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Abstract

In this project we investigate the behaviour of strongly coupled gauge theories with massive
fermion fields under the S-duality proposed by Sugimoto [1]. In the massless case described
by Sugimoto we see that the highly non-trivial dynamics of the fermion fields corresponds
directly to the behaviour of a schematic scalar potential in the S-dual theory, which shows
very clear global and gauge symmetry breaking as expected in the initial theory. We induce
mass terms for the scalar and fermion fields by coupling the underlying string theory to a
supergravity background and show that this preserves a subgroup of the global symmetry
and lifts the vacuum degeneracy of the scalar potential in the S-dual side. Furthermore,
we derive relations between the flux induced fermion masses to the masses induced in the
Nambu-Goldstone modes of the S-dual scalar potential in an analogous way to the GMOR
relation known from QCD. In this way we demonstrate a formal relation which is consistent
with present QCD theory which derives from Sugimoto’s duality, as well as providing a proof
of concept for an insightful analytical tool for non-SUSY gauge theories.
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Prologue

This thesis is written to present and discuss the body of work produced during the twelve
month Master of Science project undertaken by the author, under the supervision of Profes-
sor Adi Armoni, at the Particle Physics and Cosmology Theory group of Swansea University.
The core content and results of this project have been published by the author and Professor
Armoni in a paper titled ‘GMOR relation for a QCD-like theory from S-duality’ [2], the
objective of this thesis has then been to provide a more fleshed out and developed discussion
of these findings. As per the title, the main characters of this story are symmetry break-
ing and strong-weak (‘S-’) duality, and while both of these concepts alone are not difficult
to outline, the scope of their implications for the physical and mathematical contexts in
which they arise in this work is extensive, and will require much discussion and exposition
to appreciate. Our entry into the project in earnest will come as a further development of
what is an already conceptually rich environment, involving quantum field theory, string the-
ory, strongly-coupled gauge theory, confinement, supersymmetry and its breaking, and more.

These ideas will be introduced, to the extent that they are required, as we gradually set
the stage to present the original work of this project. However, with the intention of keeping
this thesis as self-contained as possible, this prologue will aim to introduce and recap the
core ideas of the standard model, quantum chromodynamics, strongly-coupled theories, and
symmetry breaking, as these are the perennial figures within modern physics to which our
results are relevant. Extensions of these ideas such as supersymmetry and confinement will
be discussed in the introduction proper, where they will aid to contextualise the background
and motivation to this project.

The standard model of particle physics (often abbreviated to SM) is, to date, the most
complete and vindicating success of modern theoretical physics. It is the achievement which
ultimately established the position of quantum field theory as the central lens through which
we can most accurately examine nature at its smallest accessible scales. The starting premise
of the SM is that we can identify four ‘fundamental’ forces by which the observable universe
evolves, these are electro-magnetism, the strong and weak nuclear forces, and gravity. The
standard model is a theory which describes the dynamics of the electro-magnetic and nu-
clear forces, and their interactions with matter. At energy scales up to one tera-electron
volt (1 TeV), currently accessible to collider experiments, predictions made by the SM have
been incredibly accurate, culminating in the prediction of a previously unobserved theorised
particle, the Higgs’ boson, which was finally discovered in 2012.

In practice the standard model is described by a quantum field theory. That is to say;
we describe the matter and interactions of the SM in terms of a system of fields, which
are objects that exist continuously throughout space-time, the fields are then subject to the
traditional rules and conditions of quantum mechanics, whereby their dynamical states are
associated with vectors in a Hilbert space, whose moduli-squared have the interpretation
of probability density. At the classical level, field theories are usually described by a La-
grangian function (there will be several examples in the main chapters), wherein the fields
are expressed as continuously differentiable functions of space-time, however when we move
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to the quantum regime the fields are elevated to linear operators on the Hilbert space. The
Lagrangian is then either transmuted into a Hamiltonian, from which we derive a unitary
time evolution operator which is then applied to scattering-matrix methods; or it is used
directly to generate a partition function, from which we extract correlation functions and
expectation values to probe the quantum level physics.

As is the case in any physical theory, there are constraints in building the standard model,
chiefest among which is symmetry. By symmetry we mean a transformation that we may
impose on the system which will leave its physical behaviours and observables unchanged.
A physical symmetry of the system must be reflected in the Lagrangian by a mathematical
symmetry of its component terms with respect to the appropriate group. As the standard
model is intended to describe short-range, short-lived phenomena which we can re-create
with current accelerator technology, we treat the space-time environment of the theory as
flat, meaning that we can disregard gravitational effects and assume maximal global symme-
try for our theory. Physically this means our phenomena are seen as symmetric with respect
to space and time translations, rotations, and Lorentz transformations (or boosts). Mathe-
matically, symmetry is described in the language of group theory, and the appropriate group
in this case is the Poincaré group, denoted Gp :“ pR3,1 ¸ Op3, 1qq, and this consequentially
determines much of the mathematical structure of the theory.

Another layer of structure of the SM is how we couple the fields. By coupling, we are
referring to terms in the Lagrangian which contain a products of fields. The reason this
is constrained is because terms which include factors of different fields come to represent
interactions between those fields, and at the quantum level this is responsible for describing
particle interaction. A priori, we could include any term in the Lagrangian which respects
the symmetries of the system, however, from observation we know that certain particles
do and do not interact, and so to respect the phenomenology we are describing, certain
interaction terms must be included in, and some must be omitted from, the Lagrangian.
A familiar example is the neutrino, so called as it carries no electric charge (it is neutral,
hence neutrino), as such it does not experience the electro-magnetic force, meaning it does
not interact with photons. Neutrinos were first postulated to rectify an apparent anomaly
in the existing description of neutron β-decay, therefore we know that it does interact with
the weak nuclear force. The consequence of this is that the standard model includes a term
which mixes the neutrino field with the gauge field describing the weak force, while it does
not contain any term including both the electro-magnetic field and the neutrino field.

As we’ll soon come to appreciate, the way that the fields are coupled in a theory has ex-
tensive consequences to the physics and the analysis of the system. Coupling is characterised
by what are called ‘coupling constants’, which arise in Lagrangian field theory for two main
reasons; the first is that multiplying constants are included in each term of the Lagrangian
to introduce a sense of relative positivity or negativity between the terms. While an overall
factor of ´1 is irrelevant to the Lagrangian, as we are concerned ultimately with its differ-
ential behaviour, a relative factor of ´1 between terms in the Lagrangian will often have
very significant implications for the stationary points. The second reason is the requirement
that the action of a dynamical evolution be mapped to a dimensionless, real number. The
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action of a field is the integral over space-time of the Lagrangian-density function. In the
integral, the Lagrangian-density is naturally multiplied by the volume element, an inherently
dimensionful quantity, therefore we know that each term of the Lagrangrian-density must
contain appropriate inverse powers of the same dimension in order that the overall integral
is dimensionless. In QFT we typically discuss the ‘mass-dimension’ of quantities within the
Lagrangian, which gives us useful insight into how various processes scale with energy. From
relativity we know that mass and energy are equivalent, as are space and time, and we know
that at the quantum level there exists an inverse relationship between momentum-energy
and space-time quantities. Hence, the mass-dimension of the volume element is rddxs “ ´d,
where d is the dimension of the space-time our theory lives in, and therefore we know that
the mass dimension of each term in the Lagrangian-density must be rLs “ d. With this
information we can deduce the mass-dimension of our various fields, however, as we include
terms in ascending powers of the fields the mass-dimension will increase, we will have to
multiply the terms by a dimensionful constant in order to maintain rLs “ d. The coupling
constant fulfills this role for us.

Much of the analyses undertaken in QFT, such as deriving scattering cross-sections, de-
cay rates and expectation values, are performed using the techniques of perturbation theory,
wherein the Lagrangian is split into a solvable free-field part, and an interacting part. The
expectation values of the free-field theory are then corrected by a truncated power-series of
the interacting part. This methodology is extremely convenient and surprisingly applicable
to real world physics, but it has a strict criterion of applicability, in which the coupling
controlling the interactions of a theory plays a critical role. Perturbation theory only works
when a theory is weakly coupled. What this means in effect is that the interaction term
power series, which contains ascending powers of the coupling constant, must be convergent,
so that the interaction term constitutes a ‘small’ perturbation to the system. Naively, one
might think that this can easily be achieved if the modulus coupling constant is significantly
less than one, however, due to mass dimensionality and quantum effects it is often much less
simple than this to be assured that the theory is weakly coupled. In the case of a dimension-
less coupling, which we refer to as marginal, |gc| ăă 1 (where gc is the coupling constant)
is sufficient to ensure weak coupling. However, when rgcs “ 1, which is called a relevant
coupling, the interaction term is suppressed by a factor of the energy scale E and is larger
at low energies and diminishes at high energies. Conversely, when rgcs “ ´n, which is called
an irrelevant coupling, the interaction is multiplied by a factor En, and so smaller at low
energies but grows to become large at high energies. When couplings enter regions where
the perturbation series becomes divergent, we say the theory is strongly coupled, and must
proceed with different, often much more difficult means of analysis.

How does this information about couplings play into the standard model? Recall that
we model three fundamental forces in the SM, the electromagnetic, the weak, and the strong
nuclear force. Both the electromagnetic and the weak nuclear forces are weakly coupled, and
perturbation theory is sufficient to tell us most of what we would like to know. However,
the strong nuclear force (from here-on we’ll refer to it simply as the strong force) is much
less simple. The strong force is asymptotically free, an example of relevant coupling, and
is strongly coupled at low energies, and becomes gradually weaker as the energy scale of a

8



given process increases. This is convenient for analysing hard-processes, those which involve
a large exchange of energy-momentum, however it makes it very difficult to study the lower
energy phenomena, for example the ground-state. And we find in observation that this is
where many of the more mysterious effects of the strong force appear, one of which is a cen-
tral focus of this thesis; confinement. We will go into much further detail later on, but the
essential characteristic of confinement in the strong force is that the massive, fundamental
particles that interact with the force, the quarks, are never observed as free particles, but
rather only in bound states as Hadrons, some familiar examples being protons and neutrons.

To make this all a bit more tangible, lets have a look at what we’re talking about here.
The theory which lives in the standard model that is responsible for describing the physics
of the strong force is referred to as quantum chromodynamics (QCD). QCD is described by
the Lagrangian

LQCD “ TrrQapiγ
µ
Bµδ

ab
´ gγµAµδ

ab
´mab

qQb ´
1

4
GµνG

µν
s (1)

where Qa are the spinor fields representing the quarks, with flavour indices a, b “ 1, ..., Nf ,
Gµν is the gauge covariant field strength tensor, Aµ is the gauge field which takes values in
the Lie algebra sup3q, and mab is the matrix whose entries define the mass of each quark
field, and g is the QCD coupling constant, which controls the coupling of the quarks to the
gauge field.

There is one final aspect of the standard model which is determined a priori, which is
distinct from, but related to the symmetry and coupling. In fact we mentioned it obliquely
towards the end of the last paragraph; gauge symmetry. When we wish to incorporate inter-
actions between particles in QFT, for example between electrons, we do so by introducing
a field to the theory that couples to the matter fields, which we interpret as mediating the
appropriate force, (for electrons this is the electromagnetic force). These force mediating
fields are typified by the name gauge fields, and the force carrying, integer spin particles
that arise from their quantum treatment are referred to as gauge bosons, both so called
because the fields in the Lagrangian exhibit the property of gauge symmetry.

Gauge symmetry is a property of a Lagrangian function, which is a symmetry in a more
subtle sense than that of the global symmetry described previously. As we know, Lagrangian
functions are used to map the evolution of physical systems to a real number, which we inter-
pret as the action of that dynamical path, and then go on to use this information to deduce
the dynamics of the system. However, in achieving this we have to account for the fact that
many physical objects which we encounter and wish to investigate cannot be appropriately
represented as simple real number valued functions, they may be tensor valued and complex,
and still we must map them to real numbers to evaluate the action. A frequent consequence
of this, particularly in the case of gauge fields, is that their resulting Euler-Lagrange equa-
tions of motion are not invertible. this means that there will exist various functions which
can be input to them as representing the physical state of the system which will evolve iden-
tically, and which at a later point in time cannot be inverted and distinguished from each
other. While this sounds principally the same as a true symmetry of the system, it is not. A
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true symmetry will act on the system by transforming it from one physical state to another,
which will evolve in an identical way. To be explicit, a true symmetry represents a physical
change in the conditions of the system, which will not affect how the state then evolves.
A gauge symmetry arises when the non-invertibility of the equations of motion allows us a
freedom of choice in representing a physical state, which will then regardless evolve to an
identical physical state, because nothing has physically changed about the initial conditions.
To put it another way, gauge symmetry allows us to re-name physical states. From this
point of view, it is clear that re-naming the objects in a physical system can have no effect
on its dynamics.

This physical equivalence of mathematically different terms is the essence of gauge sym-
metry. In the case of the electromagnetic theory we have a single, continuous mathematical
degree of freedom, which we describe with a one dimensional Lie group, Up1q. This gauge
theory forms part of the standard model, along with an SUp2q and SUp3q gauge theories,
hence the full gauge group of the standard model is G “ SUp3q ˆ SUp2q ˆ Up1q. However,
the full SUp3qˆSUp2qˆUp1q gauge symmetry of the SM does not survive dynamical evolu-
tion, due to the presence of the Higgs’ field, which develops a non-zero vacuum expectation
value that breaks the gauge symmetry from SUp3q ˆ SUp2q ˆ Up1q to SUp3q ˆ Up1q, and
this imparts masses to the W and Z bosons. This mass is responsible for the short range
of the weak nuclear force. The Higgs’ mechanism is an example of dynamical symmetry
breaking, a phenomenon which is ubiquitous in physics but is especially central in systems
consisting of large numbers of interacting elements or ‘sites’, such is the case with condensed
matter theories, field theories, and by extension high-energy particle physics. The essence
of dynamical, or sometimes called ‘spontaneous’, symmetry breaking is when a symmetry of
the Lagrangian is not a symmetry of the ground-state, and this is often the case when an
observable quantity takes a non-zero expectation value in the ground-state. This concept is
easier to appreciate with the aid of an example, and it is known that QCD spontaneously
breaks its global symmetry, and so we shall explore this.

An important point of fact about spontaneous symmetry breaking in QCD is that, while
we have very reliable empirical indications that it does occur, the precise mechanism which
causes it is not theoretically well understood, as of the time of writing. The reason for this
comes back to the relevant couping of QCD, because it is strongly coupled at low energies, it
is presently impossible to demonstrate the symmetry breaking explicitly. At present achiev-
ing this is an active project in theoretical physics, which this project aims to provide some
resource to. Given that caveat, what are our indications that QCD spontaneously breaks its
global symmetry? The primary piece of evidence comes from the spectrum of light mesons.
If we look at the QCD Lagrangian in the limit that the masses of the light quarks (the up,
down, and strange) vanish, known as the chiral limit, we see that the Lagrangian enjoys a
SUp3qˆSUp3qˆUp1q global symmetry, and if this were a symmetry of the groundstate, one
would expect that the hadron spectrum of the theory would be organised according to the
irreducible representations of this group. However, in real-world QCD we do not see this.
One reason for this is that introducing mass to the quarks will break the global symmetry of
the theory, however, the light mesons do exhibit a ‘near-symmetry’, that is, if one disregards
mass differences which are small with respect to the total mass of the mesons, an SUp3q
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symmetry emerges.

Why does this imply spontaneous symmetry breaking? The critical fact is that the
light mesons are approximately organised into a representation of the SUp3q group, and
not SUp3q ˆ SUp3q, and this is rationalised by a very powerful result in particle theory,
the Nambu-Goldstone theorem, the upshot of which is that symmetry breaking can tell us
a lot about the low-energy physics of a system. The theorem runs as follows; if a sys-
tem dynamically breaks a symmetry, represented by a Lie group G, to a Lie subgroup H,
the implication is that the action of the full symmetry group contains the subgroup which
preserves the ground-state, and a portion which generates transformations between ground-
states. If we then consider a field in the groundstate, and subsequently introduce variation
throughout space-time by continuously acting with the broken symmetry group, meaning
that the variation corresponds to smooth transitions between a space of groundstates, then
the only term in the Lagrangian which would raise the energy above the minimum is the
derivative term, which we could minimise by making the configuration vary as a waveform
with an infinitely long wavelength. When we are discussing quantum field theory, the quan-
tisation of such configurations gives rise to particles which we call Nambu-Goldstone bosons.
Goldstone’s theorem states that the Nambu-Goldstone bosons associates with the symmetry
breaking GÑ H are generated by the action of the coset G{H. By counting the generators
of each Lie group, we can find the number of different Nambu-Goldstone bosons in the sys-
tem #NG “dim(G)´dim(H). At low-energies Nambu-Goldstone bosons often dominate the
dynamics of a system as they less suppressed in the partition function than typical excited
states.

Using this knowledge, if we suppose that QCD in the chiral limit spontaneously breaks
its global symmetry from SUp3q ˆ SUp3q ˆ Up1q Ñ SUp3q ˆ Up1q, which existing results
independent of this investigation suggest that this is a symmetry of the chiral QCD ground-
state, then this would explain why the light-mesons exhibit a SUp3q near-symmetry, as this
is the broken symmetry group which generates the spectrum of Nambu-Goldstone bosons.
Indeed, this is not merely wishful thinking. We know empirically that mesons interactions
dominate a lot of the low-energy processes in QCD, such as the exchanges which bind nu-
cleons. Furthermore there exists a low-energy effective field theory of QCD, referred to as
the Chiral Lagrangian, which models the light mesons as Nambu-Goldstone bosons of the
SUp3q ˆ SUp3q ˆ Up1q Ñ SUp3q ˆ Up1q exactly as we have discussed, and this theory has
proven to be very accurate at modelling low-energy QCD phenomena.
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Chapter 0. Introduction

The central focus of this project is to examine a conjectured electric-magnetic duality of
a non-supersymmetric, confining gauge theory, proposed by Sugimoto in his paper of 2012
[1]. We aim to build upon and extend his results and in doing so we will explore the rich
physics of symmetry breaking, we will see string theory as a fertile environment which allows
us to construct interesting field theories and provides the structures which facilitate their
analysis, and we shall encounter the mathematical language of representation theory as both
an elusive obstacle and as a powerful analytic tool. Our procedure will be to analyse how
the explicit symmetry breaking of massive fermions manifests under Sugimoto’s duality, and
we shall show that this leads to a class of relations between quark masses and light meson
masses of the form of the GMOR relation, a result known from the chiral Lagrangian of QCD.

In his paper on confinement and dynamical symmetry breaking, Sugimoto prefaces his
exposition of the S-duality concerned with a discussion of a mechanism of confinement known
as the dual Meissner effect. We shall follow suit with our own terse recap of this topic here,
as it provides a useful, if somewhat schematic, picture of the technical work that follows.
It will also help frame the work and conclusions of this project amongst the background of
existing literature on confining gauge theory and S-duality.

When we talk about confinement, we are referring to a phenomenon of certain strongly-
coupled gauge theories in which particles, specifically those which are states belonging to
non-trivial representations of the gauge group, are observed as existing within bound states,
and never as individual, elementary particles. The present consensus of understanding of
confinement is that the gauge flux associated with each non-singlet gauge particle forms
a thin ’flux tube’ of finite tension. The binding energy of the particles’ bound state is
proportional to the length of the flux tube, which is associated with the separation of the
bound particles. Due to the strong coupling of confined gauge theories, perturbative tech-
niques are not sufficient for useful analysis. As such, demonstrating the formation of gauge
flux tubes is a highly non-trivial procedure. However, in cases where we have access to an
electric-magnetic duality, there is a body of work which proposes a picture of the confinement
mechanism which contains an exploit that allows us to circumvent the labour of analysing
the strongly coupled phenomena directly. This picture is the dual Meissner mechanism.

The dual Meissner mechanism is a scenario of confinement based analagously upon the
the electric-magnetic duality of the Meissner effect, observed in type II superconductors.
In this class of superconductors, the Up1q gauge symmetry of the electromagnetic theory is
broken by the condensation of Cooper pairs (bound states of electrons), which causes the
formation of magnetic flux tubes. The idea of the dual Meissner mechanism is then based
upon the formation of gauge flux tubes on one side of an electric-magnetic duality when
monopoles condense in the other side. Suppose we have a theory which is the magnetic dual
to QCD, and in which the magnetic gauge symmetry was Higgsed by monopole condensa-
tion, the dual Meissner mechanism would cause the formation of colour flux tubes in the
electric side, which would result in confinement in QCD.
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Such a magnetic dual theory to QCD is not known to exist, and we discuss it here only
hypothetically to illustrate how symmetry breaking and confinement would be related in a
familiar environment by the dual Meissner mechanism. There are well understood exam-
ples of such electric-magnetic dualities in supersymmetric theories which undergo symmetry
breaking on one side of the duality, which manifests as confinement on the other. Exam-
ples include N “ 2 super Yang-Mills (SYM), also referred to as Seiberg-Witten theory,
and N “ 1 supersymmetric-QCD (SQCD), the latter being the subject of the well-know
Seiberg’s Duality. The existence of such dualities in supersymmetric theories has provided
theoreticians with examples of strongly-coupled and confined systems which are accessible to
established and well understood methods of analysis, significantly those of perturbation the-
ory and holomorphicity, and this has expanded our understanding of strong-coupling regimes
and the confined phase profoundly. However, this literature of results comes with certain
scientific baggage.

This baggage is an unfortunate precipitate of both the fundamental implications of su-
persymmetry (SUSY) itself, and the present state of our ability to experimentally explore
the parameter space of physical theories. Supersymmetry is a property of certain particle
theories (there are examples in quantum field theory, string theory, and beyond), which
describe both fermions and bosons. For any quantum theory which includes both fermions
and bosons, the Hilbert space of quantum states can be decomposed into the fermionic and
bosonic sectors. If there exists a linear operator that exchanges fermions and bosons within
a given state, and which commutes with the Hamiltonian, the transformation this implies on
the physical system is a symmetry of the theory. The operator defines a conserved quantity
which we call a supercharge, while the transformation it generates is called a supersymmetry.

While the inclusion of supersymmetric structure to a theory has profound consequences
for its analysis, there is also a significant phenomenological implication. The presence of
supersymmetry in a theory implies an extension to the spectrum of the theory, in the form
of new particles called superpartners. This is easy to see if one considers a solvable, non-
supersymmetric QFT, with |Fiy, |Biy, fermionic and bosonic eigenstates of the Hamiltonian
respectively, which we know have the interpretation of species of particle. If we then in-
clude a supercharge, we can generate new eigenstates of the Hamiltonian Q |Fiy, Q |Biy.
We know that these are not states which existed in the spectrum before the SUSY was in-
cluded, because we have that Q2 “ 0, and if we tried to express the original bosonic states
in terms of the fermions, and vice-versa, with Q, i.e. |Biy “ Q |Fiy, then we would have
|F 1i y “ Q |Biy “ Q2 |Fiy “ 0, and thus the Hilbert space would be null.

Therefore, if we wished to extend standard model physics with supersymmetry, as has
been suggested, we would then expect to find particles in collision experiements which are
superpartners to already observed species. Thus far to the time of writing, however, none
have been found. Whilst this is not fatal to SUSY, as it is possible for theories to predict
significant energy differences between particles and their superpartners, which could place
them out of range of our current level of observation, it does, for the time being, place
our results which depend on SUSY, such as many well-understood examples of strong-weak
duality, in a purgatorial realm of speculative and abstract study. Such abstract studies of
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structures are valid and, indeed, vital in theoretical physics in order for the field to make
progress, but so long as at least part of the theoretician’s job is concerned with distilling
real world, phenomenological predictions, which may be observed and measured, there is
compelling reason to study non-supersymmetric examples of S-duality.

The gauge theories examined in Sugimoto’s paper, which we modify in our investigation,
are realised as the low-energy effective theories of two string theories on an environment of
N anti-D3 (D3) branes suspended above an O3 orientifold. In [3], Uranga shows that such
D3-O3 systems completely break the supersymmetry of type IIB string theory, while the con-
jectured SLp2,Zq symmetry of type IIB acts to generate strong-weak dualities by inverting
the string coupling. The co-occurence of these mathematical exploits in this particular string
theory set-up forms the basis for a procedure to construct a large class of non-SUSY S-dual
gauge theories, proposed in [4], which aims to generalise the approach taken by Sugimoto
in [1], which we shall outline in the following work. In this project we aim to build upon
Sugimoto’s proposed S-duality in a different way, by introducing fermions masses, in a way
which may be extended to the more general class of non-SUSY S-dual gauge theories realised
by D3-O3 string theories. As we proceed we will observe significant, quantified similarities
between Sugimoto’s S-dual pair in the massive regime and standard model QCD, and our
results will make contact with its known behaviours at low energy.

This thesis will be arranged as follows; chapters 1 and 2 will review the essential back-
ground concepts from which the original contribution of this project begins. Chapter 3 will
detail our procedure for realising Sugimoto’s duality in the case of massive fermions, chapter
4 will then follow how this fermion mass on the electric side of the duality is realised on the
magnetic side. Finally, in chapter 5 we give the general relation between light meson masses
in the magnetic theory and quark masses in the electric theory and show that this relation-
ship is consistent with the GMOR relation of QCD, and in chapter 6 we will summarily
discuss these results and potential future directions for further investigations.
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Chapter 1. Review of ‘Confinement & Symmetry Break-

ing’ [1]

Before we begin to examine the dual gauge theories of interest, it is requisite to first fully
establish where they come from and, most critically, the origin of their proposed duality.

To begin with, we consider a type IIB string theory, embedded in a 10-dimensional
spacetime, that we parameterise with the usual co-ordinates x0, x1, ..., x9. We then define
a (3+1) dimensional hyperplane located at px4, x5, ..., x9q “ 0, and we shall say that this
plane is fixed with respect to the action of the operator; I6Ωp´1qFL , where I6 generates a Z2

action that flips the sign of the spatial co-ordinates transverse to the fixed plane px4„9q, Ω is
the world-sheet parity transformation operator and FL is the left-moving spacetime fermion
number. I6Ωp´1qFL is called the orientifold action, and the hyperplane which is invariant
under its action is called an orientifold plane, in this case it is an orientifold 3-plane, which
we shall abbreviate to O3 [1].

As a non-perturbative object in a string theory, the O3 plane has various fields living on
it, which when integrated over the O3 will define a kind of charge. For our purposes is it
essential to introduce two of these charges explicitly;

τNS “ exppi

ż

RP
2

B2q, τRR “ exppi

ż

RP
2

C2q (2)

Where B2 is the NSNS 2-form, C2 is the RR 2-form, and RP2 is the 2-dimensional, real
projective space defined by a 2-sphere surrounding the O3 plane in the transverse x4 9 space,
under the Z2 identification of antipodal points.

The charges τNS and τRR, called discrete torsions, can each take values ˘1, which to-
gether define 4 types of O3-plane; pO3´q, pO3`q, pĄO3´q, pĄO3`q these are the O3 planes with
pτNS, τRRq “ p`,`q, p´,`q, p`,´q, p´,´q respectively. Type IIB string theory is believed
to be invariant under the SLp2,Zq action on the B2 and C2 fields [5];

ˆ

C2

B2

˙

Ñ Λ

ˆ

C2

B2

˙

(3)

Where Λ P SLp2,Zq.
This symmetry also has an action on the dilaton φ and RR 0-form C0,

if Λ “

ˆ

a b
c d

˙

; (4)

τ Ñ
aτ ` b

cτ ` d

where τ “ C0 ` ie
´φ

If we consider specifically the action of;

Λ “

ˆ

0 ´1
1 0

˙

P SLp2,Zq
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We find that this yields two interesting transformations of the string theory. First, we see
that this Λ will act in (3) to interchange O3` and ĄO3´ planes, by flipping their respective
values for τNS and τRR. Second, the string coupling gs “ eφ transforms as gs Ñ 1{gs under
Λ, which is the defining action of a strong-weak duality. Therefore, in the type IIB scenario
we can build string theories around O3` and ĄO3´ planes with an intrinsic S-duality from
the SLp2,Zq symmetry at our disposal.

Two such theories are obtained by placing a stack of n D3 (read: Anti-D3) branes in the

transverse space to an O3` or ĄO3´ plane. An D3 brane is, like a D3 brane, a hypersurface
defined by 3+1 Neumann boundary conditions on an open string, but which is oppositely
charged, or ’rotated’, under the NSNS and RR fields with respect to a standard D3 brane.
For our discussion, their most important properties are that D3, like D3 branes, are invariant
under the S-duality described above, but preserve an opposite supersymmetry to O3 planes,
meaning that a system of D3 branes above an O3 plane of any type breaks supersymmetry
completely. Therefore; a stack of n-D3 branes suspended above an O3` or ĄO3´ defines a
pair of non-supersymmetric, S-dual string theories. At this point we shall implement some
terminology, which will be useful for orienting our discussion moving forward. We shall refer
to the theory of n D3 branes above an O3` plane as the ’electric side’ of our duality, while
the theory of n D3 branes above an ĄO3´ will be refered to as the ’magnetic side’.

The S-Dual Gauge theories

Recall that prior to the above exposition we had begun by discussing S-dual gauge theories,
and had framed these as the central subject of this study. This being so, our attention to
the S-dual D3-O3 string theories may appear conceptually parallel. However, the SLp2,Zq
symmetry as a generator of S-duality in the type IIB set-up is precisely how Sugimoto re-
alises a pair of QCD-like, non-SUSY S-dual gauge theories, which in tandem provide an
illuminating and novel scenario for exploring the relationship between symmetry-breaking
and confinement. The mathematical relationships between string theory and gauge theory
are an area of active and on-going research, and while the particular connection we employ
to transport our string S-duality to a gauge theoretic picture is not a new one, it does make
contact with some non-trivial complications, and so requires some detail before we discuss
how this project attempts to build on its results.

One of the early results of string theory is that the quantization of any string theory gives
rise to infinitely many species of elementary particles. Furthermore, the quantization of open
strings ending on D-branes means we have infinite species of particles living on the brane,
and in the case of type IIB string theory these species include fermions and gauge bosons,
as well as scalar particles. As with any quantum theory of particles, we’re free to interpret
these as excited states of fields. In his paper, Sugimoto, examines the tree-level massless
field contents of the electric and magnetic string theories outlined above and posits that
these effective field theories should also be s-dual to eachother. This is sensible as they each
describe the low-energy physics of two string theories which are related by an exact internal
symmetry, and should therefore be ‘physically’ equivalent. We will see more evidence to
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suggest this is correct, beyond the plausibility argument here, as we go on.
We can now get properly acquainted with our S-dual gauge theories. We shall from here

on refer to the low-energy effective theory of the ’electric side’ string theory, as simply; the
electric theory, and we list its tree level massless fields here;

Ltreeelectric „ TrF 2
µν ` Tr pQ̄iσ

µ
pδµQ

i
` rAµ, Q

i
sqq ` Tr ppδµΦI

` rAµ,Φ
I
sq

2
q (5)

`Tr pQiΣI
ijrΦ

I , Qj
sq ` Tr prΦI ,ΦJ

s
2
q ` h.c.

Where A is the gauge field, Q is the left-handed fermion field, ΦI are the six transverse
scalar fields, and ΣI are matrices which form a dirac-like algebra. The electric theory has
the gauge symmetry USpp2nq and global symmetry SOp6q

In line with this naming convention, we call the low-energy effective theory of the ’mag-
netic side’ string theory, the magnetic theory, and again list its tree level massless contents;

LtreemagneticpIq „ Tr f 2
µν ` Tr pq̄iσ

µ
pδµq

i
` raµ, q

i
sqq ` Tr ppδµφ

I
` raµ, φ

I
sq

2
q (6)

`ppδµ ` aµqtq
2
` V ptq ` ψ̄iσµpδµφi ` aµψiq ` Tr pqiΣI

ijrφ
I , qjsq

`Tr prφI , φJ s2q ` tTφIφIt` ψ̄iTΣI
ijφ

Iψ̄j ` tT qiψi ` h.c.

Where a is the gauge field, q and ψ are left-handed weyl fermions, t is a tachyonic scalar
field and again φI are six tranverse scalar fields. The magnetic theory has gauge symmetry
SOp2nq and global symmetry SOp6q.

The electric and magnetic theory Lagrangians are in schematic form, and the couplings
have been omitted. There are some issues to clarify before any productive analyses of these
theories can proceed. Starting with the most obvious point of concern, we have a tachyon in
our magnetic theory, making it unstable. After tachyon condensation the gauge symmetry
will be broken to SOp2nq Ñ SOp2n´ 1q, and through the terms tTφIφIt and tT qiψi we see
that this condensation will give mass to some components of φI and qi. The massless field
Lagrangian after tachyon condensation is given here;

LtreemagneticpIIq „ Tr f 2
µν ` Tr pq̄iσ

µ
pδµq

i
` raµ, q

i
sqq ` Tr ppδµφ

I
` raµ, φ

I
sq

2
q (7)

`ψ̄iσµpδµφi ` aµψiq ` Tr pqiΣI
ijrφ

I , qjsq ` Tr prφI , φJ s2q ` h.c.

Going forward, this is the theory we will be referring to as the magnetic theory.

There have been analyses of the electric theory which tell us about the dynamics of this
theory when we take into account the 1-loop beta function. Firstly, we have that this theory
is asymptotically free, in other words, it is best described at high energies. The fields in
(5) are all massless at tree level, however as the supersymmetry is completely broken, the
scalar fields take on cut-off scale masses from the quantum corrections. Significantly, it is
conjectured in the literature that the USpp2nq gauge theory with four Weyl fermions in
the anti-symmetry representation lies outside the conformal window and is in the confined
phase, also, for the case that n ą 1 the global SOp6q symmetry is believed to be dynamically
broken to SOp4q by the condensation of a fermion bilinear; εαβxTr pQi

αQ
j
βqy9δ

ij.
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The magnetic theory is more opaque. It is not asymptotically free, which raises obstacles
when taking a decoupling limit in a controlled way, however, some useful insight is extracted
from a comparison of 1-loop corrections to the scalar masses between the electric and mag-
netic theories. The 1-loop calculation shows that the mass-squared for the ΦI in the electric
theory is positive, while the mass-squared for the φI in the magnetic theory is negative;

m2
Φ “ `Cgsl

´2
s , m2

φ “ ´C
1gsl

´2
s (8)

Where gs is the string coupling and C and C 1 are positive constants.

The scalar fields on the D3 brane have the interpretation of the position of the brane in
the transverse space to the central O3 plane, as such, the mass-squared values in (8) suggest
that the D3 in the electric theory are attracted to the O3 plane, while in the magnetic the-
ory they are repulsed. Initially this might seem strange, as we stated before that both the
magnetic and electric theories describe low-energy dynamics of two ’physically’ equivalent
string theories, and yet it appears that we are seeing two contradictory behaviours. However,
this is in fact not the case, and to understand why is what makes knowledge of the 1-loop
corrections to each theory necessary to making progress.

The mass-squared results in (8) are only reliable when the coupling in each theory is small.
Being that the electric theory is asymptotically free, and the magnetic theory is asymptoti-
cally non-free, the couplings in each theory are suppressed at different energy scales, and so
we find that the D3 branes are not in fact attracted and repelled at the same time, but instead
are attracted at high energies (when the electric theory is best described), corresponding to
a large displacement from the O3, and are repulsed at whichever energy (and correspond-
ing distance from O3) minimises the coupling of the magnetic theory. Since the magnetic
theory is non-free and we lack a smooth decoupling limit we cannot be certain where the
coupling is small, however, as the S-duality of the parent string theories inverts the string
coupling, it is reasonable to proceed with the assumption that it will be at a lower energy
(and therefore closer to the O3) than the electric theory. Though, it should be noted that
this does not mean that the magnetic theory will necessarily be weakly coupled at any energy.

With this interpretation, (8) gives us a picture of a scalar theory which is unstable at the
origin, but becomes attractive towards the origin at large distances. This Higgs potential-like
behaviour suggests that our scalar fields will develop a non-trivial expectation value (vev)
and will thereby spontaneously break the global symmetry of the system. This qualitative
picture is of course best described mathematically on the magnetic side of our duality, in
spite of the difficulties concerning the energy scales at which it is strongly or weakly coupled,
because the scalar fields are completely decoupled from the electric theory. Rather than going
through the hardship of attempting to calculate the exact potential of the magnetic theory,
Sugimoto makes fruitful progress by what he refers to as a ’toy’ potential, or model, for the
magnetic theory scalars. Note that we are now disregarding the dynamics of the fermions
on the magnetic side as they are not relevant to the global symmetry breaking that we want
to realise.
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Sugimoto’s model potential is as follows;

V pφIq “ ´
µ2

2
trpφIφIq ´

g

4
trprφI , φJ s2q `

λ

2
trppφIφIq2q (9)

Where the first term is the tachyonic mass term, the second is imported from the potential
portion of the Lagrangian (7), and the final, quartic term is included to stabilise the poten-
tial at long-distance, to reflect the behaviour we know to expect. It should be said that the
only term in the model potential not given an explicit origin is this quartic term, however,
Sugimoto is not pulling this out of the air for convenience, rather this term is certain to
exist in the full potential of the magnetic theory, which we are not privy to, and we are
simply disregarding any further corrections as being unnecessary to capturing the symmetry
breaking behaviour of the theory and needlessly burdensome to try to extract more precisely.

Differentiating (9) yields the following equation of motion for the magnetic theory;

´µ2φI ´ grφJ , rφI , φJ ss ` λpφIpφJφJq ` pφJφJqφIq “ 0 (10)

Which admits several vacua, depending on the choice of (in)equality between the positive
coefficients λ and g.

The scalar field φI takes values in the Lie algebra of the gauge group, for the case n=2;
SOp3q. Hence we define

φI “ AIiJ
i (11)

Where J i are basis elements of the Lie algebra sop3q (the spin-1 representation of sup2q). For
the choice λ ą g, it is straight-forward to show that the following value for φI is a solution
to (10) and there-by a vacuum of the theory

φ1
“ aJ1, φ2

“ aJ2, φ3
“ aJ3, φ4„6

“ 0 (12)

This vacuum for (9) is clearly invariant under the group SOp3qˆSOp3q, where one SO(3)
acts on the non-zero components of xφIy and is freely undone by a gauge rotation, and the
other is the SO(3) which acts on the null-components of xφIy which are trivially invariant
under its action. The isomorphism SOp3q ˆ SOp3q » SOp4q is a known result; therefore,
Sugimoto’s duality allows us to realise the dynamical SOp6q Ñ SOp4q symmetry breaking
expected of the strongly-coupled electric theory very simply and elegantly in terms of the
condensation of a non-zero vev for scalar fields in its magnetic-dual description. Furthermore,
had we been without prior indication of the phase of the electric theory, by showing that
its dual magnetic description breaks global symmetry dynamically, it would be consistent
with the dual-Meissner mechanism of confinement to conjecture that the electric theory was
confining.
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Chapter 2. The Chiral Lagrangian

We are now in a position to evaluate our mass term for the pions (Nambu-Goldstone bosons)
in more explicit terms. To make proper sense of our term, it is very helpful to quickly review
the pion mass term in the chiral Lagrangian of QCD.

In a USpp2Nq theory with four antisymmetric quarks there exists a Up4q “ Up1qbSUp4q
global symmetry. The Up1q part is anomalous and hence the theory admits a massive η1

pseudo-scalar meson. According to Witten-Veneziano formula [6, 7] we expect it to have a
mass M2

η1 „
2N´2

2N
Λ2

QCD. Unlike ordinary QCD where the η1 becomes light in the ’t Hooft
large-N limit, in the present case the η1 is always heavy.

The global SUp4q is expected to break dynamically, according to the pattern

SUp4q Ñ SOp4q. (13)

The order parameter for the breaking is the quark condensate

xQaQb
y “ cδab a, b “ 1...4 , (14)

where c ‰ 0 is the value of the condensate.
The breaking of the global symmetry results in a multiplet of nine massless Nambu-

Goldstone (NG) bosons. The NG bosons belong to the coset U ” G{H “ SUp4q{SOp4q.
The fifteen generators of the SUp4q are either symmetric (and real) or antisymmetric (and
imaginary) Hermitian matrices. The six antisymmetric generators form the generators of
the SOp4q group. The remaning nine symmetric generators of the SUp4q group transform
in the two-index traceless symmetric representation of SOp4q.

The chiral Lagrangian of the present theory is written in terms of U , with

U “ exp iπ (15)

where π is a matrix that transforms in the two-index traceless symmetric representation of
the SOp4q algebra.

The relevant terms that will be at the centre of our interest are the kinetic term and the
mass term for the NG bosons (the ’pions’)

S „

ż

d4x tr
`

pU´1
BµUqpU

´1
B
µUq ` cpMU ` h.c.q

˘

, (16)

where M is the quarks’ mass matrix, namely the same 4 ˆ 4 symmetric matrix that gives
mass to the quarks

MabQ
aQb

` h.c. (17)

We will choose M to be real. Note that we set fπ “ 1.
We will mostly be interested in the kinetic term and the mass term of the pions

S “

ż

d4x tr
`

BµπB
µπ ´ cMπ2

˘

` ... . (18)
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In the simplest case, where all four quarks have the same mass M “ m1, we recover the
celebrated GMOR relation

M2
π „ cm . (19)

Another interesting case that we will discuss later is the special case when the four pi-
ons consist of two pairs of pions of equal mass. In this case the global SOp4q symmetry is
further explicitly broken to SOp2q ˆ SOp2q and the resulting mass spectrum of the pions is
five degenerate pions with mass M2 „ c1

2
pm1 ` m2q, two pions with mass M2 „ cm1 and

two pions with mass M2 „ cm2.

In the most general case where the four quark masses have arbitrary values we can proceed
as follows. We parametrize the symmetric 4 ˆ 4 pion matrix using ten entries, such that
πij “ πji. Note that the diagonal is not traceless, namely we have ten Nambu-Goldstone
bosons instead of nine. We thus add the constraint

ÿ

i

πii “ 0 . (20)

The mass terms in (18) together with the constraint (20) take the form

L “ ´ c
2

ÿ

ij

pmi `mjqπ
2
ij ´ Λ2

p
ÿ

i

πiiq
2 , (21)

with Λ Ñ 8. We may think about
ř

i πii as an infinitely heavy η1. If, instead, we consider
a hypothetical theory where Λ “ 0, namely we ignore the constraint (20), we obtain at low
eneregy ten light particles whose masses are given by M2

ij “ cpmi`mjq, where four of them
contain a quark anti-quark pair of same flavour (mi “ mj) and the other six contain a quark
anti-quark of different flavours (mi ‰ mj). Imagine that we continuously vary the value of
Λ from 0 to 8. As we increase Λ the mass of the η1 increases, the masses of six NG bosons
do not change and the mass of the three remaining NG bosons become a mixture of the four
quark masses. The precise eigenvalues are determined by diagonalising a 3 ˆ 3 matrix. We
will discuss it in more detail in the next section.

At the Lie Algebra level sop4q is isomorphic to sop3q ˆ sop3q. For comparison with
the results of S-duality, it will be more convenient to write the chiral Lagrangian in the
language of SOp3q ˆ SOp3q. The nine pions which transform in the traceless symmetric
representation of SOp4q transform in the bi-fundamental of SOp3qˆSOp3q. The ten entries of
the symmetric mass matrix M can be decomposed into a singlet m and nine bifundamentals
mĩ
i of SOp3q ˆ SOp3q (i, ĩ “ 1..3), as listed in table (1) below

SOp3q SOp3q
m . .
mĩ
i

πĩi

Table 1: Content of the chiral Lagrangian.
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The relation between the ten parameters of Mab and m,mĩ
i is given in Chapter 5.

The explicit form of the action (18) is

S “

ż

d4x
´

Bµπ
ĩ
iB
µπi

ĩ
´ cmπĩiπ

i
ĩ
` cεĩj̃k̃ε

ijkmĩ
iπ
j̃
jπ

k̃
k

¯

. (22)

Chapter 3. Massive Quarks Under Sugimoto’s Duality

We have the scalar potential (9) as a model of the magnetic-dual theory to our confined
electric theory

V pφIq “ ´
µ2

2
trpφIφIq ´

g

4
trprφI , φJ s2q `

λ

2
trppφIφIq2q

Which, as we know from chapter one, admits several vacua, depending on the choice
of (in)equality between the coefficients λ and g. For the choice λ ą g the e.o.m admits a
vacuum

φ1
“ aJ1, φ2

“ aJ2, φ3
“ aJ3, φ4 6

“ 0

We focus on this solution as it dynamically breaks the global SOp6q symmetry to SOp3qˆ
SOp3q „ SOp4q. We have stated from the outset that our intention is to examine the case
for massive fermions, and to relate these masses to the spectrum of pions, which are Nambu-
Goldstone bosons of this symmetry breaking. Therefore we treat Sugimoto’s fuzzy sphere
vacuum to the potential (9), as the limiting case where the mass of the fermions vanish.

Introducing a general perturbation to the scalar fields

φI “ xφIy ` δφI (23)

Where δφI “ AIaJ
a

Substituting into potential (9) and evaluating to order Opδφ2q yields the following

V pφIq “ V pxφIyq `
µ2

2pg ` 2λq
ppλ´ gqpAbaA

b
a ` A

b
aA

a
b q ` 2pλ` gqpAaaq

2
q (24)

Where (a, b “ 1, 2, 3).

Note that we ignore terms in the expansion which are linear in the perturbation. In the
language of QFT, such terms are called tadpoles, and do not contribute to the dynaimcs
of the scalar fields. There are also terms which are cubic and quartic in the perturbation,
however these are not relevant to the mass of the Nambu-Goldstone bosons, hence we trun-
cate at order Opδφ2q. Note that the terms which appear in (24) involve the perturbation
components Aba, which are the perturbations around the non-zero components of the vac-
uum, which is invariant under the action of SOp3q by virtue of the gauge symmetry. As
such, these perturbations are absorbed by the gauge field and are referred to as ’would-be’
Nambu-Goldstone bosons.
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The true Nambu-Goldstone bosons of the dynamical symmetry breaking, which are our
pions, are associated with the 9 perturbation components Ama , where (m “ 4, 5, 6, a “ 1, 2, 3),
which do not have mass terms in (24). Therefore we have that the case of massless quarks in
the electric theory corresponds to massless pions in the magnetic theory. To explore the re-
lation between non-trivial quark and pion masses we look to introduce an additional physics
to the string theory, which will confer masses to the fermions, and when we perturb around
the vacuum (12), yield massive pions.

Such a modification is presented in the paper by Uranga et al. [8], which details the
coupling of a 3-form flux background (as encountered in supergravity) to a D3-brane action.
The term added to the Lagrangian of the string theories which is relevant to our discussion
is as follows

Lsoft “ Trp
igs
6
p˚6G3 ´ iG3qIJKφ

IφJφK ` h.c.`
gs
96
p˚6G3 ´ iG3qIJKψγ

IJKψ ` h.c.q (25)

Note that this term is added to the Lagrangians of both the electric and magnetic string
theories, however, we expect only the fermionic term to survive in our electric gauge theory,
as the scalars decouple from the low-energy physics by acquiring cut-off scale masses. Like-
wise, we expect the cubic scalar term to remain in the magnetic theory while the fermionic
term becomes irrelevant to the physics.

Dimensional analysis tells us that the term gs
96
p˚6G3 ´ iG3qIJKψγ

IJKψ is a mass term
for the quarks. The only a priori constraint is on the three-form p˚6G3 ´ iG3qIJK in that it
must be anti-self-dual, though G3 itself is an arbitrary 3-form. Therefore we may engineer
the components of the three-form to produce a controllable quark mass term. The same
three-form couples to the a cubic scalar term in the magnetic theory, therefore, the coupling
introduces a term to our magnetic theory potential which will produce a pion mass when
we perturb around the fuzzy sphere solution (12). This pion mass term should be directly
relatable to the quark mass term as they are both linear in the three-form. i.e.

Defining: p˚6GIJK ´ iGIJKq “ CIJK (26)

Under the Perturbation: φI “ xφIy ` δφI

CIJKφ
IφJφK Ñ ...` CIJKxφ

I
yδφJδφK ` ...

Three-Form Flux Components

We have that both the quark masses of the electric theory, and the pion masses of the mag-
netic theory are linear in the three-form background C. This common factor of the three-form
flux, and a naive dimensional analysis, conspire to reveal that the quark and pion masses
are related, schematically, as m2

π „ Mq. The full form of the relation is m2
πf

2 “ ´2Mq xqqy
[9], where f is the pion decay constant and xqqy is the quark condensate. This result is
known from the chiral Lagrangian of QCD and is referred to as the Gell-Mann, Oakes, Ren-
ner (GMOR) relation [10]. We wish to go further than a schematic comparison with known
results however, rather, we aim to extract the full, general relationship between the quark
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and pion masses under Sugimoto’s duality.

The full expression will allow us to compare not only the form of the quark mass/pion
mass relation with chiral QCD, but will also facilitate comparison between specific cases of
quark mass degeneracies and how they affect the distribution of pion masses. In order that
we should be able to tune the electric-theory fermion masses at will, and to extract the exact
relationship between the quark and pion masses under the S-duality, we first must have an
explicit expression of the 3-form C.

To derive an expression for C, we first look at a general term which couples a 3-form,
which we will call G, to the fermions in our electric theory;

GIJKpγ
IJK
qij “ pmqqij (27)

Where mq is a symmetric, 4 ˆ 4 matrix with real eigenvalues. I,J,K are indices of the
SOp6q space, taking values (1, ..., 6). i,j are indices over the SOp4q space and take values
(1, ..., 4). We progress with the following procedure.

γIJK “ γrIγJγKs (28)

GIJKγ
IJKγrI

1

γJ
1

γK
1s
“ mqγ

rI 1γJ
1

γK
1s (29)

Given that γI satisfy the Dirac algebra rγI , γJ s “ 2pγIγJ ´ δIJ1q we can show that,

TrpγrIγJγKsγrI
1

γJ
1

γK
1s
q “ (30)

4δKI
1

δJJ
1

δIK
1

´ 4δKI
1

δIJ
1

δJK
1

` 4δII
1

δKJ
1

δJK
1

´ 4δII
1

δJJ
1

δKK
1

` 4δJI
1

δIJ
1

δKK
1

´ 4δJI
1

δKJ
1

δIK
1

Which we substitute into (29) and evaluate.

TrpGIJKγ
IJKγrI

1

γJ
1

γK
1s
q “ Trpmqγ

rI 1γJ
1

γK
1s
q (31)

“ GIJKp4δ
KI 1δJJ

1

δIK
1

´4δKI
1

δIJ
1

δJK
1

`4δII
1

δKJ
1

δJK
1

´4δII
1

δJJ
1

δKK
1

`4δJI
1

δIJ
1

δKK
1

´4δJI
1

δKJ
1

δIK
1

q

“ 4GK1J 1I 1
´ 4GJ 1K1I 1

` 4GI 1K1J 1
´ 4GI 1J 1K1

` 4GJ 1I 1K1
´ 4GK1I 1J 1

“ ´24GrI
1J 1K1s

“ Trpmqγ
rI 1γJ

1

γK
1s
q

The reader will notice that we have derived an expression for the components of a vector
field, with raised indices, whereas we started this procedure with the aim of finding the
components of a three-form, which would have lowered indices. To lower the indices we
need the metric on the 6-dimensional space transverse to the D3 branes. In [8] we learn
that the dynamical metric of the full string theory is perturbed about the 10-dimensional
flat Minkowski metric. It follows then that the portion of the metric which lives on the
transverse space is, to leading order, the 6-dimensional flat Euclidean metric. Therefore,
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in order to lower the indices of the derived expression, to give find the components of the
three-form G, we need only contract with a Kronecker delta. Since this does not introduce
any multiplying factors or sign changes on GrIJKs, we can forego an explicit contraction and
simply raise or lower indices at our convenience, i.e. GrIJKs “ GrIJKs.

As GIJK are the components of a 3-form, we drop the brackets on the lower indices,
which indicate an antisymmetrisation that from here on we will assume tacitly. Therefore,
we have;

GIJK “
´1

24
TrpMγrIγJγKsq (32)

Anti-Self-Duality of C

So far we have an expression for a three-form, that we’ve called G, which contracts with the
anti-symmetric product of three Dirac matrices to give the 4ˆ 4 symmetric, real matrix mq.
This criterion being satisfied is sufficient to support the interpretation of the coupling of G
to the fermions as a sensible mass term. However, the three-form which contracts with the γ
triple index in Uranga’s coupling term in [8] was anti-self-dual, and so far G is not. We must
therefore go further to assimilate this property into a new three-form, C, which is derived
from G.

Let us see what this anti-self-dual property requires: First, recall that on a Riemannian
manifold, the square of the Hodge dual upon a 3-form evaluates to ´1, i.e.

p˚6q
2ω “ ´ω

Where ω is a three-form.

Uranga gives us the expression for the anti-self-dual three-form C in terms of an arbitrary
three-form, which he calls G, the components of which we have derived explicitly such that
its coupling to the fermions is a reasonable mass term. From [8] we have:

C “ p˚6G´ iGq (33)

6 ˚6C “ p´i˚6 G´Gq “ ´iC

The Hodge dual convention we follow here is as follows

p˚ωqIJK “ iε I 1J 1K1

IJK ω I 1J 1K1 (34)

Therefore we substitute our expression for the components of G into (33) to derive the
anti-self-dual components of C

CIJK “
´1

48
Trpmqpε

IJKI 1J 1K1γrI 1γJ 1γK1s ´ iγrIγJγKsqq (35)

Where we have included an additional factor of 1{2 so as to avoid unwanted scaling of
the matrix M when C couples to the fermions, as opposed to G. Also, the factor of i in the
Hodge dual is absorbed into Sugimoto’s employed representation of the Dirac algebra in [1].
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Chapter 4. Representation Theory & The Pion Mass

Term

Let us introduce mass to the quarks of the electric theory and examine how it affects the
mass of the pions in the magnetic side of the duality. To this end we will introduce a three-
form flux G3 “ F3 ´ τH3 in the type IIB background following [11, 12]. F3 and H3 are RR
and NSNS three-form fluxes. As we shall see in a moment the flux encodes the quark mass
matrix pmqqij.

The action of a D3 brane in a background that includes a three-form flux is given in [11]
contains the following terms.

Lsoft “ ...` i
gs
6
p‹6G3 ´ iG3qIJKφ

IφJφK ` i
gs
96
p‹6G3 ´ iG3qIJKQγ

rIγJγKsQ` h.c. (36)

Substituting the following components for the three-form term.

p‹6G3 ´ iG3qIJK “ CIJK “
´1

48
Trpmqpε

I 1J 1K1

IJK γrI 1γJ 1γK1s ´ iγrIγJγKsqq (37)

Note that this trace is carried out over the SOp4q indices.
We find that the three-form coupling confers a fermion mass term to the electric theory

of the form QipmqqijQ
j where we have full control over the entries of the matrix mq.

The reader will recall, from chapter one, that in [1] the scalar fields of the electric theory
acquire cut-off scale masses and decouple. Consequently, only the flux-induced quark mass
term of (36) carries into the electric theory. However, in the magnetic theory, the scalar
fields are where the critical behaviours of the physics are realised, and as such only the scalar
coupling term of (36) is of interest to the magnetic theory. Our specific aim is to relate the
quark masses and pion masses due to this three-form coupling, therefore we introduce the
scalar coupling in (36) as a perturbation around the fuzzy sphere vacuum (12) of the original
magnetic theory potential.

V 1 “ V0 ` TrpCIJKφ
IφJφKq (38)

Where V0 is the potential (9). The trace is over the gauge group of the magentic theory
SOp2N ´ 1q. For simplicity we will consider the case with N “ 2, namely SOp3q. The
generalisation to arbitrary N is straightforward.

We introduce perturbations to the scalar fields of the following form

φI “ xφIy ` δφI (39)

where δφ1„3 “ 0, δφI“4„6 “ δAIaJ
a.

Substituting this into the three-form coupling term in (38) we obtain several terms of
varying order in the vev and perturbations, but most important for our purposes is the
following

TrCIJKpxφ
I
y ` δφIqpxφJy ` δφJqpxφKy ` δφKq “ (40)

...` 3 TrCIJKpxφ
I
yδφJδφKq ` ...
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Which, as discussed in chapter 3, is a mass term for the pions.

To proceed to the full relation between the quark and pion masses we must first expand
(40). We find immediately that there are some important mathematical details in (40) which
must be properly understood in order that we can make progress correctly. Firstly, note that
the trace over the scalar fields in the magnetic theory potential is a trace over SOp3q, namely
the gauge group of the magnetic theory. While the three-form C contains a trace over SOp4q.
So in (40) we are dealing with a term which involves a nested trace over two different groups.

3 TrSOp3qpCIJKxφ
I
yδφJδφKq “

´1

16
TrSOp3qpTrSOp4qpmqpε

I 1J 1K1

IJK γrI 1γJ 1γK1s ´ iγrIγJγKsqqxφ
I
yδφJδφKq

(41)

Where our expression for the components of the background three-form CIJK enters into
the pion mass term, we are free to use our non-chiral expression which is derived in chapter 3,
as the first portion which contracts with the epsilon is not relevant to calculations concerning
the pion masses. With this in mind, we can simplify our term to a more compact form.

3 TrSOp3qpCIJKxφ
I
yδφJδφKq “

´1

8
TrSOp3qpTrSOp4qpmqγrIγJγKsqxφ

I
yδφJδφKq (42)

The nested trace of (42) is a bar to progress, as it mixes the SOp4q language of the electric
theory with the SOp3q language of the gauge symmetry of the magnetic theory. However, we
can resolve this by reconsidering the space our pions live in. Our magnetic theory pions are
Nambu-Goldstone bosons, which take values as the generators of the coset pSOp6q{pSOp3qˆ
SOp3qqq, associated with the dynamical symmetry breaking. It is easiest to realise these
generators if we represent the coset as SUp4q{SOp4q. The isomorphism SUp4q » SOp6q
(modulo Z2) is well known. Less well known is the isomorphism SOp4q » SOp3qˆSOp3q, so
we briefly present its origin. In [13], Pegoraro demonstrates by means of defining a particular
basis, the existence of an isomorphism between SOp4q and SOp3qˆSOp3q at the level of the
Lie algebra. A basis for the Lie algebra sop4q in the fundamental representation is given as

L1 “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

, L2 “

¨

˚

˚

˝

0 0 0 0
0 0 1 0
0 ´1 0 0
0 0 0 0

˛

‹

‹

‚

, L3 “

¨

˚

˚

˝

0 0 1 0
0 0 0 0
´1 0 0 0
0 0 0 0

˛

‹

‹

‚

K1 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

, K2 “

¨

˚

˚

˝

0 0 0 1
0 0 0 0
0 0 0 0
´1 0 0 0

˛

‹

‹

‚

, K2 “

¨

˚

˚

˝

0 0 0 0
0 0 0 ´1
0 0 0 0
0 1 0 0

˛

‹

‹

‚

Note that we have, by our notation, defined the basis as consisting of two ’blocks’. This
is made natural by the Lie bracket structure on the basis

rLa, Lbs “ εabcLc, rKa, Kbs “ εabcLc, rLa, Kbs “ εabcKc (43)

Pegoraro then defines a new basis, also consisting of two blocks, P “ 1
2
pL ` Kq, Q “

1
2
pL´Kq, which obey the following Lie bracket structure

rPa, Pbs “ εabcPc, rQa, Qbs “ εabcQc, rPa, Qbs “ 0 (44)
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From this we see that each block in this basis of sop4q independently realises the Lie alge-
bra sop3q. Therefore we can map one block of sop4q to one copy of sop3q and map the other
block to the other copy, the resulting total map over the basis of sop4q is linear, injective and
preserves the Lie bracket structure, and therefore defines an isomorphism. This verifies that
we can indeed represent the coset defined the symmetry breaking, SOp6q{SOp3q ˆSOp3q as
SUp4q{SOp4q. This helps us in realising the generators of the coset explicitly as SOp4q is a
Lie subgorup of SUp4q, and therefore we can define its action on SUp4q very simply.

The coset space of SUp4q{SOp4q is defined as SUp4q modulo the equivalence relation
defined by the action of SOp4q, where g „ g1, where g, g1 P SUp4q, iff Dh P SOp4q : g1 “
hg. SUp4q{SOp4q then comprises the elements of SUp4q which are not related under this
equivalence class. In general we express the generators of a Lie group as a basis of the tangent
space to curves on the Lie group which pass through the identity. On SUp4q, we can generate
curves through the identity by the action of SUp4q on itself, and by the action of SOp4q.
SUp4q{SOp4q is a non-empty set which implies that there exist elements of SUp4q which
are not connected to the identity by the action of SOp4q. However, SUp4q is a connected
Lie group, therefore we can define a curve which connects every element to the identity by
the action of SUp4q on itself. These two facts together imply that there exist curves which
are generated by the action of SUp4q which are not generated by the action of SOp4q, these
curves are defined by the action of the coset space. This implies that the tangent space
at the identity of SUp4q can be decomposed as the direct sum of tangent vectors to curves
generated by SUp4q{SOp4q and tangent vectors to curves generated by SOp4q. To put it
explicitly

sup4q “ LtSUp4q{SOp4qu ‘ sop4q (45)

We have, therefore, that the generators of the coset space of our symmetry breaking
is defined by the orthogonal complement of the Lie algebra sup4q with respect to the Lie
algebra sop4q.

The Lie algebra sup4q in the fundamental representation is realised by the vector space of
traceless, anti-Hermitian four-by-four matrices, which we can decompose as the direct sum of
the space of traceless, symmetric imaginary 4ˆ 4 matrices, and the space of anti-symmetric
real 4 ˆ 4 matrices. The latter portion being exactly the Lie algebra sop4q. Therefore, the
orthogonal complement of sup4q w.r.t. sop4q, which defines the generators of SUp4q{SOp4q,
is the space of symmetric, traceless imaginary 4 ˆ 4 matrices. The space of symmetric,
traceless imaginary 4ˆ 4 matrices is clearly isomorphic to the space of symmetric, traceless
real 4 ˆ 4 matrices. In [13], Pegoraro tells us that this space transforms under the adjoint
action of SOp4q. The isomorphism we detailed earlier tells that we can then realise the space
of SUp4q{SOp4q generators as a representation space of SOp3qˆSOp3q, and in fact Pegoraro
describes the appropriate space, and it is simply the space of 3 ˆ 3 real matrices under the
action

SOp3q ˆ SOp3q : Matp3,Rq ÑMatp3,Rq “ nÑ O1nO
T
2 (46)

Where n PMatp3,Rq, O1, O2 P SOp3q.
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We see now that we have come full circle, and shown that our Nambu-Goldstone bosons
transform under the symmetry group of the vacuum, and as such the trace taken over (42)
should be a trace over the bifundamental representation space of SOp3q ˆ SOp3q. This is
achieved by making a ’colour-flavour’ identification in the trace of (42), that is, we identify
the SOp3q gauge symmetry of the magnetic theory with one of the copies of SOp3q which
lives in the SOp4q symmetry of the electric theory. i.e.

SOp3qcol. „ SOp3qflav.

ùñ TrSOp3q TrSOp4q Ñ TrSOp3qˆSOp3q

Of course in order to perform an SOp3q ˆ SOp3q trace over the pion mass term, all
the factors in the operand of the trace must be in the bi-fundamental representation of
SOp3q ˆ SOp3q. However, from the outset, mq and the Dirac matrices γI belong to a
representation space of SOp4q. mq is a real, symmetric, 4ˆ 4 matrix, which we may view as
having two components, a traceful, and a traceless. Both of these parts may be treated as
representation spaces of SOp4q. The traceless part of mq is a nine dimensional representation
with the SOp4q action m Ñ OmOT , where m P traceless, symm. Mat(4,R). The traceful
component of mq is the one dimensional ’singlet’ representation of SOp4q. Furthermore,
in [1] representation of the Dirac algebra, the elements of which we have labelled γI are
generators of SOp4q, which can in turn be viewed as a double copy of the Lie algebra of
SOp3q.

To arrive at a mass term for the pions which can be fully evaluated in the sop3q ˆ
sop3q language which is the natural to the magnetic theory moduli space, we must map
the traceful and traceless components of mq from their respective SOp4q to the appropriate
representations of SOp3q ˆ SOp3q. To be explicit, we wish to map,

pSOp4qq : m14ˆ4 `m
µTµ Ñ pSOp3q ˆ SOp3qq : m11b 1`m1 a

ã Ja b J
ã (47)

Where Tµ (with µ “ 1, ..., 9), are a basis of traceless, symmetric Mat(4,R). Ja, Jã (with
a, ã “ 1, 2, 3), are generators of the Lie algebra sop3q.

We are only concerned with mapping mq of the form mq “ diagpm1,m2,m3,m4q, as this
corresponds to the most general quark mass term in our electric theory. Therefore we may
decompose mq in the form given on the left-hand side of (47) as follows

mq “
1

2
?

2
pm1 `m2 `m3 `m4qp

1
?

2
1q (48)

`
1

2
?

2
pm1 `m2 ´m3 ´m4qp

1
?

2
diagp1, 1,´1,´1qq

`
1

2
?

2
pm1 `m4 ´m2 ´m3qp

1
?

2
diagp1,´1,´1, 1qq

`
1

2
?

2
pm2 `m4 ´m1 ´m3qp

1
?

2
diagp´1, 1,´1, 1qq
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Note that the generators are normalised such that TrpTµTνq “ 2δµν . The pion mass
term (42) may then be expressed in a form which makes the realisation of the map (47)
straightforward.

TrpM2
πδφδφq “

´1

8
Trpp

m
?

2
14ˆ4 `m

µTµqxφ
I
yγIδφ

JγJδφ
KγKq (49)

Note thatm “ pm1`m2`m3`m4

2
?

2
q andmµ has non-zero components pm1`m2´m3´m4

2
?

2
q, pm1`m4´m2´m3

2
?

2
q,

pm2`m4´m1´m3

2
?

2
q.

We now implement the isomorphism SOp3q ˆ SOp3q » SOp4q. Naturally, the tracefull
part of SOp4q is mapped to the singlet of SOp3q ˆ SOp3q. The traceless, diagonal matrices
of (48) Tµ, are mapped to elements of the bifundamental algebra of SOp3q ˆ SOp3q. The
Dirac matrices (γa) are mapped to basis elements (Ja) of the Lie algebra sop3q. Finally, the
factor of xφIyγI , which is the singlet of the vacuum symmetry, is mapped to the singlet of
SOp3q bSOp3q, multiplied by the constant (a) which we associate with the fermion bilinear
condensate. To summarise the map, we tabulate the transformation of each factor in (49)
below

SOp4q SOp3q ˆ SOp3q
m?

2
1 2m11b 1

T µ Ja b J
ã

mµ m1 a
ã

xφIyγI a1b 1

Note that TrpJaJbq “ 2δab, and therefore TrpJa b J ãJb b J b̃q “ 4δabδ
a1b1 . Due to this

difference in normalisation between our bases of sop4q and sop3q ˆ sop3q, the coefficients m1

and m1a
ã of the sop3q ˆ sop3q expression of mq receive an additional factor of 1?

2
relative to

the sop4q components, in order to preserve Trpm2
qq, which must be invariant under changes

of basis.
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Recall that the isomorphism SOp3q ˆ SOp3q » SOp4q is actually an isomorphism at
the level of the Lie algebra. As such, we are at liberty to map Tµ Ñ Ja b J ã in whatever
way is convenient. For reasons of neatness further along in the process, we have chosen
(T1 Ñ J1 b J

1̃, T2 Ñ J2 b J
2̃, T3 Ñ J3 b J

3̃). This gives (m1 a
ã) as follows

m1 a
ã “

¨

˝

m1`m2´m3´m4

4
0 0

0 m1`m4´m2´m3

4
0

0 0 m2`m4´m1´m3

4

˛

‚ (50)

and in addition m1 “ m “ 1
4
pm1 `m2 `m3 `m4q.

We can now express the pion mass term fully in terms of the SOp3q ˆ SOp3q language.

TrpM2
πδφδφq “

´a

8
Trpp2m11b 1`m1 a

ã Ja b J
ã
qpδAb

b̃
J b̃ b JbqpδA

c
c̃J

c̃
b Jcqq (51)

There is subtlety we need to address: the matrix mq acts on Dirac fermions. For this
reason the group we need to consider is actually the group SUp2q ˆ SUp2q and we therefore
choose Ji ” σi, the Pauli matrices.

We can now begin to explicitly evaluate our pion mass term.

Trpm1
pδAb

b̃
J b̃ b JbqpδA

c
c̃J

c̃
b Jcqq “ m1δAb

b̃
δAcc̃ TrpJ b̃ b JbJ

c̃
b Jcq (52)

“ 4m1δAb
b̃
δAcc̃δ

b̃c̃δbc

Trppm1 a
ã Ja b J

ã
qpδAb

b̃
J b̃ b JbqpδA

c
c̃J

c̃
b Jcqq “ m1 a

ã δA
b
b̃
δAcc̃ TrpJa b J

ã
qpJ b̃ b JbqpJ

c̃
b Jcq

(53)

“ ´4m1 a
ã δA

b
b̃
δAcc̃ε

ãb̃c̃εabc

Our full mass term for the magnetic theory pions is then,

M2
πδA

a
ãδA

a
ã “

´a

8
p8m1δAaãδA

a
ã ´ 4m1 a

ãδA
b
b̃
δAcc̃ε

ãb̃c̃εabcq (54)

We see that this is equivalent to the pion mass term derived from the chiral Lagrangian
in (22) if the radius of the fuzzy sphere, namely the constant a, is identified with the value
of the quark condensate c in field theory. We can justify why this should be the case with
a brief, semi-qualitative outline. We saw in the review of the chiral Lagrangian how the
bi-linear quark condensate, which is responsible for the global symmetry breaking in QCD,
percolates into the mass term of the pions as an overall factor that we label c. While we see
that in the pion mass term for our magnetic theory we have an overall factor of a. Given that
we know our electric theory is QCD-like, the formal similarity of how the two factors c and a
arise in the their respective theories is good motivation to identify them. It is important to
stress however, that this identification does not constitute a dictionary between the electric
and magnetic theories. We cannot show the relationship between the electric theory quark
condensate and the magnetic theory fuzzy sphere radius in the same, explicit way as we do
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with the corresponding quantities in QCD, because the relationship between the electric and
magnetic theories is fundamentally different to that between the full theory of QCD and
the chiral Lagrangian. Where the chiral theory is a low-energy effective theory of QCD, the
magnetic theory is dual to the electric theory, so we are not in a position to directly import
the electric bi-linear quark condensate into the magnetic scalar equations because the same
quark fields do not live in the magnetic theory.

Chapter 5. Pion Spectra & GMOR-like Relations

However, (54) is not yet an entirely sensible mass-squared term for our pions. This becomes
apparent when we contract the indices on the right-hand side of the equation. The first
portion is well-behaved as we get nine terms of the form m1pδAãaq

2, but a problem occurs in
the second portion.

m1 a
ã δA

b
b̃
δAcc̃ε

ãb̃c̃εabc “ m1 1
1̃
pδA2

2̃
δA3

3̃
` δA3

3̃
δA2

2̃
´ δA2

3̃
δA3

2̃
´ δA3

2̃
δA2

3̃
q` (55)

m1 2
2̃
pδA3

3̃
δA1

1̃
` δA1

1̃
δA3

3̃
´ δA1

3̃
δA3

1̃
´ δA3

1̃
δA1

3̃
q`

m1 3
3̃
pδA1

1̃
δA2

2̃
` δA2

2̃
δA1

1̃
´ δA2

1̃
δA1

2̃
´ δA1

2̃
δA2

1̃
q

The complication that emerges here is that we have terms in this sum which have coef-
ficients which are dimensionally mass-squared, but the factors of the fields are mixed. That
is, rather than terms of the form M2

πpδA
1
1̃
q2 as is usual for a scalar mass-term, we instead

have terms like M2
πpδA

1
1̃
δA2

2̃
q. We can un-mix the fields in these terms by a change of basis,

however as we are only interested in extracting the mass-squared of each pion field, it is more
direct to perform a series of diagonalisations on (55), the eigenvalues of which will sum with
the overall value of m1 from the first portion, to yield the mass-squared values for the pions.

In equation (55), we have mixed terms which involve all nine pion fields, however, they
do not mix homogeneously, instead they mix as three pairs and one triple. To see this more
clearly we shall shuffle the series

m1 a
ã δA

b
b̃
δAcc̃ε

ãb̃c̃εabc “ m1 1
1̃
p´δA2

3̃
δA3

2̃
´ δA3

2̃
δA2

3̃
q` (56)

m1 2
2̃
p´δA1

3̃
δA3

1̃
´ δA3

1̃
δA1

3̃
q`

m1 3
3̃
p´δA2

1̃
δA1

2̃
´ δA1

2̃
δA2

1̃
q`

m1 1
1̃
pδA2

2̃
δA3

3̃
` δA3

3̃
δA2

2̃
q`

m1 2
2̃
pδA3

3̃
δA1

1̃
` δA1

1̃
δA3

3̃
q`

m1 3
3̃
pδA1

1̃
δA2

2̃
` δA2

2̃
δA1

1̃
q

We see that fields are not mixed between the first three terms in (56). We can treat each
of these terms as actions of metrics on three, two-dimensional, vector sub-spaces, which we
can represent as matrix equations, which makes their diagonalisation very easy.
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If we define a vector A1, with components pδA2
3̃
, δA3

2̃
q, with a metric µ1 with entries

ˆ

0 ´m1 1
1̃

´m1 1
1̃

0

˙

, we can represent the first term in (56) as follows

m1 1
1̃
p´δA2

3̃
δA3

2̃
´ δA3

2̃
δA2

3̃
q “ µ1pA1, A1q (57)

The diagonalisation of µ1 is trivial, and yields eigenvalues (`m1 1
1̃
,´m1 1

1̃
). We can re-

peat this procedure for the second and third terms of (56). Doing so we get eigenvalues
(`m1 2

2̃
,´m1 2

2̃
) and (`m1 3

3̃
,´m1 3

3̃
), respectively. As stated, these eigenvalues combine with

the contribution of the first term in (55), which is m1. We can therefore express the masses
of six of the pions in the general case where mq “ diagpm1,m2,m3,m4q.

M2
π Degeneracy

apm1 `m2q 1
apm1 `m3q 1
apm1 `m4q 1
apm2 `m3q 1
apm2 `m4q 1
apm3 `m4q 1

We can more succinctly write, for this case, that we have six pions with mass-squared
values given by M2

π “ apmi `mjq where i ‰ j.

An aside on mixed quadratic scalar terms and factors of two.

The author is conscious that if one follows the preceding calculations closely, its is quite easy
to lose track of the factors of two, and think that an error has been made in cancelling terms.
In this aside we will briefly run over where the appropriate factors of two come from, and
how the above and further results are recovered. The above result is not naively apparent
from equation (54), as the factor of two difference between the two terms on the right-hand
side is likely to mislead the reader to think that the appropriate factors of the quark masses
will not cancel in the sum. However. In fact this factor of two is only apparent, and enters
into our mass term due to the normalisation of the singlet. It is easiest to demonstrate where
this additional factor of 2 comes from in the case of QCD with two quark flavours, which
breaks symmetry from Up2q ˆ Up2q to Up2q.

The generators of the coset pUp2q ˆUp2qq{Up2q form a basis for the Lie algebra of Up2q.
If we use a Hermitian basis for the generators, such as

T1 “

ˆ

1 0
0 1

˙

, T2 “

ˆ

1 0
0 ´1

˙

, T3 “

ˆ

0 1
1 0

˙

, T4 “

ˆ

0 i
´i 0

˙

(58)

We can express the pion fields as a vector in the index notation, or as a matrix
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Π “ πiTi “

ˆ

π1 ` π2 π3 ` iπ4

π3 ´ iπ4 π1 ´ π2

˙

(59)

The pion mass-squared term which appears in the chiral Lagrangian is TrpmqΠ
2q, where

in this case mq “ diagpm1,m2q. We can evaluate TrpmqΠ
2q as a matrix expression or as a

vector expression in terms of the generators Ti. The matrix calculation proceeds as follows

TrpmqΠ
2
q “ (60)

Tr

ˆ

m1ppπ
1 ` π2q2 ` pπ3 ` iπ4qpπ3 ´ iπ4qq m1ppπ

1 ` π2qpπ3 ` iπ4q ` pπ3 ` iπ4qpπ1 ´ π2q

m2ppπ
3 ´ iπ4qpπ1 ` π2q “ pπ1 ´ π2qpπ3 ´ iπ4qq m2ppπ

3 ´ iπ4qpπ3 ` iπ4q ` pπ1 ´ π2q2qq

˙

“ m1ppπ
1q2 ` pπ2q2 ` 2π1π2 ` pπ3q2 ` pπ4q2q `m2ppπ

1q2 ` pπ2q2 ´ 2π1π2 ` pπ3q2 ` pπ4q2q

By inspection we have the mass-squared values for two pions, M2
π3 “M2

π4 “ pm1 `m2q.
while the remaining mass-squared term for the other two pions contain terms which mix
fields, like the pions of our magnetic theory. We can un-mix these terms by the same diago-
nalisation procedure as before.

Isolating the terms only in π1 and π2 we have

pm1 `m2qpπ
1
q
2
` pm1 `m2qpπ

2
q
2
` 2pm1 ´m2qπ

1π2 (61)

We can re-write this as a matrix expression

M2
αβπ

απβ (62)

Where α, β “ 1, 2. And M2
αβ has the entries

M2
αβ “

ˆ

m1 `m2 m1 ´m2

m1 ´m2 m1 `m2

˙

(63)

It is clear that we can derive the masses of the pions π1 and π2 by diagonalising the
matrix M2

αβ, which we find has eigenvalues M2
π1,π2 “ pm1 `m2q ˘ pm1 ´m2q. Therefore our

pion spectrum is given by

M2
π Degeneracy

pm1 `m2q 2
2pm1q 1
2pm2q 1

Now let’s evaluate the mass term (60) in terms of the generators of Up2q contracted with
factors of the pion fields as the components of vectors. First note that we decompose mq in
terms of a singlet and a Up2q generator.
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mq “
?

2p
m1 `m2

2
qp1q ` p

m1 ´m2

2
q diagp1,´1q (64)

There are two important points to clarify in explicit detail here. First is that 1 does not
denote the 2 ˆ 2 unit matrix, but is simply the positive unit integer 1. We use this for the
singlet as opposed to the unit matrix, as the singlet necessarily means a 1-dimensional rep-
resentation, and while unit matrix multiplied by a scalar variable is a 1-dimensional term, it
acts on a representation space that has dimension greater than one, which is morally unsat-
isfactory. Secondly, the factor of

?
2 multiplies the singlet term so that this decomposition of

mq preserves Trpm2
qq “ pm

2
1 `m

2
2q, which is required to be basis independent. These formal

implications of decomposing mq into a direct sum of a singlet and multiplet representations
is crucial to understanding the mysterious factor of 2 in (54).

Evaluating (60)

TrpmqΠ
2
q “

?
2pm1 `m2qπ

iπjδij ` ipm1 ´m2qπ
aπbε3ab (65)

When we diagonalise the second portion of this sum by the established procedure, we
again get the eigenvalues ∆M2 “ ˘pm1 ´m2q. However, as in (54), we have a factor mul-
tiplying the first portion which would naively appear to prevent the necessary cancellations
between pm1 `m2q and pm1 ´m2q to yield the mass spectrum we derived from the matrix
calculation. We can be sure the spectrum of the matrix calculation is correct, as it is basis
invariant, while the factor difference between the terms in (65) is not. The matrix calculated
spectrum is also supported by the phenomenological sanity check, if we recall that the pions
are bound-states of the quarks, and should therefore have masses which are combinatorically
related.

End of aside.

The other three eigenvalue are obtained by diagonalising the matrix

¨

˝

m1 m11
1̃

m12
2̃

m11
1̃

m1 m13
3̃

m12
2̃

m13
3̃

m1

˛

‚ (66)

The eigenvalues of the remaining three NG bosons are therefore M2
π “ 2apm1 ` ∆1,2,3q,

where ∆1,2,3 are the three roots of the cubic equation

∆3
´∆ppm11

1̃
q
2
` pm12

2̃
q
2
` pm13

3̃
q
2
q ´ 2m11

1̃
m̃12

2̃
m̃13

3̃
“ 0 . (67)

We now review in detail the solution of this cubic equation and the resulting masses of
the pions in various special cases.

The nine massess of the NG bosons obtained by S-duality using the SOp3q ˆ SOp3q
language match exactly the massess obtained by the chiral lagrangian using the SOp4q
language, upon the identification a “ c. Thus the radius of the fuzzy sphere is identified
with the value of the quark condensate.
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In section 4 we derived the pion mass term of the magnetic theory under Sugimoto’s
S-duality. We stated that six of the pions have masses M2

ij “ apmi `mjq where i ‰ j, and
that the remaining three pions have masses 2apm1`∆1,2,3q, where ∆1,2,3 are the roots of the
following polynomial.

∆3
´∆ppm11

1̃
q
2
` pm12

2̃
q
2
` pm13

3̃
q
2
q ´ 2m11

1̃
m12

2̃
m13

3̃
“ 0 (68)

This is a depressed cubic equation, which has a set of known solution methods. The
method we employ here is Vieta’s substitution, which proceeds as follows.

For the general depressed cubic

t3 ` pt` q “ 0 (69)

We make the substitution t “ w ´ p
3w

, which transforms (69) to the form

pw3
q
2
` qpw3

q ´
p3

27
“ 0 (70)

We can solve this quadratic by the standard formula. For W , any non-zero root of the
quadratic (70), let w1, w2, w3 be the cube-roots. The roots of the initial cubic (69) are then
t1,2,3 “ w1,2,3 ´

p
3w1,2,3

.

Applying Vieta’s substitution to (68) yields, firstly, the following quadratic

Ω2
´ Ωp2m11

1̃
m12

2̃
m13

3̃
q `

ppm11
1̃
q2 ` pm12

2̃
q2 ` pm13

3̃
q2q3

27
“ 0 (71)

Which has a root

Ω “ m11
1̃
m12

2̃
m13

3̃
`

d

pm11
1̃
m12

2̃
m13

3̃
q2 ´

ppm11
1̃
q2 ` pm12

2̃
q2 ` pm13

3̃
q2q3

27
(72)

Our aim for this paper is, of course, the extraction of GMOR-like relations, which requires
that we express our pion masses in terms of the electric-theory quark masses. In section 4
we stated m11

1̃
,m12

2̃
,m13

3̃
in terms of the quark masses, and repeat here for convenience.

m11
1̃
“
m1 `m2 ´m3 ´m4

4
(73)

m12
2̃
“
m1 `m4 ´m2 ´m3

4

m13
3̃
“
m1 `m3 ´m2 ´m4

4

When we expand the factors of m11
1̃
,m12

2̃
,m13

3̃
in (72) in terms of m1,m2,m3,m4, we derive

a pair of very large polynomials, which we shall label Qpmqq, P pmqq. For convenience we
express the quadratic root Ω in terms of these polynomials.

Ω “
Qpmqq

64
`

1

48
?

3

b

P pmqq (74)
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P pmqq is related to the discriminant of the depressed cubic by a real, negative factor. It
is known for cubic polynomials that a positive discriminant implies that the equation has
three real, distinct roots. It can be shown that the polynomial P pmqq is non-positive for
any choice of the quark masses, and therefore the discriminant is non-negative. There are
specific cases of quark mass degeneracy which yield a discriminant of zero, and the effect of
this in the magnetic theory pion masses will be explored in example calculations. Excluding
these special cases however, we are assured that we will always have real pion masses.

To be complete, we provide the full expressions of Qpmqq and P pmqq.
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Qpmqq “ pm1q
3 ` pm2q

3 ` pm3q
3 ` pm4q

3

´m1pm2q
2 ´m1pm3q

2 ´m1pm4q
2

´m2pm1q
2 ´m2pm3q

2 ´m2pm4q
2

´m3pm1q
2 ´m3pm2q

2 ´m3pm4q
2

´m4pm1q
2 ´m4pm2q

2 ´m4pm3q
2

`2m1m2m3 ` 2m1m2m4 ` 2m1m3m4 ` 2m2m3m4

P pmqq “

´p9pm1q
4pm2q

2 ´ 9pm1q
4pm2qpm3q ´ 9pm1q

4pm2qpm4q ` 9pm1q
4pm3q

2 ´ 9pm1q
4pm3qpm4q

`9pm1q
4pm4q

2 ´ 14pm1q
3pm2q

3 ` 3pm1q
3pm2q

2pm3q ` 3pm1q
3pm2q

2pm4q ` 3pm1q
3pm2qpm3q

2

`24pm1q
3pm2qpm3qpm4q ` 3pm1q

3pm2qpm4q
2 ´ 14pm1q

3pm3q
3 ` 3pm1q

3pm3q
2pm4q

`3pm1q
3pm3qpm4q

2 ´ 14pm1q
3pm4q

3 ` 9pm1q
2pm4q

4 ` 3pm1q
2pm2q

3pm3q ` 3pm1q
2pm2q

3pm4q

´3pm1q
2pm2q

2pm3q
2 ´ 12pm1q

2pm2q
2pm3qpm4q ´ 3pm1q

2pm2q
2pm4q

2 ` 3pm1q
2pm2qpm3q

3

´12pm1q
2pm2qpm3q

2pm4q ´ 12pm1q
2pm2qpm3qpm4q

2 ` 3pm1q
2pm2qpm4q

4 ` 9pm1q
2pm3q

4

`3pm1q
2pm3q

3pm4q´3pm1q
2pm3q

2pm4q
2`3pm1q

2pm3qpm4q
3`9pm1q

1pm4q
4´9pm1qpm2q

4pm3q

´9pm1qpm2q
4pm4q ` 3pm1qpm2q

3pm3q
2 ` 24pm1qpm2q

3pm3qpm4q ` 3pm1qpm2q
3pm4q

2

`3pm1qpm2q
2pm3q

3 ´ 12pm1qpm2q
2pm3q

2pm4q ´ 12pm1qpm2q
2pm3qpm4q

2 ` 3pm1qpm2q
2pm4q

3

´9pm1qpm2qpm3q
4`24pm1qpm2qpm3q

3pm4q´12pm1qpm2qpm3q
2pm4q

2`24pm1qpm2qpm3qpm4q
3

´9pm1qpm2qpm4q
4 ´ 9pm1qpm3q

4pm4q ` 3pm1qpm3q
3pm4q

2 ` 3pm1qpm3q
2pm4q

3

´9pm1qpm3qpm4q
4 ` 9pm2q

4pm3q
2 ` 9pm2q

4pm3qpm4q ` 9pm2q
4pm4q

2 ´ 14pm2q
3pm3q

3

`3pm2q
3pm3q

2pm4q ` 3pm2q
3pm3qpm4q

2 ´ 14pm2q
3pm4q

3 ` 9pm2q
2pm3q

4 ` 3pm2q
2pm3q

3pm4q

´3pm2q
2pm3q

2pm4q
2`3pm2q

2pm3qpm4q
3`9pm2q

2pm4q
4´9pm2qpm3q

4pm4q`3pm2qpm3q
3pm4q

2

`3pm2qpm3q
2pm4q

3 ´ 9pm2qpm3qpm4q
4 ` 9pm3q

4pm4q
2 ´ 14pm3q

3pm4q
3 ` 9pm3q

2pm4q
4q

Note that in the most general case (where m1 ‰ m2 ‰ m3 ‰ m4), Qpmqq and P pmqq

cannot be factorized such that the cube-roots of Ω and the roots of (68) can be expressed
generally and explicitly in linear terms of the quark masses. Therefore, in order to calculate
the resulting pion masses explicitly it is necessary to fix the degeneracy of the quark masses
a priori.

In terms of the polynomials Qpmqq, P pmqq, the roots of (68) are given as follows.

∆1,2,3 “
3

b

Qpmqq

64
` 1

48
?

3

a

P pmqq

`
3pm1q

2`3pm2q
2`3pm3q

2`3pm4q
2´2m1m2´2m1m3´2m1m4´2m2m3´2m2m4´2m3m4

48 3

c

Qpmqq

64
` 1

48
?
3

?
P pmqq

Special Degeneracy Cases

(m1 “ m2 “ m3 “ m4):

For the case of full quark mass degeneracy, we see immediately that m11
1̃

, m12
2̃

, m13
3̃

all vanish.
Therefore Qpmqq and P pmqq (equivalent to the discriminant of (68)) also vanish, giving
trivial roots for (68), which means the three non-trivial pions receive no shift from m1. To
state it explicitly

∆1,2,3 “ 0
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M2
π Degeneracy

2am1 9

(m1 ‰ m2), (m2 “ m3 “ m4):

m11
1̃
“

1

4
pm1 ´m2q

m12
2̃
“

1

4
pm1 ´m2q

m13
3̃
“

1

4
pm1 ´m2q

This reduces (72) to

Ω “
1

64
pm1 ´m2q

3 (75)

We see again that P pmqq has vanished, hence the discriminant of (68) is also zero in this case.

(75) has cube-roots

3
?

Ω “ ω1,2,3 “
1

4
pm1 ´m2q,

?
3` i

8
pm1 ´m2q,

?
3´ i

8
pm1 ´m2q (76)

As stated previously, the cube-roots ω1,2,3 relate to ∆1,2,3 as follows

∆1,2,3 “ ω1,2,3 `
pm11

1̃
q2 ` pm12

2̃
q2 ` pm13

3̃
q2

3ω1,2,3

(77)

Evaluating this with the roots (76), we find the following values for the mass shifts

∆1 “
1
4
pm1 ´m2q `

3p 1
4
pm1´m2qq

2

3p 1
4
pm1´m2qq

“ 1
2
pm1 ´m2q

∆2 “
?

3`i
8
pm1 ´m2q `

3p 1
4
pm1´m2qq

2

3p 1
4
pm1´m2qqp

?
3`i
2
q

“
?

3`i
8
pm1 ´m2q `

?
3´i
8
pm1 ´m2q

“
?

3
4
pm1 ´m2q

∆3 “
?

3´i
8
pm1 ´m2q `

3p 1
4
pm1´m2qq

2

3p 1
4
pm1´m2qqp

?
3´i
2
q

“
?

3´i
8
pm1 ´m2q `

?
3`i
8
pm1 ´m2q

“
?

3
4
pm1 ´m2q

Summarily

∆1 “
1

2
pm1 ´m2q, ∆2 “ ∆3 “

?
3

4
pm1 ´m2q (78)

Note that while these masses at first look dubious, they are consistent with the result of
the previous degeneracy case. If one takes (m1 “ m2), above pion masses reduce appropri-
ately to 2am1 with a degeneracy of 9.
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M2
π Degeneracy

apm1 `m2q 3
2am2 3

ap3m1`m2

2
q 1

a p1`
?

3qm1`p3´
?

3qm2

2
2

pm1 “ m2q ‰ pm3 “ m4q:

This degeneracy yields the following

m11
1̃
“

1

2
pm1 ´m4q, m

12
2̃
“ m13

3̃
“ 0

Substituting into (68) we get

∆3
´
pm1 ´m4q

2

4
∆ “ 0 (79)

Which by inspection has the solution

∆1 “ 0, ∆2 “
1

2
pm1 ´m4q, ∆3 “

1

2
pm4 ´m1q (80)

This yields the pion spectrum

M2
π Degeneracy

apm1 `m4q 5
2am4 2
2am1 2
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Chapter 6. Summary

Now that our procedure and results have been presented fully, it is appropriate to briefly
summarise our project from a point of retrospect. We began by introducing the primary
theme of this work, strong-weak duality, and the phenomenological and methodological mo-
tivations for developing a more holistic picture of S-duality, giving particular development
to cases in which we are not strictly dependent on the presence of supersymmetry to obtain
S-dual theories. We then went on to briefly detail the S-duality for a tree-level massless, non-
SUSY QCD-like theory, proposed by Sugimoto in [1]. In the introduction we discussed the
dual-Meissner scenario of confinement, which relates the dynamical symmetry breaking of an
S-dual theory to the confinement of its S-dual partner, and Sugimoto notes in the conclusion
to his paper that his proposed S-duality is consistent with this picture of confinement, in
that the electric theory has been previously conjectured to be confining, and he strongly mo-
tivates the proposition that the magnetic dual theory spontaneously breaks global symmetry.

Our aim in this project has been to realise Sugimoto’s duality in a massive case, which
we achieve by coupling the parent string theories to a three-form flux background, thereby
adding a fermionic mass-term to the electric theory, while also adding a scalar interaction
term to the magnetic theory. From this procedure we derived our main result, a spectrum
of GMOR-like relations between light meson masses in the magnetic theory, and the quark
masses of the electric theory. While this result does not make direct contact with questions
about the confinement of the electric theory, or the exactness of the SLp2,Zq symmetry of
type IIB string theory (which generates Sugimoto’s duality), it does quantitatively show that
Sugimoto’s magnetic dual to the QCD-like magnetic theory allows us to capture the low-
energy physics of the electric theory in a way that is demonstrably consistent with known
results about the low-energy physics of QCD. This does not prove, but does meaningfully
support Sugimoto’s proposal, and by extension, the dual-Meissner mechanism of confine-
ment.

Beyond our works’ relevance as evidence to support Sugimoto’s proposed duality, it also
has potential to be significant to the broader literature concerning non-SUSY S-duality. In
[4], Hook and Torroba look to extend the procedure proposed by Uranga, and applied by
Sugimoto, to construct a large class of non-SUSY, S-dual pairs of gauge theories. The three-
form flux coupling procedure we employ to realise Sugimoto’s duality for a massive theory
could be plausibly be applied more generally to extend this class of S-dual theories by in-
cluding controllable fermionic mass deformations and related scalar interaction terms.

In addition to our results there open question that we purposefully omitted from our
consideration, as it would constitute a significant addition to the scope of this project’s
investigation, and that is to identify the η1 meson within the magnetic theory. The η1

transforms, as with the nine NG bosons, in the coset Up4q{SOp4q, which is the full symmetry
breaking which occurs, rather than the SUp4q{SOp4q breaking we have examined. In terms
of the chiral Lagrangian presented in chapter 3, it is the ’missing component’ of the two-
index symmetric representation of SOp4q, namely the 4 ˆ 4 unit matrix. The presence of
massive W bosons in the magnetic theory suggests a ’hidden local symmetry’. It is tempting
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to identify the W boson with the ρ-meson. Similar to the discussion in ref.[14] we expect
a rich phenomenolgy, in particular the relation MW “ gv automatically translates into
M2

ρ “ 2g2
ρππf

2
π .
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