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a b s t r a c t

Multifield coupling is frequently encountered and also an active area of research in geotechnical engi-
neering. In this work, a particle-resolved direct numerical simulation (PR-DNS) technique is extended to
simulate particle-fluid interaction problems involving heat transfer at the grain level. In this extended
technique, an immersed moving boundary (IMB) scheme is used to couple the discrete element method
(DEM) and lattice Boltzmann method (LBM), while a recently proposed Dirichlet-type thermal boundary
condition is also adapted to account for heat transfer between fluid phase and solid particles. The
resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant tem-
perature in thermal flows. To facilitate the understanding and implementation of this coupled model for
non-isothermal problems, a complete list is given for the conversion of relevant physical variables to
lattice units. Then, benchmark tests, including a single-particle sedimentation and a two-particle
drafting-kissing-tumbling (DKT) simulation with heat transfer, are carried out to validate the accuracy
of our coupled technique. To further investigate the role of heat transfer in particle-laden flows, two
multiple-particle problems with heat transfer are performed. Numerical examples demonstrate that the
proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid
coupling at the grain level.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Particle-fluid interaction problems are commonly encountered
in the fields of geosciences, petroleum engineering, geotechnical
engineering, and chemical engineering, to name but a few. Due to
the complex and intricate nature of a particle-fluid problem, it is
very difficult, if not impossible, to obtain its analytical solutions.
Alternatively, numerical methods are always used to obtain
approximate solutions for such problems. Since there are a large
number of moving particles involved, it is natural to use the
discrete element method (DEM) to describe particle-particle in-
teractions. On the other hand, the computational fluid dynamics
(CFD) and the lattice Boltzmann method (LBM), which can be used
to simulate fluid flows, have been coupled with DEM to study such
coupled and highly nonlinear problems.
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
Currently, the unresolved DEM-CFD, where the empirical hy-
drodynamic forces are based on averaging techniques, is commonly
used for large-scale engineering simulations due to its relatively
high computational efficiency (Wang et al., 2022b). In contrast, the
high-resolution DEM-LBM and the fully-resolved DEM-CFD with
fine fluid grids are mainly used to investigate the physical/me-
chanical mechanism from a mesoscopic/microscopic point of view
(Feng and Michaelides, 2008; Han and Cundall, 2013). Due to the
high efficiency of high-resolution DEM-LBM compared to fully-
resolved DEM-CFD, the former has attracted more and more
attention in the geomechanics research community over the past
two decades (Cook et al., 2004; Feng et al., 2007, 2010; Owen et al.,
2011; Galindo-Torres, 2013; Han and Cundall, 2013; Zhang et al.,
2016, 2017; Wang et al., 2017a, 2019, 2020, 2021, 2022a, 2023;
Honari and Seyedi Hosseininia, 2021).

To ensure a non-slip condition at moving particle surfaces,
various coupling schemes, such as themodified bounce-back (MBB)
(Ladd, 1994), interpolated bounce-back (IBB) (Chun and Ladd,
2007), immersed boundary method (IBM) (Peskin, 1977) and
immersed moving boundary (IMB) method (Noble and Torczynski,
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Graphical illustration of the developed DEM-IMB-LBM model coupled with heat
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1998) have been used to couple DEM and LBM. As a natural next
step, these coupling schemes have been extended from isothermal
problems to non-isothermal problems to ensure a Dirichlet-type,
Neumann-type or Robin-type condition on moving particle sur-
faces. Hu and Guo (2017) proposed a multi-step iterative IBB with
Dirichlet-type thermal boundary condition to update the distri-
bution functions for temperature at fluid nodes and boundary
nodes with links to other fluid nodes. Rosemann et al. (2019)
developed a new IBB to treat Dirichlet-type thermal boundary
condition for the heat transfer between particles and fluid. Liu and
Wu (2019) adopted the MBB for Dirichlet thermal boundary con-
dition to simulate the inertial migration of a neutrally buoyant
circular particle in a planar Poiseuille flowwith thermal convection.

However, the MBB and IBB are non-local, as the information
from neighboring nodes is required. On the contrary, the IBM and
IMB are local operators. Kang and Hassan (2011) proposed a direct-
forcing IBM with Dirichlet-type thermal boundary for thermal LBM
to simulate non-isothermal flows. Hu et al. (2016) proposed a
diffuse-interface IBM to simulate three different thermal boundary
conditions in thermal flow problems. Tao et al. (2021) proposed a
distribution function correction-based IBM with Dirichlet-type
thermal boundary for thermal particle flows, in which the bound-
ary condition is directly implemented by correcting the distribution
function at the neighboring points around the interface. Further-
more, an adjustment parameter is introduced to ensure the accu-
racy in the boundary treatment. Zhang et al. (2015) proposed a
coupled DEM-IBM-LBM model for simulating heat transfer in a
particle-fluid system. However, only the Dirichlet thermal bound-
ary condition is considered in this model. Suzuki et al. (2018)
constructed a two-dimensional thermal IBM-LBM for moving-
boundary flows with heat transfer. Both the Dirichlet and Neu-
mann conditions can be considered. McCullough et al. (2020)
simulated particle suspensions using the DEM-IMB-LBM model.
In this model, the temperature-dependent fluid viscosity is
accounted for. However, heat transfer between particles and fluid is
not considered. Recently, McCullough et al. (2021) implemented an
appropriate conjugate-type thermal boundary condition to ensure
conjugate heat transfer at the interface of fluid and moving parti-
cles. In this approach, continuity of both temperature and heat flux
is maintained at the interface. However, the interface boundary
condition used by McCullough et al. (2021) is non-local, which not
only requires neighboring node information at each step, but also
requires identifying the exact direction between the current node
and its nearest neighbor with the adjacent media. Therefore, this
boundary condition cannot be used to modeling Dirichlet-type
thermal flow problems directly.

To the best knowledge of the authors, a coupled DEM-IMB-LBM
model for numerically simulating particle-fluid interaction prob-
lems with heat transfer between fluid and particles is still lacking.
Recently, Chen and Müller (2020) proposed a Dirichlet-type ther-
mal boundary condition, which can accurately capture heat con-
vection for curved moving boundaries between particles and fluid.
The aim of this work is to develop a thermal DEM-IMB-LBM model
based on the adaptation of the Dirichlet-type thermal boundary
condition for the simulation of particle-laden flows involving heat
transfer. Themajor difference between thework of Chen andMüller
(2020) and the present work is that: the model in Chen and Müller
(2020) is in the thermal LBM framework, while the present work is
in the DEM-LBM framework. Thus, the present work can not only
modeling multi-particles contact and motion, but also consider
heat transfer during particle motion. In addition, Xia et al. (2023)
have proposed a DEM-IMB-LBM approach to modeling methane
hydrate exploitation associated with mass transport and particle
dissolution. However, the present study focuses on heat transfer
with consideration of temperature-dependent fluid density, which
is completely different from Xia et al. (2023).

The rest of the paper is organized as follows. In Section 2, a
detailed introduction of the coupled thermal LBM and DEM,
including both force interactions and heat transfer between solid
particles and the fluid phase, will be given. In Section 3, two
benchmark tests, a single-particle sedimentationwith heat transfer
and a two-particle drafting-kissing-tumbling (DKT) simulation
with heat transfer, are performed to validate the proposed tech-
nique. In Section 4, the role of heat transfer in particle-laden flows
is further investigated by applying the proposed model to simulate
complicated particle-fluid interaction problems with multiple
particles. Finally, the main contributions of this study are summa-
rized in Section 5.

2. Methodologies

In this section, a coupled thermal lattice Boltzmann-discrete
element model by IMB is developed based on adapting the
Dirichlet-type thermal boundary condition for the numerical sim-
ulations of particle-laden flows with heat transfer, as graphically
illustrated in Fig. 1. Detailed explanations about this particle-
resolved coupling method, with focus on the IMB for heat trans-
fer between solid particles and the fluid phase, are provided below.

2.1. Discrete element method (DEM)

The DEM was proposed to simulate the geomaterial at the grain
level by Cundall and Strack (1979). The macroscopic mechanical
behavior of the geomaterials can be reproduced by solving the
contact forces applied to individual particles and their subsequent
movement (Qu et al., 2022). Newton’s second law is used to update
transfer (unit: the lattice unit).
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the particle movement, while the contact force is calculated by the
linear contact law based on contact mechanics. The DEM and
related computational algorithms have been described in detail in
the literature (O’Sullivan, 2011; Feng, 2021a, b, 2023). For the sake
of completeness, only a brief summary of some of the key equations
will be presented here.

The movement, including translation and rotation, of a particle
is described by the following equations:

m €up ¼ Fc þ FG þ Ff (1)

I€q ¼ Tc þ T f (2)

where m and I are the mass and the moment of inertia of the
particle, respectively; up and q are the particle displacement and
rotation angle, respectively; Fc and Tc are the resultant contact
force and resultant torque from other particles and/or boundary
walls, respectively; FG is the gravitational force; Ff and T f are the
hydrodynamics force and torque, respectively, which will be given
in Section 2.3.

The contact force Fc can be decomposed into normal and
tangential components, Fn

c and Ft
c, and are calculated as follows:

Fc ¼ Fn
c þ Ft

c ¼ Fnc nþ Ftct (3)

Fnc ¼ knun (4)

Ftc ¼ �
Ftc
�
previous � ktDut (5)

��Ftc�� � m
��Fnc �� (6)

where n and t are the unit normal and tangential vectors, respec-
tively; kn and kt are the normal and tangential contact stiffnesses,
respectively; un and Dut are the normal contact displacement and
incremental tangential contact displacement at current time step,
respectively; and m is the coefficient of friction.
Fig. 2. LBM for fluid flow with D2Q9 model (a) and heat transfer with D2Q5 model (b).
2.2. Lattice Boltzmann method (LBM) for fluid flow and heat
transfer

The LBM is a mesoscopic method for modeling fluid flows (Qian
et al., 1992), in which the fluid phase is treated as an assembly of
fluid particle clusters resided at the node of lattice grids. There are
two primary processes for the imaginary (fluid) particles. A colli-
sion process is used to solve the interaction of fluid particles, while
a streaming process is utilized to achieve fluid flow (Fu et al., 2020).

When the coupling between the fluid flow and heat transfer is
considered in particle-fluid interaction problems, the Boussinesq
approximation is adopted, in which the fluid density is assumed to
be a linear function of temperature:

rf ¼ rf0½1�bTðT � T0Þ� (7)

where rf is the fluid density, rf0 is the reference fluid density, T is
the fluid temperature, T0 is the reference fluid temperature, and bT
is the thermal expansion coefficient of fluid.

When the Boussinesq approximation is considered, the buoy-
ancy force induced by temperature-dependent density of fluid
should be implemented appropriately. Thus, the corresponding
density and temperature distribution functions, fi and gi, can be
solved by using a single-relaxation-time BGK model as follows:
fiðxþ eiDt; tþDtÞ ¼ fiðx; tÞþUf
i þ DtFi ði ¼ 0;1;.;8Þ (8)

giðxþ eiDt; tþDtÞ ¼ giðx; tÞ þJf
i ði ¼ 0;1;.;4Þ (9)

Uf
i ¼ � Dt

sf

h
fiðx; tÞ� f eqi ðx; tÞ

i
(10)

Jf
i ¼ � Dt

sg

h
giðx; tÞ� geqi ðx; tÞ

i
(11)

Fi ¼
 
1� Dt

2sf

!
uf i

�
ei � u
c2s

þðei,uÞei
c4s

�
,F (12)

F ¼ � rf0bT ðT � T0Þg (13)

where for any grid node x, xþ eiDt is its nearest neighboring node
along direction i with discrete velocity ei; f eqi is the equilibrium
density distribution function; geqi is the equilibrium temperature
distribution function; Uf

i and Jf
i are the collision operators for

density and temperature, respectively; sf and sg are the dimen-
sionless relaxation times of density and temperature, respectively;
Fi is the buoyancy force term; Dt is the time step of LBM;
g ¼ ðgx; gyÞ is the gravity acceleration vector; F is the buoyancy
force density; and uf i is the weighting factor with uf0 ¼ 4=9,
uf1�f4 ¼ 1=9, and uf5�f8 ¼ 1=36.

According to Eq. (7), the buoyancy force in Eq. (12) is imple-
mented similar to the body force proposed by Guo et al. (2002),
which indicates the effect of temperature on fluid flow behavior
through Eq. (8).

In this work, the commonly used D2Q9model is adopted for the
fluid flow as shown in Fig. 2a, and a D2Q5 model is employed to
simulate heat transfer as shown in Fig. 2b. Compared with the
D2Q9 model, the D2Q5 model could reduce the computational cost
and keep an acceptable accuracy for modeling advection-diffusion
problems (Kang et al., 2007). The fluid particles at each node are
only allowed tomove to its immediate neighboring nodes or stay at
rest with velocities ei (i ¼ 0, 1, ., 8), as graphically illustrated in
Fig. 2. The velocities of fluid particles are defined as follows:
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ei ¼

8>>>>><
>>>>>:

ð0;0Þ ði ¼ 0Þ

c
�
cos

ði� 1Þp
2

; sin
ði� 1Þp

2

�
ði ¼ 1;2;3;4Þ

ffiffiffi
2

p
c
�
cos

ð2i� 9Þp
4

; sin
ð2i� 9Þp

4

�
ði ¼ 5;6;7;8Þ

(14)

The equilibrium density- and temperature-distribution func-
tions (f eqi and geqi ) are calculated as

f eqi ¼ uf irf

�
1þ 3

c2
ei ,uþ 9

2c4
ðei,uÞ2 �

3
2c2

u ,u
�
ði ¼ 0;1;.;8Þ

(15)

geqi ¼ ugiT
�
1þ 3

c2
ei ,u

�
ði ¼ 0;1;.;4Þ (16)

where u ¼ ðux;uyÞ is the velocity vector; ugi is theweighting factor
with ug0 ¼ 1=3 and ug1�g4 ¼ 1=6; and c ð¼ h =DtÞ is the lattice
speed with h and Dt being the lattice spacing and time step,
respectively.

The macroscopic fluid variables, i.e. density, velocity and tem-
perature, can be recovered from the distribution functions by

rf ¼
X8
i¼0

fi (17)

rfu ¼
X8
i¼0

fiei þ
Dt
2
F (18)

T ¼
X4
i¼0

gi (19)

The fluid pressure field is determined by the following equation
of state p ¼ c2s rf , where cs is termed the fluid speed of sound and is
related to the lattice speed c ¼ h/Dt by cs ¼ c=

ffiffiffi
3

p
in the D2Q9

model.
The kinematic viscosity and thermal diffusion coefficient are

calculated by

v ¼ 1
3



sf � 0:5

� h2
Dt

(20)

a ¼ 1
3
�
sg �0:5

� h2
Dt

(21)

where v is the kinematic viscosity coefficient, and a is the thermal
diffusion coefficient. Note that in the present study, the kinematic
viscosity of fluid is a constant in Eq. (20). However, a temperature-
dependent viscosity of fluid can be considered (McCullough et al.,
2020). A detailed study on the viscosity-dependence and conver-
gence of the present model will be an ideal path for future study
(Chun and Ladd, 2007; Wang et al., 2018).
2.3. Fluid-particle interaction and heat transfer

The IMB scheme for DEM-LBM coupling was proposed by Noble
and Torczynski (1998) by a smooth representation of solid particle
boundaries. In this scheme, the lattice Boltzmann equation for the
fluid flow (i.e. Eq. (8)) is modified by incorporating a collision
operator Us
i for fluid nodes partially covered by the solid, and its

specific form including the buoyancy term can be given by

fiðxþ eiDt; tþDtÞ ¼ fiðx; tÞþ


1�Bf

�
Uf
i þBfU

s
i þ



1�Bf

�
DtFi

(22)

Bf ¼
g


sf � 0:5

�
ð1� gÞ þ



sf � 0:5

� (23)

Us
i ¼ f�iðx; tÞ� fiðx; tÞþ f eqi



rf ;ub

�
� f eq�i



rf ;u

�
(24)

where Bf is a weighting function and depends on the relaxation
time of the density sf (Bf ¼ 0 and 1 corresponding to a pure fluid
node and a pure solid node, respectively) and the local nodal solid
ratio g, Us

i is the collision operator associated with the fluid flow in
the i-th direction for nodes partially covered by solid, ei denotes
the opposite direction of i, and ub is the velocity of the corre-
sponding particle at the node.

The total hydrodynamic force and torque exerted on a particle
are summed up as

Ff ¼ ch

"X
n

 
Bnf
X
i

Us
i ei

!#
(25)

T f ¼ ch

"X
n
ðxn � xcÞ�

 
Bnf
X
i

Us
i ei

!#
(26)

where xn and xc are the coordinates of the boundary node n and
particle center, respectively.

Recently, the thermal Dirichlet-type boundary was solved using
an IMB by Chen and Müller (2020). This new thermal boundary
condition has three prominent advantages: the pure locality of the
collision operator, the simple linear streaming operator, and second
order accuracy. Therefore, it is promising for simulating heat
transfer in particle-fluid systems involving large number of moving
curved boundaries. For this thermal boundary condition, the lattice
Boltzmann equation for heat transfer between the fluid and solid
particles (i.e. Eq. (9)) is modified to include a collision operator for
nodes covered by the fluid and solid particles at the same time, Js

i ,
and can be written as

giðxþ eiDt; tþDtÞ ¼ giðx; tÞþ
�
1�Bg

�
Jf

i þ BgJ
s
i (27)

Bg ¼ g
�
sg � 0:5

�
ð1� gÞ þ �sg � 0:5

� (28)

Js
i ¼ � g�iðx; tÞ� giðx; tÞþ geqi ðTb;uÞ þ geq�i ðT ;uÞ (29)

where Bg is a weighting function and depends on the local solid
ratio g and relaxation time sg of the temperature (Bg ¼ 0 and 1
corresponding to a pure fluid node and a pure solid node, respec-
tively), Js

i is the collision operator for solid nodes associated with
heat transfer in the i direction, and Tb is the corresponding particle
temperature at the node.

2.4. Coupling procedures and unit conversions

When coupling DEM with LBM, a sub-cycling algorithm is often
used (Feng et al., 2007), because the timestep of DEM is normally
smaller than that of LBM. The coupling procedure of thermal DEM-



Table 2
The conversions between the physical units and the lattice units associated with the
coupled thermal DEM-IMB-LBM model.

Variable name Physical
unit

Lattice
unit

Relationship

Fluid density rpf rLBf rpf ¼ rf0r
LB
f

Spacing hp ¼ h hLB ¼ 1
Time step for LBM Dtp ¼ Dt DtLB ¼

1
Lattice speed cp ¼

h=Dt
cLB ¼ 1

Coordinate/displacement xp xLB xp ¼ hxLB

Velocity up uLB up ¼ h
Dt

uLB

Gravity acceleration gp gLB gp ¼ h

ðDtÞ2
gLB
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IMB-LBM is given in Table 1. As DEM is coupled with LBM through
IMB scheme, four types of nodes (solid boundary, interior solid,
fluid boundary, and fluid) should be identified at each LBM step. To
further improve the computational efficiency, a robust and more
efficient searching algorithm proposed byWang et al. (2019) can be
used in the whole computation.

In our code, to improve the computational efficiency, the lattice
units are used for all physical quantities. The conversion, for
isothermal problems, between physical units and lattice units can
be found in Feng et al. (2007). For non-isothermal problems, the
relationship is given for the conversion of the variables used in the
coupled thermal DEM-IMB-LBM model in Table 2 (Xia, 2016),
where superscripts ‘p’ and ‘LB’ are used to indicate a variable in the
physical units and lattice units, respectively.
Kinematic viscosity vp vLB vp ¼ h2

Dt
vLB

Density-distribution function f pi f LBi
Temperature-distribution

function
gpi gLBi

Temperature Tp TLB Tp ¼ ðTpmax � Tp
minÞTLB þ

Tpmin

Thermal expansion coefficient
of fluid

bpT bLBT bpT ¼ 1
Tpmax � Tpmin

bLBT

Thermal diffusion coefficient of
fluid

ap aLB ap ¼ h2

Dt
aLB

Hydrodynamic force Fp
f FLB

f Fp
f ¼ h3

ðDtÞ2
rf0F

LB
f

Hydrodynamic torque Tpf TLB
f Tp

f ¼ h4

ðDtÞ2
TLBf

Stiffness kpn kLBn kpn ¼

 h
Dt

�2

kLBn

Mass mp mLB mp ¼ rps h2mLB

Damping coefficient cpd cLBd cpd ¼ h2

Dt
cLBd

Critical time step for DEM Dtpcr DtLB Dtpcr ¼ DtDtLB
3. Numerical model validation

For the verification purpose, the coupled thermal DEM-IMB-
LBM model described in the above section is applied to two ex-
amples: single-particle and two-particle sedimentation with heat
transfer in an enclosure. The following dimensionless numbers and
parameters are defined:

Re ¼ UrefLref
v

; Pr ¼ v

a
;Gr ¼

���gy���bTL3ref ðTb � T0Þ
v2

; rr ¼
rs
rf0

(30)

where Re is the Reynolds number, Pr is the Prandtl number, Gr is the
Grashof number, rr is the ratio of the particle density to the fluid
density, rs is the particle density, Tb is the particle temperature, Lref
is the reference scale equal to the diameter of a particle (¼ 2Rp), and
Uref is the reference velocity.
cr cr
3.1. Single-particle sedimentation with heat transfer

The first benchmark test is the sedimentation of a hot/cold
particle with constant temperature, adopted from Feng and
Michaelides (2008). As shown in Fig. 3, the computational
domain is 0.16 m in width and 0.4 m in height, and is divided into
160 � 400 lattice grids with spacing h ¼ 0.001 m. The four
Table 1
The coupling procedure of the thermal DEM-IMB-LBM model.

1. Map these particles onto corresponding target cells (forming particle list in
each cell)

2. Initialize the fluid field and the temperature field, and identify four sorts of
nodes (i.e. solid boundary, interior solid, fluid boundary, and fluid)

3. Loop over LBM iterations
3.1. Loop over DEM sub-cycling

3.1.1. Determine solid particles in each searching cell
3.1.2. Identify the corresponding target cell for solid particles

(a) Contact detection for a particle with potential particles in the
target cell

(b) Calculate contact forces and torques
3.1.3. calculate particle velocity and angular velocity
3.1.4. Update particle movement

3.2. Update four sorts of nodes, and calculate the local solid ratio for each
node

3.3. Perform collision process with both the fluid field and the temperature
field
(a) Fluid nodes using Eqs. (8) and (9)
(b) Other three sort nodes using Eqs. (22) and (27)
(c) Hydrodynamic forces and torques using Eqs. (25) and (26)

3.4. Apply the bounce-back rule to the lattice nodes occupied by stationary
walls and particles

3.5. Perform streaming process for both the fluid field and the temperature
field

3.6. Enforce the fluid and temperature boundary conditions
boundaries are static walls and thus the no-slip boundary condition
is imposed, and are also fully insulated. A particle initially located at
the position (0.08 m, 0.36 m) moves downward due to gravity. For
the fluid, the kinematic viscosity is 1 � 10�5 m2/s, the density is
1000 kg/m3, the thermal diffusivity is 1 � 10�5 m2/s, and the
thermal expansion coefficient is 1.02� 10�4 K�1. The particle radius
is 0.005 m. The density of the particle varies in the range of 1001e
1100 kg/m3, resulting in the density ratio (rr) in the range of 1.001e
1.1. According to Eq. (30), the corresponding Re number is in the
range of 12.4e124.

The time step for LBM and DEM are respectively 0.1�10�2 s and
0.8197 � 10�5 s, resulting in a sub-cycling number of DEM (Nsub) in
an LBM time step to be 122. Both relaxation time for density (sf ) and
temperature (sg) are 0.53, indicating that the Prandtl number Pr is
1. The initial temperature of fluid (T0) is 290 K, while three different
initial temperatures of the particle (Tb ¼ 280, 290 and 300 K) are
considered. The particle temperature is uniform and constant
during thewhole simulation process. Correspondingly, according to
Eq. (30), three situations with different Grashof numbers Gr are
investigated: Gr ¼ �100 (a colder particle), Gr ¼ 0 (an isothermal
particle) and Gr ¼ 100 (a hotter particle).

To compare our numerical results with those of Feng and
Michaelides (2008), the following three parameters are calculated
as follows:

Ret ¼ UtLref
v

;Cd ¼ 2Fd
rf0U2

t Lref
;U* ¼ Ut

Uref
;Uref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRpðrr � 1Þ

���gy���
r

(31)



Fig. 3. Single particle sedimentation in an enclosure (unit: the lattice unit).

Fig. 4. Variations of the drag coefficient (a), dimensionless terminal velocity (b) and
Mach number Ma (c) with the Reynolds number due to different Grashof numbers Gr.
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where Ret is the Reynolds number based on the terminal velocity
(Ut) of the particle, Cd is the drag coefficient, Fd is the steady drag
force acting on the particle when it reaches the terminal and steady
velocity, and U* is the dimensionless terminal velocity.

Fig. 4 compares the drag coefficients, the dimensionless termi-
nal velocity and theMach number (Ma) with the Re number and the
Gr number. Fig. 4a shows that with the increase of Ret, the drag
coefficient decreases remarkably when Gr is 0 or 100, while the
drag coefficient first increases and then decreases when Gr is�100.
From Fig. 4b, we find that with the increase of Re, the dimensionless
terminal velocity first decreases and then increases when Gr
is �100, while it increases gradually when Gr is 0 or 100. Generally
speaking, our numerical results agree well with the experimental
results of Tritton (1959) and the numerical results of Feng and
Michaelides (2008) and Dan and Wachs (2010).

From Fig. 4b, the dimensionless terminal velocity (U*) of the
particle is 0.0851 when rr ¼ 1.1 and Gr¼�100. In this situation, the
velocity of the particle during sedimentation is maximum, and its
value (Umax) is 0.106 m/s. In this extreme case, the accumulated
displacement of the particle (lmax) during Nsub DEM subcycling can
be calculated as follows:

lmax ¼ UmaxNsubDtDEM ¼ 0:106� 122� 0:8197� 10�5

¼ 0:106� 10�3 m (32)

As stated by Owen et al. (2011) and Honari and Seyedi
Hosseininia (2021), a practical limit on the subcycling number is
required to ensure the accuracy of the DEM-IMB-LBM model. From
Eq. (32), since the accumulated displacement of particle (lmax) is
much lower than a one grid cell h (i.e. 0.001 m), the present high
value for the sub-cycling number (Nsub ¼ 122) is still accurate for
modeling the present problem.

One important source of error in LBM simulations is the
compressibility of fluid, which is often controlled bymonitoring the
Mach number (Ma) and/or the density changes of fluid throughout
the simulation. It is often requiredMa « 1. In practice,Ma should be,
at least, smaller than 0.1 (Chen and Doolen, 1998; Feng et al., 2007).
As shown in Fig. 4c, all Ma numbers are small than 0.1, indicating
that the results obtained are reasonably accurate.

On the other hand,Ma increases as Gr decreases, indicating that
Ma is affected by Gr number. However, the amount of change is
small, whichmeans that the density fluctuation due to temperature
change does not lead to high compressibility errors in the models.
The reason for this is that, according to Eq. (7), the maximum fluid
density change of the initial density can be calculated as���Drf =rf0��� ¼ ���rf �rf0

���=rf0 ¼ jbT ðT �T0Þj ¼ 1:02� 10�4 � ð300 �
290Þ ¼ 1:02� 10�3, which is a very small value.

Fig. 5 shows the particle position and velocity contour or tem-
perature contour at t ¼ 15s for simulations with rr ¼ 1.0068. The



Fig. 5. Particle position at t ¼ 15 s (rr ¼ 1.0068) (unit: the lattice unit): (a) Temperature contour for a cold particle (Gr ¼ �100), (b) Velocity contour for isothermal flow (Gr ¼ 0), and
(c) Temperature contour for a hot particle (Gr ¼ 100).
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magnitude of the fluid velocity and temperature are shown in the
lattice unit in our simulations, which could be directly converted
into physical unit. Within the velocity contour, the maximum fluid
velocity with lattice unit is the Mach number. As the Mach number
is much smaller than 0.1, the numerical results can be regarded
reliable. It is found that the colder particle settles faster than the
isothermal and hotter particle cases. Meanwhile, the colder particle
has created a wider flume with a shorter tail, while the hot particle
has created a narrow flumewith a longer tail. These results are also
consistent with those of Feng and Michaelides (2008) and Dan and
Wachs (2010).

Fig. 6 shows the variations of both vertical position and vertical
velocity of the particle under different Gr numbers. Compared with
the hotter particle or isothermal particle, the colder particle reaches
the bottom boundary first. This indicates that the Gr number has a
considerable effect on the particle motion when the heat transfer
between the particle and its surrounding fluid is considered.
Fig. 6. Variations of the particle vertical position (a) and vertical velocity (b) under
different Gr numbers (rr ¼ 1.0068).
3.2. Two-particle DKT simulation with heat transfer

The well-known DKT motion under the isothermal condition
has been widely used for validating numerical methods. In this
work, this two-particle DKT simulation is revisited with heat
transfer between the colder/hotter particle and the fluid as the
second benchmark test. As shown in Fig. 7, the computational
domain is 0.02 m in width and 0.06 m in height, and divided into
200 � 600 lattice grids with spacing h ¼ 0.0001 m. The four
boundaries are static walls and thus the no-slip boundary condition
is imposed. Meanwhile, all the four boundaries are fully insulated.

Two particles initially located at the positions (0.01 m, 0.052 m)
and (0.01 m, 0.048 m) move downward due to gravity. For the fluid,
the kinematic viscosity is 1 �10�6 m2/s, the density is 1000 kg/m3,
the thermal diffusivity is 1 �10�6 m2/s, and the initial temperature
is 290 K. For these two particles, the radius is 0.001m; the density is
1010 kg/m3; the temperature is 300 K; the friction coefficient and
normal stiffness (kn) are selected as 0.05 and 1 � 107 N/m,
respectively; and the tangential stiffness (ks) is 1 � 107 N/m. The
time step for DEM and LBM are respectively 0.1053 � 10�4 s and
2 � 10�4 s, resulting in a subcycling number (Nsub) of 19 and a
lattice speed (c) of 0.5 m/s. Both relaxation time for density (sf ) and
temperature (sg) are selected as 0.56, indicating that the Pr number
is 1. According to Eq. (30), the two thermal expansion coefficients



Fig. 7. Two particle sedimentation in an enclosure (unit: the lattice unit).
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(bT ¼ 0 and 1.274 � 10�4 K�1) yield two Gr numbers (Gr ¼ 0 and
100). The simulated maximum fluid velocity is Umax ¼ 0.01869 m/
s when Gr ¼ 0. Thus, the corresponding Mach number is calculated
Fig. 8. Particle positions and fluid velocities (a) and temperature contour (b) at different d
as Ma ¼ Umax=c ¼ 0.03739, indicating that the results obtained
are reasonably accurate.

To compare our numerical results with those of Feng and
Michaelides (2008) and Tao et al. (2021), the following three pa-
rameters are calculated:

Uref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���gy���Lref

r
; Lref ¼ 2Rp; tref ¼ Lref

.
Uref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lref
.���gy���

r
(33)

where tref is the reference time.
Fig. 8 shows the particle positions and fluid velocities or tem-

perature contour at different dimensionless time instants under
different Grashof numbers (Gr ¼ 0: an isothermal particle, and
Gr ¼ 100: a hotter particle). As shown in Fig. 8, three stages of the
DKT motion can been reproduced when Gr ¼ 0 and 100. However,
the three stages of the DKT motion are delayed when the heat
transfer between the particles and the fluid is accounted for. When
Gr ¼ 0, two particles finish tumble at t/tref ¼ 168, while they still
stay tumble when Gr ¼ 100. This result agrees well with Feng and
Michaelides (2008) and Tao et al. (2021).

To quantitatively compare with some existing results obtained
by the IBM-LBM (Tao et al., 2021) and direct numerical simulations
(Feng and Michaelides, 2008), the variations of the dimensionless
particle vertical velocity under different Gr numbers are displayed
in Fig. 9. A good agreement can be found for both the isothermal
imensionless time instants under different Grashof numbers Gr (unit: the lattice unit).



Fig. 9. Variations of the dimensionless particle vertical velocity under different Gra-
shof numbers Gr (the filled scatters for the top particle, and the hollow scatters for the
bottom particle).

Fig. 11. Sedimentation of 16 particles in an enclosure (unit: the lattice unit).
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(Gr ¼ 0) and non-isothermal (Gr ¼ 100) cases, demonstrating the
accuracy of the proposed model. As shown in Fig. 9, hotter particles
fall slowly (i.e. Gr ¼ 100) compared to isothermal particles (i.e.
Gr ¼ 0), which is consistent with the observation of the above
single-particle sedimentation simulations with heat transfer in
Section 3.1. It also can be seen that the typical DKT phenomenon is
clearly observed in both cases. When Gr ¼ 0, the drafting stage
begins from t/tref ¼ 33.6, the kissing stage starts at t/tref ¼ 101, and
the two particles begin to tumble at t/tref ¼ 126. Similarly, when
Gr ¼ 100, the drafting stage starts at t/tref ¼ 44.8, the kissing stage
starts at t/tref ¼ 120, and the two particles begin to tumble at t/
tref ¼ 162. It is apparent that the three stages of the DKT motion are
Fig. 10. Variations of the dimensionless gap distance between particles under different
Grashof numbers Gr.
delayed when the heat transfer between particles and the fluid is
accounted for. The reason for this is that the hotter particle will
cause the extra buoyancy force which is opposite to the direction of
motion.

Meanwhile, from Fig. 9b, the maximum dimensionless particle
vertical velocity (V=Uref ) is �0.128 when Gr ¼ 0. In this situation,
the corresponding maximum particle vertical velocity (Vmax) is
0.01672 m/s. In this extreme case, the accumulated displacement of
the particle (lmax) during Nsub DEM subcycling is lmax ¼ VmaxNsubD
tDEM ¼ 0:01672� 19� 0:1053� 10�4 ¼ 0:03344� 10�4 m. Since
this value is much lower than the grid cell spacing h (i.e. 0.0001 m),
the present value for the sub-cycling number (Nsub ¼ 19) is still
accurate for modeling the present problem.

Fig. 10 depicts the variations of the dimensionless distance be-
tween the two particles under different Grashof numbers. As
shown in Fig. 10, the three stages of the DKT motion can be seen
when Gr ¼ 0 or 100. During the sedimentation process, the hotter
particles heat up the fluid and cause an extra buoyancy force
applied to the particles, resulting in the delay of the DKT process.
This numerical result is consistent with Tao et al. (2021) as well.
Compared with Tao et al. (2021), the present numerical model can
accurately model the kissing state, in which the particle gap dis-
tance should be close to 0.
4. Complicated particle-fluid interaction problems with heat
transfer

In this section, two multiple-particle simulations with heat
transfer (a 16-particle sedimentation problem and a 10-particle
migration problem in periodic boundary condition (PBC)) are
conducted to further investigate the role of heat transfer in particle-
fluid interactions, and to demonstrate the robustness of the
coupled thermal DEM-IMB-LBM model proposed in this work.
Meanwhile, all particle assembles in this section are generated
using the efficient discs packing algorithm developed by Xu and Xia
(2023).
4.1. Multiple-particle sedimentation with heat transfer

In this multiple-particle sedimentation simulation case, the
time step for DEM and LBM are 0.1064 � 10�4 s and 0.5 � 10�3 s,
respectively, leading to the sub-cycling number of DEM in an LBM



Fig. 12. Evolution of fluid velocity during the settling process at different time instants (unit: the lattice unit).
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time step to be 47. Both relaxation time for temperature (sg) and
fluid density (sf ) are 0.65, indicating that the Pr number is 1. The
friction coefficient between the particles is 0.05. Other parameters
of the particles and the fluid used in this section are the same with
those in the two-particle DKT simulation in Section 3.2. In this
numerical example, 16 particles with the same radius are
considered as shown in Fig. 11. Three different Grashof numbers are
also considered in the simulation: Gr ¼ �100, 0 and 160. The
simulated maximum fluid velocity is Umax ¼ 0.02289 m/s when
Gr ¼ �100. Thus, the corresponding Mach number is calculated as
Ma ¼ Umax=c ¼ 0.04578, indicating that the results obtained are
reasonably accurate.



Fig. 13. Evolution of temperature contours during the settling process at different time instants.
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Fig. 12 shows the evolution of fluid velocity during the settling
process for Gr ¼ �100, 0 and 160 at different time instants. From
the fluid velocity contours in Fig.12, we can see that the positions of
the particles have a minor difference under different Gr numbers at
the early stage of sedimentation (t ¼ 2 s). However, most particles
reach the bottom of the enclosure at the time t ¼ 8 s when
Gr ¼ �100, while only two particles reach the bottom of the
enclosure when Gr ¼ 160. Furthermore, the final particle distribu-
tion is totally different under different Gr numbers, which indicates
that the heat transfer between the particle and the fluid has a
significant effect on particle-laden flows. Fig. 13 displays the evo-
lution of temperature contours during the settling process at
different time instants. It is found that the movement of hotter
particles is slower, and apparent heat transfer from the hotter
particle to the fluid can be observed. For this reason, the fluid
temperature at the top of the enclosure is heated up. However, as
the colder particles move downward in Fig. 13a, the fluid temper-
ature at the top of the enclosure is not cooled down at the end of
the simulation (t ¼ 10 s).
In the previous simulations, the temperatures of all particles are
the same. To further demonstrate that the proposed method solves
the problems with non-uniform particle temperatures, the tem-
peratures of 16 particles are set in the range of 290e300 K. Other
parameters of the particles and the fluid are the same as those in
the Gr ¼ 160 simulation in this section. Fig. 14 shows the evolution
of fluid velocity and temperature contours during the settling
process for different particle temperatures at different time in-
stants. It can be seen that the particle temperature has a consid-
erable effect on particle laden motion. Meanwhile, when the heat is
transferred from the particles to the surrounding fluid, the tem-
perature field is totally different.

4.2. Multiple-particle migration with heat transfer in a Poiseuille
flow

In this part, a multiple-particle migration with heat transfer in a
Poiseuille flow is carried out. When a fluid-particle system contains
a larger number of particles, it is necessary to parallelize the DEM-



Fig. 14. Evolution of fluid velocity (a) and temperature contours (b) during the settling process with different particle temperatures at different time instants (unit: the lattice unit).

Fig. 15. Migration of 10 particles in an infinite tube (unit: the lattice unit).
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LBM approach to reduce the computational cost. An alternativeway
is to employ the PBC in the DEM-LBM framework. The PBC can be
used for approximating a large (infinite) system by using a small
part called a unit cell with fewer particles (Wang et al., 2017b).
Obviously, the computation cost of using PBC can be greatly
reduced by reducing the number of particles required. The PBC was
firstly implemented by Wang et al. (2017b) into the DEM-IMB-LBM
framework for modeling fluid-solid interaction problems. This PBC
for DEM-IMB-LBM mainly contains three parts: the interaction and
periodic migration of solid particles, the fluid-solid coupling at the
periodic boundary and the periodic flow of fluid. When heat
transfer between particles and fluids is considered in a periodic
computational domain, the PBC for heat transfer needs to be
applied. Recently, an efficient and robust PBC algorithm proposed
by Xia et al. (2023) tomodel mass transport and particle dissolution
problems is used in the present study. The detail algorithm can be
found in Xia et al. (2023).

A total of 10 circular particles with the same radius of 0.001 m
are randomly positioned in a Poiseuille flow. As shown in Fig. 15,
the computational domain is 0.025 m � 0.015 m, and divided into
250� 150 lattice grids with spacing h¼ 0.0001 m. For the fluid, the
kinematic viscosity is 1 �10�4 m2/s, the density is 1000 kg/m3, the
thermal diffusivity is 1 � 10�4 m2/s, and the initial temperature is
290 K. For these particles, the density is 1000 kg/m3, the temper-
ature is 300 K, and the normal stiffness (kn) is 1 � 106 N/m. The
friction between these particles is ignored. The relaxation time for
density (sf ) and temperature (sg) is 0.8, indicating that the Pr
number is 1. The densities of the particles and the fluid are both
equal to 1000 kg/m3, indicating that all particles are in a neutrally
buoyant condition. The no-slip boundaries are imposed at the top
and bottom boundaries for the fluid field, while these two
boundaries are fully insulated. A constant pressure boundary con-
ditionwith rin ¼ 1003 kg/m3 and rout ¼ 1000 kg/m3 are imposed to



Fig. 16. Evolution of fluid velocity and particle positions during the migration process at different time instants (unit: the lattice unit).

Fig. 17. Evolution of temperature contours during the migration process at different time instants (unit: the lattice unit).

M. Xia et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 2267e2281 2279
the left inlet and right outlet, respectively, indicating that fluid and
particles will move along the horizontal direction under the
pressure-driven force.

In the PBC, when a particle exceeds the right boundary, it will re-
enter the computation domain from the left boundary. At the same
time, when the particle and fluid with a certain temperature leave
the domain on the right boundary, it will re-enter at the left
boundary with the same temperature. Initially, the temperature of
the fluid (T0) is 290 K, and the initial velocities of the fluid and all
particles are zero. During the whole simulation process, all the
particle temperatures are fixed to 291 K. Meanwhile, the thermal
expansion coefficient (bT ¼ 0 K�1) is considered, meaning that the
fluid density is not changed due to the temperature effect. Both the
LBM and DEM time steps are 1�10�5 s, resulting in the sub-cycling
number of DEM within one LBM step to be 1. The simulated
maximum fluid velocity is Umax ¼ 0.04124 m/s. Thus, the corre-
sponding Mach number is calculated as Ma ¼ Umax=c ¼ 0.08247,
indicating that the results obtained are reasonably accurate.

Fig. 16 displays the evolution of fluid velocity and particle po-
sitions during the migration process at different time instants,
while Fig. 17 displays the evolution of temperature contours during
the migration process at different time instants. It can be seen that
fluid and particles start to move from the left to right when a larger
pressure is applied at the left boundary. At t ¼ 0.04 s, the temper-
ature of fluid around particle has been increased due to heat
transfer from hotter particles. At t ¼ 0.08 s, some particles (marked
in red) move out of the right boundary and re-enter the domain
from the left inlet. Most particles are concentrated in the middle
part of the domain in the Poiseuille flow. Thus, hot area is
concentrated on the middle part of the domain (t ¼ 0.3 s). The
migration process of particles is successfully simulated, which
demonstrates the robustness of the coupled thermal DEM-IMB-
LBM model as well.
5. Conclusions

This paper enhances a particle-resolved heat-particle-fluid
coupling model (DEM-IMB-LBM) to solve heat-particle-fluid
coupling problems. The main conclusions can be summarized as
follows.

(1) The thermal LBM is incorporated into the conventional DEM-
LBM to simulate heat transfer, and the IMB is extended to
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achieve Dirichlet-type temperature boundary conditions at
the interface between the moving particles and the fluid.

(2) Four numerical examples (single-particle sedimentation,
two-particle DKT simulation, multiple-particle sedimenta-
tion with heat transfer, and multiple-particle migration in a
computational domain with heat transfer) have demon-
strated the accuracy and capability of the proposed coupling
technique.

(3) Heat transfer between particles and fluid flows has a
considerable effect on particle motion in complex disperse
multiphase flows.

Since the inter-particle collision process is instantaneous and
the contact duration time among particles is very small in a dilute
particle system, it is reasonable to ignore heat conduction among
solid particles. However, for dense particle-laden flows, heat con-
duction between solid particles cannot be neglected. Then, the heat
conduction model (i.e. DTEM) proposed by Feng et al. (2008, 2009)
between solid particles in contact can be used. Recently, the DTEM
has been implemented into the disk discontinuous deformation
analysis method to simulate heating particles (Huang et al., 2022).
These extensions will be reported later for the simulations of dense
fluid-particle systems.
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