output space is not binary, then the following mathematical model can be
used:

y = W T ◦ x+ b. (5.4)

By itself, the perceptron unit is not too useful, as a random set of weights and
bias values are unlikely to generate reasonable outputs for the particular task to
which the model is applied. In order to make the perceptron model applicable to
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real situations, its parameters need to be tuned accordingly, which implies that some
kind of regression needs to be applied to our model. Before discussing how to tune
the parameters of the model, we need to assume that our particular task, abstractly
represented with the label T , contains a true underlying population mapping t that
encodes the fundamental information needed to solve the problem: the mapping
connects input variables x with their expected output variables y. In the simplest
case, the output variables represent binary choices, but more complex output spaces
can also be modelled by eq. (5.4). Mathematically, the mapping t is defined as the
following morphism:

t : X → Y , (5.5)

where X is the space of all possible inputs x, and Y represents the space of target
outputs. As a result, y = t(x). In this context, the perceptron model defined in
eq. (5.4) serves as a parametric model for the mapping t, which we denote with the
label t̂W . It is common to encapsulate both weights and bias in a model under the
same label, W . Additionally, the terms learnable parameters and weights are usually
employed to refer to all the tunable parameters in a particular model. A particular
choice of weights and bias in a model is usually called a configuration.

The goal is then to find the values of W and b that make the perceptron unit
approximate the mapping t: t̂W ' t. This would enable us to process any input x
belonging to X in order to produce its expected output: the model would be making
predictions. A priori, we do not know the appropriate configuration. However, we
can try finding it using real examples of the mapping. A collection of inputs xT whose
corresponding outputs yT = t(xT ) are known in advance is known as a training set.
The training pairs can be collected from experiments, simulations or other sources.
Note that the training set should contain a large enough collection of pairs (xT , yT )
such that it represents a reliable approximation of the target mapping t. Once the
training set is defined, we can try to find the model configuration that reproduces the
training set with large accuracy, that is, the configuration of the model that holds

yT ' t̂W (xT ), for all xT . (5.6)

However, we should be cautious, as the model might overfit the training dataset, that
is, it can learn the values of W and b that mimic the training set heuristically without
learning the fundamental features of the mapping. Overfitting is common when the
model contains a huge number of tunable parameters. Nowadays, overfitting can be
controlled by numerous techniques [12].

Using labelled training pairs (xT , yT ) in order to find the model configuration
that best approximates the mapping t is usually referred to as a supervised machine

109



Chapter 5. Introduction to neural networks

learning problem. In contrast, learning the correct model configuration from just the
input data xT is called unsupervised learning. In this document, we only discuss the
framework of supervised learning.

Although the perceptron model can be employed in some simple tasks, it has
a fundamental problem: it can only be applied to problems whose output spaces
/mathcalY are linearly separable. Consequently, problems with non-linear target
mappings cannot be solved with our current model. To circumvent this problem, we
can add some artificial non-linearity to the model in eq. (5.4):

y = f(W T ◦ x+ b). (5.7)

The function f in eq. (5.7) is an element-wise non-linear function, called activation
function. In this context, element-wise means that the function acts independently
on each input variable:

f(x) = f(x1, x2) = [f(x1), f(x2)]. (5.8)

Some commonly used activation functions are: sigmoid functions, hyperbolic tan-
gents and rectified linear units (ReLU). A comprehensive list of common activation
functions can be found in Ref. [8].

x1

x2

a1

a2

a3

A(x)

ai = f(
∑

jWijxj + bi)

x A

Figure 5.2: Diagram representing a layer composed by stacking 3 neurons. The
layer takes 2-dimensional inputs, and produces a 1-dimensional output. The output
of each neuron is fed to an activation function f , shared among all 3 neurons.

The non-linear perceptron model is still not flexible enough to learn any desired
target mapping. In order to generate more flexible models, we can stack multiple
perceptron units; a collection of non-linear perceptron units is usually called a neural
network layer, and each perceptron model in a layer is usually called a neuron. In
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general, all neurons in a layer share the same input, but each has its own independent
set of weights and biases. Figure (5.2) contains a diagram representing a neural
network layer composed by 3 neurons.

Neurons are non-linear models, which implies that their output is usually passed
through an element-wise activation function, typically shared among all neurons
forming the layer. The mathematical model of a simple linear neural network con-
taining Nn neurons is similar to that of the non-linear perceptron unit defined in
eq. (5.7), and reads

A = f(Z) = f(x ◦W + b). (5.9)
In a neural network layer, W represents a matrix of dimensions dim[W ] = (Nx, Nn),
the input vector x has dimensions dim[x] = (1, Nx), and b holds dim[b] = (1, Nn). As
a result, the output A, sometimes called the layer activation, has dimensions (1, Nn).

The linear neural network layer defined in eq. (5.9) is called a feedforward layer.
The adjective feedforward implies that the information only flows from input to
output: the layer does not contain any loops nor backwards connections between
neurons. In principle, non-feedforward layers can also be built and employed, how-
ever, training them tends to be difficult. This chapter only discusses feedforward
neural networks.

x1

x2

x3

x4

a11

a12

a13

a14

a15

a21

a22

a23

a24

a25

a31

a32

a33

y1

y2

Figure 5.3: Diagram representing a feedforward neural network composed by 4
layers; three hidden layers and one output layer. Each of the 4 layers contains an
independent set of weights, with dimensions (N l−1

n , N l
n), and an independent set of

bias, with dimensions (N l
n). Each layer processes its input according to eq. (5.9).

A complete feedforward linear neural network can be built by connecting NL

different layers. Each layer is labelled with an index l and contains N l
n independent
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neurons; the optimal number of neurons in each layer is not known in advance,
therefore, it be tuned for the task in question. The output of each layer is passed
to an activation function f l. The activation function can be different for each layer
in the network. In a feedforward network composed by NL layers, there are NL − 1
hidden layers whose output is not visible. The last layer produces the output of
the neural network, y = t̂W (x). A neural network can be viewed as a set of non-
linear transformation applied sequentially over the input space. A diagram showing
a complete feedforward neural network with 4 layers can be found in Figure (5.3).

Feedforward neural networks composed by several connected layers are known
to be universal approximators, that is, they are able to approximate any arbitrary
mapping with any desired precision; see Ref. [13] and references therein for a proof of
this property. However, note that different architectures might be able to exploit the
subtleties in the data better than others in order to speed up the convergence of the
model to the correct solution. Furthermore, perfect convergence is usually hindered
by the unavoidable uncertainties present in the data, the lack of adaptability of the
model employed, or problems related to finding the correct solution numerically.

In a neural network composed by multiple layers, each sequential layer in the
network helps the model extract the relevant features of the mapping, which implies
that, in general, the deeper the network, the better. In the field of neural networks,
the adjective deep implies that the model contains numerous connected layers. Deep
neural networks tend to be computationally expensive to train and data intensive, as
they contain huge number of tunable parameters. Additionally, training deep neural
is inherently difficult as they suffer the so-called vanishing and exploding gradients
problems [14]. Nevertheless, deep neural networks are nowadays fruitfully applied to
a variety of complex tasks [15, 16].

The neural network mathematical model defined in eq. (5.9) allows processing
several input examples simultaneously. To see this, imagine that we had a training
dataset composed by Nb input pairs, x. We can stack all the inputs into a matrix of
dimensions (Nb, Nx), and directly apply eq. (5.9) on the input matrix. In this case,
the output of a neural network layer is another matrix of dimensions (Nb, Nn), where
Nn is the number of neurons in the layer.

The topology of a neural network is called the network architecture. Different
architectures can be generated by varying the number of hidden layers, the number of
neurons in each layer, and the activation functions. Moreover, complex architectures
can be built by modifying the mathematical model in eq. (5.9), or the connections
between layers.
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5.1.1 Training neural networks
We are now in the position of introducing the standard way of training neural net-
works to solve real-world problems. As stated before, training is just a synonym
for learning the correct neural network configuration so that a target mapping t is
correctly reproduced. Equivalent to the perceptron model, the neural network acts
as a parametrisation of target mapping: t̂W .

Understanding the properties of the particular task to which a neural network is
being applied allows us to decide the best architecture for the problem in question.
However, it is important to note that, a priori, we cannot know whether a particular
architecture will perform better or worse than other architectures on a given task. As
a result, it is advisable to explore the available literature in order to find benchmarks
on similar tasks before training a possibly non-optimal architecture.

In our supervised learning framework, we assume that the input space X and
the output space Y can be treated as probability spaces. As a result, the training
set corresponds to a sample of both input and output spaces. The network will
learn from those samples to find a configuration that best approximates the target
mapping t. In order to learn the correct mapping from the data, we use a penalty-
based approach: the network will receive a penalty every time it generates a mapping
t̂W (x) that does not lead to the correct expected outcome, that is, yT . This penalty
is usually measured in terms of a loss/cost function:

L = L(yT = t(xT ), ŷT = t̂W (xT )). (5.10)

Loss functions are scalar functions that measure some kind of distance between the
target mapping, t(x), and the current neural network approximation of that mapping,
t̂W (x). Several loss functions are available depending on the task in question. For
example, in classification problems, the most common loss function is the so-called
cross-entropy loss, which is derived from information theory, and measures the dis-
tance between two probability distribution functions. In contrast, in regression prob-
lems, the mean squared error (MSE) function is typically employed, although other
options are also available, such as the L1-loss function or the Huber loss function. A
list of common loss functions and their definitions can be found in Ref. [8].

Typically, training a neural network on a particular task using supervised learning
requires several prior choices, such as: the network architecture, the loss function,
and the initial values of the learnable parameters. Additionally, the values of some
other hyperparameters might need to be chosen appropriately.

In our supervised framework, the optimal values of the learnable parameters,
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labelled W̃ , are those that fulfil the following condition,

W̃ = argmin
W

L(yT = t(xT ), ŶT = t̂W (xT )). (5.11)

In the equation above argmin means the set of weights at which the loss function has
a minimum values. The optimal parameters depend on the loss function used, and
they represent the configuration that makes the neural network mapping approximate
the true target mapping according to L. In this context, W̃ is found by minimising
the loss function on the training set.

Finding the configuration that minimises eq. (5.11) is equivalent to finding the
points at which the first derivative of L with respect to W is zero:

∂L
∂w

∣∣∣∣
w=w̃

= 0, for all w ∈ W. (5.12)

In most cases, eq. (5.12) represents an analytically intractable system of equa-
tions. As a result, numerical minimisation methods are required. One of the simplest
methods available to find a solution to eq. (5.12) is the so-called gradient descent
algorithm: a first-order numerical algorithm employed to find the minima of a scalar
function L. In gradient descent, the arguments of the function are updated iter-
atively until a minimum is found. The found solution might correspond to a local
minimum; convergence to a global minimum is not ensured in gradient descent. As
in any numerical minimisation algorithm, initial values for the function arguments
are required; the initial values might affect the performance of the algorithm.

In gradient descent, at each iteration, we update each function argument depend-
ing on the variation of L when each individual learnable parameter w is infinitesimally
modified. The variation of L is approximated using the Taylor expansion of L at
first order, by defining

∆L = L(w + δw)− L(w) ' ~∇L(w)
∣∣
w=w+δx

δw, (5.13)

where ~∇ is the gradient operator, and δw is usually called the learning rate, typically
labelled α.

For convex functions, the minimum of L is found when ∆L is close to zero. As
a consequence, if we update each weight iteratively using

wi+1 = wi − α ~∇L
∣∣
wi , (5.14)

eventually, we will arrive at a local minimum of L, as gradient descent updates the
function arguments in the opposite direction in which L grows.
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Note that each weight in the neural network needs to be updated at every itera-
tion. Consequently, the derivatives of the loss function with respect to all learnable
parameters in the model are required. We can compute them using the chain rule.
For instance, the derivative of L with respect to a given weight located in the layer
l of a model with L total layers can be computed using

∂L
∂w

=
∂L

∂t̂W (xT )

∂t̂W (xT )

∂AL−1

∂AL−1

∂ZL−1

∂ZL−1

∂AL−2
· · · ∂Z

l

∂w
, (5.15)

where wl represents a particular parameter of the model, Z l is the affine transform-
ation at the layer l, defined as

Z l = W l ◦ Al−1 +Bl, (5.16)

and Al = f l(Z l) is its non-linear activation. The derivatives are easily computable at
every stage as we know the functional forms of both Z and A at every layer. At each
training iteration, each parameter in the model is updated according to eq. (5.14):

wi+1 = wi − α
∂L
∂w

∣∣∣∣
wi

. (5.17)

In practice, the derivatives are automatically computed using the framework of auto-
matic differentiation (AD) [17, 18].

Nowadays, there exist a wide range of variations of the standard gradient descent
algorithm with enhanced properties. Some of those variations are: the stochastic
gradient descent algorithm (SGD), momentum-based gradient descent, or the ADAM
algorithm. More information about gradient descent and some of its variations can be
found in Ref. [19]. Additionally, note that eq. (5.13) is a first-order approximation
of the total variation. Some algorithms use second order approximations of ∆L,
which require the Hessian operator. The Hessian operator is the matrix containing
all the second-order derivatives of L with respect to W . As a result, second-order
optimisation algorithms tend to be computationally expensive.

The standard algorithm used to train neural networks is called forward/back-
ward propagation. The algorithm is divided into two different stages: the forward
propagation, and the backward propagation. In the first stage, the network produces
its current estimate of the population mapping t for some training inputs xT . After
computing the model output, ŷ = t̂W (xT ), we measure the distance between ŷ and
the expected true training outputs yT according to a previously chosen loss function.
Once the loss function is estimated on the training set, we proceed to the second
stage: the backward propagation. In this part of the algorithm, the first derivatives
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of the loss function with respect to all learnable parameters in the model are calcu-
lated. Once the gradients are computed, we perform an update of all parameters in
the model according to eq. (5.17).

Due to the fact that in the first stage of the algorithm the information flows from
input to output, and in the second stage the information flows backwards, training
a neural network is usually represented as a continuous loop: the forward-backward
training loop. Figure (5.4) contains a diagram representing the standard iterative
algorithm used to train neural networks.

xT

a11

a12

ŷ

Forward pass: L(t̂W (xT ), yT )

Backward pass: ∂L
∂W

Figure 5.4: Diagram showing the standard forward-backward propagation al-
gorithm used to train a neural network. In the forward propagation step, the network
produces the current estimate of the population mapping ŷ = t̂W (xT ). This estimate
is employed to compute the empirical loss function at the current iteration using
the expected training output, yT . In the back-propagation step, the gradient of the
empirical loss with respect to all parameters of the network is computed. Those
gradients are used in eq. (5.17) to update the current network configuration. The
loop is repeated until training is finished.

Training a neural network model using back-propagation is an iterative process.
The network updates its parameters several times employing the same training set.
Every time the network predicts the output of all inputs in the training datasets, we
say that the network has performed a training epoch. In general, training is carried
out for many epochs. Choosing the right number of epochs to train a network is not
straightforward, as numerical optimisation methods are not ensured to reach a global
minimum. As a consequence, networks tend to be trained for several epochs, until
their performance plateaus. Additionally, while training, it is standard to test the
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performance of the model in a test set, that is, a collection of inputs whose outputs
are known, but not included at training. This is usually called validating the model.

Due to the fact that training sets tend to contain large number of examples, it
is common to split the training set into mini-batches to reduce the computational
cost. In addition, this can also help over-fitting, as the neural network updates its
parameters at every iteration using only a proportion of the total dataset.

Some resources discussing neural networks, how to implement and train them,
and their possible applications can be found in Refs. [20–22].

5.2 Convolutional neural networks
Feedforward linear networks perform well in a large number of tasks, but they assume
that the input space is ultra-local, that is, each variable in the input space is com-
pletely independent. This assumption is reasonable for unstructured data belonging
to a vector space, where no spatial connections between different variables exist.
This condition is not always encountered in all types of data, for example in images,
time series measurements or functional data structures. In all these examples, the
information at a given location is affected by its neighbourhood, for example, the
colour of a pixel in an image depends on its surroundings. As a result, a modified
version of the standard linear neural network layer defined in eq. (5.9) that exploits
this property could lead to improved performances for datasets with correlated input
spaces.

We can exploit the locality in our data by making use of the concept of neigh-
bourhood. For this to work, the input space should be measurable: there must be
a notion of closeness between inputs. For instance: if the input space corresponds
to images, the neighbourhood of a particular pixel is defined as all pixels in an area
surrounding that pixel; in time-series data, the neighbourhood of a measurement is
composed by all points in a region surrounding that particular measurement. Loc-
ality can be exploited when there is a notion of volume in the input data structures.

The goal is then to modify the model in eq. (5.9) so that it takes into account
the local information in the input space in order to produce an output. A way
of achieving this is by using convolutions. Fundamentally, a convolution is just an
operator that applies a function, usually called kernel or filter, over an input function.
We use the label K to refer to kernels, while the label F denotes input functions. In
general, convolutions are defined as

F ′(t) = (F ? K)(t) =

∫ ∞

−∞
dsF (t)K(s− t), (5.18)
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Figure 5.5: An example of a 1-dimensional convolution of a time series signal with
a bell-shaped kernel K. In this case, the convolution takes place in a window of
20 measurements. The upper figure shows the original signal and the kernel acting
on a particular region through eq. (5.19). The lower figure shows the result of the
convolution.

where t represents the arguments of the function F . The operator ? is usually
employed to denote convolutions.

In our particular case, we are interested in discrete convolutions, that is, convo-
lutions of discrete signals F with discrete kernels K:

F ′[t] = (F ? K)[t] =
∑
s

F [s]K[s− t]. (5.19)

The notation [t] implies that we are accessing the tth element in the signal. The sum
runs over all the possible values in which F is defined. The action of K over F at a
given position t selects a neighbourhood of F centred at t, and produces a weighted
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average of the input signal, where the weights are assigned by K. An example of a
convolution over a 1-dimensional signal using a bell-shaped kernel can be found in
Figure (5.5). The bell-shaped kernel used in Figure (5.5) belongs to the parametric
family of Gaussian kernels, defined as

K(s− t;σ) = 1√
2πσ

exp
(
− (s− t)2

σ2

)
, (5.20)

where σ is a free-parameter completely specifying K. A value of σ = 2 was employed
to produce Figure (5.5).

In order to generate a neural network layer that exploits the locality in the input
signal, we promote the convolution operation in eq. (5.19) as the new affine trans-
formation Z in eq. (5.9). This implies that a convolutional layer will process an
input signal Al−1 using

Z l[t] = (Al−1 ? K)[t] =
∑
s

Al−1[s]K l[s− t] + bl, (5.21)

where bl is an optional bias, and K l is a learnable kernel defining the convolutional
layer. To apply non-linearity to the layer, Z l is usually passed through a non-linear
activation function: Al = f l(Z l).

The question now is how to define the trainable kernel on each layer, which is
equivalent to selecting the dependence of K with some learnable parameters. One
possibility would be to use a parametric family of kernels, such as the Gaussian
kernels defined in eq. (5.20). Through back-propagation on a training set, the para-
meters defining the kernel are tuned to approximate the target mapping. The main
problem of this approach is its lack of flexibility: we cannot be sure that a given
parametric family is optimal for the task in question. To avoid this problem, we
can promote K to be a sequence of tunable real parameters that can be updated at
every iteration. In this formulation, K can be viewed as a blank canvas that can be
filled with different values to suit a particular task. This means that the space of
available kernels is richer, at the cost of increased number of learnable parameters in
the model. An example of a blank canvas kernel for 1-dimensional data with length
8 is

K = (k1, k2, k3, k4, k5, k6, k7, k8), (5.22)
where each of the weights ki is a tunable real number.

For finite signals, convolutions are not ensured to preserve lengths: the output
signal might have a smaller length than the input signal. In general, the convolution
of a signal of length L and a kernel of size Kx produces another signal with length

L′ = L−Kx + 1. (5.23)
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In order to preserve lengths, it is common to pad the input signal with dummy values
both at the beginning and the end of the signal. The convolution of a padded input
signal F with p dummy values appended both at the beginning and the end of the
signal, and a kernel of size K, produces another signal with length

L′ = L−Nk + 1 + 2 p. (5.24)

In addition, it is sometimes common to skip sequential applications of the kernel over
the input to compress the input signal; this is called striding the convolution. It is
worth noting that convolutions allow the extraction of the fundamental features of
the input signal at the cost of lowering its resolution. Figure (5.6) shows an example
of a convolution between a 1-dimensional input signal of size L = 5 and a kernel of
size Kx = 3.

F

?

K

=

0.41 0.27 0.54 0.93 0.41

0.24 0.44 0.05

0.29 0.36 0.09

Figure 5.6: Example of a convolution between an input signal F of size L = 5, and
a blank kernel of size Kx = 3. The output signal has size L′ = L−Kx + 1 = 3. The
convolution is applied by superposing the kernel over the signal starting from the
beginning, applying the convolution operation defined in eq. (5.19), and then sliding
the window to the next point in the signal. If stride was employed, then the window
would be moved skipping s points between sequential applications.

Convolutions can also be applied to higher dimensional data, for example, im-
ages. In grey-scale image-processing, images are represented as matrices of dimen-
sions (Lx, Ly) whose entries correspond to different pixels. Each pixel in the image
represents a shade of grey. In this 2-dimensional context, kernels can be represented
as 2-dimensional functions.

Applying a kernel K to an image I can be done through the 2-dimensional gen-
eralisation of eq. (5.19):

I ′x,y = (I ? K)x,y =
∑
i,j

Ix−i,y−jKi,j, (5.25)

where the entries of K dictate how I would transform under the convolution. Fig-
ure (5.7) contains a diagram where convolutions are employed to select the edges of

120



Chapter 5. Introduction to neural networks

a grey-scale image. This is a common image processing technique included in most
image manipulation programs.
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Figure 5.7: Diagram showing the convolution operation of a simplified binary 4×4
image with a 2 × 2 edge-selection filter. The resulting image shows the regions in
which the original image contain edges.

When applied to neural networks, the grey-scale image-processing kernels are
matrices of size (Kx, Ky), the entries of which correspond to learnable weights:

K =

w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

 (5.26)

Studying how convolutional layers could be applied to coloured images allows us
to define an important concept: the channel or feature space. In coloured images,
each pixel represents a 3-dimensional vector belonging to colour space. As a con-
sequence, coloured images can be viewed as tensors of dimensions (3, Lx, Ly), where
the first dimension corresponds to the colour space of each pixel in the image. To pro-
cess tensorial objects using convolutions, we would need to employ tensorial kernels.
In the case of 2-dimensional images, the kernel dimensions would be: (Co, Ci, Kx, Ky),
where Co is the number of output channels of the layer, and Ci is the number of chan-
nels of the input signal. The output of the layer would be a tensor of dimensions
(Co, L

′
x, L

′
y), where both L′

x and L′
y are computed following eq. (5.24). A possible

implementation of a convolutional layer in this case is

Z l
c = blc +

Ci−1∑
k=0

K l
c,k ? Ik. (5.27)
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dim[I] = (3, 4, 4) dim[K] = (2, 3, 2, 2) dim[I ′] = (2, 3, 3)

?

( )
, =

Figure 5.8: Diagram showing how convolutions could be applied to input data
with multiple features, that is, multiple channels as encountered in coloured images.
In this particular case, the input could be a coloured image of 4 × 4 dimensions,
which can be represented by a tensor of dimensions (3, 4, 4). As we would like to
obtain an output containing 2 channels, we need to employ a tensorial kernel of
dimensions (2, 3, Kx, Ky), where Kx = Ky = 2. The convolved signal is computed
using eq. (5.27), Consequently, its dimensions are (2, 3, 3).

In eq. (5.27), c represents a particular output channel, k refers to one input channel,
and ? is the convolution operator defined in eq. (5.25). A given output channel is
computed by adding several convolutions. The dimension of each output channel
is (1, L′

x, L
′
y). This procedure allows us to compensate the loss of resolution in the

input signal produced by the convolutions by increasing the feature/channel space.
Typically, the output of the convolutional layer Z l is fed to a non-linear activation
function in order to add some non-linearity to the output space. Figure (5.8) contains
a diagram showing how convolutions can be applied to coloured images.

To conclude our discussion about convolutional neural networks, we note that
convolutional layers can be used in combination with regular linear layers. To do
so, we can flatten the output tensors by stacking their outputs into a 1-dimensional
array. Nowadays, it is frequent to include several convolutional layers in a neural
network, mainly in the first stages of the architecture. After the input is processed
by all convolutional layers, a set of linear layers is usually employed before generating
the final output of the network.

Convolutional neural networks produce state-of-the-art results in a large variety
of tasks. However, training them tends to be relatively expensive due to their large
number of learnable parameters. Before applying convolutional layers to a given task,
it is important to analyse the properties of the problem in question. Convolutions
are mainly useful when dealing with data structures containing a notion of locality.
For more information about convolutional neural networks, their applications, and
recent developments, we refer to Refs. [23–26].
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Chapter 6

Spectral reconstruction with
neural networks

In the last section of Chapter (2), the spectral function of a Euclidean 2-point cor-
relation function was introduced. From its definition, we learnt that it contained
all the physical information encoded in the expectation value of a particular pair of
field operators. This is a consequence of the fact that any combination of two field
operators can be expressed in terms of a particular spectral function. As a result,
extracting the associated spectral function of an imaginary-time correlation func-
tion allows the analytic continuation from Euclidean time τ to Minkowskian time t,
therefore gaining access to the real-time dynamics of the system.

6.1 Introduction to spectral reconstruction
As previously discussed in Chapter (2), the relationship between a thermal Euclidean
correlation function, CE(τ,~k), and its associated spectral function, ρ(ω,~k), is an
integral relationship, defined as

CE(τ,~k) =

∫ ∞

−∞

dω

2π
K(τ, ω)ρ(ω,~k). (6.1)

We refer to eq. (6.1) with the name spectral relationship. K represents the kernel
that dictates how to transform from frequency space to Euclidean time domain. In
the interest of simplifying the notation, the term correlation function is employed
to refer to Euclidean correlation functions. Consequently, we drop the label E in
CE(τ,~k). Furthermore, the external momenta label is omitted: CE(τ).
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The kernel in eq. (6.1) follows from analyticity. For mesonic 2-point correlation
functions, it is written as

K(τ, ω) =
cosh(ω (τ − 1

2T
))

sinh(ω/2T )
, (6.2)

where T represents the temperature of the system. Equation (6.2) is only defined
for 0 < τ < Nτ = 1/T .

Another way of expressing eq. (6.2) is

K(τ, ω) = exp(−ωτ)[1 + nB(ω)] + exp(ωτ)nB(ω), (6.3)

where nB is the Bose distribution,

nB(ω) =
1

exp(ω/T )− 1
. (6.4)

In the low temperature limit, the mesonic kernel reduces to

lim
T→0+

K(τ, ω) = lim
T→0+

cosh(ω (τ − 1
2T
))

sinh(ω/2T )
= exp(−ω τ). (6.5)

All our experiments are performed employing the low temperature limit of the
mesonic kernel, as it transforms a complex convolution integral into a simple Laplace
transform.

In general, for complex systems such as QCD, only numerical estimates of Euc-
lidean correlation functions can be computed, which implies that their corresponding
spectral functions are only accessible through a numerical inversion of eq. (6.1). The
task of inverting the spectral relation is referred to as the spectral reconstruction of
the correlation function. Typically, high quality spectral functions are required in
order to access the real-time dynamics of the system: low resolution spectral func-
tions cannot be accurately integrated to generate a precise analytical continuation
from Euclidean to Minkowskian space-time. Reconstructing high-quality spectral
functions is an arduous task: first, because numerical estimates of correlation func-
tions impede an analytical inversion of the spectral relation; and second, because
the information encoded in a numerical correlation function is difficult to access. For
instance, their high-energy information is heavily suppressed at τ > 0 — see eq. (6.1)
and (6.2). As a result, numerical spectral reconstruction is an ill-posed problem [1–
4], where the desired information is easier to access in ρ(ω), than in the available
C(τ).
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In our studies, we assume that all correlation functions can be regarded as dis-
crete signals of fixed length Nτ . Additionally, we also treat the spectral functions
as discrete signals of length Nω. In practice, Nτ � Nω. Although the spectral
functions are initially defined over the whole positive real line, numerical spectral
reconstruction only aims to estimate their low-frequency region. As a result, in our
experiments, the spectral functions are only defined over an equispaced region of
frequencies:

Ω = [ω0, ωf ], (6.6)

where ω0 represents the initial frequency at which each spectral function is com-
puted, and ωf corresponds to the last frequency at which every ρ is defined. As the
frequencies are equispaced, and the spectral functions are computed at Nω different
frequencies, then, the spectral function resolution is

∆ω =
|ωf − ω0|

Nω

. (6.7)

Other discretisations of Ω are also possible. From now on, the terms energy and
frequency are employed indistinctly to refer to the spectral functions domain, Ω.

We can inspect the ill-posedness of spectral reconstruction by treating it as a
regression task in which a spectral function model ρ̃ is varied in order to minimise
the distance between the computed reference numerical correlation function C, and
the correlation function generated by integrating ρ̃ in eq. (6.1) with the appropriate
kernel. The resulting model correlation function is labelled C̃. In this context,
ρ represents the unknown ground-truth target spectral function. To measure the
distance between C and C̃, we define a norm || · ||:

||C(τ)− C̃(τ)|| = ||
∫
dω

2π
K(τ, ω)

[
ρ(ω)− ρ̃(ω)

]
||. (6.8)

The norm is defined for all Euclidean times at which C is defined; an example of a
valid norm is the standard Euclidean norm. As we deal with numerical estimates of
the correlation function, then, even in the case in which the left-hand side of eq. (6.8)
fulfils

||C(τ)− C̃(τ)|| < ε, (6.9)

where ε is an arbitrary threshold, ρ̃ is not ensured to be equal to ρ. There are an
infinite number of spectral functions different to ρ whose associated numerical correl-
ation functions differ less than ε for all Euclidean times considered. This problem is
even more severe once we take into account the fact that lattice correlation functions
are statistical estimates of a true underlying population correlation function. As a
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result, lattice estimates are affected by statistical noise, which aggravates the prob-
lem of choosing the appropriate model ρ̃ that represents the true underlying target
spectral function ρ(ω).

It is important to note that the ill-posedness of spectral reconstruction is just a
consequence of the fact that only numerical estimates of correlation functions can
be computed. If we had access to the exact analytical correlation function, then,
eq. (6.1) could be directly inverted as the Laplace transform is known to be an
invertible transformation.

A strategy that could reduce the ill-posedness of spectral reconstruction consists
on employing all available prior information on the properties of C and ρ, for example:
positivity of the spectral functions, normalisation of the correlation functions, or
asymptotic behaviour of ρ and C. However, using this information in our favour
does not lead to a simple spectral reconstruction strategy, as the amount of prior
information available is small compared to the complexity of the task.

Spectral reconstruction belongs to a set of problems known as inverse problems.
Inverse problems are encountered in many fields, for instance, they appear in seis-
mology [5, 6] and medical imaging [7]. In addition, spectral reconstruction is not
specific to non-zero temperature QCD; for a recent review of spectral reconstruction
in thermal QCD and other quantum systems, we refer to Ref. [8]. At the date in
which this document is being written, spectral reconstruction is not completely under
control. Nevertheless, there are different methods that try to approximately solve it.
Some of these methods are: the Maximum Entropy Method (MEM) [9–16], Gaussian
processes models [17], Kernel Ridge Regression [18], Backus-Gilbert method [19], or
the Stochastic Average (SA) methodology [20–23].

This chapter presents and tests a simple methodology to perform numerical spec-
tral reconstruction of numerical correlation functions. The methodology employs
deep neural networks as the core tools to perform the reconstruction. The goal is
to explore the limits of the methodology by testing it through different scenarios
with variable complexity. Some basic knowledge about deep convolutional neural
networks is assumed throughout this chapter. An introduction to the field to neural
network and convolutional layers is provided in Chapter (5).

6.2 Deep neural networks in spectral reconstruc-
tion

This section contains some studies conducted with a simple methodology employing
deep neural networks to spectral reconstruction. Deep neural networks are standard

129



Chapter 6. Spectral reconstruction with neural networks

feedforward neural networks containing numerous layers and, therefore, large num-
ber of learnable parameters. They are known to achieve better performances than
shallower architectures in most tasks due to their large expressiveness. Although we
restrict our analysis to deep convolutional neural networks, other architectures can
also be employed.

Although the literature exploring the application of neural networks to the field of
spectral reconstruction is limited, the few already available results are promising [24–
26]. The experiments presented in this document are an extension of the ones presen-
ted in Ref. [26], where the authors introduce the simplest possible methodology in
which neural networks can be employed to perform spectral reconstruction. In their
work, the authors explore the performance of several architectures in different simple
scenarios. However, the neural network architectures employed in Ref. [26] can be
considered shallow by modern standards.

The methodology presented in Ref. [26] tries to exploit the previously mentioned
expressiveness of deep neural networks in order to build a model in which correlation
functions are mapped to their associated spectral functions without the need of
explicitly inverting eq. (6.1). This mapping can be mathematically formulated as

f : C → R, (6.10)

where C represents the space of all possible Euclidean correlation functions involved
in the reconstruction task, and R represents the space of all their associated spectral
functions. Fundamentally, C represents the space containing all correlation functions
appearing in the left-hand side of eq. (6.1), while R is the space composed by all
spectral functions in the right-hand side of the spectral relation. In practice, the
mapping processes correlation function objects as inputs, and produces their expected
spectral functions as outputs:

f(C) = ρ. (6.11)
Unlike other popular spectral reconstruction methodologies, such as MEM, our

methodology assumes that the reconstruction mapping f is deterministic. The fact
that the mapping is assumed deterministic does not mean that it cannot treat stat-
istical estimates of the input correlation functions, as functions of random variables
are also random variables. It only means that it does not assign probabilities to the
reconstruction, that is, it does not try to model the posterior probability distribution
function over the space of input correlation functions: P (ρ|C).

In our experiments, all input correlation functions are assumed to be perfect
estimates of a population correlation function. As a result, we do not analyse the
uncertainty in the reconstruction. However, one should always perform an uncer-
tainty analysis when dealing with real lattice correlation functions; remember that
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a lattice estimate of a particular correlation functions contains N different (and in-
dependent) estimates of the same population correlation function. To measure the
uncertainty in the reconstructed spectral function, one can process each of the N
lattice estimates of the population correlation function through the reconstruction
mapping defined in eq. (6.11). By doing so, we produce N estimates of the target
spectral function. The sample average of those N spectral function estimates cor-
responds to an unbiased estimate of the true population spectral function as long as
some standard conditions are fulfilled. The uncertainty in this spectral function can
be estimated through the standard error of the sample mean.

Assuming that the mapping defined in eq. (6.10) exists, then we can parametrise
it using a neural network model: f = fW , where W represents the set of all learnable
weights in the model. Provided that the fundamental internal features of the mapping
are properly captured by the neural network, then the trained model could be used
to process input correlation functions in order to obtain their respective spectral
functions.

The task of learning the correct mapping can be formulated as a standard su-
pervised regression task. In this framework, pairs composed of Euclidean correlation
functions and their respective spectral functions are provided to the neural network
model. A collection of pairs (C, ρ), each of them respectively sampled from C and
R, is called a training set. In principle, through back-propagation on a large and
descriptive training dataset, the network model should be able to learn the internal
representation of the mapping: f ' fW . The learning procedure can be mathemat-
ically defined in terms of a loss function measuring the distance between the target
training spectral function, f(C) = ρ, and the proposed spectral function by the
network, fW (C) = ρ̂.

In order to teach the network the correct mapping, a large collection of good
quality training pairs is required. However, we do not have access to real training
pairs, as spectral reconstruction on real lattice data is not possible yet. To circumvent
this difficulty, artificial datasets that try mimicking the real spaces are employed.

To generate our artificial training sets, we employ a series of assumptions about
the properties of both C and R. First, all correlation functions in our datasets are
measured at Nτ = 64 different Euclidean times; including correlation functions of
variable lengths can be achieved by padding the signals with zeroes up to a maximum
predefined length. Secondly, all spectral functions are assumed to be measured at
Nω = 1000 different frequencies. In addition, the spectral functions are only defined
over Ω, previously defined in eq. (6.6). In our experiments, we employ ω0 = 0 and
ωf = 8, which results in a spectral functions’ resolution of ∆ω = 0.008. The precise
physical dimension of the energy space is not important in our experiments.

131



Chapter 6. Spectral reconstruction with neural networks

In order to construct the artificial training sets from which the mapping f is
learned, we need to sample a collection of spectral functions from R. To do so,
we assume that all spectral functions in R can be decomposed employing a linear
combination of Np independent semi-positive definite parametric peaks Γp(ω; θp),
where θp is the set of real parameters completely specifying Γp. As a result, all
spectral functions in R can be decomposed as

ρ(ω) =

Np∑
p=1

Γp(ω; θp). (6.12)

Whether the decomposition above can be performed, and the type of peaks that
should be used provided the decomposition is indeed valid, is still an open problem
of spectral reconstruction in QCD.

In principle, different types of parametric peaks can be employed in eq. (6.12),
we restrict ourselves to bell-shaped peaks:

ρ(ω) =

Np∑
p=1

Ap exp
(
− 1

2

(ω −Mp)
2

W 2
p

)
. (6.13)

The results of the experiments should be independent of the type of peaks chosen,
as our methodology knows nothing about the functional shape of ρ. The parameters
defining each peak are θp = (Ap,Mp,Wp), which correspond to each peak amplitude,
center and width. The possible values that the parameters θp can take are

Ap ∈ [0.0, 1.0]; Mp ∈ [0.1, 5.5]; Wp ∈ [0.01, 0.20]. (6.14)

In Ref. [26], the authors limit the minimum distance between two peak centres, Mp.
Doing this can be helpful to restrict the possible structures appearing in R, however,
as it is not completely justified, we allow overlaps between peaks. A particular choice
of the possible values that the peak parameters can take is referred to as a region of
interest.

To make all examples in a particular dataset consistent, we normalise the spectral
functions so that the following condition is fulfilled:∫ ∞

0

dωρ(ω) = 6.0. (6.15)

Several spectral reconstruction training sets can be generated by sequentially ap-
plying eq. (6.13) with a particular fixed number of peaks. Not allowing variable
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number of peaks in our datasets allows us to control the complexity of each train-
ing dataset: datasets composed by spectral functions with low number of peaks are
expected to be simpler than datasets in which the spectral functions are generated
through the combination of large number of peaks. In order to produce a particular
training dataset, first, we sample Nb different spectral functions, each of them con-
taining Np peaks. The parameters defining each peak are uniformly sampled in the
volume defined in eq. (6.14). Once a spectral function dataset is generated, we can
produce its corresponding correlation function dataset by integrating eq. (6.1) over Ω
using all previously generated spectral functions. As a result of the data-generation
pipeline, we produce two linked datasets: C, containing Nb input correlation func-
tions, and R, which is composed by their Nb associated spectral functions. Each
dataset can be represented by a matrix of dimensions Nb × Nd, where Nd is the
length of each object: Nd = Nω for spectral functions,

R[Nb, Np] =


ρ1(ω1) · · · ρ1(Nω)
ρ2(ω1) · · · ρ2(Nω)

... . . . ...
ρNb

(ω1) · · · ρNb
(Nω)

 , (6.16)

and Nd = Nτ for correlation functions,

C[Nb, Np] =


C1(τ1) · · · C1(Nτ )
C2(τ1) · · · C2(Nτ )

... . . . ...
CNb

(τ1) · · · CNb
(Nτ )

 . (6.17)

Figure (6.1) contains some randomly selected training pairs extracted from a spectral
function dataset with Np = 3

As different training datasets can be generated by varying Nb and Np, we require
a notation to specify a particular dataset. In our case, R[Nb, Np] represents a spectral
function dataset containing Nb randomly sampled spectral functions, each of them
generated through the combination of Np peaks. Sometimes, we do not need to
specify the number of examples in a particular dataset. In this situation, we use the
notation R[Np] to refer to an arbitrary long spectral function dataset whose spectral
functions are generated through the combination of Np peaks. The same notation
can be applied to correlation function datasets. It is important to remember that
the kernel, the energy region at which each spectral function is defined, the region
of interest in which the parameters specifying each peak are sampled, the length of
both C and ρ, and the functional form of the peaks employed to span each spectral
function are the same in all training sets considered.
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Figure 6.1: Randomly selected training pairs (C, ρ) belonging to a training set in
which the spectral functions are generated by combining Np = 3 randomly sampled
bell-shaped peaks. Training pairs share colour and line-style in both figures.

6.2.1 Basis expansion formulation of the mapping
The mapping f introduced in eq. (6.10) processes input correlation function signals
of length 64, and produces output signals of length 1000. Due to the large difference
between input and output sizes, it is advisable to reduce the degrees of freedom
(d.o.f) involved in the reconstruction:

d.o.f = Nout −Nin. (6.18)

This can be achieved by employing a different representation of the target spectral
functions. Note that different representations of the input correlation functions can
also be explored.

In Ref. [26], the authors explore two different representations of the spectral
functions: the standard one, where the output of the mapping is just the complete
spectral function; and a parametric formulation, where each spectral function in a
given dataset R[Np] is represented by a set of real parameters θ. Those parameters
correspond to the ones defining each peak in a particular spectral function. As a
result, in this representation, the target training set is not R[Np], but a hypothet-
ical P[Np], composed by all parameters needed to completely specify each spectral
function in R[Np]. In our particular case, the parametric formulation of the recon-
struction mapping processes input correlation functions of length 64, and produces
3Np − 1 parameters representing their associated spectral functions; one parameter
is completely determined by the normalisation condition in eq. (6.15). The recon-
structed parameters can then be employed in eq. (6.13) to generate the desired target
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spectral function ρ. Although this formulation greatly reduces the degrees of freedom
involved in the reconstruction, it is not well-defined in the limit of large Np: the size
of the target space grows with the number of peaks. Additionally, this formulation
only works for parametric peaks, which might not be desirable in future applications.

As a way of producing a generalisable formulation of the reconstruction map-
ping in which the number of degrees of freedom involved is reduced, we employ an
orthogonal basis expansion to decompose each spectral function in R[Np]. In this
formulation, every numerical spectral function is decomposed using a linear combin-
ation of orthogonal basis functions us, each of them accompanied by a real coefficient
ls:

ρ(ω) '
Ns∑
s=1

ls us(ω), (6.19)

As the basis functions are shared among all spectral functions in R[Np], we can
represent each object in R[Np] using a set of Ns real coefficients. Due to the assumed
orthogonality of the basis functions,∫ ∞

0

dω us(ω)us′(ω) = δs,s′ , (6.20)

each coefficient in the expansion can be computed applying the following relationship:

ls = 〈ρ(ω), us(ω)〉, (6.21)

where 〈x, y〉 denotes the usual Euclidean scalar product. We refer to the collection of
all Ns basis functions with the label U. As the number of basis functions employed
in the right-hand side of eq. (6.19) is arbitrary, the expansion is not exact, hence
the almost equal sign. The difference between the reference ρ(ω) and its expanded
version, ρ̃, can be quantified using δ, which is defined as

δ ≤ ||ρ(ω)− ρ̃(ω)|| = ||ρ(ω)−
Ns∑
s

ls us(ω)||. (6.22)

In the equation above, || · || represents the standard Euclidean norm. For a fixed δ,
different choices of basis function might lead to different number of basis functions
Ns.
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Correlation function:
{C(τ) ∀ τ ∈ [0, Nτ − 1]}

Standard:
fW (C) = ρ

Spectral functions:
{ρ(ω) ∀ ω ∈ Ω}

Parametric:
fW (C) = θ

Parameters:
{θp ∀ p ∈ [0, (Np − 1)]}

Basis expansion:
fW (C) = l

Coefficients:
{ls ∀ s ∈ [0, Ns − 1]}

Equation (6.13)

Equation (6.19)

Figure 6.2: Diagram explaining the three formulations of the spectral reconstruc-
tion mapping. All three formulations process Nτ -dimensional input correlation func-
tions. Although theoretically equivalent, each formulation produces a different rep-
resentation of the spectral function as an output.

In the basis expansion formulation, the reconstruction mapping processes 64-
dimensional input correlation functions, and produces a set of Ns coefficients, which
depend on the particular choice of basis function employed in the decomposition.
Through the application of eq. (6.19), the original spectral function can be recon-
structed. If correctly implemented, this formulation has a well-defined large Np limit,
as the number of coefficients in the expansion should not depend on Np. Addition-
ally, this formulation is more flexible than the parametric one, as it easily allows
the inclusion of variable number of peaks in the datasets. Figure (6.2) contains a
diagram with all three mapping formulations discussed in the previous paragraphs,
as well as the relationships between them.

The main drawback of the basis expansion formulation is that we need to decide
which set of basis functions U is employed in eq. (6.19). We would like to use a
set of basis functions that allows a high quality — low δ — decomposition of any
spectral function in R[Np] with as few coefficients as possible. In our experiments,
we apply the singular value decomposition (SVD) over a spectral function dataset
matrix — see eq. (6.16) — in order to generate U. Figure (6.3) shows the first 4 basis
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functions extracted by applying the SVD decomposition over a randomly generated
spectral function dataset composed by spectral functions with 10 bell-shaped peaks.
The SVD decomposition is a well-known data decomposition algorithm that allows
a systematic dimensional reduction of complex datasets in terms of their directions
of maximum variance; the SVD decomposition is directly linked to another well-
known decomposition method, the principal component analysis (PCA). For more
information about the SVD decomposition, see Refs. [27–29].
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Figure 6.3: The 4 most relevant basis functions us(ω) extracted using the SVD
decomposition of a dataset R[Np = 10, Nb = 50000].

Applying the SVD decomposition over a spectral function dataset produces a
sequence of Nω orthogonal basis functions ordered by their relevance: the first basis
functions contain the fundamental features of the dataset, while the last ones only
represent the minor details. As a consequence, in order to reduce the degrees of
freedom of the reconstruction, while at the same time maintaining a high-quality
decomposition, we keep the first Ns most relevant basis functions, and discard the
rest. The number of relevant basis functions used should be chosen so that the quality
of the basis expansion, measured in terms of δ, is not compromised on any examples
contained in the dataset. Note that for the SVD decomposition to work well, the
number of examples in the dataset should be large enough so that it represents a
descriptive sample of the properties of the underlying population space.

The fact that the first basis functions contain the fundamental features of the
dataset is reflected on the size of the coefficients accompanying them: the first coef-
ficients in the SVD decomposition tend to have a larger absolute value than the ones
corresponding to less relevant basis functions. Therefore, it is sometimes useful to
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quantify the information described by the first s coefficients in the expansion. To do
so, we define the following quantity:

I{l}(s) =

∑s
i |ls|∑Ns

i |ls|
, (6.23)

which is defined on a specific set of coefficients {l}. Note that I{l}(s) is a number
between 0 and 1. From I{l}(s), one can compute the number of coefficients that
contain less than a previously selected proportion of the total information, I0. This
number is represented by the label B{l}, and its definition is

B{l} = s0 if I{l}(s0) ≤ I0. (6.24)

B{l} is a positive integer less or equal to Ns. In our experiments, I0 is set to I0 = 0.9.
Figure (6.4) shows some randomly selected coefficients extracted from datasets with
variable number of peaks.
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Figure 6.4: Randomly selected coefficients extracted from datasets with variable
number of peaks. The coefficients are computed using the first Ns = 128 SVD basis
functions.

6.2.2 Experiments and results
In order to explore the viability of the methodology presented before, we analyse the
performance of the same deep neural network architecture on the task of learning
the correct mapping f on different training datasets.
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The neural network architecture employed in our experiments corresponds to a
standard 34-layer convolutional residual network (ResNet) [30]. We decided to em-
ploy a convolutional architecture in our experiments in order to exploit the local
information present in the input correlation function signals: the correlation func-
tion measured at a particular Euclidean time τ depends on the measured values of
the same correlation function in a neighbourhood of τ , which is a consequence of
the functional nature of the input correlation functions. At the time in which this
document is being written, convolutional neural networks are the standard architec-
tures employed when the input signals contain a notion of locality. For instance,
they are ubiquitous in image processing, where the pixel values in a particular region
tend to be largely related. A short introduction to convolutions in the context of
neural networks can be found in Chapter (5). Despite convolutional neural networks
being typically defined for 2-dimensional inputs, such as images, our implementation
employs 1-dimensional convolutions.

The residual network architecture is known to perform exceptionally well in a
large variety of complex tasks, such as image processing, protein classification or
medical image. The ResNet model contains a combination of convolutional, batch-
normalisation and pooling layers, as well as residual connections between those layers,
which are known to suppress the problem of vanishing gradients in deep neural net-
works [31]. The 34-layer ResNet architecture contains more than 7 million learnable
weights, and employs dropout [32, 33] to reduce possible over-fitting.

The goal of our experiments is to explore how the model behaves as the task
of learning the correct reconstruction mapping increases its complexity. We vary
the complexity of the task through the number of peaks in the dataset. Ideally, if
the model is able to learn the fundamental features of the target mapping on each
dataset, then we could conclude that the model is robust enough to compensate our
lack of knowledge on the properties of spectral reconstruction. If this is in fact the
case, then the large expressiveness of the model would suppress the ill-posedness
of spectral reconstruction by learning the internal features of the reconstruction
mapping. A similar strategy is applied in machine language translation. No one is
able to model by hand the probability of finding the translated version of the word x
after having measured an arbitrary long sequence of words {a, b, c, . . . }, as the search
space is highly correlated, huge and sparse. However, one can use a sufficiently large
and expressive model in order to learn the probability mapping by just providing the
model with numerous translation examples.

As explained before, in our formulation of the problem, a basis expansion is em-
ployed to represent each spectral function in the dataset. As a result, the target of
our regression is a set of coefficients generated through the application of eq. (6.21)
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with U being the first Ns basis functions extracted from the SVD decomposition.
The SVD decomposition is applied independently on each dataset. We do not al-
low shared basis functions among datasets to avoid employing non-optimal basis
functions in the decomposition, which could externally affect the performance of the
model. Nevertheless, Figure (6.5) demonstrates that the SVD basis functions extrac-
ted from large Np datasets are able to completely reconstruct all spectral functions
in lower Np datasets with high-fidelity.

5 10 15
Np

0

2

δ

×10−9

Figure 6.5: Figure showing the average and standard deviation of δ, defined in
eq. (6.22), as a function of the number of peaks in a dataset. Note that δ is computed
across each dataset using the first 128 basis functions extracted from the dataset with
the largest number of peaks, R[Np = 15]. The number of examples in each dataset
is Nb = 50000.

In our experiments, we keep the first Ns = 128 basis functions extracted from
the SVD decomposition. This number seems to be sufficient to produce high-quality
decompositions, as expressed by the small value of δ in all datasets shown in Fig-
ure (6.5). As a result, our ResNet model processes correlation functions of length
Nτ = 64 as inputs, and produces Ns = 128 coefficients as outputs.

In order to train the neural network over the different datasets, a loss function is
required. In our case, we use a variation of the mean-squared error (MSE) loss on
the basis expansion coefficients,

LL =
1

Nb

Nb∑
b=1

Ns∑
s=1

|lbs − l̂bs|2, (6.25)

where l̂bs represents the set of predicted coefficients by the network, and lbs the true

140



Chapter 6. Spectral reconstruction with neural networks

expected coefficients. The loss function LL makes the neural network output the
correct coefficients for each input correlation function. The original spectral function
can be reconstructed from those coefficients by applying eq. (6.19) with the previously
computed 128 SVD basis functions.

In Ref. [26], the authors explore a combination of loss functions that aims to
reduce the ill-posedness of the problem by forcing the model to reconstruct the exact
expected spectral function, as well as its associated correlation function. These two
losses are

LR =
1

Nb

Nb∑
b=1

Nω∑
ω=1

|ρb(ω)− ρ̂b(ω)|2, (6.26)

and

LC =
1

Nb

Nb∑
b=1

Nτ∑
τ=1

|Cb(τ)− Ĉb(τ)|2. (6.27)

The first loss function, LR, encourages the model to generate the coefficients that
uniquely reconstruct the expected spectral function, while the second loss function,
LC , forces the model to predict the sequence of coefficients from which the correct
input correlation function C can be generated through the sequential application of
eq. (6.19) and (6.1).

All three previously defined losses, LL, LR and LC , can be included at training
using the following linear combination:

L = aLL + bLC + cLR, (6.28)

where a, b and c are real numbers controlling the weight of each loss at training.
Generally, a is set to 1, while b and c are always smaller than a. While preparing
our experiments, different values of b and c were tested, but no significant increase
in the performance was spotted. Although including both LC and LR seems to not
cause a negative effect in the reconstruction, it considerably increases the training
time, as both Ĉ and ρ̂ need to be reconstructed from the coefficients predicted by
the network at each training iteration. This procedure can be expensive depending
on Np and the implementation. As a result, we decided to ignore LC and LR in our
final results, which implies that the loss function at training is just LL.

In order to reduce possible over-fitting at training, as well as constraining the
values of the parameters, which could control the possible exploding gradients com-
monly spotted in deep neural networks, we add a regularisation term to our loss
function. This term is just a weight-decay L2 loss function, defined as

L = LL + γ
∑
w∈W

|w2|. (6.29)
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In the equation above, W represents the set of all learnable parameters of the model.
We set γ to 1 · 10−4 in our experiments.

Additionally, before training the models, we pre-process the training datasets to
help the neural network learn the correct mapping: pre-processing helps to avoid
including numerical bias in the training examples, which could lead to poor improve-
ments and even possible over-fitting. We prepare our training datasets by taking the
logarithm of each independent input correlation function as a way of reducing their
numerical exponential decay, which could cause the neural network to treat most
part of the input signals as zero values. We do this by replacing each correlation
function in C with their logarithm:

C(τ)→ log[C(τ)], ∀ τ.

It is worth noting that this pre-processing step does not seem to have a large impact
on the final performance of the model, therefore, it may be safely skipped. However,
it is advisable for really large input signals: Nτ � 1.

6.2.3 Performance of the model with Np

Our first experiment tested the performance of the 34-layer ResNet model on 6
training datasets, where each dataset has a different fixed number of peaks Np; the
number of peaks is varied from Np = 1 to Np = 6. In this experiment, all datasets
contain the same number of randomly generated examples, Nb = 1.5 · 105.

We train the 34-layer ResNet architecture on each independent dataset for a total
of 1000 epochs, which means that the network revisits all examples in the training
datasets 1000 times in order to update its configuration. The number of epochs is
chosen to allow the network to train for long enough computer time without having to
wait long training times; training the model for 1000 epochs takes around 7 hours on
a single Nvidia V100 GPU. In general, the total number of epochs should depend on
the performance of the network in the training set, as well as in a test set. However,
in order to allow a fair comparison between results extracted from different datasets,
we fix the number of training epochs to 1000 for all datasets considered.

At each training epoch, the input and target training datasets are divided into
paired stochastic mini-batches of 16448 examples each. For all training datasets,
the algorithm employed to perform back-propagation is AdamW [34]; several other
algorithms were tested, but no significant variation in performance was spotted.
Before training, the learning rate is set of α = 0.01, but its value is reduced at every
epoch using the following recursive formula:

α← 0.997α. (6.30)
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Figure 6.6: Average empirical training loss as a function of the number of epochs.
The training datasets contain the same number of examples, Nb = 1.5 · 105, but
different number of peaks Np. The data does not include the weight-decay term in
eq. (6.29).

The empirical losses at training time as a function of the number of epochs are
presented in Figure (6.6). As the data shows, the neural network seems to struggle
at learning the correct mapping as the number of peaks increases; there exists a
major difference between the empirical losses at Np = 1, 2, and greater number
of peaks. In fact, the performance of the model saturates as Np increases. Some
visual reconstruction examples are provided in Appendix (C), which suggest that
the network fails at learning to consistently resolve all peaks but the lowest energy
ones.

Figure (6.6) suggests that training the neural network for longer could enhance the
results over 1-peak and 2-peaks datasets, as the loss function does not seem to have
plateaued in those particular cases. Varying the learning rate periodically [35] could
also help to reduce the empirical loss function values in those particular datasets.
In contrast, larger Np datasets seem to plateau quite early, which supports the idea
that the network suffers at learning the correct mapping as Np increases.

The drastic variations spotted in the empirical training losses in Figure (6.6)
might be caused by different problems. For instance, they can be a sign of exploding
gradients, which are sometimes common in deep learning architectures. As a way of
controlling this possible problem, we clip all network parameters’ gradients using

∇θL ← min(∇θL, 10).

The gradients are computed with respect to the loss function in eq. (6.25). The
clipping value is arbitrary, and should be tuned for each task. Another possible source
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of the sudden variations found in the empirical losses is the stochastic nature of the
mini-batches, which is without any doubt causing the small oscillations encountered
in all loss function curves. Mini-batches can cause large oscillations in the training
loss if outliers are present in the training datasets. If several outliers are randomly
sampled into a single mini-batch, then they can lead to unexpected changes in the
loss function gradients, thus incrementing the loss function abruptly. Furthermore,
a non-optimal learning rate value can also cause sudden changes in the loss function.

6.2.4 Performance of the model with Nb

In order to demonstrate that the drop in performance with Np is not caused by
an insufficient number of training examples in the datasets, we perform another
experiment. In this case, the same ResNet model is trained independently on several
training datasets with different number of examples Nb. All datasets share the same
number of peaks, Np = 3. Due to the fact that training the 34-layer ResNet model
on 1.25 million examples takes around 2 minutes per epoch on a single Nvidia V100
GPU, the model is only trained for 500 epochs in this experiment for all datasets
considered.
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Figure 6.7: Average empirical training loss as a function of the number of epochs.
All training datasets share the same number of peaks Np = 3, but contain differ-
ent number of examples Nb. The data does not include the weight-decay term in
eq. (6.29).

The empirical losses at training for this experiment are presented in Figure (6.7).
The results suggest that increasing the number of examples in the datasets is not a
sufficient strategy to learn the correct reconstruction mapping: the empirical losses
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are similar for all Nb, as the network only seems to be able to consistently resolve
the lowest energy peak in each spectral functions. This is explicitly shown in the
reconstruction examples provided in Appendix (C). The results in Figure (6.7) also
suggest that increasing the training time could slightly improve the performance of
the model in some datasets, as the loss function seems to not have reached a clear
plateau for some particular datasets.

6.2.5 Analysis of the results
The empirical losses shown in Figure (6.6), combined with the reconstruction ex-
amples provided in Appendix (C), suggest that the network fails at learning the
correct mapping as Np increases. Therefore, it is important to understand the source
of this drop in performance. Due to the extensive success of the ResNet architecture
in a wide variety of complex tasks, we assume that it is expressive enough to not be
the main source of the problem. In other words, an even larger and more complex
model is also expected to struggle at learning the correct mapping as Np increases.
As a consequence, increasing the size of the model by making it deeper is not a
viable strategy to improve the results in the proposed methodology. In addition, the
results available in Figure (6.7) show that augmenting the number of examples in
training datasets does not lead to a significant increase in the model performance.
As a result, the inability of the neural network model to learn the correct large Np

mapping is most likely a consequence of the inherent properties of the methodology,
that is, either the properties of the datasets or the basis expansion formulation.

It is worth mentioning that exploring the response of the model when trained
over large datasets for a long time could grant us more information about the effects
of both Nb and the number of epochs in the performance of the model. Additionally,
testing the performance on the model over unseen examples is a required next step
that would allow us to confirm that the model is indeed learning the internal fea-
tures of the mapping and not just over-fitting the dataset. Some internal tests were
performed in this direction while training the model, and the results showed that
the network seemed to resolve the first low-energy peaks consistently on previously
unseen examples.

From the analysis presented in Figure (6.5), we discard the possibility that the
drop in performance is caused by a wrong choice of basis functions. The first 128 SVD
basis functions are expressive enough to allow a high quality reconstruction of several
independent spectral function datasets. This assumption is backed up by the data
shown in Figure (6.8), which demonstrates that the average number of coefficients
containing less than 90% of the total information in the dataset is independent of the
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number of peaks in each spectral function: a similar number of relevant coefficients
are required to describe the fundamental features of datasets with different number
of peaks.
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Figure 6.8: Average number of relevant coefficients and its standard deviation as a
function of the number of peaks. In order to compute B[l], we apply eq. (6.24) with
I0 = 0.9 on a coefficient dataset extracted from R[Np, Nb = 50000]. An independent
set of basis functions is generated on each dataset.

Due to the fact that the saturation in the model performance spotted in Fig-
ure (6.6) is assumed to not be caused by the ResNet architecture, nor by the basis
functions employed, and, additionally, increasing the number of examples in the
training datasets does not seem to lead to a significant improvement in the recon-
struction task, then the problem must be located in the properties of the training
datasets, which ultimately means that the source of the problem is the inherent
properties of the reconstruction task: the properties of the mapping.

In order to understand why the model struggles at learning the mapping as the
number of peaks in each spectral function increases, as well as why the model is only
able to consistently resolve the first peak in the spectral function, we analyse the
properties of both input and target datasets. First, we start with the target space,
represented by the SVD coefficients in our particular implementation: Figure (6.9)
shows the variability of several target datasets as a function of the relevance of each
coefficient, s; the variability is measured by the standard deviation of all coefficients
in the dataset sharing the same basis function us. The data shows that the standard
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deviation of the coefficients decays with s for a fixed number of peaks. This behaviour
is expected from the results presented in Figure (6.4), and supported by Figure (6.8):
less relevant coefficients tend to contain less information, and therefore, their absolute
value is smaller. Additionally, Figure (6.9) demonstrates that the overall variability
of the coefficients decays with the number of peaks. This implies that the spectral
functions belonging to datasets with large number of peaks resemble each other more
than the spectral functions belonging to lowNp datasets. As the landscape of possible
spectral functions that can be generated through the combination of extremely large
number of peaks in a fixed region of interest — see eq. (6.14) — decays with Np, the
standard deviation of the datasets saturates as Np increases. This problem can be
solved by increasing the region of interest in which the peaks are defined.
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Figure 6.9: Estimated variability of different coefficient datasets computed through
the standard deviation of all coefficients sharing the same basis function. All datasets
employed contain Nb = 50000 examples. Only the first Ns = 128 coefficients are
employed in the decompositions.

From the analysis performed on the coefficient datasets, we learn that the decrease
in the performance with Np cannot solely be caused by the properties of the target
datasets. From a statistical point of view, the network should not find it more difficult
to learn the fundamental features of low Np datasets than large Np datasets. In fact,
large Np datasets are statistically simpler than low Np ones: the overall variability is
lower for large Np datasets than in low Np ones, and, at the same time, the number
of relevant coefficients is independent of Np, as shown in Figure (6.8).
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The same analysis can be applied to the input correlation function datasets;
the results are presented in Figure (6.10). As in the previous analysis, the overall
variability decays with the number of peaks. However, in this particular case, the
overall standard deviation is around two orders of magnitude smaller than the ones
found in the coefficient datasets with equivalent number of peaks. This implies that
the correlation functions resemble each other more than the coefficients, which means
that similar correlation functions might lead to completely different coefficients —
ultimately, spectral functions. Moreover, the results demonstrate that the variability
of the input datasets decays exponentially with τ , which is expected from eq. (6.1)
and eq. (6.5).
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Figure 6.10: Estimated variability of different correlation function datasets com-
puted through the standard deviation of all correlation functions at a given Euclidean
time τ . All datasets employed contain Nb = 50000 examples.

The analysis performed on both datasets allow us to suggest some possible causes
of the saturation in performance of the model with Np. One of the causes is the loss
of bijectivity of the numerical reconstruction mapping as the number of peaks in
the datasets increases; a mapping is said to be bijective when there exists a one-to-
one correspondence between input and output spaces; for each input, there is only
one output; Figure (6.11) contains some diagrams depicting a bijective and a non-
bijective mapping. We would like to stress that this loss of bijectivity is only present
in the finite precision mapping learned by the neural network, the real underlying
target mapping f is indeed injective, as eq. (6.1) is invertible.
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Figure 6.11: Diagram representing two abstract reconstruction mappings from
the space of all correlation functions, C, to the space of all spectral functions, R.
The figure on the left represents a bijective mapping, while the figure on the right
represents a non-bijective mapping.

As Np grows, there are multiple highly similar correlation functions whose spec-
tral functions are completely different, and, at finite machine precision, the neural
network is not able to differentiate them. This explains why the network is able to
learn the correct mapping on 1-peak datasets, and even 2-peak datasets, where the
probability of generating similar input correlation functions from completely different
spectral functions is small. As the number of peaks increases, the chance of creating
similar input correlation functions increases, which leads to a clear loss of bijectivity
in the network mapping. This problem is aggravated by the exponential nature of
the mesonic kernel. As peaks centred at ω � 0 are exponentially suppressed, their
contribution to the correlation function is negligible as τ increases. A visual analysis
of this problem is provided in Appendix (D).

Although the neural network model is not able to resolve all peaks in the spectral
function asNp grows, it seems to consistently locate the correct lowest energy peak, as
demonstrated in the results provided in Appendix (C). This is another consequence of
the suppressed contribution of higher-order states to the correlation function. As the
network is not able to discern between highly similar correlation functions, it treats
all of them as equivalent samples. As a result, the network learns to produce the
sample average of all coefficients sharing highly similar correlation function. Due to
the fact that lower-energy states dominate, then their associated spectral functions
are likely to share the same low-energy peaks. As a result, the sample average
of those spectral functions is another spectral function with the correct communal
low-energy dominant peaks; all non-shared high-energy peaks vanish in the sample
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average. The same argument applies to the coefficients, as they are just another
representation of the spectral functions. It is important to note that the network
learns the average of all coefficients sharing similar correlation functions because
it is being trained on the mean-squared error loss function defined in eq. (6.25),
whose minimum corresponds to the sample average of each independent coefficient.
Exploring different loss functions might help to alleviate this problem. Figure (6.12)
demonstrates this idea.
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Figure 6.12: Examples of statistically equivalent correlation functions, their first
128 SVD coefficients, and their associated spectral functions. For more information
about the definition of statistical equivalence, see Appendix (D).

In order to generate Figure (6.12), a reference correlation function was randomly
chosen; the correlation function was sampled using a spectral function generated by
randomly picking 4 bell-shaped peaks in the region of interest defined in eq. (6.14).
Using this correlation function as a reference, we found 10 statistically equivalent
correlation functions; for more information about our definition of statistical equi-
valency, we refer to Appendix (D). Once all 10 highly similar correlation functions
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are found, we compute the sample average of their first 128 SVD coefficients using

lavg
s =

1

10

10∑
i=1

lsims . (6.31)

The spectral function of the sequence of average coefficients can be obtained by
applying eq. (6.19) with the correct set of 128 SVD basis functions. Furthermore,
the associated average correlation function can also be computed by integrating the
spectral relation with the previously reconstructed spectral function.

6.2.6 Conclusions
From the results obtained, we can state that the proposed mapping methodology
can only be truly efficient when applied to resolve the first low-energy peaks of the
spectral functions. Higher order states are inaccessible due to the loss of bijectivity
in the finite precision reconstruction mapping learned by the network, as well as
the exponential decay of the input signal. Although this constraint hinders the
generalisability of the methodology, it can also be used in our favour. Only low
Np datasets are required to extract the low-energy features of correlation functions,
which implies that we only need to focus on generating datasets that mimic the
low-energy region of the target spectral function space. A possible way of generating
such complex datasets might involve varying the number of peaks in each spectral
function, using different types of peaks, and employing non-parametric peaks. A
neural network can be trained on these newly generated datasets in order to learn
the correct low-energy reconstruction mapping. After training the model, it can be
used to produce an approximate estimate of the spectral function low energy region
from real input correlation functions. The outcome of the neural network can then
be used as prior information for more involved methodologies. It is worth stressing
that although neural networks are expensive to train, once trained, they can process
large amounts of data in relatively short time.

In conclusion, spectral reconstruction is even more complex than it seems, and
it cannot be completely controlled by brute force. This explains why some recent
research is focusing on understanding the problem from the ground up [36].

There are different lines of research that could extend the studies presented in
this document. For instance, neural networks models specifically tailored to deal
with functional data structures might be of use in spectral reconstruction, as both
C and ρ depend on a set of parameters: τ and ω respectively. Neural networks that
deal with functional data structures are usually called functional neural networks;
for more information about them, we refer to [37] and references therein. Related
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to functional neural networks, one can explore the application of operator learning
networks in spectral reconstruction [38–40]. Neural networks are known to be uni-
versal approximators of non-linear continuous functions. However, they also act as
universal approximators of non-linear functionals, that is, mappings from a space of
functions to the real line, and non-linear operators, which are mappings from a space
of functions to another space of functions [41, 42]. This second case is relevant to
spectral reconstruction, as eq. (6.1) connects a space of functions, C, with another
space of functions, R. Recent research has produced impressive results applying
deep neural networks to solve partial differential equations and inverse problems in
fluid mechanics and other relevant fields [38, 39]. Another possible continuation of
the presented results would imply the application of the proposed methodology to
real lattice correlation functions. The results could be compared with other popu-
lar methodologies, such as MEM. For this specific task, the neural network could
be trained on large and complex datasets composed by spectral functions with low
number of peaks. The inaccessible high-frequency region can be safely avoided in
the dataset generation.

A different possibility would be to study spectral reconstruction using a prob-
abilistic approach in which the posterior probability of measuring ρ having already
measured C is modelled. In this context, one could apply several neural network
frameworks to model the posterior probability distribution function. For example,
Bayesian neural networks [43–47] could be explored as a way of parametrising the
target probability distribution function. A different approach would be to explore
infinite-width neural networks [48–50], which are known to behave as Gaussian pro-
cesses with learnable kernels.

As a way of reducing the degrees of freedom involved in the reconstruction and, at
the same time, avoiding manually choosing a set of basis functions used to represent
each spectral functions, one could try exploring the application of Variational Auto-
encoders (VAEs) [51, 52] to spectral reconstruction. VAEs are known to extract the
fundamental features of complex datasets, which could allow the compression of both
input and output signals with high efficiency.

To conclude, it is worth mentioning that attention-based architectures, such as
the Transformer [53], have become very popular in the last few years. Due to their
ability to take into account the relationships present in sequences, they are able to
produce previously inaccessible results in multiple complex tasks [54, 55]. In spectral
reconstruction, they could be applied to reduce the problems associated with the
exponential decay present in the correlation functions: as an attention-based model
is able to focus on different part of the input signal, it might be able to access
the high-energy information contained in different regions of the input correlation
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functions. Therefore, it might be able to extract different information from different
parts of the input signal: for example, the τ → 0 region is known to be polluted by
high-frequency states, while the τ → ∞ region is dominated by the lowest energy
modes.
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Appendix A

Lattice setup

This appendix contains information about the lattice simulations employed in all
lattice-related studies presented in this document. The configurations used to com-
pute the correlation functions correspond to the anisotropic FASTSUM ensembles
described in detail in Ref [1]. Those ensembles are based on the anisotropic lattice
work of the HADSPEC collaboration at zero temperature [2, 3]. Our collection of
ensembles is referred to by the name Generation 2L (Gen2L), where L stands for
light. The definition of the anisotropic action governing the dynamics of the system
is detailed in Ref [2]. Our ensembles contain Nf = 2+1 dynamic flavours, being the
lightest quarks (u and d) degenerate and heavier than in nature; the strange quark
mass is fixed to its physical value. Additionally, propagators for valence charm quarks
are computed using the same relativistic action, as described in Ref [4, 5]. The heav-
iest quarks, bottom and top, are not accessible in our simulations. A collection of
relevant parameters defining our ensembles can be found in Table A.1.

Table A.1: Relevant information about the Gen2L anisotropic FASTSUM en-
sembles: aτ (as) is the temporal (spatial) lattice spacing; ξ the physical anisotropy;
Mπ the pion mass; and Tc is pseudocritical temperature, estimated via the inflection
point of the renormalised chiral condensate [1]. The scale setting is discussed in
detail in Ref [6].

1/aτ MeV as fm ξ = as/aτ Ns Mπ MeV Tc MeV

6079(13) 0.1121(3) 3.453(6) 32 239(1) 166(2)

We adopt a fixed-scale approach in our simulations, which implies that the tem-
poral lattice spacing is shared among all temperatures. As a result, the temperature
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Appendix A. Lattice setup

of the system can be modified through the variation of the size of the lattice tem-
poral direction, labelled Nτ . The relationship between the temperature T , the lattice
spacing aτ , and the temporal extent of the lattice Nτ , is

T =
1

aτ Nτ

. (A.1)

More information about this relationship can be found in Chapter (2). In our
simulations, a lattice of Nτ = 128 sites leads to the lowest temperature avail-
able, T = 47 MeV; a lattice of size Nτ = 20 generates our highest temperature,
T = 304 MeV. Table (A.2) summarises all lattices simulated, their corresponding
temperatures, and the number of configurations available at each temperature.

Table A.2: Table summarising all lattices available, as defined by the size of their
temporal direction, Nτ . Each lattice represents a different temperature T , computed
using eq. (A.1) with a−1

τ = 6079 MeV. Additionally, Nconf represents the number of
configurations simulated at each temperature.

Nτ 128 64 56 48 40 36 32 28 24 20
T MeV 47 95 109 127 152 169 190 217 253 304
Nconf 1024 1041 1042 1123 1102 1119 1090 1031 1016 1030

All studies presented in this document focus on 2-point mesonic correlation func-
tion C(y − x), constructed from two mesonic operators:

C(y − x) = 〈M̂(y)M̂ †(x)〉, (A.2)

where
M̂(x) = ψ̄A(x)Γ(x)ψB(x) (A.3)

and M̂ † is the complex conjugate of M̂ . In the equation above, ψ̄A represents an
antiquark fermionic field of flavour A, and ψB a quark fermionic field of flavour
B. Additionally, Γ is an operator acting on all relevant spaces, which dictates the
quantum numbers of the mesonic operator M̂(x).

In a 2-point mesonic correlation function, the first operator, M̂ †(x), is called the
source operator, while the second one, M̂(y) is referred to as the sink operator. Due
to translational invariance of systems in equilibrium, 2-point mesonic correlation
functions are functions of the distance between sink and source operators: C(y, x) =
C(y − x). As a result, it is a standard practise to place the source operator at the
origin of coordinates: x = (τx, ~x) = (0,~0).
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All the analysis present in this document deal with thermal observables. All the
correlation functions analysed are expressed in a time-momentum representation.
We restrict ourselves to zero external momentum:

C(τ,~k = ~0) =
∑
~y

〈Ô(τ, ~y)Ô†(0,~0)〉. (A.4)

This implies that our thermal correlation functions are only functions of the Euc-
lidean time: C(y − x) = C(τ). Additionally, our correlation functions are O(a2)-
improved using the Symanzik improvement scheme for anisotropic lattices [2].

Due to the fact that we simulate three different flavours — recall mu = md — we
are able to study six different mesonic flavour combinations: uu, us, uc, ss, sc and cc.
Disconnected contributions to the mesonic correlation functions are not computed,
which implies that the ground state contributing to the uu pseudoscalar correlation
function is the charged pion.

In addition, for each available temperature, flavour combination and set of op-
erators, we compute two different estimates of the same correlation function, which
differ in the type of source used in the inversion of the Dirac operator. One estimate
uses local sources — in effect delta functions — and the other one employs Gaus-
sian smeared sources [7]. In order to apply smearing to a source vector G — see
Chapter (1) — we apply the following functional transformation [8–12]:

G′ = A (1 + κH)nG. (A.5)

In the equation above: A is a normalisation constant, H is the spatial hopping part
of the Dirac operator [2], and κ and n are two parameters controlling how smearing
is applied: n = 100 and κ = 5.5. Additionally, the hopping term H contains APE-
smeared links [13]. Smeared sources are specifically designed to decouple from the
excited states contributing to the correlation function at small Euclidean time τ ,
thus enhancing the ground state signal. At low temperature, both types of source
should yield similar estimates of the ground state mass.
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Appendix B

Studies on mesonic operators

This appendix contains some analysis performed on continuum mesonic operators.
The contents are divided into two main sections: in the first one, we classify several
operators by their quantum numbers, which allows us to specify the lowest energy
modes contributing to 2-point correlation functions; in the second one, we include a
brief study on the relationship between the vector and axial vector operators under
SU(A)A chiral transformations. The first section simplifies the phenomenological
interpretation of the correlation functions, while the second one opens a window to
study chiral symmetry restoration in QCD as a function of the temperature.

We are mainly interested in mesonic 2-point correlation functions, which are
composed by two mesonic operators. A mesonic operator is defined as

M̂(x) = ψ̄A(x) ΓψB(x), (B.1)

where ψA(x) represents a fermionic quark field of flavour A, ψ̄(x) a fermionic anti-
quark field of flavour B, and Γ is an operator acting on all spaces to which the quark
field belong; for example, spinor space, flavour space… The operator Γ defines the
type of excitations generated by the pair of fermionic fields. It is worth mentioning
that Γ could depend on the space-time, but we restrict ourselves to operators that
are independent of the space-time coordinates. Mesonic operators are sometimes
called mesonic densities or mesonic interpolators.

B.1 Classification of mesonic operators
To obtain the quantum number of a particular continuum operator under a given
transformation, we study how the operator transforms under that transformation.
For example, if a continuum operator M̂ transforms under the operator K̂ as (−1) M̂ ,
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then, we say that the quantum number of M̂ under K̂ is K = (−1). It is then clear
that the quantum numbers of a given operator grant us information about the object
itself, thus allowing us to classify the operators in a clear and concise way. In addition,
the quantum numbers indicate us which physical states contribute to a particular
2-point diagonal correlation function, as all states with the same quantum numbers
to M̂ will be excited.

In our particular case, the relevant quantum numbers used to classify the states
are those associated with charge conjugation and parity transformations; we label the
charge conjugation transformation with the label Ĉ, while the parity one is labelled
P̂ .

In order to study how eq. (B.1) transforms under both operators, first we need to
know how fermionic fields transform under Ĉ and P̂ . These transformation rules can
be derived by studying Lorentz invariance in field theory. Under charge conjugation,
fermionic fields transform as

Ĉψ(x) = Ĉψ̄T (x), Ĉψ̄(x) = −ψT (x)Ĉ−1. (B.2)

While their transformation under parity is,

P̂ψ(x) = γ0ψ(x), P̂ ψ̄(x) = ψ̄(x)γ0. (B.3)

Both transformations are not affected by the internal symmetries of the fields.
In order to extract the quantum numbers of different mesonic operators, it is use-

ful to know some properties of the Dirac γ-matrices. First, through the combination
of all γ-matrices, we can generate another matrix, labelled γ5, and defined

γ5 = γ0γ1γ2γ3. (B.4)

The following properties of the Dirac γ-matrices are required in the derivation:

γµ = γTµ = γ−1
µ ; γ2µ = γ25 = 1. (B.5)

Furthermore, these anti-commuting properties of the Dirac γ-matrices play an im-
portant role in the analysis:

{γµ, γν} = 2δµν ; {γµ, γ5} = 0. (B.6)

To conclude, some useful identities relating γ-matrices and the charge conjugation
operator Ĉ are:

Ĉ−1γµĈ = −γTµ , Ĉ−1γ5Ĉ = γT5 . (B.7)
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There exist a collection of important relationships between the charge conjugation
and the parity quantum numbers, labelled C and P respectively, and the quantum
numbers of angular momentum and spin, labelled L and S. These relationships
emerge in the wave-mechanical quark model, and serve as a connection between the
states contributing to quantum field theory 2-point correlation function, the quark
model, and experimentally measurable states. The before-mentioned identities are:

C = (−1)L+S; P = (−1)L+1. (B.8)

In our case, the spin S is 0 or 1 due to the fact that mesons are bounded states of
two fermionic fields, each with spin 1

2
, which implies 1

2
⊗ 1

2
= 0, 1. In principle, L can

be any integer. Through the combination of both spin and angular momentum, we
can generate the total angular momentum quantum number: J = L+ S.

Studying how different mesonic operators transform under Ĉ and P̂ is just a
matter of applying the rules defined above to different mesonic operators. Note that
different mesonic operators can be constructed by using different Γ operators. In this
particular case, as Ĉ and P̂ do not act on the flavour space, we can safely assume
Γ = γ, being γ one of the Dirac γ-matrices. We are mainly interested in four different
operators, which we call: the scalar operator, with Γ = 1; the pseudoscalar operator,
Γ = γ5; the vector operator, Γ = γi with i = 1, 2, 3; and the axial vector operator,
Γ = γiγ5, with i = 1, 2, 3.

We do not explicitly derive the quantum numbers of all operators. Nevertheless,
to show how one could extract the quantum numbers of the operators, we will analyse
the vector operator in detail. To do so, we start by defining the vector mesonic
operator:

V̂i(x) = ψ̄A(x)γiψB(x). (B.9)

Under parity, this operator transforms as

P̂ [ψ̄A(x)γiψB(x)] = −ψ̄A(x)γiψB(x), (B.10)

which implies that the parity quantum number is P = (−1). Under charge conjuga-
tion, V̂i(x) transforms as

Ĉ [ψ̄A(x)γiψB(x)] = −ψ̄A(x)γiψB(x), (B.11)

which implies that C = (−1) for the vector operator. For the charge conjugation
operator to be defined, both fermionic fields must have the same flavour combination:
ψ̄A, ψA. Typically, the operators are identified with the lowest energy modes they can
excite. To obtain the lowest energy mode of the vector operator, we can use eq. (B.8)
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with L = 0, which leads to S = 1. Therefore, our analysis has revealed that the
lowest mode of the vector operator corresponds to a spin 1 meson; experimentally, the
lowest energy mode is referred to as the ρ(770) state. The complete set of quantum
numbers for the relevant operators can be found in Table (B.1).

Table B.1: Main mesonic operators studied in our simulations, indicated by their
names, defining operators Γ, and their JPC quantum numbers.

Channel Pseudoscalar Vector Axial-vector Scalar

Operator γ5 γµ γµγ5 1

JPC 0−+ 1−− 1++ 0++

Table (B.2) displays the lowest energy mode of each channel studied: scalar,
pseudoscalar, vector and axial-vector. Each flavour combination possesses a different
lowest energy mode. The names of the states are taken from the most recent Particle
Data Group (PDG) database [1] using the information displayed in Table (B.1) as a
reference.

Table B.2: Table containing the names of the lowest physical energy modes of each
non-singlet mesonic operator produced in our simulations. As the u and d quarks
are degenerate in our simulations, we employ the label uu to refer to the non-singlet
ud flavour combination.

Name uu us ss uc sc cc

Scalar a0(1450) K?
0(1430) f0(1710)/f0(1370) D∗

0(2400) D∗
s0(2317)

± χc0(1P )
Pseudoscalar π± K η/η′(958) D D±

s ηc(1S)
Vector ρ(770) K?(892) φ(1020)/ω(782) D∗ D∗±

s J/ψ(1S)

Axial vector a1(1260) K1A f1(1420)/f1(1285) D1(2430) Ds1(2460)
± χc1(1P )

B.2 SU(2)A related mesonic operators
In this section, we analyse the relationship between the vector and the axial vector
mesonic operators under SU(2)A chiral transformations. The existence of such a
relationship opens a window to study the restoration of chiral symmetry as a function
of the temperature through the analysis of diagonal 2-point correlation functions
composed by the vector and axial vector densities.
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As we focus on SU(2)A chiral transformations, we restrict the discussion to the
lightest flavour combination available: ud. In addition, we assume that SU(2)A chiral
symmetry is restored and, as a consequence, the light sector quarks can be treated
as an SU(2) doublet:

ψ =

(
u
d

)
; ψ̄ =

(
ū d̄

)
. (B.12)

We are interested in the following vector and axial mesonic operators:

V̂ a
i (x) = ψ̄(x) γiτa ψ(x); Âai (x) = ψ̄(x) γiγ5τa ψ(x) i = 1, 2, 3. (B.13)

The τ matrices are the three generators of SU(2), called Pauli matrices; they fulfil
the following properties:

{τa, τb} = 2 δab; [τa, τb] = 2i εabc τc. (B.14)

Under SU(2)A transformations, the quark field doublet transforms as

ψ → e+i γ5
~τ ~θ
2 ψ ' (1 + i γ5

~τ ~θ

2
)ψ, (B.15)

ψ̄ → ψ̄e+i γ5
~τ ~θ
2 ' ψ̄ (1 + i γ5

~τ ~θ

2
), (B.16)

where ~θ is a parameter of the transformation. The presence of ~τ in the transform-
ation implies that the axial transformation acts on the flavour space of the mesonic
operator: see eq. (B.12).

We can apply an infinitesimal axial transformation to the vector operator defined
in eq. (B.13) to obtain

ψ̄ γiτa ψ
SU(2)A−−−−→ ψ̄ γiτa ψ + εabc θa ψ̄ γiγ5τc ψ, (B.17)

which can be expressed as

V̂ a
i

SU(2)A−−−−→ V̂ a
i + εabc θaÂ

c
i . (B.18)

In the limit of restored chiral symmetry, the vector mesonic operator has contribu-
tions from the axial-vector density. Consequently, provided that chiral symmetry is
restored, we expect to find degeneracies between diagonal correlation functions in
the vector and the axial vector channels.
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Appendix C

Spectral reconstruction examples

This appendix contains some randomly selected reconstruction examples extracted
from different training datasets. The examples are drawn from the same datasets
used to train the 34-layer ResNet in Chapter (6). The examples do not represent
predictions of the network, as the model has already been exposed to the data while
training.

The examples are meant to display the performance of the neural network model
on the task of learning the correct reconstruction mapping in a particular dataset.
The results are sampled using the network configuration at the last training epoch.

All figures presented in this appendix show three randomly selected examples for
each dataset. For each example, the expected and predicted coefficients are shown:

ls and l̂s.

In addition, their associated spectral functions are also contained in the examples:

ρ(ω) and ρ̂(ω).

The spectral functions are generated using eq. (6.19), where the basis functions
employed in the expansion correspond to the Ns = 128 most relevant basis function
generated from the SVD decomposition of the spectral function training dataset:
R[Nb, Np].

In the first section, we present some reconstruction examples extracted from a
collection of datasets containing the same number of examples, but variable number
of peaks. The 34-layer ResNet model was trained over all those datasets for 1000
epochs. The second section contains some examples extracted from a collection of
datasets sharing the same number of peaks, but variable number of examples. The
model was trained for 500 epochs in this second case. More information about the
model, and the training setup, can be found in Chapter (6).
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Appendix C. Spectral reconstruction examples

C.1 Fixed Nb, variable Np

The reconstruction examples presented in this section are extracted from the ex-
periment shown in Figure (6.6). All training datasets share the same number of
examples, Nb = 1.5 · 105, but each of them contain spectral functions with different
number of peaks Np.
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Figure C.1: Examples extracted from a dataset with Np = 1
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Figure C.2: Examples extracted from a dataset with Np = 2
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Figure C.3: Examples extracted from a dataset with Np = 3
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Figure C.4: Examples extracted from a dataset with Np = 4
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Figure C.5: Examples extracted from a dataset with Np = 5
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Figure C.6: Examples extracted from a dataset with Np = 6
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C.2 Fixed Np, variable Nb

The reconstruction examples presented in this section are extracted from the experi-
ment shown in Figure (6.7). All training datasets contain spectral functions with the
same number of peaks, Np = 3, but each of them has a different number of training
examples Nb.

0 50 100
s

−0.2

0.0

0.2

0.4

l s

True

Pred

0 50 100
s

−0.2

0.0

0.2

0.4

l s

True

Pred

0 50 100
s

−0.2

0.0

0.2

0.4

l s

True

Pred

0 2 4 6 8
ω

0.0

0.5

1.0

1.5

ρ(
ω

)

True

Pred

0 2 4 6 8
ω

0.0

0.5

1.0

1.5

ρ(
ω

)

True

Pred

0 2 4 6 8
ω

0.0

0.5

1.0

1.5

2.0

ρ(
ω

)

True

Pred

Figure C.7: Examples extracted from a dataset with Nb = 250000
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Figure C.8: Examples extracted from a dataset with Nb = 500000
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Figure C.9: Examples extracted from a dataset with Nb = 750000
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Figure C.10: Examples extracted from a dataset with Nb = 1000000
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Figure C.11: Examples extracted from a dataset with Nb = 1250000
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Appendix D

Study on statistically equivalent
correlation functions

This appendix contains some analysis that support the idea that the required preci-
sion needed in the reconstruction mapping to resolve arbitrary high-energy peaks is
extremely large, as the spectral reconstruction mapping becomes statistically non-
injective as the number of peaks increases, that is, correlation functions that might
be equivalent between statistical errors lead to completely different physics.

To perform the analysis, we first sample a reference spectral function generated
through the combination of Np bell-shaped peaks whose parameters are randomly
sampled in the region of interest defined in eq. (6.14). After sampling a reference spec-
tral function, we compute its associated correlation function by integrating eq. (6.1)
with the low-temperature kernel defined in eq. (6.5); the resulting correlation func-
tion is labelled Cr(τ).

The second step of the analysis consists on looking for 25 statistically equivalent
correlation functions. In this context, statistical equivalence means that a proposed
correlation function C(τ) is contained inside the standard error band of Cr(τ):[

Cr(τ)− Err[Cr(τ)]
]
≤ Cr(τ) ≤

[
Cr(τ) + Err[Cr(τ)]

]
∀ τ (D.1)

The label Err[Cr(τ)] denotes the standard error of the reference correlation function
at a given Euclidean time. In principle, the errors are not heteroskedastic, that is,
they depend on τ . For a given C to be statistically equivalent to Cr, the equation
above must hold for all Euclidean times at which C and Cr are defined.

As our datasets are artificially generated, no sampling errors occur in the data-
generation process, therefore, no notion of uncertainty is available in our sampled
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correlation functions. As a result, we need to model the uncertainty in our estim-
ates. To do so, we employ the following function to model the proportion of noise
encountered in a given correlation function:

∆C(τ) =
N0 e

N1 τ

C(τ)
, (D.2)

where N0 and N1 are two constants defining the properties of the noise. Both con-
stants can be fixed using the following equations:

N0 = p0C(τ = 0); Nf =
1

Nτ

log
(pNτ C(τ = Nτ )

N0

)
. (D.3)

In the equation above p0 denotes the proportion of noise in the correlation function
at τ = 0, and pNτ denotes the proportion of noise present in C(τ) at τ = Nτ .

From eq. (D.2), we can obtain the standard error of C(τ):

Err[C(τ)] = ∆C(τ)C(τ). (D.4)

Figure (D.1) shows two artificially generated correlation functions and their standard
errors, computed using eq. (D.4) with p0 = 0.05 and pNτ = 0.20. In our experiments,
we fix p0 = 0.05 and pNτ = 0.10.
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Figure D.1: Artificially generated correlation functions whose standard errors are
computed using eq. (D.4). The noise model employed assumes a p0 = 0.05 and a
pNτ = 0.2.

The results contained in the figures demonstrate that, as Np increases, the land-
scape of possible spectral functions that lead to statistically similar correlation func-
tions largely increases. As a result, the reconstruction mapping needs to be able

XXV



Appendix D. Study on statistically equivalent correlation functions

to resolve the minor details contained in the correlation function estimates to cor-
rectly determine the corresponding spectral function. It is worth mentioning that, in
real state-of-the-art lattice QCD simulations, the proportion of noise encountered in
correlation functions is around 10−4, orders or magnitude below the ones shown in
these experiments, which significantly reduces the chances of generating statistically
equivalent correlation function from completely different spectral functions.
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Figure D.2: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by only one randomly sampled bell-shaped peak.
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Figure D.3: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by 2 randomly sampled bell-shaped peak.
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Figure D.4: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by 3 randomly sampled bell-shaped peak.
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Figure D.5: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by 4 randomly sampled bell-shaped peak.
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Figure D.6: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by 5 randomly sampled bell-shaped peak.
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Figure D.7: Examples of statistically equivalent correlation functions, their asso-
ciated spectral functions, and the respective first 128 SVD coefficients. All spectral
functions are spanned by 6 randomly sampled bell-shaped peak.
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