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Abstract

Classification and Segmentation of Galactic Structures in Large

Multi-spectral Images

Extensive and exhaustive cataloguing of astronomical objects is imperative for studies
seeking to understand mechanisms which drive the universe. Such cataloguing tasks can
be tedious, time consuming and demand a high level of domain specific knowledge. Past
astronomical imaging surveys have been catalogued through mostly manual effort. Immi-
nent imaging surveys, however, will produce a magnitude of data that cannot be feasibly
processed through manual cataloguing. Furthermore, these surveys will capture objects
fainter than the night sky, termed low surface brightness objects, and at unprecedented
spatial resolution owing to advancements in astronomical imaging. In this thesis, we in-
vestigate the use of deep learning to automate cataloguing processes, such as detection,
classification and segmentation of objects. A common theme throughout this work is
the adaptation of machine learning methods to challenges specific to the domain of low
surface brightness imaging.

We begin with creating an annotated dataset of structures in low surface brightness
images. To facilitate supervised learning in neural networks, a dataset comprised of input
and corresponding ground truth target labels is required. An online tool is presented,
allowing astronomers to classify and draw over objects in large multi-spectral images. A
dataset produced using the tool is then detailed, containing 227 low surface brightness
images from the MATLAS survey and labels made by four annotators. We then present
a method for synthesising images of galactic cirrus which appear similar to MATLAS
images, allowing pretraining of neural networks.

A method for integrating sensitivity to orientation in convolutional neural networks
is then presented. Objects in astronomical images can present in any given orientation,
and thus the ability for neural networks to handle rotations is desirable. We modify con-
volutional filters with sets of Gabor filters with different orientations. These orientations
are learned alongside network parameters during backpropagation, allowing exact optimal
orientations to be captured. The method is validated extensively on multiple datasets and
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Abstract iii

use cases.
We propose an attention based neural network architecture to process global contami-

nants in large images. Performing analysis of low surface brightness images requires plenty
of contextual information and local textual patterns. As a result, a network for processing
low surface brightness images should ideally be able to accommodate large high resolu-
tion images without compromising on either local or global features. We utilise attention
to capture long range dependencies, and propose an efficient attention operator which
significantly reduces computational cost, allowing the input of large images. We also use
Gabor filters to build an attention mechanism to better capture long range orientational
patterns. These techniques are validated on the task of cirrus segmentation in MAT-
LAS images, and cloud segmentation on the SWIMSEG database, where state of the art
performance is achieved.

Following, cirrus segmentation in MATLAS images is further investigated, and a com-
prehensive study is performed on the task. We discuss challenges associated with cirrus
segmentation and low surface brightness images in general, and present several tech-
niques to accommodate them. A novel loss function is proposed to facilitate training of
the segmentation model on probabilistic targets. Results are presented on the annotated
MATLAS images, with extensive ablation studies and a final benchmark to test the limits
of the detailed segmentation pipeline.

Finally, we develop a pipeline for multi-class segmentation of galactic structures and
surrounding contaminants. Techniques of previous chapters are combined with a popu-
lar instance segmentation architecture to create a neural network capable of segmenting
localised objects and extended amorphous regions. The process of data preparation for
training instance segmentation models is thoroughly detailed. The method is tested on
segmentation of five object classes in MATLAS images. We find that unifying the tasks
of galactic structure segmentation and contaminant segmentation improves model perfor-
mance in comparison to isolating each task.
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Chapter 1

Introduction

Recent astronomical imaging surveys have uncovered a vast array of interesting objects.
As shown in Figure 1.1, advancements in imaging techniques have facilitated the cap-
ture of very faint, or low surface brightness (LSB), structures. Better understanding the
physical properties of these objects, their past and future is crucial to astronomers as
they provide clues to the wider nature of galaxy formation. The study of such structures
requires thorough cataloguing and labelling to enable effective statistical analysis. This
process typically involves recording information on different structures present in a given
image, such as the type of object and its location. A more in-depth cataloguing effort also
involves recording the exact spatial properties of structures, such as size and shape, as
this information has the potential to allow astronomers to better understand associated
physical phenomena. Manually cataloguing structures is a lengthy process and gener-
ally will be unfeasible for future surveys producing petabytes of LSB image data. One
approach to handle the scale of data is to levy on astronomy hobbyists through commu-
nity crowdsourcing, from which projects such as Zooniverse [133] have seen great success.
While crowdsourcing has done well to fulfill the labelling requirements for surveys such
as Sloan Digital Sky Survey (SDSS) [23] and Panoramic Survey Telescope and Rapid Re-
sponse System (Pan-STARRS) [33], upcoming surveys such as Euclid will produce orders
of magnitude more data in comparison. The time required for cataloguing is becoming
increasingly infeasible for future surveys with vast amounts of multi-spectral images at
unprecedented high resolution.

A promising approach for the complex image processing involved in automated cat-
aloguing of structures in LSB imaging is machine learning. Machine learning research
has exploded over the past decade with much focus on deep neural networks, enabled
by major hardware advancements in parallel computation. The efficient inference offered
by modern machine learning techniques such as neural networks is relevant in astronomy
given the vast sample sizes in some datasets. Convolutional neural networks in particular

1
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(a) NGC0448. (b) NGC7457.

Figure 1.1: Examples of low surface brightness images.

have been recently applied to a variety of tasks on astronomical images [55, 59, 201] in-
cluding identification of tidal structures in LSB images [20, 200]. While such studies have
seen great success at classifying objects, there have been limited attempts to delineate
the exact spatial boundaries of objects [18, 31, 69, 87], and to our knowledge this has not
been attempted in LSB images. This task of precisely localising an object and predicting
the exact spatial location of the object in an image, is termed object segmentation in the
computer vision research sphere.

Automated cataloguing of structures in LSB images currently presents multiple chal-
lenges, which form the major motivations of this thesis:

• There is no annotated dataset containing segmentation labels of LSB im-
ages, nor a tool to produce such a dataset. Training modern machine learning
algorithms typically requires datasets with example outputs for each input sample,
however, there exists no annotated dataset containing 2D labels of structures in LSB
images. Furthermore, the creation of such a dataset is not so simple, as annotation
of LSB images demands the ability to visually inspect large multi-spectral images
and draw shapes over structures, which are features that are not simultaneously
present in any public available labelling tool.

• There is currently a limitation in terms of quantity and quality of avail-
able LSB images. Huge parameter space models such as deep neural networks
often require large uniform datasets to attain good generalisation. LSB imaging
that boasts both high sensitivity and high resolution is a relatively recent tech-
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nology, with only a handful of deep surveys each containing a small sample set in
comparison to what is typically necessary for training ML methods. Images also
commonly contain artefacting which degrade the quality and thus make training
deep neural networks on such images more difficult.

• LSB imaging instruments detect cirrus clouds which occlude interesting
structures. Due to the sensitivity of modern LSB instruments, scattered light from
dust in our galaxy is captured, which presents as wispy cloud-like structures that
contaminate images. This contamination greatly impedes analysis of LSB struc-
tures, and can appear visually similar to interesting subtle structures, such as ma-
terial resulting from interactions between galaxies. Distinguishing between weaker
cirrus contamination and areas with high background levels can be very difficult in
some cases even for domain experts, yet still remains an important distinction for
astronomers.

In this thesis we aim to systematically address these challenges, through carefully
developing a strategy for data collection and by employing a wide range of machine learn-
ing techniques. In particular, a common theme of this thesis will be focusing on how
to improve generalisation given the data limitations present in this study. Overcoming
this issue will require a multi-pronged approach utilising techniques from many spheres
of machine learning research investigating data efficiency, such as transformation invari-
ance and few-shot learning. Finally, we seek to combine lessons learned from tackling
these problems into a comprehensive automated cataloguing method, capable of object
classification, detection and segmentation.

1.1 Contributions

There is a clear need for automated cataloguing of structures in future surveys, which this
thesis aims to address through supervised machine learning techniques. Moreover, a key
aim of this thesis is not just to identify the presence of certain structures, but to the detect
the exact location and shape, allowing further quantitative analysis of structures’ spatial
properties. This first requires training data so that machine learning algorithms can be
trained. In Chapter 3, we develop a tool for collecting 2D annotation labels of structures
in LSB images, and present both a real and synthesised dataset of annotated astronomical
images. In Chapter 4, we present a modification to the convolutional operator to increase
sensitivity to object rotation in images, such as galactic structures which can present in
any orientation. In Chapter 5, we utilise attention to create a segmentation model capable
of processing large images, and in Chapter 6 attempt to automatically segment cirrus
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contamination in LSB images. In Chapter 7, we implement an instance segmentation
model capable of simultaneous classification, detection and segmentation of structures in
LSB images. This section is dedicated to highlighting the main contributions of this thesis,
and how work carried out relates to the motivations detailed in the previous section.

1.1.1 Training data for automated cataloguing

In order to apply supervised machine learning techniques it is necessary to obtain example
outputs for corresponding input samples, termed ground truth targets. Attaining gener-
alisation in modern ML algorithms typically requires high quality datasets with a large
sample size. To our knowledge, there does not exist any dataset of segmentation labels for
LSB structures, which complicates developing an automated cataloguing method. While
there exists several tools for annotating 2D labels over images, these do not accommo-
date the domain specific challenges associated with astronomical images. Namely, images
contain multiple channels representing different wavelength spectrum bands, which the
annotator must be able to study individually and in combination. Additionally, the lo-
cation of drawn labels correspond to locations in a real world coordinate system, which
should be recorded by the tool. We fill this gap through the development of an annota-
tion tool for LSB images, allowing creation of segmentation targets. The process by which
annotators should produce labels using the tool is explicitly detailed, so that bias among
annotations is minimised. We then detail a dataset of annotated LSB images produced
using our tool. While this dataset serves as an important foundation for training an auto-
mated cataloguing method, the number of available LSB images is limited. To this end,
we present a method for synthesising images containing features similar to those present
in LSB images. This work contains three major contributions.

• We present an online tool for annotating high resolution multi-spectral images.
We utilise a popular astronomy image visualisation tool and enable the drawing of
complex shapes over structures. The tool is entirely web based, supporting collab-
oration between multiple users and allowing annotations to easily be stored in a
central database.

• The proposed tool is used to collect annotations from four users of 227 images from
the MATLAS survey. We define a precise annotation protocol to ensure structures
are annotated in a consistent fashion by all users across all images. We discuss
methods to combine annotations made by multiple users into a single consensus
ground truth, used for training ML models.

• We propose a methodology to generate synthesised samples of galactic cirrus, which



Introduction 5

are suitable for pretraining ML models. Multiple noise patterns are carefully chosen
and combined to create images with similar properties to LSB images, including
structural patterns resembling cirrus clouds. Features learned by training an ML
model on these images can be transferred to the target dataset of MATLAS images.

1.1.2 Learnable complex-valued Gabor convolution for robust-

ness to orientation

Structures in astronomical images can present with any angle of rotation, thus it is benefi-
cial to encode some understanding of orientation into the machine learning model. CNNs
are inherently equipped with some capability to process translations of objects, i.e. ver-
tical and horizontal shifts, owing to how weights are shared across different locations of
the input. This capability, however, does not extend to local or global rotations, which
is a major limitation. Such ability to handle rotation variations is typically encouraged
through large datasets with orientational augmentation, where samples are re-input to the
model after undergoing a manual rotation. Given that data efficiency is a major priority
in this thesis due to sample size limitations of LSB structures, we attempt to integrate
robustness to variation of orientation in an a-priori fashion. We investigate using Ga-
bor filters, which are analytical filters characterised by rotation sensitivity and frequency
localisation, to modify convolutional weights in order to render them more sensitive to
orientation. In order to use the full Gabor filter, we use a complex-valued CNN where all
layers are modified to support complex-valued arithmetic. The contributions of this work
are as follows.

• We present a novel convolutional operator which utilises complex-valued Gabor
filters in order to gain sensitivity to orientation. Gabor filters are analytical filters,
where rotation and scale can be controlled directly through parameters. We learn
these parameters alongside convolutional filters. We refer to the process of modifying
convolutional weights with Gabor filters as modulation.

• We present cyclic Gabor convolutions, where modulated weights generated from
different Gabor filters are applied to each input feature map. Cyclic Gabor convo-
lutions utilise an iterative process where a set of Gabor filters is applied to convo-
lutional weights, cyclically shifted so that the order of filters is altered, and then
reapplied to create a new set of modulated filters.
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1.1.3 Multi-scale gridded Gabor attention network for segmenta-

tion of global contaminants

The ability to contextualise discriminating features is incredibly important in computer
vision. The global surroundings of given features or regions of interest are often key in-
dicators for correct predictions. Convolutions inherently handle local textures well, but
features describing global relations are only learned in later layers after multiple suc-
cessive pooling operations. For processing of contaminants which cover large regions in
images, global context is vital for accurate performance. Such structures also often ex-
hibit orientational patterns both locally and globally, and thus standard convolutions are
suboptimal. The attention operator has been used to capture longer range dependencies
in images, though this is generally has a large memory footprint. We investigate the use
of attention to create an memory efficient model capable of processing large images while
studying long range dependencies. Further, we seek to integrate the orientation sensitiv-
ity offered by Gabor filter modulation, proposed in the previous work, into this attention
mechanism. The contributions of this work are as follows.

• We present a novel attention operator utilising Gabor filter modulation where atten-
tion is computed with respect to orientation dependent features. Correlations are
measured across a new axis representing features dependent on different orientations,
allowing the machine learning model to study relationships across orientations.

• We present a multi-scale gridded attention mechanism for computing attention on
very large images without downsampling or cropping. Feature maps are generated
at different scales and then divided into tiles so that spatial size is standardised.
Attention is calculated on each tile and then reassembled to create new feature
maps of the original scales.

1.1.4 Segmentation of cirrus contamination with deep learning

Identifying cirrus clouds in LSB images is a major priority for future astronomical imaging
surveys. Traditional imaging instruments do not detect cirrus, however the sensitivity of
LSB imaging captures light scattered by dust particles within the clouds. Cirrus appears in
the foreground of images and occludes interesting structures, impeding statistical analysis
of LSB galaxies. In addition to being a contaminant, LSB images of cirrus also provide
pictures for high resolution studies of the interstellar medium. While cataloguing of
cirrus can currently be performed manually, future surveys producing massive amounts
of astronomical image data will require automated methods to record regions affected
by cirrus contamination. This is a difficult task as cirrus contamination varies highly
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in severity and can be easily confused with other structures or high background levels.
This is compounded by the data limitations such as sample size and the high resolution
of images. We seek to design a machine learning pipeline for segmenting cirrus clouds
which accommodates these domain specific challenges. The contributions of this work as
as follows.

• We apply the gridded Gabor attention network to the task of segmenting cirrus
contamination in LSB images.

• We present an adaptive intensity scaling layer which combines a common astronom-
ical image preprocessing step into the deep neural network, where subtle features
are enhanced. Parameters dictating the strength of the scaling operation are learned
alongside neural network parameters.

• We propose a loss function for training on probabilistic targets. We coarsely divide
probabilities into groups and weight the loss function based on the confidence of the
label.

• We apply the proposed pipeline to a novel dataset of annotated cirrus structures in
LSB images.

1.1.5 Detection and segmentation of galactic structures in LSB

images

There is a need for automated classification of galactic structures in LSB images. Tech-
nology advancements in LSB imaging surveys have revealed many interesting structures
related to pictured galaxies. For example, tidal features can be detected in LSB images,
which are remnants of interactions between galaxies. The presence of such interesting
structures and their shapes give clear signs as to how different galaxies are formed. It
is thus key that galactic structures in LSB images can be processed and catalogued to
facilitate statistical analysis and to further research into how galaxies form and evolve.
As is the case for cirrus, cataloguing is currently performed manually by domain experts.
With future surveys set to produce orders of magnitude more image data than currently
available, investigation into automated processing is a necessity. We explore the use of
deep learning to process galactic structures in LSB images. Given that presence and
shape of structures is important to astronomical research, we attempt to both detect and
segment objects, i.e. the task of instance segmentation. We incorporate lessons learned
from previous chapters in handling LSB images and develop an instance segmentation
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model capable of making predictions directly from LSB images with no preprocessing.
The contributions of this work are as follows.

• We detail the process of preparing MATLAS annotation data to facilitate training
instance segmentation models.

• We apply Mask R-CNN on detection and segmentation of localised galactic struc-
tures, and investigate the use of a human-in-the-loop training protocol to include
correct object predictions which are unannotated into the training dataset.

• We present a conceptually simple panoptic segmentation method which involves
combining Mask R-CNN with the attention model of the previous work. This
model is used to simultaneously segment localised galactic structures and global
contaminants.

1.2 Outline

In this section, we briefly describe each of the remaining chapters of this thesis.

Chapter 2 Background
We detail the prerequisite machine learning concepts related to this thesis, includ-
ing convolutional neural networks and supervised training. We also provide a back-
ground on low surface brightness astronomical imaging and the types of structures
analysed throughout this work.

Chapter 3 Creating an LSB Dataset for Supervised Learning
An annotation tool for labelling astronomical images is presented. Annotation labels
of 227 low surface brightness images from the MATLAS survey are detailed, and the
method of combining labels from multiple users into a single consensus is discussed.
A method for synthesising samples of galactic cirrus suitable for enabling transfer
learning in deep neural networks is presented.

Chapter 4 Learnable Gabor Modulation in Complex-valued Neural Networks
We present a novel modification to the convolutional layer where kernels are modu-
lated with Gabor filters in order to increase sensitivity to orientational patterns. A
complex-valued CNN is implemented with Gabor modulation and applied to prob-
lems exhibiting different types of rotational symmetries.

Chapter 5 Multiscale Gridded Gabor Attention for Segmenting Global Contaminants
We present a compute-efficient attention operator for segmentation of global contam-
inants, where attention is calculated over tiles of different scales. We also propose a
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method using attention to measure global orientational dependencies, where Gabor
modulated convolutions are used to extract orientational features.

Chapter 6 Segmentation of Cirrus Contamination: a Deep Learning Approach
A pipeline for automated cataloguing of cirrus contamination is presented, involving
the attention network of the previous chapter. We discuss multiple domain specific
challenges associated with low surface brightness images and propose solutions, in-
cluding a loss function for training deep neural networks on coarsely probabilistic
targets.

Chapter 7 Multi-class Segmentation of Galactic Structures
We investigate the task of panoptic segmentation in low surface brightness images.
A conceptually simple model is developed where the attention network of previous
chapters is combined with Mask R-CNN to create a model capable of segmentation
of localised objects and extended homogeneous structures.

Chapter 8 Conclusion
Final concluding remarks are drawn on the thesis, where the separate contributions
are revisited and contextualised among the central goals of this work. Discussion
surrounding avenues for future work is provided alongside this summary.



Chapter 2

Background

In this interdisciplinary work, we combine two deep areas of research: machine learning
and astronomy. To digest the work in this thesis and fully understand the motivations,
it is necessary to set the stage. This chapter details the necessary prerequisite concepts
relating to this thesis. In the first half, key concepts and challenges in galaxy evolution are
outlined. In the second half, the state of image processing with deep learning is covered.

2.1 Galaxy Evolution and Low Surface Brightness

Understanding the universe has long been a central goal of our species at large. One
method of progressing this understanding has been through studying the processes of
stars and galaxies. To the naked eye, the observable universe appears as a collection of
bright objects, which are mostly stars in our own galaxy, the Milky Way. Galileo’s first
telescope in the seventeenth century increased viewing capacity, allowing astronomers to
study objects that were fainter (less luminous) or further away. Over a century later,
further advances in telescope technology enabled Herschel and others to discover that our
galaxy was roughly shaped as a disk.

In the early twentieth century, much effort was spent measuring the properties of
the Milky Way more meticulously. The work of Leavitt and Pickering [121], revealing the
relationship between pulsation period and luminosity of variable Cepheid stars, facilitated
accurate measurements of other stars’ distances and thus the size and shape of the Milky
Way1. The period-luminosity relation was then later used by Hubble [98] to prove the
existence of galaxies other than our own, a major discovery which birthed extragalactic
astronomy. Shortly after this, Zwicky [221] discovered a disagreement in some galaxies
between calculated velocity, based on observed redshift, and calculated mass, based on

1Along with disproving heliocentrism.
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observed luminosity, where these galaxies moved much faster than could be explained by
their observable luminous mass. This finding led to him arguing for the existence of dark
matter, matter which does not absorb, reflect or emit electromagnetic (EM) radiation,
and thus is non-luminous.

Today, the most widely accepted understanding of the formation of galaxies is mod-
elled by a concept termed as hierarchical merging [46, 208]. In this hierarchical model,
smaller galaxies combine through clustering and merging due to gravity, accumulating
mass and forming larger galaxies of a new shape and structure, or morphology. Such
merger events are a significant driver of galaxy evolution and can cause major changes in
galaxy morphology.

2.1.1 Low Surface Brightness Structures

Whereas stars are concentrated sources of light, or "point sources", light from galaxies is
spread over a patch of the sky. This light distribution is described in surface brightness,
which measures brightness per unit area. The surface brightness of a galaxy directly
relates to the density of stars inside it from the observer’s perspective, and is thus an
intrinsic property of the galaxy. Low surface brightness (LSB) is a term used to describe
a brightness level fainter than the night sky.

The surface brightness of the night sky is composed of a variety of objects and struc-
tures which vary in intensity and emit different spectral ranges of electromagnetic radia-
tion [124]. These sources include:

Airglow – light emitted due to the glowing of the upper atmosphere.

Zodiacal light – sunlight scattered by dust particles in the Solar System.

Integrated starlight – combined light from low luminosity stars in the Milky Way.

Diffuse galactic light – starlight scattered by dust particles in the Milky Way, also
referred to as galactic cirrus.

Extragalactic background light – light from undetected sources outside of the Milky
way.

This combination of light sources amounts to a significant disruption in what can be ob-
served in the LSB universe. Further, photon shot noise becomes a relatively larger factor
as signal decreases, and has a non-negligible effect on observations of LSB structures.
Galaxies with a low surface brightness are thus not well observed, emitting diffuse scat-
tered light which telescope instruments and postprocessing pipelines have traditionally
not been optimised to detect.
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Large surveys of objects and surveys with higher surface brightness levels than the LSB
regime have facilitated large scale statistical studies of the galaxy population, progressing
understanding of galaxy evolution. Such analyses, however, have been naturally biased
by the incompleteness of LSB object detections. This visibility bias was first noted by
Disney [57], who made the analogy of observed galaxies being only the tip of the iceberg,
in terms of the number of undetected faint objects, and that only the bright centre of
galaxies was pictured. A consequence of this is that understanding of galaxy evolution
and driving phenomena are predicated on a subset of the galaxy population, i.e. not
including LSB galaxies.

LSB features of detected high surface brightness galaxies offer a wealth of matter that
can be studied to further constrain models of the Universe. An example of such compo-
nents are tidal features, induced by merger events between galaxies, and have been used to
provide modelling constraints on dark matter [47]. Tidal features necessarily encode the
formation and evolutionary history of associated galaxies. The majority of merger events
produce faint tidal features, undetectable in past imaging surveys [62]. The analysis of
LSB tidal features is thus key to understanding galaxy evolution. Observing such struc-
tures is currently very challenging due to the surface brightness depth required, though
observations have been possible through a combination of telescope instrumentation tech-
nologies, specialised image post-processing and observing strategies.

2.1.2 Imaging Instrumentation and Observing Strategies

Modern LSB images in the optical and near infrared EM bands are typically captured
with charge-coupled devices (CCDs). CCDs are rectangular semiconductor chips with
a light sensitive face. Incident photons generate a small electrical charge, due to the
photoelectric effect, which is stored in a "potential well". As more photons arrive at the
CCD’s face, charge accumulates in the well. CCDs contain many wells which correspond
to individual pixels. For image capture, the CCD is placed in the focal plane of a telescope
which incident photons illuminate, forming an image of the region of the sky that is being
viewed. Electrons stored in potential wells are then released and "read out" in a sequential
fashion, allowing brightness values to be calculated for each well or pixel. Multiple CCD
instruments are often used in combination to either increase the size of an image or reduce
noise by averaging over photon shot noise. This can sometimes be the cause of artificially
high background levels in isolated sections of an image, where not all CCD read outs are
used for this averaging process (due to miscellaneous errors), leaving areas with higher
noise levels. Another possible artefact of CCDs encountered in this thesis are saturation
trails: potential wells have a limit of charge storage which when reached causes further
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electrons to spill over into neighbouring wells. Very bright objects thus can erroneously
illuminate nearby pixels, usually in a vertical pattern.

Figure 2.1: Left: Diagram of Canada France Hawaii Telescope (CFHT) Megacam’s main
components, taken from [193]. Note the four spider arms in the top end. Right: Internal
reflections cast by a bright star in a MATLAS image taken with CFHT’s Megacam.

There are several imaging specific challenges related to capturing LSB structures, as
systematic instrumentation effects are far more significant when capturing faint surface
brightnesses. Careful handling of the point spread function (PSF), which models the
diffraction pattern of light emitted from point sources, is important to good performance
in LSB imaging. Typical narrow PSFs tightly focus on incident light from point sources
though leave extended "wings" which bleed over the focal plane and in LSB imaging can
present as more significant artefacts, sometimes appearing visually similar to interesting
objects [175]. To mitigate this, there are works integrating subtraction of extended PSF
wings into LSB imaging pipelines [12, 183]. It is also important to minimise the amount
of internally reflected scattered light reaching the telescope’s focal plane. Light arriving
on the CCD can reflect back through the telescope, reflect again off internal components
of the telescope, and then land on the CCD surface. In practice, this commonly occurs
where light reflects off of the telescope’s secondary Newtonian mirror and its supporting
"spider" arms, leaving a faint shadow and bright cross near imaged stars. This effect
can be mitigated by using anti-reflection coatings or minimising the amount of internal
supporting structures, such as is done in the Dragonfly telescope array [1].

Atmospheric effects can generate noise in the image, of which the strength and pattern
varies with time of day and the area of the sky being imaged. Diffraction and scattering
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of light due to the atmosphere can also change the PSF, increasing the extended wing
effect. One observational strategy to mitigate against atmospheric and other systematic
effects is "dithering", where multiple observations are taken with the viewed patch of sky
altered slightly each time (e.g. [195]). Astronomical sources predictably change location
in the image, whereas unwanted systematic effects do not, allowing them to be identified
and accounted for. Future space-based telescopes, such as Euclid [119], will alleviate
atmospheric effects.

2.1.3 Cataloguing

To facilitate statistical studies on celestial objects, it is necessary to record logs of observed
objects in a structured manner. Such a record is termed an astronomical catalogue, and
contains a tabulation of celestial objects that share some association. Along with an iden-
tifying name or code, additional details of objects are recorded, such as size, location and
distance. This cataloguing process of logging astronomical information has traditionally
been carried out manually by astronomers. Prior to the invention of astronomical tele-
scopes, the largest and most accurate astronomical catalogue by Brahe [28] contained 777
stars. In comparison, the latest release of the Gaia will detail approximately 1.8 billion
stars [29, 164], owing to modern imaging technologies and large automation efforts.

There exist numerous catalogues that include galaxies which are referred to in this
thesis. Most notable is the New General Catalogue (NGC), compiled in 1888, which
along with supplementary updates, known as the Index Catalogues (IC), contains 13226
objects. Many objects detailed in the NGC/IC are still commonly referred to using their
NGC or IC numbers, which appears as a four digit number preceded by either NGC or IC.
The 1973 Uppsala General Catalogue (UGC) [153] contains 12921 galaxies visible form
the northern hemisphere. The Principal Galaxies Catalogue [159] is a collection of 73197
galaxies, published in 1989. PGC is a collation of galaxies from multiple widely used
catalogues, such as NGC and UGC. These mentioned catalogues relied on mostly manual
processing to obtain tabular information, which for the sample sizes was manageable.

The 1990s were characterised by a major change in astronomical data quantity. Tech-
nological advancements brought digital sky surveys, able to capture the sky at an un-
precendented scale. To cope with the increased magnitude in sample size, there has been
much effort spent in automating the processing steps required to catalogue observations.
Source extraction is a key area of this research, which is the process of identifying and
extracting information from individual luminous astronomical objects or sources, and in-
volves producing a segmentation mask of sources. SExtractor [19] is a widely used source
extraction tool, which uses a pipeline consisting of mostly traditional computer vision
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(a) Input. (b) Output.

Figure 2.2: Example interpretation of a CCD frame by SExtractor, taken from [19].

techniques, such as Gaussian smoothing and adaptive thresholding. More recent source
extraction tools include ProFound [169], NoiseChisel+Segment [3] and MTObjects [192].
These tools are optimised for objects of higher surface brightness, and thus struggle in
the LSB regime where signal-to-noise ratio (SNR) tends to be lower. Notably, Prole et al.
[163] propose DeepScan, which extends SExtractor using the DBSCAN algorithm [68],
for source extraction in LSB images.

More involved cataloguing tasks requiring complex image processing, such as object
classification tasks, have naturally lead to application of and research into machine learn-
ing techniques. Early works in this direction involved using neural networks (NNs) for
star-galaxy discrimination [155, 156]. NNs were also applied to galaxy morphology classi-
fication [150, 151, 187] and abnormal spectra detection [75, 199]. These networks followed
the prototypical NN design, with a single hidden layer formed of a relatively small number
of nodes, and the input layer was fed various astronomical parameters known to be dis-
criminative. Other attempts at automation with machine learning alongside these works
used variations of decision trees for morphology classification [157, 207]. Following these
works, in the 2000s, several works applied: a larger NN with more astronomical input
parameters [14]; an ensemble of NNs [15, 16]; and SVMs [100, 161] to morphology classi-
fication. Crowdsourcing cataloguing tasks with citizen scientists [133] has also been used
for galaxy morphology classification on more recent surveys (e.g. [23, 33]).

More sophisticated techniques are necessary to facilitate cataloguing of modern sur-
veys, due to the unprecedented quantity and quality of astronomical images. This is
especially the case for LSB images for which the poor SNR renders traditional machine
learning techniques unreliable. Contamination of structures by galactic cirrus compounds
this problem, which occludes objects and increases ambiguity of spatial size and shape.
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2.2 Deep Learning for Image Segmentation

Much of artificial intelligence research is currently dominated by deep learning studies,
owing to advances in neural network architectures and statistical learning. Prior to this,
machine learning approaches on image processing tasks involved training smaller mod-
els on handcrafted features. Modern deep learning models now incorporate this feature
generation step into the model, enabling models to capture exact and optimal features
related to the task. Undoubtedly, the most popular computer vision architectures of the
past decade are convolutional neural networks (CNNs). In this section, we lay out the
CNN architecture, discuss landmark works and detail common strategies for effective and
efficient training.

2.2.1 Convolutional Neural Networks

Complex image processing tasks require predictive models with a large learning capacity.
This is a problem for standard neural networks, which explode in parameters based on the
dimensionality of input data or intermediate features. Processing higher resolution image
data with NNs quickly demands models with billions of parameters, making training very
computationally inefficient or even infeasible. Such models require large compromises to
be made to facilitate training, e.g. heavy image downsampling or reducing the number of
network layers, making the use of standard NNs impractical for modern computer vision
problems.

Convolutional neural networks greatly improve on parameter efficiency in compari-
son to NNs on computer vision tasks. The learning capacity of CNNs can be controlled
through various means: breadth is altered through channel and kernel size; depth is altered
through the number of layers. CNNs are also inherently well equipped to "understand"
discriminative patterns in images. This is first due to the approximate translation invari-
ance offered by convolutional layers, where features are extracted similarly irrespective of
their location in the image [117]. Secondly, the structure of CNNs captures a descriptive
range of low-level image statistics [196]. This is a consequence of the fact that convolu-
tional kernels are typically of a small size, e.g. 3×3 pixels, and convolutional layers are
used sequentially in combination with downsampling, allowing images to be broken into a
hierarchy of descriptive components. This parameter efficiency combined with hardware
advances in parallel processing through modern GPU devices has enabled feasible training
of large CNNs capable of difficult image processing tasks [41, 117].

The prototypical CNN design consists of several repeated blocks placed in succession
to extract a hierarchy of discriminative features. This block consists of several operations
which each perform a key function in the CNN: the convolutional layer, pooling layer, and
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activation layer. We note that pooling and activation layers commute so their order has no
impact on network output, though pooling followed by activation is more computationally
efficient as the activation layer acts on downsampled features. We now detail each of these
convolutional block components.

(a) Standard. (b) Padding. (c) Dilation.

Figure 2.3: Visualations of 3 × 3 convolutions with different hyperparameter setups,
taken from [65]. (a) shows a standard convolution; (b) shows a convolution with unit
padding; (c) shows a convolution with dilation set to 2.

Convolution – The convolutional layer is typically placed first, where a collection of
kernels with predefined fixed size are convolved over input data. Values of the kernel, or
weights, are learnable through backpropagation, allowing convergence onto an (hopefully)
optimal kernel configuration. Other than kernel size, the behaviour of the layer can
also be controlled through: stride, which forces the convolution to skip over a given
interval of pixels; dilation, which expands the range of a convolving kernel; and padding,
which artificially adds pixels along the boundaries of input. The convolution computation
produces a collection of features which can be used for further processing.

Pooling – A downsampling pooling layer follows second, which reduces the dimension-
ality of input features while preserving discriminative information. The pooling operation
slides a kernel over the input and performs some downsampling strategy over each data
"window". Two common pooling strategies are max pooling, which takes the maximum
pixel value in each window, and average pooling, which takes the mean pixel value in each
window. An important property of the pooling layer is that it introduces local invariance
into the network, as the maximum value of a set of pixels is unaffected by the ordering of
such pixels. Thus, the layout of pixel values in a window does not affect the output.

Activation – The final third layer in the block is a nonlinear activation function which
transforms feature values into an "activation" value where higher values should denote
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a stronger feature response. While a linear activation can be used (i.e. no activation),
patterns in images are usually nonlinear. Given that all other layers in CNNs are typically
linear, it is desirable to introduce a nonlinearity that can capture such patterns. Tradi-
tionally, the sigmoid or hyberbolic tangent functions were used as nonlinearities, which
respectively map input onto values between 0 and 1, and -1 and 1. A drawback of both
functions which becomes noticeable in larger models is saturation, where high magnitude
values all map onto a small neighbourhood around the limits of the function. For example,
tanh(3) ≈ tanh(30). Once a neuron becomes saturated, large changes in weights corre-
spond to negligible changes in outputs thus making backpropagation ineffective due to
vanishing gradients. A common choice of activation function which solves the saturation
problem is the rectified linear unit (ReLU) [79, 152], which unchanges positive values and
sets negative values to zero, i.e. f(x) = max(0, x). While negative values effectively sat-
urate, such weak responses can be thought of as irrelevant to the learning problem. One
gentle approach to alter this scenario is the leaky ReLU [142], which linearly suppresses
negative values rather than setting them to zero.

Following the application of several successively chained convolutional blocks, result-
ing low-dimensional features must be transformed into predictions. A common next step
is to apply a fully connected layer. Whereas convolutions focus on local textural patterns,
a motivation of using fully connected layers on the low-dimensional features is to facilitate
learning of global patterns, as relationships between individual features in a feature map
can be expressed. Prediction then involves a choice of activation layer depending on the
computer vision task. In regression problems, linear layers are often used. In classifica-
tion problems, sigmoid and softmax are commonly used for binary and multiclass data,
respectively.

2.2.2 Image Segmentation

The goal of segmentation is to classify exact regions in an image that belong to a semantic
class. Whereas standard classification tasks involve prediction of a probability distribution
output per input sample, segmentation requires prediction of a probability distribution
per pixel. This distribution can cover an arbitrary number of classes: binary segmentation
refers to the scenario with two classes, positive and negative; and semantic segmentation
refers to the scenario with more than two classes.

Early works investigating image segmentation with CNNs applied a "sliding window"
approach, where the image is divided into many smaller patches and classified [40]. Patch
predictions are then recombined to obtain a segmentation prediction. This approach is
computationally expensive and discards significant contextual information.
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Modern CNN-based segmentation methods use the entire image as input, and output
a corresponding entire segmentation map. Long et al. [138] propose fully convolutional
networks (FCNs), where final fully connected layers are replaced with convolutions of unit
kernel size, allowing input images to have arbitrary size. Lower dimensional features are
also upsampled with transposed convolutions combined with features from intermediate
layers. Ronneberger et al. [172] build on this with U-Net, a symmetric fully convolutional
network where each convolutional layer informs the opposing transposed convolutional
layer during upsampling. This method of transferring information across multiple lay-
ers is referred to as using "skip connections". Chen et al. [35] investigate the use of
dilated convolutions to expand the receptive field of convolutions to increase contextual
information, and later use conditional random fields for boundary refinement [34]. Zhao
et al. [218] propose the pyramid pooling module, which applies multiple convolutions of
different kernel sizes to low dimensional features before upsampling into a segmentation.
More recent background works related to this thesis are reviewed throughout individual
chapters.

To perform comparative studies among different methodologies it is necessary to be
able to quantify predictive performance. The most simple way of doing this is by measur-
ing pixel accuracy, or the proportion of correctly predicted pixels. Such a metric, however,
is poorly suited to datasets with class imbalances. Two popular image segmentation met-
rics in computer vision literature are Intersection over Union (IoU) and the Dice (or F1)
score. IoU measures the ratio over overlap between positive ground truth regions and
positive predicted regions:

IoU(A,B) :=
|A ∩B|
|A ∪B|

(2.1)

where A is the ground truth label, and B is the predicted segmentation. Dice score is
defined as the harmonic mean between precision and recall:

Dice(A,B) :=
2|A ∩B|
|A|+ |B|

(2.2)

2.2.3 Improving Data Efficiency

A downside of the high learning capacity of deep CNNs is that they require large amounts
of data to train. Features can only be learned that perform well on the training set, and
unseen samples that are sufficiently unlike training samples are likely to be misclassified.
Without a large dataset of suitable quality, CNNs are extremely prone to overfitting.
There is thus a strong motivation to explore the use of techniques which improve the data
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efficiency of CNNs and reduce overfitting.
Data augmentation is one such technique that can greatly improve model generalisa-

tion [117, 122, 181]. Augmentation seeks to reduce overfitting by artificially expanding the
training dataset. This is achieved by applying some transformation to training samples,
exposing the model to desired variations. Typically, augmentations take the form of geo-
metric transformations: translations, rotations or flips; and element-wise transformations:
brightness, contrast, saturation, hue adjustment or noise addition. This is especially desir-
able when symmetries or variations exist in the dataset. For example, galaxies can appear
in an image at any location, orientation or reflection, thus geometric augmentations can
induce approximate invariance to these transformations in the trained model.

Another paradigm for mitigating overfitting effects is reusing network weights from
other tasks. This process is referred to as transfer learning, or pretraining. A model that
is trained on a large dataset of good quality learns a wide range of descriptive features.
These features can be "transferred" over to a new task, and used as an initial starting
point. This process allows training deep models on small datasets, provided there exists
a large labelled dataset available for pretraining. Transfer learning can be beneficial even
between datasets that do not appear visually similar, as starting training from a set of
descriptive learned features discourages overfitting.

2.2.4 Practical Tricks for Training Deep CNNs

Optimisation algorithm – The choice of optimisation algorithm has a direct impact
on the characteristics of model convergence in the form of computational cost and better
optima. Backpropagation involves optimisation of some loss function with respect to
network weights through a gradient descent style algorithm. Plain gradient descent is a
poor compromise between these factors as backpropagation only happens once for each
forward pass of the entire dataset. Stochastic gradient descent is a proven adaptation of
this, where backpropagation is applied for each (randomly ordered) training batch. With
SGD, convergence is faster due to a compounding effect of more optimisation steps which
outweighs gradient "noise" introduced by smaller sample size per step [26]. A popular
optimisation algorithm which empirically improves on convergence speed is Adam [111],
which builds on work combining SGD with adaptive moment estimation [64]. Adam uses
momentum, where backward passes utilise the exponential weighted average of the current
batch and past batches in an epoch.

Optimisation algorithms typically contain several hyperparameters. Learning rate
controls the strength of each backpropagation update: common values in the literature
are between 10−3 and 10−5. Larger values allow fast but poor convergence, and the oppo-
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site for smaller values. Weight decay applies a regularising effect to kernel weights which
grow large magnitudes and cause network instability, where small changes in network
input correspond to large changes in output [167]. The L2 norm of weights, multiplied
by the weight decay hyperparameter (typically values vary between 10−4 and 10−7), is
added into the loss function so that weights are optimised to be small. Finally, adaptive
moment estimation based optimisation algorithms, such as Adam, require setting a mo-
mentum hyperparameter, which controls the weighting of past accumulated gradients in
the exponential average.

A practical trick often used in conjunction with an optimisation algorithm is learning
rate scheduling. This involves adjusting the learning rate during training to be larger at
the beginning of training, and smaller at the end. This trick exploits easy early gains and
readjusts later to extract micro performance increases by settling into minima. Several
strategies exist for learning rate scheduling. Step scheduling divides learning rate by
some factor after every interval of some number of epochs, e.g. half every 25 epochs.
Time-based scheduling operates similarly but after every given time-step. Exponential
scheduling multiplies learning rate by a small coefficient after every epoch, referred to as
the learning rate decay.

Weight Initialisation – Careful weight initialisation is important for stable training.
A proper weight initialisation strategy must avoid exponential growth or decay of feature
response magnitudes due to successive layer chaining. A standard practice is to encourage
magnitudes to have unit variance. This is usually achieved by randomly initialising weight
values with a Gaussian distribution of zero mean, and variance depending on the method.
A widely used initialisation strategy is known as He initialisation [88], where variance is
derived based on the number of input channels n or output channels n̂, multiplied by the
convolutional kernel width K. To preserve magnitude variance during the forward pass,
one sets variance to 2

nK2 , and to preserve magnitude variance during the backward pass,
one sets variance to 2

n̂K2 .
Batch Normalisation – Another strategy to mitigate against training instabilities

in large models is batch normalisation (BN) [103]. Maintaining unit variance across layer
outputs can be difficult in larger models where, in addition to its own weights, the output
distribution of a layer is heavily dependent on the distribution of previous layers which
constantly change due to backpropagation. BN normalises layer inputs in an attempt
to mitigate against this effect, though more recent work has shown that its success is
largely attributed to different factors. Santurkar et al. [176] demonstrate that BN has
a smoothing effect on the loss landscape, making gradients more predictable and stable.
Bjorck et al. [22] find a synergistic effect between batch normalisation and more aggressive
learning rates, thus BN enables faster convergence by avoiding or "stepping over" sharp
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local minima.
Finally, there are two commonplace practical techniques for numerical stability not

specific to deep learning. Backpropagation often involves dividing by quantities, e.g.
consider the gradient of a square root. As such quantities become small and tend to zero,
gradients explode and overflow, effectively breaking training. The frequency of these
scenarios is reduced by choosing mathematical operations which avoid divisions, such as
using mean squared error as loss rather than root mean square error. One seemingly
unavoidable scenario is the computation of sigmoid or softmax in classification problems.
This, however, can be mitigated using the "log-sum-exp" trick where the fact that the
loss function immediately follows sigmoid/softmax is exploited. Using a log likelihood loss
function such as cross entropy enables this scenario, and sigmoid/softmax and the loss
function can be combined into a single numerically stable function. Another trick which
mitigates overflow in unavoidable division scenarios by simply adding a small constant to
the denominator, preventing division by zero.

2.3 Summary

In this section, we detailed the necessary prerequisite information for dissemination of
this thesis. A brief history of galaxy evolution and low surface brightness research was
set out, before covering astronomical instrumentation and its surrounding challenges.
We detailed popular galaxy catalogues, and discussed how machine learning techniques
have been used to assist with cataloguing tasks. A background to deep learning and
convolutional neural networks was then documented. Finally, we provided discussion on
several practical techniques, commonly mentioned in the machine learning literature, that
are applied throughout this thesis.



Chapter 3

Creating an LSB Dataset for
Supervised Learning

In this chapter, the process of creating a dataset of LSB images for supervised machine
learning is detailed. For this thesis’ study of exact spatial detection of galactic structures,
2D segmentation labels of all structures are required for each LSB image. As high res-
olution LSB images are a relatively recent advancement in astronomy, there exists little
annotated data to be used as training targets. To accommodate supervised learning, it is
thus necessary to create a dataset of LSB images with corresponding 2D annotation la-
bels categorised by different types of structures. This chapter presents a tool for creating
said annotations and the exact protocol by which annotations are performed, as well as
a method for synthesising LSB images for pretraining CNNs.

3.1 Introduction

An inherent requirement of supervised learning is the need for corresponding ground
truth target labels for each input training data. While there exists a few examples of
ML segmentation techniques applied to astronomy images, these methods either use un-
supervised graph-based techniques [31, 87], train on automated masks [69] created with
SExtractor [19], or train on purely synthesised images [18]. Supervised segmentation of
galactic structures is a relatively unexplored area of research, and to the author’s best
knowledge no extended dataset of segmentation labels for LSB structures exists. It is
therefore necessary to create an annotated dataset suitable for training supervised ML
algorithms.

Astronomical images present several challenges for precise 2D annotation, in compar-
ison to natural images. Namely, images must cover a large region of the sky so that the

23
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annotator can study surrounding regions of interest, and be of high enough resolution
so that local scale features are not lost. Images are also multi-spectral, with which each
associated wavelength band must be able to be studied individually and in combination.
Given the extra uncertainty introduced through pixel-wise labelling, i.e. boundaries or
even the presence of structures may be ambiguous, it is important for annotators to be
able to collaborate on annotations. Finally, the location of regions of the sky captured
by an image is represented by real world coordinates, and each pixel can be mapped to
a specific coordinate or location of the sky. 2D annotations of astronomical images thus
also occupy a world coordinate space, which is of interest to any study considering the
astronomical nature of images and their annotations. Additionally, world coordinates of
the sky are a parameterisation of spherical space, which must be taken into account when
projecting images and annotations onto the user interface, which inherently exists in 2D
Cartesian space.

A purpose designed tool is necessary to effectively and efficiently annotate LSB images.
While there exists several public annotation tools, such as CVAT [178] or LabelMe [173],
the ability to efficiently and precisely draw 2D labels on high resolution multi-spectral
astronomical images is not supported, to our knowledge. Such tools also do not natively
support world coordinate mapping or non-Cartesian projection. We present a tool for the
creation of 2D annotations on astronomical images which considers the aforementioned
factors. We design a drawing tool that enables users to quickly draw and amend complex
shapes. This drawing tool is integrated into a popular astronomical image visualisation
application, Aladin Lite [24], allowing users to properly inspect multi-spectral images
through zooming and panning. Aladin Lite also handles spherical projection and stores
world coordinate information of images, which we exploit to encode user generated 2D
annotations in world coordinates. The annotation tool presented in this chapter is entirely
web based, supporting collaboration from multiple users while annotations can be stored
on a central server.

Discrepancies in annotations due to contradictory ideas of how annotations should be
performed, termed recall bias, is an important factor to consider in managing the process
of gathering annotations of data. Defining exactly what objects should be annotated
and how is key to ensure annotations attempt to describe the same intrinsic properties
of every image. It is vital that annotators have consistent definitions of categories of
objects, and each delineate objects in the same manner so that any trained algorithm
is not ‘confused’ by different annotators using different annotation strategies. This is
not to say that each user’s annotation must be identical, but that their idea of how
to annotate is consistent. This bias can be introduced by one person annotating with
different methods across different images, and/or multiple users each using a different
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annotation method. For example, one annotator delineating a large background feature
may draw around an occluding foreground feature while another may not. We thus clearly
define the astronomical structures to be annotated and detail their annotation protocol.

An annotated dataset of LSB images created using the designed tool is presented. For
the annotations to be suitable for training supervised ML algorithms, annotations must
be as accurate as possible. A common strategy to minimise uncertainty in annotations
is to make sure every sample is annotated multiple times, thus making it easier to recog-
nise anomalies through some statistical analysis. We collect annotations made using the
presented annotation tool by four users of 227 LSB images from the MATLAS survey.
As there are multiple annotations per image, each made by a different user, a method of
combining these annotations into a single consensus annotation must be used. We review
different strategies for combining 2D labels, and justify the use of a weighted majority
voting method which takes the expertise of each user into account for combination.

To mitigate against dataset size limitations, it is common to first train ML models on
datasets other than the pertaining data, a practice referred to as pretraining. Modern
ML techniques such as CNNs require vast amounts of data to train into reliable inference
systems. Currently the amount of LSB images is very limited, with the MATLAS survey
containing around 200 and NGVS containing approximately another 200. While networks
are most commonly pretrained on large related benchmark datasets such as ImageNet [51],
it is possible to train on any data provided it contains some features in common with the
target dataset. There are numerous examples in the application of ML to astronomy
where models are either pretrained or entirely trained on real data [58, 60, 141] or even
on synthesised data [18, 80, 160]. As there exists a small amount of suitable LSB data, it
would be beneficial pretrain on synthesised images containing features resembling those
exhibited in LSB images.

The rest of this chapter is organised as follows. In section 3.2, the creation of a tool
that allows users to characterise different structures in multi-spectral images and precisely
draw shapes representing their spatial profile is documented. The exact annotation pro-
cess is detailed in Section 3.3, including the method for labelling each type of structure
and the consensus protocol for duplicate annotations. Section 3.4 presents a method for
synthesising LSB images, of which the resulting images can be used for pretraining CNNs.

3.2 Annotation Tool for Large Multi-spectral Images

In this section, a purpose designed tool for annotating LSB images is presented, illustrated
in Figure 3.1. The nature of astronomical images presents challenges for 2D annotation.
For natural images, segmentation labels are typically created by an annotator who man-
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ually draw the envelope with predefined shapes over a static image. However, accurate
annotation of the sky requires more information than a single static image can provide.
The purpose designed tool must accommodate domain specific challenges while prioritis-
ing ease of use for expert annotators. There is a clear benefit to designing the tool as
a web application, namely facilitation of collaboration and simultaneous annotation by
multiple users while centralising the storage of images and user annotations. We first
detail the exact protocol by which annotators delineate LSB images. The technical and
user interface design decisions are then discussed.

Figure 3.1: The annotation tool used to label contaminants and morphological features
of NGC0448.

3.2.1 Annotation Process

In this study, the aim of each annotator is to precisely delineate the boundary of every
galactic structure visible in a given image. In addition, annotators are to delineate features
that are relevant to the study of these structures, such as contaminating objects. This
list of structures includes stellar structures and contaminants. For clarity, we detail the
full list of objects to be annotated in Table 3.1.
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Feature Description
Main galaxy The central galaxy, including luminous features such as spiral arms.

Halo The surrounding diffuse light of the main galaxy captured by LSB
imaging.

Tidal tail Stellar material propulsed from the main galaxy during a major merger
taking an elongated antennae-like geometry.

Plume Stellar material propulsed from the main galaxy during a major merger
that does not exhibit typical tidal tail geometry.

Stream Stellar material propulsed from a progenitor other than the main galaxy,
such as a companion galaxy.

Shell Concentric circular sector-shaped features presenting typically in groups.

Companion galaxy A nearby massive galaxy likely to be involved in a tidal interaction with
the main galaxy.

Ghost halo Artificial circular regions surrounding bright stars caused by reflections
internal to the measuring instrument.

Cirrus Dust clouds near or occluding the main galaxy presenting as diffuse
structured regions often with a filamentary texture.

High background Regions other than cirrus where background levels are noticeably high
such that visualisation is impeded.

Instrument artefact Any image artefacts other than ghost halos.
Satellite trail The light trail left by a passing satellite.

Table 3.1: A detailed overview of structures to be annotated in LSB images and associ-
ated astronomical definitions consistent with [185].

We create a set of shape drawing tools and purposely restrict the shapes that can be
used depending on the type of LSB structure being delineated. Annotators are able to
choose from a predefined selection of shapes which they can use to draw over a suspected
object in an LSB image. Different candidate objects in LSB images are assigned different
shape tools which should be used to annotate them. Classes of LSB structures typically
exhibit similar geometry. By creating a protocol where different categories of objects are
delineated with certain shapes, variation in annotations or recall bias due to drawing style
is minimised.

A summary of the exact use cases for each shape drawing tool is described in both
Tables 3.2 and 3.3. Galaxies and thus their associated diffuse halos typically present with
an elliptical geometry, thus are assigned the ellipse shape tool. Artificial ghost halos sur-
rounding bright stars occur due to a predictable mechanism involving internal reflections
within the measuring instrument and present exclusively as circles: these features are as-
signed the circle drawing tool. Streams, tails and plumes each present as a curved column
of varying width. We assign the snake drawing tool these features as this allows the user
to trace the path of the fine structure and then adjust the width at different sections of
the shape. Edges of concentric shells follow a simple curve which can be modelled by
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a low order polynomial curve, thus we assign the line drawing tool to these structures.
Finally, it should be noted that structures occasionally present in geometries that cannot
be captured by the assigned shapes. We allow annotators to annotate any feature with
the region and freehand polygon drawing tools at their own discretion, to account for
non-typical structures.

A good selection of shape types for annotators to draw over structures is important
for the drawing tool. The shapes should be easy to draw and have predictable geometries
to enable efficient annotation. Consideration must be given to the typical geometries of
structures which will be annotated as this is useful prior knowledge which can be exploited
to make annotation easier. For example, galaxies often present with an elliptical boundary,
thus the ability to draw an ellipse is helpful, whereas a triangle fits no commonly expected
geometry of any presenting fine galactic structure.

The final factors considered to mitigate against recall bias in this study are how object
boundaries are decided and how occlusions are handled. In image analysis, an isophote
refers to sections of an object with equal or typically approximate brightness. This concept
is useful as it separates an object and its surrounding region into various sections of
brightness, allowing object boundaries to be more clearly defined. In cases where there is
an occluding object, the object’s outer isophote may be disturbed, making this separation
less clear. We first define the region of an object to be delineated along as the object’s
outer isophote, however, in the case of occlusion the annotator should delineate along a
rough approximation of what the boundary would be. While this process is not perfect,
it is in most cases reasonably accurate as objects often have predictable geometries. For
further clarity, in the case where there is an occluding object that does not disturb the
outer isophote, this definition of annotation is not affected. That is to say that the
annotator should not remove annotated regions where an occluding object is enclosed by
the target object’s envelope.

3.2.2 Annotation Tool Considerations

Here we provide specifications of the tool so that reliable and useful annotations of LSB
images can be generated. We then discuss requirements that the tool must fulfil to allow
the user to sufficiently inspect astronomical images and considerations to increase quality
of user experience.

3.2.2.1 Reducing uncertainty in annotations

Segmentation labels introduce a new dimension of variance/uncertainty into the annota-
tion process. Semantic segmentation labelling inherits from object classification the same
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uncertainty in exact categorisation, however there is also uncertainty in the geometric
envelope of the 2D mask. Specifically in the case of LSB images, the boundary of an
object is often highly ambiguous making it difficult to precisely outline the shape of a
structure. To mitigate against uncertainty in ground truth labelling it is common to in-
volve multiple experts in the annotation process so a consensus can be reached. It is key
that the annotation tool recognises and logs different people using the annotation tool so
that annotations can be separated by user, and so that a user does not make duplicate
annotations of the same image. In addition, the tool should allow collaboration between
users through the ability to compare each other’s annotations. Finally, there should exist
a functionality to separate users based on expertise, so that annotations made by users
with more experience can be treated as more reliable in a systematic fashion.

3.2.2.2 World coordinate encoding

For the annotations to be useful to astronomers the annotations must be encoded in
world coordinates so that drawn shapes align correctly with annotated structures. It is
crucial that during annotation, the user changing their field of view should not disturb
the real world coordinate location of annotations. This is both the case to improve user
experience and to ensure that correct real world coordinate encoding of drawn shapes will
align annotations with any astronomical image survey, enabling a statistical analysis of
annotations on a variety of surveys.

The exact world coordinate encoding of drawn shapes must be carefully designed.
It is necessary to first choose how to encode the rendered shape’s rasterisation into a
manner which is compatible with conversion to real coordinates. While it is possible to
simply store the rasterisation itself and convert and store each pixel’s location in world
coordinates, this would result in slow performance as any change to the field of view
requires world coordinate conversion of all pixels of all drawn shapes. This choice would
also have significant data transfer overhead when an annotation is uploaded to the server.
Though the user annotates on a Cartesian grid, their browser page, the annotated shapes’
world coordinate encoding must exist on the curvilinear approximation of spherical space.
In particular, polar distortion during the encoding process is a key concern, where the
underlying distance in spherical space can be largely different between two sets of points
on the Cartesian projection. This effect becomes severe at declination outside ±60 deg,
where at a reasonable field of view for annotation, the Cartesian distances between two
points at the top of a browser page represents a much different curvilinear distance than
two points at the bottom of the browser page. As a general rule, parameterisations of
shapes involving distance are avoided where possible, such as using the width and height
of a rectangle.
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3.2.2.3 Viewing tool requirements

Contextual information from regions surrounding suspected structures is necessary: the
user must be able to properly inspect large areas of surrounding regions. Proper visual
inspection is dependent on local scale features as well as global scale. A direct consequence
of these requirements is that images must cover a large region of the sky at high resolution.
To facilitate these factors, the tool should allow the user to pan and zoom around the
image, allowing them to easily change their field of view. In addition, the region of sky
covered by an image is encoded in world coordinates, which should be visible to the user.

Structures appear differently across the wavelength spectrum, thus the user must be
able to inspect all available wavelength bands. A given survey contains multiple images of
the same region each capturing a different wavelength band. It is vital that the user is able
to switch between these images in order to assess the presence and structural properties
of a suspected object. In many cases the combination of two or more wavelengths is also
helpful for visual inspection, for example a composite band of the difference between two
bands or even an RGB mapping of three bands or composite bands. The annotation
tool should facilitate inspection across wavelength bands, and while retaining the world
coordinate location of the user’s field of view.

To ensure a quality user experience it is important that data transfer is made efficient
wherever possible. As previously discussed, LSB images requiring annotation by this
purpose designed tool cover large regions of the sky at high resolution. In practice, images
can approach sizes of 10000× 10000 pixels and occupy up to 800MB. Pyramidal image
formatting is an effective solution to efficiently transfer large high resolution images. In
short, the base image is downscaled proportionally to the number of pixels in the user’s
field of view, before file transfer. For example, suppose the user’s field of view is an entire
1080p screen containing 1920 × 1080 pixels and the user wishes to view an entire image
of resolution 10000 × 5000, then the image can be downscaled by an approximate factor
of 5 with a minor loss of detail, reducing the amount of data to be transferred by 25
times. As the user changes their field of view through panning and zooming, different
sections of the pyramid formatted image are loaded so that the region and its associated
downscaling factor are dynamically changed. To continue the example, suppose the user
zooms into the image to view a region of 2000×1000 pixels, then this section of the image
is transferred with minimal downscaling, so the user can study the local scale features of
the image while only having transferred the exact section of the image that is needed.
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3.2.3 Interactive Viewing of Astronomical Images with Aladin

Lite

To fulfil the requirements for proper visual inspection, we integrate Aladin Lite (AL)
[24], an interactive visualisation tool for astronomy images, into the annotation tool. A
benefit of choosing to create the annotation tool as a web application is that third party
components can easily be integrated. Integration through embedding is relatively simple:
web applications can be encoded as a single HTML element which can be plugged in
to any location of a web page. Such embedding is directly supported by AL, allowing
the application to be integrated and customised to fit the overall requirements of the
annotation tool. The ability to zoom and pan across an image is provided by AL, where
the user can click and drag to pan and use the mouse’s scroll wheel to zoom in and out.
Real world coordinates of the displayed image are tracked as the user changes their field of
view. AL also offers the ability to convert between pixel space and real world coordinate
space. This functionality makes it a suitable choice for integration, as how annotated
shapes are rendered requires the exact pixel location of points in the user’s field of view.

Aladin Lite exclusively works with images of pyramidal formatting, ensuring data
transfer is minimised. AL requires that images are encoded as Hierarchical Progressive
Surveys (HiPS) [71], a multi-resolution data structure for astronomical images. There
exists tools for converting commonly used astronomical image formats such as FITS into
HiPS, allowing custom surveys to be generated and displayed in AL. AL also provides the
ability to switch between surveys without refreshing the web browser page or disturbing
the user’s real coordinate field of view. This means that if a HiPS image is generated for
each wavelength band or composite band for an LSB image requiring annotation, then
the user can easily switch between bands through AL. Furthermore, HiPS support RGB
mapping where a combination of bands/composite bands can be mapped to colour space,
which can then be displayed on AL.

To maximise user experience, the configuration of Aladin Lite is customised upon
integration so that only parts that are pertinent to the annotator remain in view. Figure
3.2 shows the default layout and configuration of Aladin Lite. Of the elements provided
in Aladin Lite’s interface, the annotation tool only retains the real coordinate display,
centre reticle, manual zoom buttons and survey selector button. The ability to change
image surveys is of high importance, so is retained though it is positioned next to a
drawing/viewing toggle button which deactivates the AL’s zooming and panning and
activates the drawing tool. Real world coordinates and the centre reticle are kept as they
provide key positional context to expert annotators. The manual zoom buttons are kept
to ensure the tool’s compatibility to mice without scroll wheels. The annotation tool, and
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Figure 3.2: The Aladin Lite tool.

thus AL’s visualisation, covers the entire user’s browser page to maximise the amount of
image data present on the user’s screen. Interface buttons are kept opaque so that pixels
underneath buttons are still visible. Text displays such as the real world coordinates are
rendered using font colouring opposite to the underlying pixels, to ensure that text is
readable despite the colour of underlying objects. The exact configuration of AL in our
annotation tool is displayed in Figure 3.3

3.2.4 Precise Delineation of Galactic Structures

Creating a dataset of segmentation labels outlining the envelopes of galactic structures
requires thorough planning to ensure that labels are sufficient for the required use cases.
Any astronomy focused analysis of the annotations requires that the world coordinate
locations of annotations is somehow saved along with the geometry of drawn shapes.
In addition, the shapes that an annotator is able to draw and the exact functionality
of the shape drawing interaction must be designed so that annotators can precisely and
efficiently outline fine galactic structures. Finally, upon being uploaded to a central server,
annotations must be organised into a coherent data structure.
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Figure 3.3: Aladin Lite integrated into the annotation tool.

3.2.4.1 Drawing tool

To enable annotators to delineate objects in astronomical images, we design a drawing tool
allowing shapes to be drawn over images. In the drawing tool we model shapes mostly as
polygons, i.e. a collection of vertices joined with straight lines with the enclosed area filled
in. There is a toggle enabling the user to switch between the drawing tool and viewing
tool. Drawn shapes remain rendered regardless of the mode toggled. Further, panning
and zooming in the viewing tool accordingly adjusts the position and size of drawn shapes.
There exists a selection of buttons for different shape types and annotation management
features in the top left of the drawing tool, as shown in Figure 3.4 with buttons labelled
as B1 to 15, with visual characteristics such as size and opacity similar to buttons in
the viewing tool. Actions performed by each button can also be activated by hotkeys;
hovering over a button displays the hotkey required to activate the button.

A collection of basic shapes form the foundation of the drawing tool. The geometry
of many galactic structures can be parameterised by simple shapes such as circles and
ellipses. These shapes are detailed in Table 3.2 and illustrated in Figure 3.5. The vertices
used to encode rectangles, circles and ellipses represent the corners and edge midpoints
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Figure 3.4: Buttons used in the drawing tool: B1 activates viewing mode; B2-8 activate
different drawing shape tools; B9-12 manage drawn shapes; B13 opens a table of drawn
shapes; B14 shows examples of different features; B15 allows the classification of a drawn
shape.

Shape |V | Interaction Use case Hotkey Button

Rectangle 8 A rectangle is formed with p, q
as opposing corners. Contaminants R B2

Circle 8 A circle is formed with centre p
and radius d(p, q). Ghosted halos C B3

Ellipse 8
An ellipse is formed inside the
bounding rectangle with p, q
as opposing corners.

Galaxies
Diffuse halos E B4

Line 4

A straight line is formed between
p and q. Two intermediate
vertices at a third and two thirds
of the line’s length can then be
altered to curve the line.

Shells L B5

Table 3.2: Detailed overview of basic shapes available to draw in the annotation tool.
The interaction of the drawing process is described given two user generated points p and
q. The number of vertices used to encode the shape is denoted as |V |. Euclidean distance
is represented as d. Buttons correspond to labels of Figure 3.4.

of the rectangle/bounding rectangle. Lines are modelled with a third order Bezier curve
containing four vertices, p0, p1, p2, p3, where any point along the curve is given by P (t) =
(1− t)3p0+3(1− t)2tp1+3(1− t)t2p2+ t

3p3, with t ∈ [0, 1] as a parameter that represents
normalised distance along the curve. Encoding shapes with only vertices ensures that
curvilinear projection is not distorted at extreme declinations, as described in the previous
section.

The ability to draw complex polygon shapes ensure that any object can be annotated.
While basic shapes parameterise a large range of objects, objects often do not fit these
geometries either because their geometry is non-typical or their geometry is inherently
more complex. The annotation tool provides three ways to draw polygons with an unlim-
ited number of vertices, detailed in Table 3.3 and illustrated in Figure 3.7. After polygon
vertices have been generated from the selected drawing tool, the enclosed space is filled
similar to basic shapes.

All shapes are drawn by the user with a click and drag approach. This involves the
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(a) Square. (b) Circle.

(c) Ellipse. (d) Line.

Figure 3.5: Examples of each basic shape in the drawing tool. Each shape is in a "se-
lected" state so that the associated amendment boxes are visible. Note that amendment
boxes do not always correspond with bounding boxes, due to how Bezier curves (which
ellipses also use in rendering calculations) are calculated from user generated points.

user clicking down at point p on the image, dragging their cursor to control the shape,
and releasing the click at point q to finish the shape. The interaction process for basic
shapes is described in Table 3.2. User interactions for each polygon tool follow a similar
process. A trail of points pi = p0, . . . , pn is saved following the user’s cursor, where p0 = p

and pn = q. Intermediate points pi for 1 ≤ i ≤ n − 1 are saved if the distance between
the cursor and the previous point pi−1 covers 25 pixels. Each tool then calculates vertices
as described in the ‘Interaction’ column of Table 3.3.

Each generated vertex is displayed to the user as an ‘amendment box’. Amendment
boxes can be clicked and dragged to change the location of the shape’s underlying vertex,
thus allowing the user to edit the shape after it has been drawn. In addition, some shapes
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Shape |V | Interaction Use case Hotkey Button

Snake 2n
Vertices are calculated as 10 pixels away from each
point pi in each direction perpendicular to the
direction from pi to pi−1.

Streams
Tails
Plumes

S B6

Region n
Each point pi corresponds to a vertex of the
polygon, with p0 and pn joined to enclose
the shape.

Any A B7

Freehand ≤ n The convex hull of all points pi is computed. Any F B8

Table 3.3: Detailed overview of polygon drawing tools. The method for calculating
shape vertices V is described given a set of user generated points p0, . . . , pn. Buttons
correspond to labels of Figure 3.4.

have special amendment boxes allowing the user to change multiple vertices through some
parameterisation. Ellipses and rectangles contain a green amendment box drawn above
the highest mid-point vertex, which rotates the entire shape around its centre. Snakes
contain multiple yellow amendment boxes allowing the user to change the width of a
section of the shape. Figures 3.5 and 3.7 show some example shapes with amendment
boxes displayed.

In this study, we are not only interested in the delineation of structures, but also the
type of each structure present in a given image. It is important that this classification
information is retained along with the drawn shapes, so that statistical analysis of the
resulting annotated segmentations by type of structure is possible. When a shape is
selected the user is able to assign a type of structure to it, via a dropdown list of possible
objects which the user can use to classify an annotated object, shown in Figure 3.4 as
button 15.

When the user has completed their annotation, it is possible to submit and upload
it to the central server. Submission requires that all drawn shapes have been classified:
there is a ‘not sure’ classification option in the case where a user is confident there is a
structure but is unsure of the classification. This submission process uploads each shape’s
vertices in both world coordinates and pixel coordinates at time of submission along
with their classification and note (if added), and details of the user that performed the
annotation. By storing user details in addition to the annotation, it is possible to later
weight annotations differently depending on the expertise of the user that performed it.

3.2.4.2 User Experience Features

To improve user experience, there are additional functionalities that make editing anno-
tated shapes easier. Amendment boxes appear after a shape has been drawn but disappear
when the user deselects the shape. This process occurs either when a location other than
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(a) Snake.

(b) Freehand.

(c) Region.

Figure 3.6: Examples of each complex polygon shape in the drawing tool. Each shape
is in a "selected" state so that the associated amendment boxes are visible.
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(a) Annotation table. (b) Help panel.

Figure 3.7: Examples of each complex polygon shape in the drawing tool. Each shape
is in a ‘selected’ state so that the associated amendment boxes are visible.

the shape’s bounding box is clicked or the viewing tool is activated. A shape can be
re-selected by clicking anywhere in the shape’s enclosed space, causing amendment boxes
to reappear. A shape can be clicked and dragged to move the entire shape, if selected
the entire bounding box can be dragged, and if unselected anywhere in the shape’s en-
closed space can be dragged. If selected, an entire shape can be deleted. Throughout
the annotation process, a stack of user operations is saved, allowing undo and redo of all
operations.

In addition to the already discussed features, there exist several features for managing
drawn shapes and providing assistance. A help panel can be revealed (see Figure 3.7b),
containing example images of different objects. A table of annotation can be revealed
which lists all drawn shapes, shown in Figure 3.7a. The table allows the user to write a
note about object which is saved into the annotation record. Selection of shapes in the
drawing tool can also be performed through the annotation table by clicking a shape’s
corresponding row. The user can also filter the table’s listed shapes by shape type.
Finally, if a shape has been drawn but not classified, yet the user attempts to submit the
annotation, the shape is highlighted red in the annotation table, as shown in Fig 3.7a.
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3.2.4.3 Database design

Data produced by the annotation tool must be organised in some fashion that ensures
data integrity and reduces data redundancy. It is vital that the ontological separation of
data is sufficiently designed so that unintended and unwanted changes to data, for exam-
ple through some processing error, are minimised. We organise data using a relational
database model, where data is divided into tables which may be connected through some
relation. The quality of organisation can then be enforced through normalisation. We
design the database schema to conform to Boyce-Codd normal form. We separate data
into four relations: users, galaxies, annotations and shapes, as is shown in Figure
3.8. Briefly, users and galaxies are connected to annotations by a one-to-many relation,
as a galaxy can be annotated multiple times by multiple users. Then, annotations are
connected to shapes by a one-to-many relation, as a annotation is composed of multiple
shapes. Exact implementation details can be found in appendix A.1

Galaxies

PK g_id int NOT NULL

name char(64) UNIQUE

survey char(64) 

bands char(64) 

ra float 

dec float

fov float

active boolean

Users

PK u_id int NOT NULL

username char(64) NOT NULL UNIQUE

email char(120) UNIQUE

firstname char(64) 

lastname char(64) 

institution char(64) 

password_hash char(128)

advanced int 

Annotations

PK a_id int NOT NULL

FK1 g_id int NOT NULL

FK2 u_id int NOT NULL

timestamp date

Shapes

PK s_id int NOT NULL

FK1 a_id int NOT NULL

shape char(64) NOT NULL

number int NOT NULL

feature char(32) NOT NULL

note char(256)

x_points array(float)

y_points array(float)

ra_points array(float)

dec_points array(float)

Figure 3.8: Entity relationship diagram of the database schema designed for storing
annotation tool data.

3.3 Annotated Dataset of LSB Images

In this section, a dataset of annotated LSB images for training supervised machine learning
algorithms is detailed. Firstly, it is important that annotators have a consistent approach
to annotation to mitigate against recall bias. We discuss the exact annotation process



Creating an LSB Dataset for Supervised Learning 40

used to classify and delineate LSB images. Second, we detail properties of the annotated
LSB dataset generated using the annotation tool presented in this chapter. Finally, typical
supervised ML training protocols make use of a single target sample per input sample.
We describe the process used to combine annotations from multiple users into a single
consensus annotation.

3.3.1 Annotated Dataset

In this section, we describe the dataset of LSB images and associated collected annotations
that are used in this thesis. As previously mentioned, training supervised ML models
capable of automating the classification and segmentation process requires both input
and ground truth examples. We first detail the images to be used as input. Following
this, the collected annotations and their characteristics are presented and discussed.

3.3.1.1 Images

In this project we use images from the Mass Assembly of early-Type GaLAxies with their
fine Structures survey (MATLAS [61]), captured by the Canada-France-Hawaii Telescope’s
(CFHT) MegaCam instrument. These images prior to preprocessing cover a world coor-
dinate region of 1◦ × 1◦ with a resolution of 0.187 arcsecond1 per pixel, where the centre
of each image targets a galaxy with suspected LSB fine structures. Preprocessing then
involves removing outer sections of the images suffering from large gaps due to instrument
artefacts and downsizing the images by a factor of 3 in order to enhance fainter structures,
resulting in an image of approximate average size 6000× 6000. Captured images are mul-
tispectral, with a given region being captured in up to three wavelength bands, g, r and
i. However, typically most images are composed of just the g and r bands, corresponding
to wavelength sections around 464nm and 658nm, respectively. In total, in this thesis we
use 227 MATLAS images of which there a combination of mostly multispectral images
and occasionally images of a single spectrum band. Specifically, in total there are 199 g-
band, 186 r-band and 68 i-band spectral images. In addition, for annotation an intensity
scaling transformation is applied to the image where fainter pixels are increased relative
to brighter pictures, in order to further enhance fainter structures. Specifically, inverse
hyperbolic sine scaling is applied to the images according to x′ = arcsinh(x), where x′

and x represent the scaled output and input images, respectively.
1Equal to 1/3600 of a degree.
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Feature d Images with d ≥ 1

Main galaxy 655 227
Halo 605 216
Tidal tail 172 46
Plume 103 43
Stream 111 47
Shell 217 36
Companion galaxy 549 130
Ghost halo 2657 224
Cirrus 255 59
High background 915 219
Instrument artefact 15 9
Satellite trail 18 13

Table 3.4: Summary of annotated features. The number of annotated features is denoted
as d.

3.3.1.2 Annotations

Using the annotation tool presented in this chapter, a total of 655 annotations of MATLAS
LSB images were generated. These annotations include a total of 6573 drawn features, of
which an overview is shown in Table 3.4. Annotations were produced by four annotators
of varying expertise, which we denote as users 1 and 2, who are experts, and users 3

and 4, who are non-experts. Users 1 and 4 annotated all 227 images, user 3 annotated
183 images and user 2 annotated 18 images. We note that user 2 has contributed a far
smaller number of annotations in comparison to other users, which may cause a small
subset of annotations to contain different labelling characteristics than the rest of the
dataset. However, the increased confidence in these annotated labels, due to a larger pool
of annotators, likely outweighs any negative effect on the dataset caused by this potential
bias. All structures were consistently annotated as described in Section 3.2.1. A detailed
analysis of the annotations can be found in [185], which additionally includes annotations
made using the tool on images from surveys other than MATLAS.

3.3.2 Computing a Consensus

In order to train supervised machine learning models, it is necessary to decide how LSB
images with multiple annotations made by different users are handled by the training
protocol. Each single annotation has an associated uncertainty in various factors, such as
the categorisation or the delineation of a feature. Making use of all available annotations
is incredibly important as this mitigates against human error made during the annotation
process, thus reducing the uncertainty. A naive approach to fulfilling this goal where
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the model is trained on each input-annotation pair may be detrimental to performance
due to contradicting examples, in addition to being computationally inefficient. There
have recently been efforts to extend the supervised learning training loop to use multiple
annotations per input as target data, referred to as learning from a crowd. Yan et al.
[214] develop a probabilistic model to learn the ground truth from multiple annotators,
where the expertise level of different annotators is also learned. Albarqouni et al. [5]
integrate a similar approach into an active learning framework, where uncertain labels are
fed back to annotators to ‘double-check’. Rodrigues and Pereira [170] propose a ‘crowd
layer’ which learns annotator weightings through an expectation-maximisation algorithm.
While these works offer promising approaches to handling multiple ground-truths in an
adaptive fashion, all efforts are limited to data with just classification labels.

In datasets with 2D annotated labels from multiple humans per sample [6, 9, 10,
42, 134, 146], the most common approach to combine annotations into a single con-
sensus is through majority voting [115, 134, 137]. The FreeSurfer method [73, 74] and
STAPLE method [204] both propose expectation-maximisation algorithms to compute a
single consensus annotation from multiple 2D annotations. Both methods have been used
extensively in medical imaging literature [52, 102, 202], however comparative studies have
shown that such more complex approaches do not reliably generate more accurate seg-
mentation consensuses than majority voting [11, 134, 174]. This is particularly the case
in data where there is a hierarchical relationship between label classes [147]. Given these
factors, we combine all available annotations for a given image into a single consensus
annotation using a weighted majority voting framework. The resulting consensus is then
represented as a probability map image where a high probability pixel corresponds to a
pixel where annotators concur on this annotated pixel.

Prior to the consensus process, all annotations are converted into pixel-wise binary
masks mi, with identical resolution to the associated annotated image. The consensus c
for a given image is then defined as the weighted average of these mask,

c =

∑
i∈I wimi∑
i∈I wi

, (3.1)

where I denotes the available annotations for a given image. While most shapes are
either polygons or enclose relatively large areas such as circles and ellipses, curved lines
fall outside this property which must be considered. For these such shapes where there is
little overlap in the annotated regions, we simply take the intersection of all annotations
as a compromise. In this consensus framework, pixels with values greater than 0.5 are
defined as a majority consensus.

The exact combination of annotations into a single consensus must be carefully chosen.
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The varying expertise of each user must be considered in the consensus, as less experienced
annotators may be more likely to make incorrect annotations. This is achieved by first
assigning a weight to each user, wi where a larger weight represents a more experienced
annotator. The majority of images in our dataset (169) were annotated by one expert and
two non-experts, 40 were annotated by one expert and one non-expert, 14 were annotated
by all annotators, and 4 were annotated by two experts and one non-expert. From these
combinations, we establish a set of conditions to decide whether a pixel is set as positive:

• In the case where an image was annotated by one expert, a pixel is positive if

– it is marked by the expert, or

– it is marked by two non-experts.

• In the case where an image was annotated by two experts, a pixel is positive if

– it is marked by two experts, or

– it is marked by an expert and a non-expert.

We then use a set of weights which satisfies these scenarios, i.e. for each scenario, respec-
tively,

w1 ≥ w3 + w4 w3 + w4 ≥ w1 w1 + w2 ≥ w3 + w4 w1 + w3 ≥ w2 + w4 (3.2)

The first two equations naturally lead to an equality, with w1 = w3 + w4. Assuming
experts each have equal weights, and non-experts each have equal weights, it can be seen
that we must set w1 = w2 = 2 for experts and w3 = w4 = 1 for non-experts. Example
annotations and their consensuses are shown in Figures 3.9 and 3.10.

3.4 Synthesising Galactic Cirrus for Pretraining

Modern machine learning algorithms such as CNNs require massive amounts of data in
order to generalise well on a given task. For example, the cornerstone work of Krizhevsky
et al. [117] trains on ImageNet [51], consisting of 1.2 million images. A major challenge
in applying deep learning techniques to LSB data is the limited sample size: in order
to effectively tackle the problem, it is necessary to address this limitation. A common
approach in mitigating against limited dataset size when using modern ML techniques is
that of pretraining for transfer learning. When dealing with a target dataset limited in
size, pretraining describes the process of training a model on a dataset related in some
way to the target dataset. This pretrained model thus learns features that are relevant to
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(a) u1. (b) u3. (c) u4.

(d) 2u1+u3+u4
4 . (e) Binarised consensus.

Figure 3.9: Annotations of streams on NGC0474 by three users, u1, u3 and u4.

(a) u1. (b) u2. (c) u3. (d) u4.

(e) 2u1+2u2+u3+u4
6 . (f) Binarised consensus.

Figure 3.10: Annotations of tidal tails on NGC4270 by four users, u1, u2, u3 and u4.
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the target task, and can then be trained on the target dataset to either relearn the final
mapping of these features to output, or use these features as an initialisation point. This
process of transferring related learned features is described as transfer learning.

LSB images are commonly contaminated with galactic cirrus structures, which the
trained ML model must be able to properly process despite limited sample size. Typically
astronomical images in the optical spectrum do not contain cirrus structures as galactic
cirrus does not emit these wavelengths. However, the sensitivity of LSB imaging captures
scattered light from dust in cirrus clouds, even in the optical band. In future surveys
such as Euclid massive amounts of cirrus will be uncovered relative to what is currently
seen in optical wavelength images. The ability for ML models to handle contamination of
LSB images by galactic cirrus is vital, though currently samples are limited. For example,
Table A.3 shows that only 59 MATLAS images contain galactic cirrus, of which an even
smaller portion contain strong cirrus contamination.

In this section we present a synthesised dataset of galactic cirrus images for pretraining
ML models. We synthetically replicate structural patterns present in real LSB images,
resulting in images with similar properties to the target LSB dataset. By combining suit-
able noise models with carefully chosen parameters, it is possible to create a synthesised
dataset with arbitrary resolution and sample size. ML models can be trained on this
dataset in order to learn a foundation of features necessary to process LSB images and in
particular galactic cirrus, which can be transferred to the target dataset.

3.4.1 Constructing Synthetic Cirrus Images

In order to create images exhibiting discriminative features similar to real images of
galactic cirrus, multiple noise patterns are combined. All synthesised images are formed
from at least three parts, background B, cirrus C, and bright regions R, shown in Figure
3.11. This dataset contains two problem scenarios, a segmentation scenario where the
goal of an ML model is to segment the cirrus structures, and a denoising scenario where
the ML model must remove the cirrus structures while preserving underlying objects.

The background B attempts to create a canvas with a non-zero background level and
numerous faint background objects, as shown in Figure 3.11a. To achieve this, pixels
are drawn from a Gaussian distribution B∗ = N (µ, σ) = N (0, 0.01) and then normalised
between 0 and 1. Following this pixels are inverted according to B = 1−B∗.

The cirrus component C, shown in Figure 3.11b, contains textured cloud shapes with
smooth boundaries. The cloud shapes Cshapes (see Figure 3.12a) are produced by a 2D
Gaussian mixture model (GMM) with 13 randomly located components with standard
deviation proportional to the image resolution. A binary mask M (see Figure 3.12b)
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(a) Background B. (b) Cirrus C. (c) Bright regions R.

Figure 3.11: Examples components used to create synthesised images.

extracted from this GMM by setting values greater than 10−5 as 1 and others as 0.
The cirrus texture is created by combining a cloud texture Ccloud (Fig. 3.13a) and a
streak texture Cstreak (Fig. 3.13b), both generated from Perlin gradient noise of varying
frequencies as shown in Figure 3.13c. These components are combined according to

C = (Ccloud +
CcloudCstreak

4
)CshapesB(M), (3.3)

where B (see Figure 3.12c and 3.12d) is a blurring function which convolves a Gaussian
kernel with size proportional to the image resolution. The binary mask M forms the
segmentation target for these synthetic cirrus structures.

(a) Cshapes. (b) M . (c) B(M). (d) CshapesB(M).

Figure 3.12: Components generated from a GMM used to shape the cirrus structure.

Bright regions R, shown in Figure 3.11c, are smooth isotropic bright regions resembling
regions of diffuse light surrounding low surface brightness galaxies. These are created from
a GMM with a similar process to the cirrus case. In this GMM however, the number of
modes varies uniformly between 3 and 17, and standard deviations of each Gaussian mode
are varied randomly by ±20%. This randomisation increases the difficulty of separating
bright regions from cirrus structures, and aims to guide an ML model to focus on the
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(a) Ccloud. (b) Cstreak. (c) Ccloud + CcloudCstreak
4 .

Figure 3.13: Example textures used to create the cirrus structure.

texture of the cirrus rather than the envelope or intensity level relative to the background.

(a) With cirrus contamination. (b) Without cirrus contamination.

Figure 3.14: The final resulting output and its associated denoising target.

Finally, all parts are combined according to γB + γC +R with a target not contami-
nated with cirrus set to γB +R, before normalisation between 0 and 1, where γ balances
bright regions vs. background and cirrus regions. All figures throughout this chapter of
synthesised cirrus images use γ = 0.4. An example of the final output and its associated
target is shown in Figure 3.14. As images are composed with noise distributions in a
procedural fashion, extending images to arbitrary resolution is trivial. In addition, this
synthesis method allows components of the image to be easily changed for example in
intensity or texture, meaning that the dataset can be adapted to best suit the specific
LSB image experiment.
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3.4.2 Increasing realness

We design the dataset to have variations of differing realness, in order to enhance pre-
training benefits. Real LSB images contain a variety of objects non related to this thesis’
study, which the ML model must be able to properly process. By introducing the model to
such objects in this synthesised data, the model may be able to generalise more effectively
to real data. An added benefit of these variations is the ability to perform comparative
analysis between different ML models. Ablating portions of the dataset before training
will demonstrate characteristics of the trained model.

(a) A real LSB image containing NGC0532
with cirrus contamination.

(b) The combination of all difficulty varia-
tions on a synthesised LSB image.

Figure 3.15: Synthesised and real LSB images arranged side by side for comparison.
Note, in the real image, the ghosted halos and saturation trails surrounding stars, and
horizontal band containing a comparatively high level of background noise.

We implement several options (see Figure 3.16) to change the realness of the synthe-
sised data:

1. The first option fixes orientation of cirrus clouds to be horizontal across the image,
as shown in Figure 6.1a, allowing the evaluation of the ability to handle rotation.

2. The second option introduces star-like objects with telescope ghosted halo artefacts
(i.e. bright transparent halos around each bright spots simulating stars). These
star-like objects are created from a sharp Gaussian profile approximating a point
source, where the standard deviation of each star’s Gaussian profile is randomly
slightly varied to ensure variation. A synthetic halo resembling a telescope artefact
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is then added around each star, and is created from a circle of fixed radius and
width and with a uniform brightness proportional to the star’s associated Gaussian
standard deviation. In the denoising scenario, in addition to removing cirrus, the
ML model must also remove synthetic halos from stars. An example of this effect
is shown in Figure 6.1b.

3. The third option creates gaps in the image to simulate an instrument artefact where
in the process of tiling different captured regions of the sky into one image, there ex-
ists no picture of an area between tiles. This option additionally adds a ‘saturation’
effect where pixels containing bright objects such as stars saturate neighbouring
pixels. An example of these synthesised effects is shown in Figure 3.16c.

4. In the fourth option further artefacts are added to the image where sections of the
image contain higher background levels than the surrounding image, as shown in
Figure 3.16d.

The combination of options 2, 3 and 4 results is illustrated alongside a real contaminated
LSB image in Figure 3.15.

3.5 Conclusion

Supervised ML algorithms such as CNNs are capable of complex image processing, though
training such algorithms requires target examples for every input sample. In this chapter,
we presented an annotation tool that allows astronomers to precisely delineate the enve-
lope of objects in large multispectral astronomical images. We detailed a dataset of 6573
annotated objects that was generated with this tool on LSB images from the MATLAS
survey, and discussed how annotations by multiple users are combined for training ML
algorithms. Finally, to address the limited sample size of the detailed annotated dataset,
a dataset of synthesised images with features similar to LSB images was presented for
pretraining ML models.
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(a) Fixed horizontal cirrus orientation. (b) Artificial stars with ghosted halos.

(c) Artificial gaps and saturated pixels. (d) Artificial high background sections.

Figure 3.16: Different options to introduce difficulty variations into synthesised LSB
images. In this random iteration, the rotation angle of the cirrus was close to 180◦, thus
the fixed rotation example has a similar orientation but different appearance.



Chapter 4

Learnable Gabor Modulation in
Complex-valued Neural Networks

We shift attention from the previous chapter and investigate integrating orientation ro-
bustness, a useful ability for processing LSB images. Robustness to transformation is
desirable in many computer vision tasks, given that input data often exhibits pose vari-
ance. While translation invariance and equivariance is a documented phenomenon of
CNNs, sensitivity to other transformations is typically encouraged through data aug-
mentation. We investigate the modulation of complex valued convolutional weights with
learned Gabor filters to enable orientation robustness. The resulting network can gen-
erate orientation dependent features free of interpolation with a single set of learnable
rotation-governing parameters. By choosing to either retain or pool orientation chan-
nels, the choice of equivariance versus invariance can be directly controlled. Moreover,
we introduce rotational weight-tying through a proposed cyclic Gabor convolution, fur-
ther enabling generalisation over rotations. We combine these innovations into Learnable
Gabor Convolutional Networks (LGCNs), that are parameter-efficient and offer increased
model complexity. We demonstrate their rotation invariance and equivariance on MNIST,
BSD and a dataset of simulated astronomical images of Galactic cirri.

4.1 Introduction

We enable learning of approximate orientation invariance and equivariance in convolu-
tional neural networks (CNN). Datasets in various domains often exhibit a range of pose
variation (e.g. scale, translation, orientation, reflection). CNNs are inherently equipped
to handle translation invariance, but remedies for other symmetries often involve large
models and datasets with plenty of augmentation. This inability to properly adapt to

51
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transformations such as local/global rotations is a major limitation in CNNs.
An important distinction is that of equivariance versus invariance. For a network to

be equivariant, it should be robust to variation in pose and be able to carry over trans-
formations of the input to transformed features and output. For tasks where output is
dependent on these transformations, network invariance alone is suboptimal as transfor-
mation information is discarded, by definition. For example, in ultra deep astronomical
imaging, the scattered light from foreground Galactic cirrus contaminates and occludes
interesting Low-Surface Brightness (LSB) extragalactic objects. These cirrus clouds ex-
hibit orientation dependent features: segmenting cloud regions is a problem requiring
invariance, as orientation of cloud streaks does not necessarily affect the geometry of the
cloud’s envelope. On the other hand, removing occluding clouds, which is crucial to study-
ing background LSB galaxies, is a denoising problem that requires robust and descriptive
equivariant features.

Numerous works have been published alongside CNN research attempting to inte-
grate forms of rotation invariant and equivariant feature learning in an a-priori fashion.
Approaches typically generate rotation dependent responses by one of the following strate-
gies: 1) learning orientations by constructing filters from a steerable basis [44, 206, 211],
2) rotating convolution filters/input by preset angles [118, 144, 145], or 3) introducing ori-
entation information through analytical filters [140, 220]. A significant drawback of the
former type is that it introduces significant computational overhead [38]. In the second
category, the rotation process imposes the use of interpolation which results in artefacts
for any rotation outside of the discrete sampling grid. This is overcome in the latter
category by using analytical filters with an inherent rotation parameter. Orientations are
static in [140, 220], similarly to the second category, however there is no inherent limi-
tation of analytical filters preventing them from having learnable orientation parameters.
There is thus a need for a dynamic orientation sensitive architecture that can accurately
adapt to the input’s transformation. We address this need in this work using Gabor filters,
analytical filters that are parameterised by orientation, scale and frequency among other
variables. Furthermore, Gabor filters are differentiable with respect to their parameters,
meaning that these parameters can be learned through steepest descent style algorithms.

Contributions - In this paper we propose Learnable Gabor Convolutional Networks
(LGCN), a complex-valued CNN architecture highly sensitive to rotation transformations.
We utilise adjustable Gabor modulation of convolutional weights to generate dynamic
orientation activations. By learning Gabor parameters alongside convolutional filters we
achieve features that are dependent on exact angles with no interpolation artefacts. More-
over, there is no explicit constraint on convolutional filters, allowing a diverse feature space
that adapts to the degree of rotation equivariance required. We extend the modulation
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approach used in [140] to complex space, enabling use of the full complex Gabor filter and
exploiting the inherent descriptive power of complex neurons. Further, we build on this
and propose a convolutional operator where Gabor filter modulation is cyclically shifted,
inspired by group theory CNNs [17, 43, 44, 56, 206], allowing propagation of orientation
information throughout a forward pass in an equivariant manner.

4.2 Related Work

Numerous methods have been developed in an attempt to integrate transformation invari-
ance in an a-priori fashion. Prior to CNN popularity, the use of hand-crafted features such
as SIFT [139] and Gabor filters [7, 86] was explored to generate rotation/scale invariant
representations. A widely adopted technique in deep learning is to augment transforma-
tions into a dataset [39, 117, 180]. This brute force approach introduces new samples
to prompt the model to learn this new range of transformations. Models with learned
invariance through augmentation require a very large parameter space to capitalise on
data augmentation, and still may generalise poorly to unseen transformations.

There has been much work recently on encoding symmetries into CNN architectures.
Early efforts utilised pooling over transformed responses, e.g. siamese networks [212],
training-time augmentation [108, 184], parallel convolutional layers [55, 56], kernel-based
affine pooling [81], and image warping [92, 106, 107, 128]. Specifically in the last few
years there has been a surge of interest in rotation equivariant architectures. Authors
have been able to formulate CNNs entirely from principles of group theory and thus
construct modified operators and/or constrain filters [43–45]. Bekkers et al. [17] employ
bi-linear interpolation to enable any regular sampling of the continuous group of 2D rota-
tion. Similarly [144] and [145] utilise copied and rotated filters, but pool over the produced
activation maps. While interpolation allows rotation by exact angles (as in [17, 144, 145])
it introduces artefacts for angles outside of the discrete sampling grid. In [105] residual
blocks are combined with principles of steerable bases to learn approximate equivariance.
Worrall et al. [211] allow exact orientation representations while overcoming dependence
on interpolation by constraining filters to the family of complex circular harmonics: there
is a clear demonstration of complex neurons encoding rotational information which jus-
tifies our usage of complex CNNs for rotation equivariance. Finzi et al. [72] are able
to construct group equivariance without steerable filters by constructing filters as pa-
rameterisations of Lie algebra. Similarly, Weiler et al. [206] present a CNN architecture
with learnable steerable filters, and derive a generalised weight initialisation method for
steerable basis coefficients. Using a formulation of steerable filter architectures, [205] pro-
poses a general framework for equivariant networks under any combination of rotation,
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reflection or translation. We draw inspiration from the cyclic shifting group convolutions
commonly used in group theory based CNNs [17, 43, 44, 56, 206], and propose a similar
operation for rotation generalisation without requiring derivation from group theory and
reducing computational overhead.

Analytical filters have made a resurgence in many deep learning contexts. Specific to
transformation invariance, analytical filters parameterised by rotation are fast and can
extract orientational features dependent on exact angles, overcoming interpolation arte-
facts. Several approaches replace convolutional weights with wavelet filters [30, 66, 179].
Wavelets are also applied to inputs of standard convolutional layers in a preprocessing
fashion [78]. In [203] authors present a framework for convolutional weight modulation,
achieving enhanced filters with binarised weights. Zhou et al. [220] exploit rotation
parameterisation of discrete Fourier transforms to extract orientation information, mod-
ulating standard convolutional filters with a filter bank of rotated analytical filters. Luan
et al. [140] implement a similar approach but opt to use Gabor filters, demonstrating
that they are more robust to rotation and scale transformations. In [109] wavelet filter
hyperparameters are learned in an end to end fashion for spectral decomposition through
wavelet deconvolutions. We combine lessons learned from [109] with [140] to construct
Gabor filter modulation with learnable parameters.

4.3 Methodology

Our LGCN achieves sensitivity to rotation transformations through adjustable Gabor
modulation of convolutional weights. In the architecture defined below, modulation pa-
rameters are learned alongside convolutional filters. Having separate modulation and
convolution parameters keeps backpropagation simple. Given that convolution filters are
not explicitly constrained as in other methods attempting to overcome transformations,
the result is a larger space of possible features. Fig. 4.1 illustrates the general struc-
ture of LGCNs, providing an overview of the concepts proposed throughout this section.
An important development of this approach is that parameters belong to complex space,
allowing both real and imaginary parts of analytical filters to be utilised. Given that
frequency response filters are often designed over complex space, this enables a variety of
modulation options.

LGCNs can consider several orientations simultaneously, which are finely tuned to the
task being solved. LGCNs are able to achieve activations dependent on arbitrary con-
tinuous rotations with no interpolation artifacts and without using steerable filter bases.
With modulation, LGCNs increase model complexity at little cost to the parameter size.
In our case Gabor filters are calculated with orientation θ and wavelength λ, meaning they
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Figure 4.1: Overview of LGCN, with illustration of the filter modulation and cyclic
convolution concepts. The displayed network is tasked with removing cirrus streaks and
ghosted halos from the input image. Colour denotes individual feature orientations. Ga-
bor modulation is applied with a range of angles to generate orientation dependent fea-
tures. In the cyclic operator, each input orientational feature is exposed to every rotation
of Gabor modulation, encouraging weight tying across orientation.

can generate a new feature channel with only two parameters. Finally, LGCNs utilise a
novel convolutional operator where Gabor filters are cyclically shifted during modulation,
enabling propagation of orientation information across layers and thus facilitating learned
invariance and equivariance.

4.3.1 Analytical Modulation of Complex-Valued Networks

In order to enable compatibility with a wide range of analytic frequency response filters,
we construct complex-valued CNN layers. As described in [194] we construct complex
numbers by encoding real and imaginary parts as separate real valued elements. A com-
plex convolutional weight tensor can be written as Ω = A+ iB, where A and B are stored
internally as real tensors. Complex arithmetic is then simulated with appropriate real op-
erations acting on these elements. For a complex valued input H = X + iY , convolution
is computed as:

Z = Ω ∗H = (A ∗X −B ∗ Y ) + i(B ∗X + A ∗ Y ) (4.1)
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where ∗ denotes the convolution operator. For nonlinearities, we use the complex ReLU
proposed in [8], C-ReLU(Z) = ReLU(|Z| + b) Z|Z| with b a real-valued bias term. We
also implement complex analogues of batch normalisation, given in [194], and average
spatial pooling, trivially given by considering the average of real and imaginary parts
separately. Implementing CNNs with complex-space algebra can also be viewed as a form
of regularisation, where weights are inherently tied together in pairs. Such a weight tying
constraint results in a model directly encouraged to analyse phase information in features,
which may be beneficial for encoding orientational information [194], while also likely
benefitting from the standard paradigm of reduced overfitting through regularisation.

For an analytical filter ΦP = ΦP
Re+iΦ

P
Im with D parameters pd ∈ P = {p0, ..., pD−1} we

extend the convolutional modulation presented in [203] to complex space. The modulation
of convolutional kernel Ωc = Ac + iBc of channel c with discretised filter ΦP is given by
M c,P = ΦP ⊙ Ωc, where ⊙ represents complex element-wise multiplication. Output from
convolution with the modulated filter is then given by Zc,P =M c,P ∗H, or for each pixel
at coordinates (s, t):

zc,Ps,t =
K∑
k=1

K∑
l=1

mc,P
k,l hs+k,t+l (4.2)

This construction of modulated filters can be viewed as a collection of filter banks,
where both the underlying kernels (via convolutional filter Ω) and frequency sub-bands
(via Φ) are learnt. The complete filter bank has dimensions 2×Cout ×Cin ×U ×K ×K,
with Cout and Cin the number of output and input convolutional channels respectively, U
the number of modulating filters, and K the convolution kernel size. Any given filter is
obtained by modulating a convolutional filter W c of channel c with analytical filter ΦPu .
A significant advantage of this formulation is that a filter bank of U filters is created from
a single canonical filter, meaning that encoding of transformation representations requires
little computational overhead. Adjusting parameters through backpropagation requires
calculating the gradient of a differentiable loss function L with respect to pd:

∂L

∂pd
=

∂L

∂M c,P

∂M c,P

∂pd
=

K∑
k=1

K∑
l=1

∂L

∂mc,P
k,l

∂mc,P
k,l

∂pd
(4.3)

=
K∑
k=1

K∑
l=1

( N∑
s=1

N∑
t=1

∂L

∂zc,Ps,t

∂zc,Ps,t

∂mc,P
k,l

)
∂mc,P

k,l

∂pd
(4.4)

=
K∑
k=1

K∑
l=1

∂mc,P
k,l

∂pd

N∑
s=1

N∑
t=1

∂L

∂zc,Ps,t
hs+k,t+l. (4.5)
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Thus the only constraint on choice of analytical filter Φ is that it is differentiable with
respect to parameter pd. In the following subsection we compute the above derivative in
the scenario where only a subset of parameters are learned.

4.3.2 Learning Analytical Parameters through Backpropagation

In this paper we modulate with Gabor filters similarly to [140], which are feature detec-
tors characterised by rotation sensitivity and frequency localisation: G(λ, θ, ψ, σ, γ)k,l =

e−
k′2+γ2l′2

2σ2 ei(
2π
λ
k′+ψ) with k′ = k cos θ+l sin θ and l′ = l cos θ−k sin θ. Two major differences

with [140] is that we work with complex-valued networks, and we learn the parameters of
the filters while they were fixed to static orientations in [140]. A significant advantage of
Gabor filters in comparison to Fourier related methods such as DCT is that they are not
constructed from a sinusoidal basis, meaning that discontinuous patterns, such as edges,
can more easily be represented. We fix (hyper)parameters other than orientation θ and
wavelength λ: G(λ, θ, 0, 1√

2
, 1) as in [140] which demonstrated that this provides suffi-

cient expressivity while simplifying computation. Though we choose to modulate with
the well-documented Gabor filters due to orientation and frequency parameterisation, it
is possible to modulate with a variety of complex analytical filters with this approach.

Thus the modulated filter M c,P can be written as M c,P = GP ⊙ Ωc. We evaluate
∂mc,P

k,l /∂pd at pixel k, l in the context of Gabor filter modulation for both parameters.
Given that θ, λ ∈ R we treat M c,P as a function of the real and imaginary parts separately
(k, l indices omitted for readability):

∂mc,P

∂θ
= a′

c∂GRe

∂θ
+ b′

c∂GIm

∂θ
=

2π

λ
e−(k2+l2)l′[−a′c sin(2π

λ
k′) + b′

c
cos(

2π

λ
k′)] (4.6)

∂mc,P

∂λ
= a′

c∂GRe

∂λ
+ b′

c∂GIm

∂λ
=

2π

λ2
e−(k2+l2)k′[a′

c
sin(

2π

λ
k′)− b′

c
cos(

2π

λ
k′)], (4.7)

where a′c = ac + bc, b′c = ac − bc. Backpropagation ∂L
∂pd

= ∂L
∂Mc,P

∂Mc,P

∂pd
can now be

calculated, enabling learning of Gabor filters’ parameters alongside convolutional weights.
Accordingly, parameters are updated by θ′ = θ − η ∂L

∂θ
and λ′ = λ− η ∂L

∂λ
, with η denoting

learning rate.

4.3.3 Cyclic Gabor Convolutions

In intermediate layers we implement cyclic convolutions to further increase rotation in-
formation without increasing parameter size and utilise the additional feature channels
generated by Gabor modulation. We exploit the cyclic property of finite subgroups of
2D rotation transformations to create convolutional filters based on all permutations of
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orientation and canonical filters. By sharing all weights across every orientation, the
underlying canonical filters further generalise over rotations. This is analogous to how
filters are exposed to all translations in standard CNNs to encourage generalisation over
translations. This propagation of rotation dependence directly facilitates equivariance, in
contrast to non-cyclic Gabor convolutions which must pool over the orientation axis per
layer.

Note that this cyclic framework does not require analytical filters that are steerable,
only that filters can be parameterised by rotation. That is to say, it is not a requirement
that filters meet the criteria of linear steerability according to Freeman et al. [76]. In
particular, we demonstrate that rotational weight sharing through cyclic shifting can be
achieved with Gabor filters, which are not steerable. Networks constructed from steerable
filters where basis coefficients are learned in place of convolutional kernels inherently and
explicitly limit the filter space – whether this is a downside or an optimal regularisation
to achieve rotation equivariance is yet to be shown. In comparison, learnable modulation
with Gabor filters implicitly regularises filter space.

The cyclic convolution design we propose takes inspiration from group convolutions
presented in [43]. Specifically, cyclic Gabor convolutions utilise the shifting operation
used in group convolutions defined over 2D roto-translations [43, 206]. As the modulation
transformation cannot be used to form a symmetry group, we do not derive computation
using the group framework. However, using the orientation sensitivity of the Gabor filter
we implement a similar resulting feature composition, enabling rotational weight sharing
without requiring a proof for strict equivariance.

With hc(θ) denoting channel c and orientation θ of the previous layer’s activation map,
for a single orientation and output channel, cyclic convolution ⊛ is computed as:

zĉ(θ) =

Cin∑
c=1

[
hc ⊛M ĉc

]
(θ) (4.8)

=

Cin∑
c=1

∑
ϕ∈P

[
hc(ϕ) ∗M ĉc(θ − ϕ)

]
(4.9)

=

Cin∑
c=1

∑
ϕ∈P

[
hc(ϕ) ∗

(
G(θ − ϕ)⊙ Ωĉc

)]
. (4.10)

P is the set of U orientations that are used to generate Gabor filters. Note this formulation
allows any size of P . In order to keep implementation efficient and avoid recalculating
Gabor filters for all permutations of learned orientations we keep ϕ ∈ P as the origi-
nal angles. This choice allows filters to be reused with a cyclic shift of the orientation
components per different output orientation θ.
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4.3.4 Learnable Gabor Convolutional Networks

The framework presented above allows learnable modulation to be added into any convo-
lutional layer, making the method very versatile. There are some considerations to take
into account however, which we discuss in this section.

4.3.4.1 Complex weight initialisation

LGCNs operate over complex space, requiring weight initialisation to be rethought. Prin-
ciples of He weight initialisation [88] no longer hold given that Var(Ω) ̸= Var(A)+iVar(B),
i.e. real and imaginary parts cannot be initialised independently. We use Trabelsi’s gen-
eralisation of He’s strategy over complex space [194], setting Var[|Ω|] = 4−π

2nin
with nin

denoting the number of input units. The phase is then uniformly distributed around the
circle. It is worth noting that He’s derivation is specific to the traditional ReLU, using the
result that for a given input Xl to a layer l, and previous output Yl−1: E[X2

l ] =
1
2
Var[Yl−1].

This holds for traditional ReLU, Xl = max(0, Yl−1), as Yl−1 has zero mean and a sym-
metric distribution which is essentially split along its axis of symmetry. However with
C-ReLU, for b < 0, Yl−1 is no longer divided along the axis of symmetry. For this reason
we simply initialise the biases of C-ReLU layers to zero.

The choice of initialisation for modulation parameters is largely dependent on the
choice of analytical filter, and should be influenced by the function’s domain and the roles
of individual variables. For initialisation of Gabor parameters, as discussed in Section
4.3.2, we fix phase shift ψ, aspect ratio γ and scale σ in order to simplify computation.
Given that wavelength is a non-negative quantity we initialise λ with mean 3

√
U and

variance
√
U
4

as per [88], and verified that training is stable. This choice of initialisation
also avoids spatial aliasing of the Gabor filter for all kernel sizes (i.e. 3 × 3 or larger) at
network initialisation. As the filter is sampled more than twice per phase, the signal is
adequately captured, as per the Nyquist-Shannon sampling theorem. For orientation θ,
in the real case there is no benefit of using the full interval of rotations due to evenness,
however in the complex case the oddness of the imaginary part causes orthogonal filters
for θ with differing sign. For this reason we initialise θ uniformly around the full circle.

4.3.4.2 Gabor axis considerations

Though the ability to create enhanced filters from a single canonical filter has advantages
of parameter efficiency and weight-tying, it leaves the network prone to dimensionality
explosion. This can be controlled using one or more of three approaches depending on
the problem at hand: adjusting the number of convolutional channels C depending on
the dataset’s feature complexity; adjusting the number of modulating filters U based on
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the dataset’s pose variation; and max pooling along the orientation axis i.e. over the
modulating filters for each pixel of the bank of modulated feature maps. The latter
operation has the additional advantage of focusing the attention of the network on (local)
dominant orientations, which is a particularly useful feature for orientation invariance.

4.3.4.3 Invariance vs equivariance

There is a clear relation between pooling technique and invariance versus equivariance.
Preserving only the strongest orientation response discards low response representations
and disentangles features, this is however at the cost of encouraging invariance to local
rotations rather than equivariance. In practice, invariance is achieved through pooling af-
ter each hidden layer over the feature orientation dimension or the Gabor shift dimension,
for convolutions and cyclic convolutions, respectively – see Fig. 4.1.

4.3.4.4 Projection between C and R

Finally, since data used in this paper is real, we set the imaginary part of inputs to zero.
Following the first layer, due to the nature of complex algebra, imaginary parts are no
longer zero-valued. This has the effect of the first layers of the network learning a beneficial
imaginary projection of the input, alongside feature learning. Some works [177, 194] opt
to include a preprocessing step to estimate the imaginary part though we found this had
a detrimental effect on performance. For real classification, final complex feature maps
must be projected back onto real space. We experimented with several projection methods
such as complex linear layers and using magnitudes, but found empirically that simply
concatenating real and imaginary values into fully connected linear layers performed best.
We hypothesise that concatenation removes the regularisation caused by complex algebra,
and that this is beneficial in the classification layer due to the comparatively small number
of neurons versus previous convolutional layers.

4.4 Experiments

In this section we validate our learnable modulation formulation, showing that learning
analytical filter parameters leads to improved accuracy on both artificial and real data.
Initially, LGCNs are evaluated on variants of MNIST [122] containing rotated samples,
where we evaluate the network’s learned invariance. In the next section we compare invari-
ance and equivariance in both a standard CNN and a learnable Gabor modulated CNN,
where networks process synthesised and real samples of galactic cirri. All experiments
throughout this section were run using a single NVIDIA GTX 1080 Ti.
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4.4.1 Orientation invariance on MNIST

MNIST [122] (CC BY-SA 3.0 license) is a standard benchmark for transformation in-
variance because of its simplicity, interpretability and vast array of variants. The dataset
contains 60000 images of handwritten digits, where the typical task is to classify the drawn
digit from 0-9. In the context of transformation invariance, the digits undergo some trans-
formation, e.g. in our case a rotation. The network’s classification performance of digits
after image transformations have been applied indicates the robustness of the network
to the applied transformations. We apply a random rotation between [0, 2π) to yield a
rotated MNIST, and train with 5-fold validation. Our baseline classification architecture
is similar to that used in [43, 206, 211], with three blocks of increasing channels, rep-
resenting a hierarchy of feature complexity. Each block contains two learnable Gabor
modulated convolutional layers with a kernel size of 3× 3 followed by max pooling along
the orientation axis and average spatial pooling. We use no cyclic Gabor convolutional
layers, but these may be included in future experiments. In the final block, features are
pooled globally so that a given activation contains one complex value per feature channel.
We then concatenate real and imaginary parts into a single vector and use three (real
valued) fully connected layers for classification. The Adam optimiser [111] is used for net-
work training, starting at a learning rate of 0.001 and then decaying with an exponential
schedule by 0.9 every epoch. L2 weight regularisation is also enforced with a penalty of
10−7.

Exploration of rotation invariance in the feature maps – The number of mod-
ulation filters U has a direct effect on the network’s ability to capture rotation dependent
features. We vary this parameter and investigate its effect on network’s performance and
the learned features of the first layer, which are the most directly affected by low-level
geometrical transformations of the input image. For this first experiment, we train net-
works with U ∈ {1, 2, 4, 8, 16}. We measure and compare response magnitudes (measured
as the ratio between the average magnitudes of input and output activations) between
original and rotated samples, for all rotations in the (discrete) range [0, 360◦], for each
network (Fig. 4.2 right). Though response magnitude varies slightly, this may be largely
due to interpolation artefacts caused by rotation of the input samples. Nonetheless, the
pattern remains predictable throughout the rotation interval with decreasing amplitude
for increasing U , indicating that the number of modulating filters has a direct impact
on rotation invariance. We also measure classification accuracy as a function of rotation
for 1000 samples from the MNIST test set for each network (Fig. 4.2 left). The small
difference in accuracy between U = 1 and others indicates that even a little orientation
information is helpful in generating intra-class rotation-invariant features that remain
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Figure 4.2: Effect of input rotation on MNIST classification accuracy (left) and mag-
nitude of activations in the first modulated layer of the network (right), for different
numbers of modulating filters and orientations, and on a subset of 1000 testing samples
of MNIST.

LGCN (proposed) Complex static Real learnable GCN4 [140] ORN8 [220] CNN
0.9950 0.9915 0.9911 0.9890 0.9888 0.9718

Table 4.1: Classification accuracy on randomly rotated MNIST images.

inter-class separable. At U = 16 there is a detrimental saturation of orientations possibly
due to the model becoming too complex for the dataset size and task. Optimal perfor-
mances are reached for U between 2 and 8, with LGCN being not very sensitive to the
exact value of this hyperparameter.

Evaluation of the individual modifications to [140] – We evaluate the perfor-
mance improvements from our two modifications to [140] individually, namely the use of
complex-valued filters and of learnable Gabor orientation parameters. In these experi-
ments we apply these modifications both in turn and jointly to the model of [140]. The
channel sizes for each LGCN variant were adjusted so that the total parameter size is at
most equal to all of the compared models: for complex models this required halving the
number of feature channels. The final results, shown in Tab. 4.1, show that both modifi-
cations improve classification accuracy, demonstrating the additional feature expressivity
afforded in comparison to standard CNNs. All variants also outperform GCNs which use
real and static Gabor modulation, with an absolute error difference of 0.6 for LGCNs,
showing the benefit of our method’s changes over the previous work. The combination of
modifications leads to a large performance increase that may indicate a synergy between
the two approaches. One possible explanation for this is that the complex Gabor filter
provides smoother gradients with respect to θ and λ, as opposed to only the real part.
We will test this hypothesis in future work.
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Effect of adjusting learning strategies of Gabor parameters – We investigate
the effect of learning Gabor parameters other than θ, and study how changing initialisation
methods impacts the model’s performance. The default training configuration for LGCNs
uses fixed σ set at π, and learnable λ initialised using a normal distribution with mean
3
√
U and variance

√
U
4

. We experiment with fixing or learning wavelength λ and scale σ
and study how different configurations affect LGCNs. In addition we compare additional
weight initialisation strategies for these variables. For wavelength initialisation we apply:
fixed λ = 3; normal distribution with unit mean and unit variance (not adjusting for
U); and uniform distribution between [−1.5, 1.5]. For scale, in addition to fixed σ = π,
we initialise with a normal distribution with mean equal to π and quarter variance, and
enable backpropagation. Finally, we repeat these experiments with only one λ, σ for all
modulating Gabor filters per layer.

We train parameter restricted models with varying Gabor parameter learning strate-
gies on rotated MNIST for 30 epochs with 5-fold validation, and record the average
performance over all splits. Results are shown in Table 4.2. While initialising with a
normal distribution λ = N (3

√
U,

√
U
4
) and fixing σ = π achieves the highest average per-

formance, there is no clear strategy for either variable that remains best with the other
variable strategy changed. Notably, there is a performance decrease when aliasing of the
modulating Gabor filters is forcibly introduced by initialising wavelength λ from a uniform
distribution with bounds [−1.5, 1.5]. In further tests it was noticed that in this scenario λ
values do not recover from this range of aliasing even after training for >100 epochs. For
this experiment we conclude that given parameters are not in an aliasing range, LGCNs
are not particularly sensitive to learning strategy of wavelength λ and scale σ.

λ = U(−1.5, 1.5) Fixed λ = 3 N (3, 14) N (3
√
U,

√
U
4 )

Separate λ, σ
Fixed σ = π 0.9672 0.9702 0.9686 0.9692
σ = N (π, 14) 0.9690 0.9704 0.9693 0.9678

Single λ, σ
Fixed σ = π 0.9684 0.9707 0.9698 0.9713
σ = N (π, 14) 0.9673 0.9699 0.9707 0.9685

Table 4.2: Classification accuracy on rotated MNIST averaged over 5 splits for different
learning strategies of Gabor parameters wavelength λ and scale σ. Rows are divided in
the centre to denote whether a single λ and σ is used for all U modulating Gabor filters,
or λ and σ are separate for each modulating Gabor filter.
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4.4.2 Invariance and equivariance to the dominant orientation of

galactic cirri

We validate the benefit of modulation by applying LGCNs to a domain demanding ro-
bust orientation-sensitive features. We demonstrate that modulation not only enables the
network to learn invariance and equivariance, but aids the network’s ability to generate
features unaffected by local disturbances. For these experiments we analyse samples of
galactic cirrus clouds – astronomical objects with striped quasi-textures exhibiting clear
dominant orientations, as shown in Fig. 4.3 – as they allow the design of experiments
that assess both orientation invariance and equivariance separately and the compara-
tive robustness between different models. These images are very challenging, exhibiting
overlapping semi-transparent objects, including foreground cirrus with oriented patterns,
background objects (e.g. galaxies) with vastly different textures and intensities, and tele-
scope artefacts.

4.4.2.1 Comparing LGCN against a traditional CNN on synthesised cirrus
images

In this experiment we evaluate performance on various datasets composed from the syn-
thesised images of cirrus structures described in Section 3.4. We design the dataset to
have three variations of increasing realness. The first variation possesses only cirrus clouds
with constant orientation and bright regions (see Fig 6.1a); the second randomises cirrus
orientation (see Fig 3.14); finally the third introduces star-like objects with telescope halo
artefacts (i.e. bright transparent halos around each bright spots simulating stars, see
6.1b). These star-like objects are created from a sharp Gaussian profile approximating
a point source, where the standard deviation of each star’s Gaussian profile is randomly
slightly varied to ensure variation. A synthetic halo resembling a telescope artefact is then
added around each star, and is created from a circle of fixed radius and width and with
a uniform brightness proportional to the star’s associated Gaussian standard deviation.
Each synthesised dataset contains 300 samples: 160 for training, 40 for validation (for
5-fold validation) and 100 for testing.

We create a U-Net [172] style architecture in both standard form and with Gabor
modulated convolutional layers, where skip connections are combined via summation (as
in [165]) rather than concatenation. To enable comparison, we create four variants of this
network: one with plain convolutions; one with complex-valued convolutions, denoted
C-CNN; one with static real Gabor filter modulation as in [140]; and one with learnable
complex Gabor modulation with cyclic convolutions. These networks are tasked with first
segmenting the cirrus clouds, and secondly removing clouds and artefacts (if applicable).
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The complex filters of C-CNN and LGCN naturally require twice the convolutional filter
parameters. We ensure a fair comparison by adjusting channel sizes accordingly, thus
keeping total parameter size of the two networks roughly equal. For the denoising task we
do not utilise orientation pooling so that orientation information is preserved and equiv-
ariance is encouraged, as per discussion in 4.3.4, and experimental verification. Results
are presented in Tab. 4.3 with IoU metric for segmentation and peak signal to noise ratio
(PSNR) for denoising.

Synthesised Cirrus Samples Denoising GT Denoising Output Segmentation GT Segmentation Output

Fixed
R

and.
R

and. &
 A

rtefacts
R

eal data

NGC7454 Annotation Prediction PGC056772 Annotation Prediction

Annotation Prediction Annotation PredictionNGC6278 NGC3230

Figure 4.3: Denoising and segmentation results on real and synthesised samples of
galactic cirri generated with fixed rotation; randomised rotation; and randomised rotation
with stars and telescope artefacts. These are difficult tasks as the striped textures of cirrus
regions are easily confused/obstructed with bright diffuse regions and other objects.

In the segmentation case, given that rotation of cirrus texture does not affect the
cloud’s envelope, this is a problem where invariance is beneficial. The denoising problem
requires equivariance, as isolating the cloud from the detailed background is dependent on
the orientation of its streaks. In the first dataset, CNN, C-CNN and GCN performances
are close to LGCN’s, generating fine segmentations of the cirrus clouds with few missed
regions, and similarly good denoising. For the second, with orientation variation, GCN
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Fixed Rand. Rand &
artefacts Fixed Rand. Rand &

artefacts Real cirrus

Base model 0.914 0.882 0.806 26.3 25.3 23.5 0.673
C base model 0.918 0.905 0.839 26.7 25.6 24.5 0.679
GC model* 0.923 0.920 0.875 26.7 26.2 24.8 0.674
LGCN 0.925 0.918 0.898 27.4 27.1 25.4 0.715

Table 4.3: Segmentation IoU (left), denoising PSNR (middle) on synthesised cirri with
fixed and randomised orientation, and with stars and telescope artefacts. Segmentation
IoU (right) on real cirrus samples in LSB images. *Gabor convolutions of [140] applied
to our base model.

performs marginally best in the segmentation case but its performance drops for denois-
ing. On the other hand, LGCN maintains a quite stable performance for denoising (and
also for segmentation) on this dataset. This difference in behaviour may be explained
by the use of cyclic convolutions in LGCN that better preserve orientation information
due to rotational weight-tying across layers. CNN and C-CNN performances start to fall
behind, with relative differences of 4.1% and 1.4% IoU, respectively, for segmentation
and 7.1% and 5.9% PSNR for denoising. This separation becomes much larger in the
final experiment on the most complex data exhibiting overlapping textured regions and
localised objects, with LGCNs outperforming GCNs in both tasks by 2.6% and 2.4%,
C-CNN by 7.0% and 3.7%, and plain CNNs by 11.4% and 8.1%. The affect of randomis-
ing rotations and even introducing telescope artefacts makes little difference to LGCN’s
performance for segmentation, demonstrating its strength in generating rotation invariant
features that are robust to local disturbances. We see that denoising performance is sta-
ble with randomised rotation, indicating equivariant encoding produced by the modulated
layers. While performance drops for the third dataset, due to artefacts introducing strong
variations locally, LGCN still outperforms other models by a larger margin than without
artefacts, showing that feature robustness is exhibited in the equivariant case. The results
demonstrate that both the use of complex numbers and the modulation of filters are ben-
eficial. We note that the margin between CNN and C-CNN is significantly the largest on
this dataset variation requiring robustness, compared to other dataset variations. LGCN
combines both augmentations and cyclic convolutions for further improved results. Visual
analysis of the network outputs (see Fig. 4.3) indicates a possible overfitting for the first
two datasets with no telescope artefacts for both the segmentation and denoising tasks,
which results in a more difficult generalisation and poorer (visual) quality on test data.
This issue may be due to these two simpler scenarios requiring simpler models and/or
fewer training steps, and it will be investigated in future work.
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4.4.2.2 Prediction of cirrus structures in LSB images

We task LGCNs with segmenting cirrus clouds in optical telescope images, demonstrating
the effectiveness of our method on a real world problem. The dataset used in this ex-
periment is composed from a subset of the dataset described in Section 3.3.1, using only
images that contain annotations of cirrus. This dataset contains 48 expert annotated
images of approximate size 5000x5000, with two channels representing the g and r bands.
Of the 48 images, we use 32 for training, 8 for validation (for 5-fold validation) and 8
for testing. Across the entire dataset 55% of pixels are labelled as cirrus contaminated.
Networks are trained over 300 epochs on random crops of size 512x512, which are then
downscaled by a factor of two. To mitigate against the limited sample size, we augment
data with random flips and 90◦ rotations, and pretrain networks on an extended version
(N=1200) of the synthesised dataset.

We also train a standard CNN, a C-CNN, and a GCN [140] for comparison as in the
synthesised data experiment, fixing parameter size to be roughly equal. In comparison
to the synthesised images, real cirrus regions often exhibit much fainter textures and
orientation is more subtle and can vary slightly globally. In addition, training labels
may not be fully reliable, due to the difficulty in annotating precisely the borders of
cirri – there is an inherent uncertainty associated with each annotation, especially due
to the ambiguous nature of the cirrus cloud boundary, so several experts may disagree
on the exact location of borders –, and due to the limited number of available expert
annotators – in our dataset, 2 to 3 annotators annotated each image, but for simplicity in
this proof-of-concept, we worked only with the annotations of the single most experienced
expert, making the simplified assumption that their annotation corresponds to the ground-
truth. These factors, in combination with more severe artefacts, background noise, and
small training size, make the dataset incredibly challenging. Results are shown in the
last column of Table 4.3: LGCNs achieve an IoU of 71.5%, with an absolute increase
of 4.2% over standard CNN, 3.6% over complex CNN and 4.1% over real-valued static
Gabor modulation without cyclic convolutions. Notably, GCN barely surpasses the base
model and is outperformed by C-CNN, suggesting that only static rotation sensitivity
is not sufficient on more challenging datasets, a finding which is supported by results
from the previous experiment of synthesised images. LGCNs significantly outperforms
compared methods, demonstrating the ability of proposed augmentations to generate
robust orientation sensitive features, even on data with extreme contamination. Given
that the class balance is 55%, the problem is very difficult, and although this absolute
increase represents a significant performance improvement, more progress may be achieved
by considering e.g. new architectures to be augmented by our methods, or a multi-scale
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approach, and a more complete dataset with consensus annotation from several experts.

4.4.3 Boundary Detection on Natural Images

We demonstrate the general applicability of learnable Gabor modulated convolutions on
the Berkeley Segmentation Dataset (BSD500) [6, 146]. This task requires the ability to
learn equivariant features in the scenario where there is no dominant global orientation,
and the network must handle high variations in local feature orientation dependence. The
dataset contains natural images of size 321 × 481 in both portrait and landscape, with
200 training samples, 100 validation samples and 200 testing samples. Each image has
associated with it several ground truth labellings produced by different annotators.

We replicate the pipeline of one of the highest performing methods, RCF [137],
and replace convolutional operators with learnable Gabor modulated convolutions. This
methodology uses a pretrained VGG16 [181] based architecture, taking ‘side’ outputs from
each convolutional block that represent coarser scale edges as network depth increases.
These side outputs are then fused together with a 1 × 1 convolutional layer. The final
prediction is then computed as the average between all side outputs and the fused output.
We denote our modified implementation as LGCN-RCF: an additional Gabor convolu-
tional layer is used to create an orientation channel; all convolutional layers apart from the
fusion layer are replaced with cyclic Gabor convolutions; orientation features are pooled
prior to side output. We train for 250 epochs with 3-fold validation. Results are shown in
Table 4.4, using the optimal dataset scale (ODS) and optimal image scale (OIS) metrics
defined in [6]. LGCN-RCF achieves 0.727 ODS and 0.747 OIS, which is a strong result
considering in each epoch we train on one random augmentation per image, as opposed
to other methods which use the entire range of augmentations per image (due to lack of
compute and time, thus care is to be taken when comparing results). We note that LGCN-
RCF only marginally improves on the results of H-Net [211] despite containing roughly
15x more learnable parameters, speaking to the parameter efficiency of steerable filter
methods. As previously mentioned, such methods have a larger cost in terms of training
time and runtime memory usage, limiting their ability to scale to larger parameter sizes
and thus higher performance. Our method also significantly outperforms our implemen-
tation of RCF [137] with parameters restricted to match LGCN-RCF, demonstrating the
benefit of modulating with complex Gabor filters on tasks with natural images.
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Table 4.4: Boundary detection results on the BSD500 [6] dataset. *Our parameter
restricted implementation. †ImageNet pretrained.

Kivinen
et al. [114] DexiNed [162] RCF* [137] H-Net [211] LGCN-RCF RCF† [137]

ODS 0.702 0.728 0.707 0.726 0.727 0.806
OIS 0.715 0.745 0.720 0.742 0.747 0.823
# params - 4.41M 1.80M 0.12M 1.88M 14.84M

4.5 Conclusion

We presented a framework for incorporating adaptive modulation into complex-valued
CNNs. This framework was used to design an orientation robust network with convo-
lutional layers using Gabor modulated weights, where complex convolutional filters and
Gabor parameters are learned simultaneously. A cyclic convolutional layer was proposed
to retain rotational information throughout layers and encourage equivariance. Our archi-
tecture is able to generate unconstrained representations dependent on exact orientations,
without interpolation artefacts. We validated this empirically for three use cases, with
experiments designed to test properties of both invariance and equivariance to orientation.
We first verified that LGCNs are able to effectively produce rotation invariant features
on the rotated MNIST dataset. An ablation study was performed to assess in turn and
in combination the effect of two proposed augmentations to GCNs [140], namely using
complex-valued weights and learning parameters of modulating Gabor filters. Secondly,
we carried out experiments on a purpose designed dataset of varying difficulty. The ar-
chitecture’s modulated layers were able to create fine segmentations in synthetic and real
images despite local disturbances. The presented LGCN architecture achieved strong
denoising scores in comparison to standard CNNs, even on contaminating cirrus cloud
structures with randomised orientation. Clear performance improvements were observed
for both use cases, demonstrating the effectiveness of the augmentations. Thirdly, we ap-
plied an LGCN architecture to boundary detection in natural images and achieved strong
metrics in comparison to other non-pretrained methods. The successful augmentation of
three different architectures also demonstrates the general applicability of our method,
and it may be applied to more complex DNNs and application scenarios in the future.



Chapter 5

Multiscale Gridded Gabor Attention
for Segmenting Global Contaminants

In this chapter, we address the challenge of segmenting global contaminants in large im-
ages. The precise delineation of such structures requires ample global context alongside
understanding of textural patterns. CNNs specialise in the latter, though their ability to
generate global features is limited. Attention has been used to measure long range de-
pendencies in images, capturing global context, however this incurs a large computational
cost. We propose a gridded attention mechanism to address this limitation, greatly in-
creasing efficiency by processing multi-scale features into tiles with smaller resolution. We
also extend ideas of Chapter 4 and present a novel way to utilise Gabor filter modulation
to encourage orientation sensitivity over larger scales. We measure correlations across
features dependent on different orientations of underlying modulating Gabor filters, in
addition to channel and positional attention. We present segmentation results on both
synthetic and real images containing cirrus samples.

5.1 Introduction

Global context is vital in vision: scenes are described with focus on key descriptive regions,
such as grass or sky, as well as through objects. This is especially relevant when processing
contaminants covering large regions in images, such as clouds [85] in remote sensing images
and in solar imaging, [70], or cirrus clouds in LSB imaging. Multi-scale (MS) CNNs were
proposed aiming to increase global context in CNNs, e.g. [89, 218], though contextual
understanding in convolutions remains limited to the few final convolutional layers where
the kernel begins to span longer ranges after multiple successive pooling operations. In
this scenario, drastic downscaling is required to achieve more global receptive fields.

70
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Attention has been proposed to model long range dependencies in data [13, 197]. In
image data specifically, attention measures correlations between feature positions and
channels [77]. This is achieved by computing, for each pixel, a weighted sum of all other
pixels according to feature similarity. While attention has been effective in capturing
global context, this pairwise operation has a huge computational footprint. Positional
attention has squared complexity in relation to image size, which is barely manageable on
popular image datasets with modern GPUs. The compute cost of attention is typically
reduced by downscaling feature maps. However, sacrificing texture for gained context may
not be a worthwhile compromise for some vision tasks, as severe downscaling significantly
erodes local textures often to the detriment of model performance.

Orientational information is also a valuable discriminator in identifying classes of ob-
jects. Textures are intrinsically composed of orientation dependent patterns, and thus
understanding of orientations has been shown to increase performance on a variety of seg-
mentation tasks e.g. [105, 118, 140, 206]. Such methods generate feature sets dependent
on different orientations in order to decompose orientational patterns within textures,
which can then be analysed separately and in combination by follow network layers. Se-
mantic classes may also exhibit inter-dependence between orientations over global ranges,
such as contaminants where texture varies over longer distances. While the cited works
combined with MS architectures can capture this longer range dependence, there is again
a compromise lying in the convolutional operator’s weakness in capturing global depen-
dencies.

In this chapter, we investigate the task of segmenting global contaminants in large
images, such as cirrus dust in LSB images. In the case of cirrus, pollution can be diffi-
cult to spot, ranging from a slight change in background intensity to total occlusion of
galaxies, as shown in Figure 5.1, making cirrus localisation challenging. Even in clean
regions of images, background intensity levels vary across the image, thus it is necessary to
consider the entire image (>5000 px2) to maximise global contextual information. Local
textural patterns are also necessary discriminating properties of cirrus, which presents as
a wispy texture often with filamentary structures sharing a common orientation. This
requirement to analyse both local and global information within the image is common for
large contaminants, especially when the contaminant at a glance may be confused with
a different semantic class, such as clouds cover versus snowy terrain in remote sensing
images.

We propose a gridded MS architecture (Section 5.2.1) that addresses the computational
cost of attention. Furthermore, gridded attention introduces a multi-scale aspect with
no added (and even reduced) cost, while MS tends to be computationally expensive.
We divide features of different scales into tiles of smaller constant size. Positional and
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channel attention is computed on these tiles to assess both local and global context in an
efficient manner, before reassembling tiles into a final attention map. A closely related
work is [182] where attention is also applied to each scale of MS features, but considering
whole feature maps in each attention module which results in very high computing costs.
Additionally, we present a novel attention operator using orientation (Section 5.2.2), for
improved sensitivity to textures including the filamentary patterns of cirri. We utilise
Gabor modulated convolutions detailed in Chapter 4 to generate features dependent on
different angles. Attention is then computed across these angles, measuring correlations
between orientation dependent features.

5.2 Extending Attention for Segmenting Large Con-

taminants

In this section, we present enhancements of attention modules for effective and com-
putationally efficient segmentation of large contaminants. These enhancements may be
applied to various attention modules, and we demonstrate them on [77]. Likewise, dif-
ferent backbone CNNs may be used, and we demonstrate on two different backbones in
our experiments. We first detail our approach for generating a hierarchy of features from
different spatial scales using dual attention [77]. Second, a novel attention operator for
studying correlations between orientational information is proposed. Finally, we provide
a detailed overview of our deep learning architecture.

5.2.1 Multi-scale Gridded Attention

Accurate identification of contaminants requires comparison to surrounding regions. Cir-
rus structures, for example, can be very difficult to identify and differentiate from other
contaminants such as image artefacts. Various cirrus regions and their associated annota-
tions are shown in Figure 5.1. While cirrus can present as uniform bright regions, bright
areas near a source-like object is can also be diffuse light from a galaxy, rather than cirrus
pollution. To reliably spot areas of cirrus pollution it is important that the model is able
to study the image at multiple levels of field of view. This is much like how a human anno-
tating the cirrus region would zoom in to study textures and zoom out to see surrounding
regions. This idea is referred to as context in computer vision, where classification of a
region is assumed to have a dependency on neighbouring regions. Attention [13, 197] has
been proposed as a method to analyse contextual relations in images. Attention maps can
be computed with respect to position, in order to measure correlations between different
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regions, and with respect to feature channels, in order to measure correlations between
different learned features [77, 209].

(a) NGC2592. (b) NGC3230.

(c) NGC3522. (d) NGC5173.

Figure 5.1: Examples of cirrus contaminating different galaxies in various strengths,
and their associated annotation. Images are taken from the r-band.

We utilise multiple attention operators at different spatial scales in order to enhance
local and global contextual understanding. Methods of generating multi-scale features
have been developed in various fashions [36, 37, 130, 210, 215], including methods utilising
attention [219]. A proven approach for generating features at multiple spatial scales is
to divide features maps into different sizes and apply convolutional layers in parallel
[89, 126, 188, 218]. Yu et al. [216] use attention operators in succession to refine feature
representation and propose an auxiliary loss to guide attention maps towards better class
separation, demonstrating increased performed on datasets of limited size. Sinha and
Dolz [182] apply attention to features from different intermediate layers of ResNet [90] in
parallel to assess contextual information on multiple spatial scales, and extend the guided
supervision of [216] to dual attention modules. Tao et al. [191] create copies of input
images and generate segmentation predictions and attention maps from each copy, before
combining low-scale predictions with higher scale attention maps in a hierarchical fashion.
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5.2.1.1 Background on attention mechanism

We utilise attention to encode contextual dependencies. In this approach, correlations
between features are measured along a given dimension, thus modelling inter-feature de-
pendency. For example, two features in separate dimensions that only present either in a
pair or not at all would score a high correlation, as a dependency is implied. Following
this, correlations are scaled based on the strength of given features. This has the effect of
prioritising correlations that have a larger effect on model classification, and suppressing
those that do not. This process can be performed along any dimension or axis which
represents some internal organisation of a feature map, allowing contextual dependencies
to be measured in a variety of fashions.

In this work, we use the attention operator described in [77]. This attention operator,
denoted h, can be implemented generally over any tensor dimension as follows. Let X
represent a single input feature map tensor with axes A1×A2× . . .×Ad, where d denotes
the number of dimensions used in the internal organisation of the tensor. For example,
in traditional CNNs a feature tensor may have axes channels C× height H× width W .
For attention over a desired axis Ak, X is reshaped to a matrix with axes Ak ×N where
N =

∏d
i ̸=k Ai, denoted query Q. A copy is made of Q and transposed, to create key

K = Q⊤ ∈ RN×Ak . Correlations M ∈ RAk×Ak between features are then calculated with
some alignment function σ, i.e. M = σ(QK). For example, a common choice of σ is the
Softmax function,

M =
exp(QK)∑Ak

l exp((QK)l)
(5.1)

where subscript l denotes matrix column. Scaling of correlations according to feature
strength is achieved through a further matrix multiplication between M and an additional
reshaped copy of X, termed value V . This quantity is then reshaped to the original axes.
The final attention output E ∈ RA1×A2×...×Ad is given as,

E = h(X) = γ ·MV +X, (5.2)

where γ is a learned parameter initialised to zero which further controls the strength of
correlations.

Typically, attention is measured across feature channels, referred to as channel-wise
attention, or pixels, referred to as positional attention. For the latter operation, height
and width axes are combined into one single axis containing all the present pixels, and
convolutional layers are placed before the reshaping operation to create query Q, key K
and value V . In combination, these operators are able to capture different interdependen-
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Figure 5.2: Diagram of the general attention module implemented in this work. Note
that with positional attention, a convolutional layer is placed before each initial reshaping
operation (green arrows). Matrix multiplication is denoted by

⊗
, element-wise addition

is denoted by
⊕

.

cies among features: we refer to this combination as dual attention. After each attention
based feature map has been computed, they are combined simply through element-wise
summation.

We use an adapted attention framework described in [182] to further enhance semantic
representation in feature maps. In this approach, two attention operators applied in
succession are used to refine the generated feature maps. While attention inherently
prioritises information relevant to class separation, referred to as semantic information,
this effect can be encouraged more explicitly through additional regularising losses. For
the first module, attention operator output h1(X) is scaled by the original input feature
map passed through a small encoder-decoder style network, g1(X), i.e. E1 = h1(X) ⊙
g1(X) where ⊙ represents element-wise multiplication. The second attention module
functions similarly to the first, however input is formed by multiplying previous attention
module output E1 by the original feature map X,

E2 = h2(E1 ⊙X)⊙ g2(E1 ⊙X). (5.3)

From the two chained attention modules, an auxiliary loss is constructed from two
constraints. In the first loss LV , the encoded representations of g1, g2, gV1 , gV2 are forced
to be close together. For the second loss LS, the outputs of g1, g2 are forced to be close
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Figure 5.3: Diagram of the guided attention block implemented in this work. Element-
wise multiplication is denoted by

⊙
.

to their inputs. Both of these constraints are enforced by minimising per-pixel error:

Laux = LV + LS =
(
||gV1 − gV2 ||2

)
+
(
||g1(X)−X||2 + ||g2(E1 ⊙X)− E1 ⊙X||2

)
.

(5.4)

Autoencoder networks such as g1 and g2 must reconstruct their input from a learned low
dimensionality encoding, the success of which is ensured by minimising LS. Through
this process, the encoding must preserve the most descriptive features such that the
input can be recovered as accurately as possible. A side effect of this is that features
of low relevance or with little discriminative information are discarded, such that the
reconstructed outputs of g1 and g2 contain proportionally more semantic information.
By minimising the difference between each autoencoder’s encoded representation, this
semantic information is retained across successive attention modules.

5.2.1.2 Gridded attention

The ability to generate multiscale attention maps from an entire image is beneficial for
segmentation of global contaminants. A consequence of using additional spatial scales
is that computational resources are increased by some factor for each considered scale.
This problem is compounded in models using positional attention as each of these models
uses memory proportional to squared image size. These factors are particularly relevant
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to segmentation of cirrus in LSB images, as images are very large (>5000px2), making it
difficult to process an entire image with a single pass of the model. While it is possible to
manage this effect through downscaling and cropping, the former compromises key local
textural information and the latter compromises key global contextual information. It is
therefore desirable to use multi-scale attention and minimise the use of both downscaling
and cropping.

We propose a computationally inexpensive method for computing attention over mul-
tiple spatial scales. We divide each set of multiscale features into groups of tiles so that
spatial size is standardised across all scales according to the feature set with the smallest
spatial size. By using different grids for separating features of different spatial scales into
regions, we obtain tiles of consistent smaller spatial size but with multiple underlying
spatial scales. Tiles are then treated as an individual sample similar to a batch of differ-
ent images. Our architecture then consists of multiple network branches, each handling
a different spatial scale and composed of a separate attention module, similarly to [182],
though with gridded Gabor attention. In addition, where as [182] upsample smaller scale
features independent of other scales, we tie the upsampling process across scales. We
illustrate this gridded attention mechanism in Figure 5.4. With this approach, due to the
massive saving on computational resources, the model is able to inspect both local texture
and global context of an entire LSB image without requiring downscaling images or only
using a small region of an image. After attention maps have been generated per scale set,
tiles are then reassembled to recover the entire grid and smaller scale feature maps are up-
scaled to the original resolution with upsampling blocks consisting of upsampling bilinear
interpolation followed by two convolutional layers. In addition, the original feature maps
are upscaled as necessary to the original resolution with similar upsampling convolutional
blocks. During initial experiments we found that other upsampling methods introduced
artefacts, such as a checkerboard effect produced by tranposed convolutions even after
carefully setting stride and padding values (see [154]).

To further simplify computation and utilise weight tying across scales, we use spatial
scales with a common factor. With this constraint, each underlying grid which is used
to disassemble feature maps into tiles shares dividing common boundaries. In this way,
each rescaling operation can be composed as a smaller common rescaling operation which
is successively applied depending on the desired final scaling. For example, if the desired
set of spatial scales are N,N/2 and N/4 (with N as pixel size), the smallest scale can
be achieved by downscaling twice by a factor of 2. An important aspect of the upscaling
process is that one upscaling convolutional block is used per scale transition, tying weights
across different scale branches of the model. With this choice of spatial scales, all rescaling
operations also benefit further parallelised computations.
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Figure 5.4: Diagram of the proposed gridded attention mechanism. Here number of
scales s = 3, and common downscaling factor f = 2.

It is possible to perform an analysis of the runtime memory usage of gridded attention
with spatial scales sharing a common factor. As previously stated, standard attention
has memory usage proportional to N4, where N is image height or width (for simplicity
we assume unit aspect ratio). We perform attention on tiles with resolution equal to
that of the smallest scale image: for s different scales with common downscaling factor
f , this resolution can be written as ( N

fs−1 )
2. Then for each spatial scale considered, with

i ∈ 0, ..., s− 1 representing each scale and i = 0 as the smallest scale, the number of tiles
at a given scale be expressed as ( N

f (s−1)−i )
2/( N

fs−1 )
2 = f 2i. The total number of tiles is then∑s−1

i=0 f
2i, resulting in a memory usage of,

s−1∑
i=0

f 2i(
N

f s−1
)4 = N4

s−1∑
i=0

f 2i

f 4(s−1)
. (5.5)

In our case, with s = 3 and f = 2, runtime memory consumption becomes 21
256
N4, equating

roughly to a 10 fold reduction in runtime memory usage for attention calculation.
Finally, it is necessary to decide how to generate multiscale features to feed into each

network branch. One approach is to retrieve features from intermediate layers of some
convolutional network composed of blocks separated by downsampling pooling layers,
which we refer to as the backbone network. This approach fits nicely with the choice of
spatial scales, as features obtained this way similarly successively downscale with chained
pooling operations. While this is efficient, intermediate layers may contain less relevant
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Figure 5.5: Different strategies for generating multiscale features, with number of scales
s = 3, downscale factor f = 2 and image size N = 1024. (a) Features are taken from
intermediate layers; (b) downscaled copies of the input image are created and then each
fed into the backbone separately.

features that would be discarded through the not yet performed pooling layer. Another
approach is to first downscale the image into multiple scales through simple spline inter-
polation and then to pass each rescaled copy through the backbone separately. By tying
all weights across all spatial scales, the model may be exposed to a consistent view of
objects that appear in different sizes, i.e. scale invariance is encouraged. A downside of
this approach however is the computational cost of generating features with the backbone
network for each scale. These strategies are illustrated in Figure 5.5. We implement both
approaches into our attention framework and later compare results.
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5.2.2 Gabor Attention

We attempt to encode some understanding of long range orientational patterns in im-
ages, to aid the segmentation model’s ability to spot large contaminants. Local textural
information alone may not be sufficient for reliable segmentation of large contaminants,
due to variation in textural patterns and possible confusion with other classes that can
appear similar locally. To handle these issues, we investigate integrating local and global
correlations between orientational features into our segmentation model. In this way, the
model can more effectively use the context surrounding uncertain areas to inform the final
prediction.

We propose a novel attention operator for studying orientational context. In Chapter
4 we demonstrated that learnable Gabor modulated convolutions significantly increased
performance on synthesised cirrus images. We integrate such convolutions into the pro-
posed multiscale attention architecture by calculating attention over the new tensor axis
denoting different Gabor orientation parameters. This attention operator is used in combi-
nation with the channel and positional operators, creating an attention module with three
separate attention operators each measuring different interdependencies among features.

5.2.2.1 Tri-attention module with orientation-wise attention operator

Using the attention mechanism described in Section 5.2.1.1, we compute attention with
respect to features dependent on different orientations. In this approach, the Gabor
attention operator requires feature maps with a new axis representing the orientations used
by modulating Gabor filters. By measuring correlations across this Gabor axis, we are able
to study relationships among orientation rich features. To create the required tensor axis,
we simply place independent non-cyclic learnable modulated Gabor convolutions before
each initial reshaping operation in the attention operator, as shown in Figure 5.7. This
choice of a single non-cyclic layer is motivated by several factors. First is the necessity
to minimise computational cost, as the new axis multiples runtime memory usage by the
number of orientations considered, or by the square of this number in the cyclic case.
Second is that the problem only demands rotation invariance, for which cyclic Gabor
convolutions do not offer a significant performance increase in comparison to the non-
cyclic version. Finally this choice keeps the architecture flexible, allowing for example the
use of any backbone network, or simple comparison between the choice of attention.

The proposed Gabor attention operator can be easily integrated into any attention
module. We add Gabor attention to the dual attention framework, and calculate Gabor
attention maps in parallel with positional and channel-wise attention maps. These three
attention maps are then combined with element-wise summation. We refer to this new
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Figure 5.7: Diagram of dual attention versus tri-attention.

attention module as tri-attention.
We also implement versions of the positional and channel-wise attention operators

which are compatible with outputs with a Gabor axis. This allows the investigation
into whether introducing orientational information into other correlation measurements
is beneficial for cirrus segmentation. This is trivially achieved with channel-wise attention
through the reshaping described in Section 5.2.1.1. For positional attention we replace
the convolutional layers used to generate query, key and value with a non-cyclic Gabor
convolution. These variants are later compared to their traditional counterparts in Section
6.4.2.

5.2.3 Constructing a Segmentation Model with Attention

The attention modules presented in this work are versatile and can be substituted in
place of any existing attention module, combined with any feature generating backbone,
and used to analyse any arbitrary scale or number of scales. These factors make the
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proposed methodology applicable to a large variety of computer vision models and po-
tentially valuable to any task involving very large images with local and global feature
dependencies.

concatenateupscale
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Figure 5.8: Fusion layer and segmentations generated from both attention maps and
initial backbone features.

We implement a multiscale attention architecture similar to [77, 182], with multiple
considered spatial scales (a comparitive analysis is performed later to study the effect
of changes the number of scales and their scale factor). Images are first passed through
a backbone network in order to generate multiscale features, according to one of the
two processes described in Section 5.2.1.2. In Figure 5.8 we illustrate an overview of
our model, where multiscale features are generated by passing the input image through
the backbone three times: one with original scaling, one downscaled by a factor of 2,
and one downscaled by a factor of 4. For ablation studies we use a simple backbone
network with four convolutional blocks, with each block consisting of a convolutional,
batch normalisation, ReLU and max pooling layer. In final experiments we use ResNet-
50 [90] as a backbone. A further fused feature map is created by upscaling features of each
scale to the largest size present, concatenating, and passing through a fusion layer. This
fusion layer is composed of three convolutional blocks, each consisting of a convolutional,
batch normalisation, and ReLU layer. This fused feature map is then concatenated onto
each feature map after being rescaled by the feature map’s corresponding scale factor.

The three feature maps created from the backbone network and fusion process are
passed through separate guided attention modules after being disassembled into tiles of
common size H/4 × W/4, where H,W represent height and width, respectively. The
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resulting attention map tiles are then reassembled into three feature maps of size H×W ,
H/2×W/2 and H/4×W/4. Following this, each attention map and original feature map
created by the backbone network is upscaled with convolutional blocks as described in
Section 5.2.1.2. The original feature maps and attention maps are then passed through
a fully connected layer to generate six segmentation predictions. For training, we treat
each prediction equally and measure loss in the same way for all predictions. In this way,
the backbone is explicitly forced to preserve spatial locations of features, relieving the
attention section of the network any realigning effort. Provided the backbone network
can produce a reasonable segmentation, the only job of the attention section is to utilise
attention to refine the segmentation prediction. For inference, we take the average of the
three segmentation predictions computed from the attention maps.

5.3 Results

Modifications detailed throughout this chapter are validated in this section, including
those proposed in this work and other related works. We seek to discern the effect of
different techniques, and carry out experiments on two tasks performed in Chapter 4.
Experiments are first performed on synthetic and real low surface brightness images,
where we investigate the benefit of incorporating the ability to study long range inter-
dependencies when segmenting large contaminants. The proposed model is then evaluated
on the segmentation of cloud cover in natural images, using the SWIMSEG dataset [53].

5.3.1 Segmentation of Cirrus Dust

We assess the performance characteristics of different modifications on the cirrus seg-
mentation task. Multiple comparative analyses are performed in order to identify the
best performing setups of methods detailed in this chapter. All experiments are per-
formed on both real and synthesised images with 5-fold cross validation. The abil-
ity to study global context is a major motivation of this work, thus for both datasets
we ensure the model is trained on large images, in comparison to the previous chap-
ter. For synthesised images, we generate images similar to Chapter 4 but with size
1024px2, representing a 16x increase in pixels. This dataset contains 300 images in to-
tal, with 160 for training, 40 for validation, and 100 for testing. For real images, we
use the same dataset as is detailed in Chapter 4, involving 48 2-channel LSB images
of approximate size 5000px2. However, instead of training on small randomised image
crops, we downscale the entire image with bilinear interpolation to the maximum size the
model can accommhttps://www.overleaf.com/project/6261bd1d82f354184bb6da04odate
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(with batch size fixed across experiments). Targets are obtained by taking labels from a
single expert annotator. Of the 48 images, 32 are used for training, 8 for validation and
8 for testing.

Training setup is fixed across all following experiments to ensure a fair comparison.
Networks are trained for 200 epochs over 5 splits using the Adam optimiser [111] and a
binary cross entropy loss function. We set learning rate to 10−4 which is decayed with an
exponential schedule of 0.95 per epoch, and apply an L2 weight regularisation penalty of
10−7. On both datasets, augmentation is employed in the form of random flips and 90◦

rotations to mitigate against limited sample size.
In this first experiment, the performance of modifications proposed in [182] is vali-

dated. While the cited work achieves boosted performance on medical images, we wish to
confirm whether this relationship extends to cirrus samples given that segmented struc-
tures in [182] are not translucent contaminants. An ablation study, shown in Table 5.1, is
performed with three modifications: concatenating a fused feature map onto multi-scale
features before calculating attention; generating multi-scale features from intermediate
layers of the backbone versus multiple copies of the input image with different scales; and
the use of guided attention. Isolated experiments show that fused features and guided
attention respectively increase performance over the control dual attention model by 0.15
and 0.23 on synthesised data, and 0.23 and 0.41 on real data. Guided attention appears
to offer a larger benefit on real images, possibly because the generalisation effect offered
has a larger impact on the smaller sample size of real low surface brightness images. The
benefit of these components is also consistent across all combination runs. We observe
that using multiscale features from intermediate layers of the backbone appears to de-
crease performance on real LSB images but increase on synthesised images: this pattern
is demonstrated on the isolated experiment and also in combination with the other com-
ponents. This could be because intermediate layers do not generate features that are
discriminative enough for the additional detail in real images, thus the higher expressiv-
ity afforded by deeper layers outweighs the benefit of using multiscale features with an
inherent hierarchical relationship.

Next, the performance of gridded attention is analysed. Based on the previous ex-
periment, fused features and guided attention are incorporated into the base model of
this experiment. A simple grid search experiment, shown in Table 5.2 is performed in
order to examine segmentation scores as the number of scales s and downscaling factor f
parameters are altered. We see that gridded attention offers an increase in segmentation
performance on the large cirrus images in almost all setups. Exceptions to this pattern
occur with s = 4 and f = 3, possibly due to the common tile size becoming too small
resulting in excessive erosion of semantic information in larger scale tiles and no added
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Fusion Inter. Guided Synth Real
0.805± 0.0008 0.700± 0.024

✓ 0.820± 0.0006 0.723± 0.021
✓ 0.808± 0.0009 0.694± 0.028

✓ 0.828± 0.0011 0.741± 0.022
✓ ✓ 0.823± 0.0007 0.718± 0.027

✓ ✓ 0.830± 0.0009 0.734± 0.029
✓ ✓ 0.843± 0.0006 0.765 ± 0.020
✓ ✓ ✓ 0.846 ± 0.0010 0.752± 0.026

Table 5.1: Ablation study of modifications presented in [182]: fusing scales (see Fig. 5.8);
generating multiscale features from intermediate layers; and guided attention. Results
presented as mean IoU over 5 splits on real and synthesised cirrus samples.

s = 2 s = 3 s = 4

Synth f = 2 0.866± 0.0012 0.902 ± 0.0011 0.862± 0.0014
f = 3 0.875± 0.0009 0.886± 0.0013 0.831± 0.0025

Real f = 2 0.796± 0.022 0.842 ± 0.018 0.781± 0.021
f = 3 0.819± 0.023 0.815± 0.016 0.754± 0.034

Table 5.2: Segmentation scores of different gridded attention models on synthesised and
real data. Here s represents the number of scales and f denotes the downscaling factor.
Results presented as mean IoU over 5 splits on real and synthesised cirrus samples.

benefit to global context in smaller scale tiles. This seems likely when considering that
tile width and height are f s = 34 = 81 times smaller than the largest MS feature map,
roughly representing 0.02% of the feature map’s size. There is a similar but less drastic
effect with s = 4 and f = 2 where performance is higher than non-gridded attention but
still lower than other gridded setups, indicating forcing a tile size that is too small is not
beneficial to performance. It can be seen that setting s = 3 and f = 2 achieves the highest
performance, with f = 3 following closely behind, on both datasets. While all setups with
s = 2 do increase performance over non-gridded models, the minimal variation in spatial
scales appears to be suboptimal.

Thus far discussion surrounding computational savings of gridded attention has been
theoretical in nature. We seek to empirically validate such theoretical discussions by
measuring runtime and memory usage per batch on cirrus data. Results are detailed in
Table 5.3. It is clear that gridded attention significantly reduces memory and runtime
across all setups. As expected, increasing either the number of scales s or downscaling
factor f reduces both the cost of both resources. Gridded attention with two scales
decreases runtime by a factor of 0.37 and 0.24 for f = 2 and f = 3 respectively. As



Multiscale Gridded Gabor Attention for Segmenting Global Contaminants 86

s = 1 s = 2 s = 3 s = 4

Runtime (s)
f = 2 - 0.260± 0.009 0.129± 0.003 0.112± 0.005
f = 3 - 0.167± 0.005 0.092± 0.006 0.081± 0.002
Non gridded 0.639± 0.015 0.702± 0.014 0.704± 0.011 0.724± 0.034

Memory (MiB)
f = 2 - 436 212 100
f = 3 - 292 91 33
Non gridded 2258 2258 2258 2258

Table 5.3: Runtime (seconds) and memory usage (MiB) of multiscale attention calcula-
tion for a single batch, for different gridded attention modules and non-gridded attention.

s increases runtime continues to decrease, following an exponential trajectory. Memory
usage shares a similar pattern, though the exponential decrease is more significant, with
memory usage approximately being divided by f each time s is incremented. This slight
difference in trajectories is likely due to the parallelisation achieved between network
branches which is reflected in runtime but naturally not in memory usage. The optimal
segmentation configuration, s = 3 and f = 2, offers a sweet spot in terms of computational
cost, with a similar runtime to s = 4 setups and memory cost that is far more manageable
than non-gridded attention modules. We note that this configuration uses 9.3% of the
memory used by non-gridded attention, which very closely matches the number calculated
during earlier theoretical discussions (see Eq. 5.5).

We now turn to evaluate the performance of Gabor attention and its different imple-
mentations. In this experiment, we use the optimal gridded attention configuration with
s = 3 and f = 2 in combination with multiple attention operators: dual attention; dual
attention with Gabor convolutions inserted before each reshaping operation (see Fig. 5.2
and Fig. 5.7), denoted Gabor dual attention; Gabor attention in addition to dual at-
tention, denoted tri-attention; and Gabor dual attention in addition to dual attention,
denoted Gabor tri-attention. We observe that there is a slight detrimental effect when
calculating positional and channel wise attention from features generated with Gabor
modulated convolutions, with Gabor dual attention underperforming dual attention and
Gabor tri-attention underperforming tri-attention. There is however a clear increase to
segmentation scores when using tri-attention, with performance increased by 0.25 on syn-
thesised data and 0.32 on real data. This significant difference likely demonstrates that
Gabor-wise attention increases the model’s ability to handle orientational patterns, given
that oriented streaks are a major discriminating factor of cirrus regions.

Finally, we perform an ablation study involving the optimal components from the pre-
vious comparative experiments. We seek to investigate the effect of different components
in combination. We test the application of fused features and guided attention, gridded
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Dual GaborDual Tri GaborTri
Synth 0.902± 0.0006 0.891± 0.0010 0.927 ± 0.0006 0.923± 0.0008
Real 0.842± 0.018 0.835± 0.020 0.874 ± 0.016 0.857± 0.021

Table 5.4: Comparison of attention frameworks: dual attention [77], dual attention with
Gabor conv. features, tri attention, tri-attention where channel and positional attention
use Gabor conv. features. Results presented as mean IoU over 5 splits on real and
synthesised cirrus samples.

Fuse+Guided Gridded Tri Synth Small Synth Real
0.805± 0.0008 0.830± 0.0009 0.700± 0.024

✓ 0.843± 0.0006 0.859± 0.0017 0.765± 0.020
✓ 0.868± 0.0012 0.822± 0.0031 0.796± 0.026

✓ 0.841± 0.0014 0.867± 0.0024 0.782± 0.020
✓ ✓ 0.902± 0.0011 0.844± 0.0027 0.842± 0.018

✓ ✓ 0.896± 0.0007 0.850± 0.0027 0.850± 0.023
✓ ✓ 0.884± 0.0008 0.883± 0.0021 0.823± 0.019
✓ ✓ ✓ 0.927 ± 0.0006 0.861± 0.0023 0.874 ± 0.016

U-Net [172] 0.638± 0.0678 0.806 0.673
LGCN 0.664± 0.0731 0.898 0.715

Table 5.5: Ablation study of the proposed gridded attention and tri-attention, and
modifications of previous work [182]. Results presented as mean IoU over 5 splits on
three cirrus datasets: large synthesised images (used in previous experiments), small
synthesised images (used in Chapter 4), and real LSB images.

attention and tri-attention on real and synthesised cirrus images, shown in Table 5.5. We
also test each model on the synthesised dataset used in Chapter 4 containing smaller im-
ages, in order to fairly compare performance against non-attention segmentation models.
The most significant performance increases on large images are obtained with the addition
of gridded attention, likely owing to the minimal downscaling required to process images,
thus retaining local textures. This is supported by the fact that these same increases
are not observed on the smaller synthesised images across all ablations involving gridded
attention, where downscaling is not necessary and gridded attention only decreases global
receptive fields. There is a strictly positive effect across all combinations of components
on larger images, with the use of all components scoring 0.874 and 0.927 mean IoU on
the real and synthesised cirrus datasets, respectively. In comparison to the non-attention
based method of the previous chapter, LGCN, these results reflect a large relative increase
of 22% on real data and 39% on synthesised data.
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5.3.2 Cloud segmentation in natural images

The proposed model is evaluated on the Singapore Whole sky IMaging SEGmentation
database [53] (SWIMSEG), and tasked with segmentation of clouds in natural images.
This task is highly relevant to the proposed methodology, as the imaged clouds are global
structures with high variation. Both local information and global context are key to
good performance on this dataset, as difficult positive regions of light cloud can only be
correctly identified based on subtle textural patterns and comparison with surrounding
regions. The SWIMSEG dataset contains 1013 images of sky patches and corresponding
binary cloud segmentation maps, with each image containing 600 × 600 RGB pixels.
Training, validation and testing sets each contain 861, 101 and 51 samples, respectively.

The optimal architecture from the previous section is selected with gridded attention
and tri-attention. In addition, we train three further models for comparison, ablating
gridded and tri-attention. To make a fairer comparison with previous works we swap our
feature generating backbone with a ResNet-50 [90] and increase the number of parameters
in following layers. The Adam optimiser [111] is used with learning rate is set to 10−4,
exponential learning rate decay to 0.99, and weight decay to 10−4. Networks are trained
over 200 epochs for a single fold. Data augmentation is employed in the form of random
flips and 90◦ rotations, and slight adjustment of contrast, brightness, saturation and hue.

Results are detailed in Table 5.6, where we report the segmentation IoU and Dice score
on the testing set as in [53, 54, 186]. The base model with no gridded or Gabor attention
scores marginally below state of the art [186]. Gridded attention and Gabor attention
each improve on this score by absolute differences of +0.3 and +0.2 IoU, respectively.
These increases demonstrate that the proposed methodologies each improve the model’s
ability to process large homogeneous structures. The combination of these components
achieves the best performance with respective IoU and Dice scores of 0.90 and 0.95, repre-
senting a significant improvement over state of the art results. Several examples randomly
chosen from the testing set are displayed in Figure 5.9. The proposed model produces re-
liable and accurate segmentations of cloud cover, even in highly translucent areas. There
are some areas where the predicted boundaries are more coarse than the ground truth
boundaries. Thus, it is likely that incorporating skip connections similar to U-Net [172]
style architectures, where fine structural details produced in intermediate backbone layers
are provided to the final mask generating layers, could improve performance further. We
leave such optimisations to future work, and assert that results presented demonstrate
the effectiveness of the proposed method in segmenting global structures.
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Base +Gridded +Tri All Dev et al. [53] Dev et al. [54] Song et al. [186]
IoU 0.85 0.88 0.87 0.90 0.69 0.80 0.86
Dice 0.92 0.94 0.93 0.95 0.82 0.89 0.92

Table 5.6: Segmentation scores on the SWIMSEG sky/cloud segmentation dataset,
comparing the proposed gridded attention and tri-attention against previous works.

Input
Image

Ground
Truth

Model
Output

Figure 5.9: Sky/cloud examples from the SWIMSEG testing dataset (top), correspond-
ing ground truth cloud segmentations (middle), and model predictions (bottom).

5.4 Summary

We presented a computationally efficient multi-scale attention architecture that is sensitive
to texture orientation for segmentation of global contaminants in large images. Efficiency
is achieved through a gridded architecture, allowing global context to be considered while
retaining local textural information. Multi-scale features are divided into tiles of size equal
to the smallest feature map’s size so that spatial size is constant across all tiles. Attention
is computed on each tile and then tiles are stitched back together to retain the original
feature map size. As attention has memory usage proportional to the squared image
size, computing attention on smaller tiles hugely reduces computational cost. We created
an attention operator that measures correlations between orientations by utilising Gabor
modulated convolutions to generate orientation-dependent features. Attention is then
computed with respect to the different orientations of modulating Gabor filters. These
contributions were combined into a new state-of-the-art model for the segmentation of
global contaminants in large images. Our model can process multiple entire images of
spatial resolution >1024px2 in a single pass, meaning that the proposed method can
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be easily integrated into data processing pipelines for imaging instruments to obtain
contamination masks.

The proposed methodology was validated on multiple datasets through a set of com-
parative analyses. The exact optimal configuration of our methodology was discovered
through a grid searches and a following ablation study. The computational characteristics
of gridded attention were analysed empirically, with findings concurring with theoretical
discussions. We firmly showed that gridded attention and tri-attention improve per-
formance on real and synthesised cirrus samples, indicating the ability of the proposed
method to consider both local information and global context simultaneously. State of the
art performance was achieved on a sky/cloud segmentation dataset, SWIMSEG, demon-
strating the effectiveness of the proposed model in segmenting difficult global structures.

In this chapter we achieved reliable cirrus segmentation performance on a small dataset
of real LSB images. An important note is that this dataset of real LSB images, while
helpful and informative for validating methodologies, is slightly ill-conditioned as targets
are formed from a single annotator’s binary labels, rather than a consensus of all anno-
tators. Furthermore, we trained on only images containing cirrus and thus the potential
use of our methodology as an automated catalogue method has not been verified. In
the following chapter, we attempt to address these limitations and develop methodologies
specific to training supervised ML models on LSB images.



Chapter 6

Segmentation of Cirrus Contamination:
a Deep Learning Approach

In this chapter, we refocus our attention purely on the annotated LSB data presented in
Chapter 3 and further investigate automated segmentation of Galactic cirri. We build
upon the attention model proposed in Chapter 5 in an attempt to specialise the machine
learning method to handle LSB images. Several novel method components are proposed
to address inherent challenges associated with identifying galactic cirrus structures in
LSB images. Results of the proposed methodology on the annotated MATLAS images
detailed in Section 3.3 are presented in the form of multiple ablation studies. In addition,
we thoroughly review predictions generated by the final method on a selection of unseen
MATLAS images.

6.1 Introduction

Identifying cirrus contamination in low surface brightness imaging is a major priority for
future astronomical surveys. Galaxies captured by traditional instruments in the optical
and near-optical bands do not suffer from such contamination; cirrus is typically captured
in the infrared band due to thermal emission. The sensitivity of LSB imaging captures
scattered light from dust in cirrus clouds, even in the optical and near-optical bands, as
illustrated in Figure 6.1. These captured cirrus structures appear in the foreground of
some galaxies and contaminate the image in a degree ranging from a slight change in
background level to occlusion of interesting structures within the target galaxy. Contam-
ination of LSB images by cirrus clouds impedes the statistical analysis of LSB galaxies
and their fine structures [185], and in some cases can even appear visually similar to tidal
features [63]. Cirrus regions captured in LSB pictures can be used for high spatial resolu-

91
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tion studies of the interstellar medium, as was conducted by Miville-Deschênes et al. [148]
to investigate turbulence cascade. Additionally, the study of correlating factors between
cirrus clouds and nearby stellar structures may direct further investigation into possible
associated phenomena [21].

(a) PanSTARRS. (b) MATLAS.

Figure 6.1: Surrounding region of NGC1253 captured in different astronomical imaging
surveys.

At the surface brightness ranges captured by deep surveys such as MATLAS [61],
Galactic cirrus emission covers a significant portion of the sky. Comparisons to cirrus
observed in IR wavelengths, where the dust’s thermal emission can be captured, has shown
that the cirrus is highly likely to be Galactic in nature [62, 195]. While existing studies of
Galactic cirrus in far-IR imaging provide a map of affected regions, the resolution is far
inferior to modern LSB images and thus greatly diminish the quality of any possible cross
examination. Cirrus presents in LSB images as a wispy texture often with filamentary
structures sharing a common dominant orientation. These dust clouds do not exhibit
a constant color, with the g-r colour index, which is defined as the difference between
magnitudes of the g and r bands, varying intra-structure. Because of this, subtraction
of this foreground component, for example as is done in cosmic microwave background
analysis, is made significantly more difficult. Such removal of polluting structures is thus
unlikely to be achieved in the near future.

It is vital that cirrus contamination within LSB images can be identified and delineated
in an automated fashion. A typical approach for handling contaminants such as image
artefacts or foreground dust is to catalogue these contaminated regions so that they can
be excluded from or handled specially during any statistical analysis. Traditionally this



Segmentation of Cirrus Contamination: a Deep Learning Approach 93

process is carried out manually by expert astronomers familiar with the contaminants,
requiring a significant time investment. Duc et al. [62] classified the presence of LSB
features, including cirrus, in 92 galaxies from the ATLAS3D survey. Bílek et al. [21]
performed a similar classification process on a larger sample set of MATLAS images.
Annotation effort becomes especially expensive if precise masking of affected regions is
desired. For example, Sola et al. [185] precisely delineate and classify LSB features of 352
galaxies captured by MATLAS and CFIS, using the tool presented in Chapter 3: in this
work, authors estimate that annotation took approximately 10 minutes per sample. Thus,
manually cataloguing contaminated regions is unfeasible for future surveys producing
petabytes of LSB image data. There is a clear need for automated detection of cirrus
clouds in LSB images.

Segmentation of cirrus in LSB images currently presents multiple challenges. LSB
imaging that boasts both high sensitivity and high resolution is a relatively recent tech-
nology, with only a handful of deep surveys each containing a small sample set in com-
parison to what is typically necessary for training ML methods. Images commonly suffer
from various instrument artefacts such as internal reflections surrounding bright stars
and incomplete CCD columns causing areas of artificially high background levels. Cirrus
pollution can be very difficult to spot in many cases, only distorting the background level
slightly. The combination of these factors complicate the training process, and signifi-
cantly increase the difficulty of attaining generalisation. Even in non-polluted regions of
images, background intensity levels vary both between and within images, meaning that
it is necessary to process the entire image in one pass to ensure the ML model has global
contextual information. A complication for this requirement is that images are very large
(>5000px2) and multispectral, thus the method must be carefully designed to accommo-
date this computational cost. Finally, annotations of cirrus used as training masks in this
study were generated by multiple experts, meaning targets are inherently probabilistic.

We propose a machine learning pipeline for the automated identification and delin-
eation of cirrus structures in LSB images. These images present a multitude of challenges
that complicate training, such as their large multi-spectral resolution and frequent instru-
ment artefacts. To handle variations in background intensity we implement a preprocess-
ing layer inside the ML mode where multiple intensity scaling transformations are learned
in parallel in an end to end fashion. We propose a novel loss for training on probabilistic
consensuses of multiple human generated annotations, which is suited for scenarios where
the number of expert annotators is limited or there is significant disagreement among an-
notations. Figure 6.2 shows examples of different contaminated regions along with their
uncertain consensus annotations. These novel components are combined with the gridded
tri-attention segmentation model presented in Chapter 5, to construct a comprehensive
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pipeline for automated cataloguing of galactic cirri.

Figure 6.2: Cirrus dust of various strengths (top), with uncertain annotations (middle)
and predictions (bottom).

This chapter is organised as follows. We detail our strategy for training on LSB
images in Section 6.3, and propose a novel loss for training on probabilistic consensuses of
multiple human generated annotations. We validate components of our methodology in
isolation and in combination in Section 6.4. In Section 6.5 we present results on a dataset
of annotated MATLAS images, demonstrating the reliability of our approach. Finally,
we provide discussion on the contributions of this work in Section 6.6, and summarise
conclusions in Section 6.7.

6.2 Related Work

Modern machine learning techniques have been applied to various astronomy tasks with
great success. In particular, numerous authors have exploited deep learning models on
image data in recent years. Kim and Brunner [110] perform star-galaxy classification with
a combination of images from SDSS [23] and CFHTLenS [67, 93, 94], and pre-computed
SExtractor [19] features. Reliable morphological classification with standard CNNs has
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been achieved on images from CANDELS [101] and SDSS [59]. Domínguez Sánchez et al.
[60] demonstrate the effectiveness of transfer learning for finetuning deep learning models
to unseen images from astronomical surveys different to the original survey used for train-
ing. Akeret et al. [2] mitigate radio frequency interference using the fully-convolutional
U-Net architecture [172] on simulated data.

Works that involve adaptation of the machine learning pipeline to accommodate chal-
lenges specific to the data have been particularly successful. Dieleman et al. [55] char-
acterise basic galaxy morphologies using convolutional layers that replicate features with
90◦ rotations, to aid network understanding of rotational transformations. Pasquet et al.
[158] utilise inception blocks [188] in CNNs for regression of photometric redshift, increas-
ing robustness to different spatial scales. Careful design of the ML pipeline is crucial to
attaining good results, especially on difficult data.

Attempts to automate cataloguing of cirrus regions has thus far utilised traditional
non-ML algorithms. Jackson et al. [104] construct a catalogue of strong filamentary cirrus
structures using a differential geometric computer vision algorithm [132]. Akrami et al.
[4] manually produce rough masks delineating bright or highly variable regions of cirrus
contamination, which is taken into account for statistical classification of contamination
surrounding source objects. While such methods have achieved good results on specific
types of cirrus contamination, cirrus classification indiscriminate of strength or structural
properties is clearly a difficult challenge. Román et al. [171] isolate cirrus contamination
in LSB images by exploiting differences in colour signatures between multi-spectral bands,
regions closely surrounding source objects cannot be reliably identified due to their strong
impact on colour indices.

Object segmentation in astronomical images has also been made possible with deep
learning. Bekki [18] utilise a U-Net to segment spiral arms of galaxies in synthesised
images. Hausen and Robertson [87] train a U-Net on CANDELS data and masks created
with SExtractor to generate a background-object segmentation, which is postprocessed
with graph-based techniques [49] to separate objects. Mask R-CNN [91] has been used
for segmentation of individual instances of objects by training on SExtractor generated
masks [69] and simulated data [31]. Boucaud et al. [27] propose a modified U-Net to
simulataneously segment and predict the photometry of high-redshift galaxies. While
such studies have achieved high accuracies, segmentation is performed on bright source
objects in relatively clean images, while we aim to segment structures with inconsistent
geometrical envelopes, textures and brightness. Additionally, models in these discussed
works are trained on auto-generated masks and not human generated annotations as is
the aim of this study.
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6.3 Training on LSB Images

In this section, we detail techniques we use in combination to craft a robust training
strategy for training on annotated LSB images, addressing the data-specific challenges
related to this work. First, training data is described. Second, we detail the transfer
learning and data augmentation used to mitigate against model overfitting and improve
generalisation. Third, we present a pixel rescaling operation which we encode as a network
layer with parameters that can be learned in an end to end fashion. Finally, we present
a novel loss function for consensuses of annotations and construct the total loss function
used for training our network.

6.3.1 Data

In this study, we use a subset of the dataset presented in Section 3.3.1, containing 186
MATLAS images with two input channels. To construct this subset we first grab all
samples with the r-band present, as during the annotation process, annotators reported
that the r-band was most useful for identifying cirrus. Of these 186 images, 180 also
contain the g-band which we use as the second channel. For the remaining 6 samples
without a g-band present, we simply duplicate the r-band to form the second input
channel. The average resolution is approximately 6000×6000px though corners of images
often contain null values due to how sections of the sky are captured and pieced together
by the instrument. Each image covers a 1◦ × 1◦ region in world coordinates, though only
.5◦× .5◦ degrees around the target galaxy is guaranteed to contain no null values. There is
a clear motivation to using the entire image for training rather than only the guaranteed
non-null region, as there is a significant amount of training data to be gained. These bad
pixels are thus ignored for all analysis in this work, including calculation of the training
loss so that the model is not trained based on its segmentation of these regions.

During ablation studies, we use 70% of samples as training data and then set aside 15%
for validation, which we use to choose the model state that performed best over all training
epochs, and 15% for testing the trained model’s performance on unseen samples. This
choice allows us to more confidently validate model and training protocol modifications
by average over multiple splits, where the validation set is chosen differently in each split.
Samples to form the validation and testing set are chosen carefully so that the proportion
of images containing cirrus is similar to the training set. Of the total 186 images, 48
contain contain cirrus contamination. The training set is thus composed of 32 cirrus
samples and 96 non-cirrus samples, while the validation and test set each contain 8 cirrus
samples and 21 non-cirrus samples. We also ensure that the test set contains examples of
both strong and weak cirrus contamination.
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For final testing, we use 80% of samples as training data and then set aside 20% for
the test set. Samples to form the testing set are chosen carefully similarly to the previous
setup, so that class balances remain similar between the training and test set, and so the
test set contains a good representation of cirrus samples. The training set is composed of
38 cirrus samples and 110 non-cirrus samples, while the test set contains 10 cirrus samples
and 28 non-cirrus samples.

In comparative analyses, we also run experiments on another dataset to further val-
idate findings. This is a subset of the aforementioned dataset, composed of only images
that contain cirrus contamination, resulting in a sample size of 48 images. Of these 48, 32
are used for training, 8 are used each for validation and testing. While this dataset will not
demonstrate the model’s ability to discern cirrus contamination from regular sky as well
as the original dataset, there is a benefit to using it for ablation studies. Class imbalance
is a major hurdle in this study, as only 25% of images contain any cirrus contamination,
and in contaminated images, 60% of pixels contain cirrus. By removing non-contaminated
images, we remove the first half of this class imbalance, relieving training efforts of captur-
ing this distribution and hopefully allowing the model to focus further on discriminative
features describing cirrus regions. Thus this additional subset may more clearly reveal
findings during ablation studies.

6.3.2 Data augmentation and Transfer Learning

The lack of a large and well-balanced dataset is a common challenge encountered in works
utilising modern ML algorithms. This is especially the case in this work, where we aim
to perform object segmentation on a small dataset of difficult images with only ∼15%
of all pixels containing cirrus, and ∼25% of images containing any cirrus contamina-
tion. Typically, to mitigate against dataset limitations, two strategies are implemented
in combination. Data augmentation is used, involving applying small transformations to
the data such as rotations or translations, exposing the models to more variation in the
training set. Transfer learning is also used, where the model is pretrained on some large
and balanced dataset before training on the target dataset. Astronomy focused works
have extensively made use of data augmentation [59, 110, 158, 201] and transfer learning
[31, 60, 69, 101] to improve the ability of trained models to generalise to unseen data.
The effective use of both approaches is therefore incredibly important to this study.

Such augmentations must be carefully chosen so that semantic information is not
distorted. For example, affine transformations may excessively warp the brightness profile
of stars, weakening the model’s ability to process unseen samples. We first extract a
random crop of 3000×3000 pixels, representing approximately a .5◦ × .5◦ region. The
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following transformations are then applied:

1. Spatial downscale to 1024×1024 px.

2. Random horizontal and/or vertical flip.

3. Rotation by a random multiple of π/2.

An illustration of example augmentations that can be generated is shown in Figure 6.3.
We also experiment with further pixel-level augmentations: adjusting the contrast of
either image channel by a random factor between 1± 0.02; and element-wise addition of
Gaussian noise with zero mean and variance of 0.1. While the application of element-wise
Gaussian noise may distort semantic information, we note that several astronomy focused
works have seen success with the approach provided that variance is small relative to the
maximum pixel values of images [31, 69]. This is also the case for contrast adjustment,
which was used in [201]. We verify whether the use of these additional augmentations
improves generalisation through an ablation study in 6.4.1.

(a) NGC0532 augmentations. (b) Corresponding targets.

(c) NGC1121 augmentations. (d) Corresponding targets.

Figure 6.3: Mosaics of augmented images, and their corresponding augmented target
masks, generated through our augmentation pipeline.

For transfer learning, we utilise the synthesised cirrus images presented in Chapter
3. We create a dataset of 1200 synthesised images with all difficulty variations applied,
described in Section 3.4.2. Before training on LSB images, we train the model to segment
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cirrus in these synthesised images. In this way, the model is exposed to a larger sam-
ple of cirrus textures and other contaminants before encountering real data, mitigating
overfitting.

6.3.3 Adaptive Intensity Scaling

Preprocessing is an important part of any machine learning pipeline, easing the burden
of the model by improving the quality of the data. For example, normalisation of input
images to have zero mean and unit standard deviation is applied in almost any recent
deep learning work based on lessons learned in [123]. Further pixel scaling is commonly
used before inspecting astronomy images, as is used in 3.3.1 for annotation. In images’
original form, objects other than bright stars are very faint, as the number of photons
emitted by the brightest stars is several orders of magnitude larger than other objects such
as cirrus clouds. This factor is especially relevant for low surface brightness objects, and
Walmsley et al. [200] utilise logarithmic rescaling in combination with pixel clipping in
their preprocessing pipeline to train CNNs on LSB images. Such rescaling is particularly
necessary in this work to craft a robust training strategy, given that cirrus structures are
much fainter than galaxy cores and stars.

To compensate for the large range in pixel values we add an initial layer to the networks
implementing arcsinh scaling, popular in astronomical image processing, with learned
parameters: Xs = arcsinh (aX + b), where a, b ∈ R are learned. This formulation allows
the model to control the strength of the scaling through a while centring values with
b. Following this a sigmoid function is applied with a similar weight formulation: Y =

1
1+exp (−cXs−d) , where c, d ∈ R are learned. This formulation acts as a learnable pixel
clipping operation, as the sigmoid function is bounded between [0, 1] and inputs > 5

mapping to outputs > 0.99. Initial scaling parameters were determined from a simple
gradient descent algorithm, with the target set as auto-scaled versions of images using
Aladin [24, 25] (GPL v3 license).

We design two layers utilising the learnable scaling operation. In the first, multiple
scaling operations are learned in parallel to produce multiple scaled versions of each
band. Variation in initial weight values is ensured by slightly varying the values generated
using the above protocol with a random sample of a Gaussian distribution N (0, .25).
With K different scaling operations, this layer results in K × B input channels, where
B is the number of input wavelength bands. In the second layer design, scaled images
are concatenated onto original input to account for oversaturation of very strong cirrus
regions. This layer design results in K ×B +B input channels.
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6.3.4 Loss function

A necessary component of our training strategy is how the model handles probabilistic
annotations. As described in 3.3.2, we combine annotations made by multiple annotators
using a weighted average, where annotators with more expertise correspond to a higher
weight in the final consensus. As a result, our ‘ground-truth’ samples are not binary
labels as is typical in most ML problems. Probabilistic U-Net [116] has been applied
to segmentation in medical imaging [95] and astronomy contexts [99]. Walmsley et al.
[201] exploit a novel dropout technique to establish Bayesian CNNs with probabilistic
output, which in combination with an active learning framework enabled more efficient
training on probabilistic annotations. Liu et al. [137] propose a loss function for handling
probabilistic annotations, where pixels corresponding to uncertain labels are ignored in
the training process.

We propose a loss function to train our attention model on probabilistic annotations.
In this study, for target examples we use annotations generated by four annotators as
described in 3. These annotations contain pixel values between 0 and 1, where higher
values represents a larger consensus between annotators that the pixel contains cirrus
contamination. We choose not to use approaches that alter the underlying ML model to
become probabilistic, such as [201], due to our comparatively small number of annotators.
While approaches such as [95, 116] have seen success with consensuses generated from 4
annotators, average annotator expertise was higher than in this work. We instead alter
the loss function to be able to handle non-binary target values. Furthermore, as cirrus is
only present in roughly a quarter of training images, and occupies a varying portion of
each of these images, it is necessary to mitigate against class imbalance issues.

Inspired by works on edge detection with CNNs [137, 213], we separate consensus
values into quartiles and conditionally adjust the loss function based on which quartile a
pixel falls into. By coarsely dividing probabilities into ranges of confidence, we mitigate
against any uncertainty associated with our probabilistic consensuses. We also utilise
focal loss [131] to encourage the model to focus on hard to classify examples rather than
easy to identify negative examples or ‘clean’ pixels which dominate the class balance.
With y as the consensus value and p as the prediction, we write focal loss as,

FL(pt) = αt(1− pt)
γ log(pt), where pt =

p if y ≥ 0.5

1− p otherwise,
(6.1)

With αt defined similarly to pt, which scales the loss based on class balance. This can
be read as adding a multiplicative factor, (1 − pt)

γ, to the standard cross entropy loss
function. This multiplicative factor is larger for weak predictions, i.e. low pt, and smaller
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for confident predictions, making the loss larger for examples where the network is unsure
of the classification and thus prioritising such cases. Our novel consensus loss is then
defined as,

Lc =



β · FL(pt) if y ≥ 0.75.

FL(pt) if 0.5 ≤ y < 0.75.

0 if 0.25 < y < 0.5.

FL(pt) otherwise.

(6.2)

The first and third quartiles, with 0 < y ≤ 0.25 and 0.5 ≤ y ≤ 0.75, represent majority
consensuses for negative and positive examples, respectively. We thus simply use only
the focal loss in these scenarios. The second quartile represents uncertain pixels, for
which we set the loss to zero. This has the effect of uncertain pixels being ignored by the
loss function, and the network is neither encouraged nor penalised based on predictions
it makes on these pixels. If this was not the case, there may exist some contradicting
patterns where the model is penalised for predicting the existence of cirrus on an annotated
region with a weak consensus, even if the region does in fact contain cirrus contamination.
Finally, in the fourth quartile we prioritise the loss values on regions with a super-majority
consensus by multiplying by a boosting coefficient, which we choose to set as β = 1.25.

6.4 Comparative Analyses on Proposed Techniques

In this section, we verify the effectiveness of the proposed training strategy and model
modifications. This is achieved by carrying out multiple ablation studies in order to
assess how different strategies perform. Different training strategies are compared in
order to justify our choice of augmentations, the proposed adaptive intensity scaling layer
choice, and consensus loss function. We also compare the performance of tri-attention
and gridded attention modules similarly to Chapter 5 to verify that findings discovered
on the cirrus-only synthesised and real images with non-consensus labels translate to the
general LSB image dataset with non-binary labels described in this chapter. All networks
are trained for 200 epochs with the Adam optimiser [111] with learning rate 10−3 and
L2 weight regularisation 10−7. Learning rate is also decreased every epoch by a factor of
0.98. We score different networks using the intersection over union (IoU) metric averaged
over five splits, and also report standard error across splits.
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6.4.1 Comparing Strategies Specific to Training on LSB images

We validate the proposed training strategies through multiple ablation studies where the
underlying model is fixed across experiments. This process allows us to individually
assess different components of the training strategy and justify their use. For control
model, we use a dual attention framework with positional and channel-wise attention,
and a simple feature generating backbone with 4 downsampling convolutional blocks. In
these experiments we include results on the two datasets of MATLAS images, the first
containing images with and without cirrus contamination, and the second containing only
images with cirrus contamination. As ablation studies in this section are concerned with
modifications aiming to address challenges specific to training on LSB data, rather than
better identifying features associated with galactic structures, we do not include results
on the synthesised images.

We also control for training strategy across experiments: models are trained with
minimal augmentation, i.e. only steps 1-3 in Section 6.3.2, with no pretraining and
with a simple loss function which computes binary cross entropy of rounded consensus
probabilities. As choice of intensity scaling layer potentially impacts the optimal set of
augmentations, we first find the best scaling layer design with no augmentation. For
example, augmentations involving adjusting contrast will have different effects depending
on the intensity scaling transformation used. The best scaling layer design is then used
in all following experiments.

Comparative results on different scaling layer designs are shown in Table 6.1. The first
model uses no intensity scaling; the second uses four learned scaling operations per input
channel; and the third uses scaled and non-scaled inputs in parallel, where three learned
scaling operations are used per channel and the original input is then concatenated. It
can be seen that the parallel technique performs best, and the no scaling model trails
closely behind. We observe that there is a significant detrimental effect when using only
scaling transformations and not including the original input. This indicates that the
learned intensity scaling adds auxiliary information which is helpful in combination with
non-scaled images.

No scaling* Multiple Parallel
All images 0.415± 0.010 0.370± 0.008 0.455 ± 0.012
Only cirrus 0.748± 0.021 0.736± 0.024 0.803 ± 0.019

Table 6.1: Comparison of different intensity scaling layers. Results reported as mean
segmentation IoU over 5 splits. *Control model.

In this experiment, we compare multiple data augmentation strategies. We train five
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Figure 6.4: Examples of different learned intensity scaling transformations on
NGC2592/4.

models, seeking to find the augmentation protocol that leads to the best generalisation on
unseen images. In particular, we are interested in whether contrast adjusting and additive
noise augmentations aid generalisation. Results are shown in Table 6.2. As expected, we
see that augmenting training data through simple geometric transformations is beneficial.
Pixel-level augmentations tell a mixed story: element-wise summation of Gaussian noise
gives the best test scores on both datasets, while the impact of contrast adjustments is
unclear. The combination of both pixel-level augmentations has a detrimental effect on
performance. Interestingly, the use of contrast adjustments is correlated with some of the
largest margins of error in test scores, indicating that they introduce a significant element
of uncertainty to model inference. This is possibly associated with the global nature of
contrast adjustments, where a certain contrast range is forced on an entire image which
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No aug. Min.* Min.+contr. Min.+noise All aug.
All images 0.388± 0.018 0.415± 0.010 0.418± 0.014 0.431 ± 0.011 0.409± 0.013
Only cirrus 0.687± 0.031 0.748± 0.021 0.739± 0.026 0.763 ± 0.021 0.751± 0.028

Table 6.2: Comparison of different augmentation strategies. Results reported as mean
segmentation IoU over 5 splits. Minimal augmentation uses rotations and flips, as de-
scribed in steps 2 and 3 of Section 6.3.2. Contr. represents contrast augmentations.
*Control model.

is not exhibited by any samples in the test set.
We assess the effect of pretraining models on synthesised images, prior to training

on MATLAS images. We are interested in whether the synthesised images produced in
Section 3.4.2 facilitate knowledge transfer that is valuable for inference on real images.
We simply train two versions of the control model on each dataset, one with and one
without pretraining. Table 6.3 details the segmentation scores for this experiment. We
see that pretraining provides a significant benefit to segmenting unseen samples on both
datasets, indicating that training on synthesised images provides features beneficial to
processing real MATLAS images. Additionally, there is a large decrease in the margin of
error for pretrained models, suggesting that pretraining encourages more robust features
to be learned.

No pretraining* Pretraining
All images 0.415± 0.010 0.442 ± 0.003
Cirrus only 0.748± 0.021 0.788 ± 0.009

Table 6.3: Performance of control model with and without the use of pretraining on
synthesised images. Results reported as mean segmentation IoU over 5 splits. *Control
model.

In this experiment, we compare different variants of loss functions discussed in this
work. We are first interested in how our proposed ‘super-majority’ loss framework com-
pares to both a standard loss with no conditions based on confidence, and a similar loss
framework [137] which we denote as RCF loss. Briefly, the RCF loss also utilises a con-
ditional loss function, but with only three conditions: the first considers a pixel positive
if it is greater than 0.5; the second considers pixel negative if it is zero (i.e. strictly no
annotators classified it as positive); and the third considers all other pixels as uncertain
and sets their loss to zero so to exclude them from the loss calculation. We are secondly
interested in the effect of using focal loss in place of binary cross entropy. In order to
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make both of these comparisons, we construct variants of the three loss frameworks with
binary cross entropy and focal loss, resulting in six total loss functions.

Plain RCF Super

BCE All images 0.415± 0.006 0.441± 0.011 0.449± 0.005
Cirrus only 0.748± 0.021 0.782± 0.017 0.792± 0.015

Focal All images 0.432± 0.008 0.448± 0.010 0.456 ± 0.005
Cirrus only 0.774± 0.022 0.790± 0.018 0.801 ± 0.014

Table 6.4: Comparison of BCE vs Focal loss functions with different consensus loss
frameworks. Results reported as mean segmentation IoU over 5 splits. *Control model.

Comparative results between different loss functions are shown in 6.4. On our dataset
of probabilistic annotations of LSB images, there are two clear patterns regarding con-
sensus loss frameworks: ignoring pixels with uncertain annotation is helpful, as shown
by RCF and supermajority loss both improving test accuracy; and prioritising very cer-
tain pixels is helpful, with the proposed supermajority loss outperforming the other loss
frameworks in all scenarios. These patterns are also repeated in the ROC curves of models
trained using different loss functions, as shown in 6.6, where the supermajority loss trains
models with better precision vs. recall trade-off. Focal loss also appears to boost scores
over BCE loss, perhaps owing to its focus on encouraging better handling of the severe
class imbalance present in our dataset. This is supported by distributions of predicted
positive pixels per image versus the target distribution, as shown in 6.5, where we see
that focal loss achieves a further separation between the two modes than BCE loss.

(a) Target. (b) BCE. (c) Focal.

Figure 6.5: Histograms showing the proportion of actual or predicted cirrus across all
testing LSB images. Predictions are taken from models trained with BCE and focal loss.

To conclude this section on comparative studies related to training protocol, we per-
form an ablation study where the best performing components are swapped in and out to
create different overall strategies. This ablation study, shown in Table 6.5, allows us to as-
sess the effect of different components in combination. The best performing strategies use
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(a) BCE loss. (b) Focal loss.

Figure 6.6: ROC curves for different consensus loss frameworks with BCE and focal loss
functions, on only LSB images containing cirrus.

the proposed intensity scaling, pretraining on synthesised images and the proposed con-
sensus loss. We see that, in general, there is a positive synergy between training strategies,
i.e. almost all combinations outperform experiments that isolated components. Interest-
ingly, an exception to this pattern is the use of augmentation with Gaussian noise, which
has an unstable effect on model performance. Particularly, any positive effect of augmen-
tation with Gaussian noise appears to be nullified when used in conjunction with adaptive
intensity scaling, suggesting that these two components do not have a positive synergy.
This may be due to the adaptive scaling layer providing a form of augmentation that
fulfills a similar form of sample variation to Gaussian noise augmentation, but is more
representative of LSB images. This nullifying effect is not strictly negative however, and
there is a tie for the best performing strategy between using Gaussian noise and not using
it (though there is a near-negligible difference in error margins). Given this non-negative
pattern, and that this augmentation should in principle expose the model to ‘new’ sam-
ples which could exist in an LSB image dataset, we choose to use it in our final training
strategy.

6.4.2 Ablation Study on Model Modifications

In this second half of our comparative analyses, we shift our focus to the model com-
ponents detailed in Chapter 5. An ablation study is performed involving each of the
independent components. This process allows us for each modification to firmly verify
that the performance gains achieved in the previous chapter carry over to the dataset
used in this chapter. We seek to discover whether the modifications are still helpful for
cirrus segmentation on a more realistic problem scenario, and how exactly they alter the
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Scaling Pretraining Min. & noise aug. Consensus loss All images Cirrus only
0.415± 0.006 0.748± 0.021

✓ 0.455± 0.012 0.803± 0.019
✓ 0.442± 0.006 0.788± 0.009

✓ 0.431± 0.011 0.763± 0.021
✓ 0.456± 0.005 0.801± 0.014

✓ ✓ 0.466± 0.007 0.816± 0.011
✓ ✓ ✓ 0.469± 0.005 0.814± 0.013

✓ ✓ 0.463± 0.008 0.811± 0.015
✓ ✓ 0.451± 0.014 0.804± 0.022
✓ ✓ ✓ 0.483 ± 0.009 0.830± 0.014
✓ ✓ ✓ ✓ 0.483 ± 0.006 0.832 ± 0.013

Table 6.5: Ablation study of best performing training strategies. Results reported as
mean segmentation IoU over 5 splits. *Control model.

model predictions. We perform all ablation studies on both datasets described in Section
6.3.1. Throughout these experiments we control for training strategy and model archi-
tecture. We select the best performing components of the previous section to form our
control training strategy: parallel intensity scaling, geometric & element-wise Gaussian
noise augmentations, pretraining on synthesised images, and the use of our proposed su-
permajority focal loss. We also use the same base dual attention model as in the previous
section (and as in Chapter 5) with a simple feature generating backbone.

We evaluate the use of different components related to the attention network on real
cirrus samples. We modify the base control model to test four separate methods, detailed
in the previous chapter, individually and in combination: how multiscale features are
generated by the backbone; guided attention; gridded attention; and tri-attention. For
these experiments, we fix batch size and overall parameter size of each network to be
roughly equal, but use the maximum possible image resolution. In this way, we are able
to take into account runtime memory efficiency of gridded attention vs other models.
While it is possible to perform a ‘sliding window’ or ‘patch based’ segmentation and
avoid excessive image downsampling, where a model is fed sections of an image and
segmentations are then re-attached to obtain the final prediction, we found this to be
massively detrimental in initial experiments (see Fig. 6.7), supporting the argument that
global context is highly relevant for cirrus segmentation.

Results for this ablation study are shown in Table 6.6. Firstly, the use of guided
attention improves performance on both datasets, and there is a more significant increase
on the dataset with only cirrus images. This is likely due to the regularisation encouraging
generalisation, as the performance improvement is larger as sample size decreases. We
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(a) Target. (b) Patch based. (c) Entire image.

Figure 6.7: Comparison of segmentations generated with a patch based method versus
a model that segments the entire image in one pass.

secondly observe that using multiscale features from intermediate layers of the backbone
appears to decrease performance. Finally, results show that gridded attention and tri-
attention both increase accuracy on all cirrus segmentation scenarios. Each of these
findings concur with the results of the previous chapter; we refer the reader to Section
5.3.1 for more indepth experimental discussion of these model modifications. We also
note that non-attention methods still suffer on the larger LSB dataset, indicating that
limited training data is not necessarily the major bottleneck in these models. To conclude,
empirical findings in this section demonstrate that the performance increases achieved by
the methodology detailed in the previous chapter do carry over to the more difficult
dataset used in these experiments.

6.5 Automated Cirrus Detection on LSB Images

We construct a final model from the best performing components of the previous section
and analyse the predictions generated. We significantly increase the parameter size of our
segmentation model in this section, and further evaluate the proposed method.

6.5.1 Experiment setup

We use the experiment setup from the previous section with some minor modifications.
We first use a larger model with a more sophisticated feature generating backbone. This
is achieved by swapping the simple backbone network out for a ResNet-50 [90] network,
where we use the final layer before the global pooling operation as features. Given that
ResNet vastly outperforms simple CNNs on a variety of classification tasks, we expect that
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Inter. Guided Gridded Tri All images Cirrus only
0.483± 0.0060 0.822± 0.0132

✓ 0.476± 0.0074 0.815± 0.0186
✓ 0.493± 0.0057 0.858± 0.0114

✓ 0.532± 0.0031 0.869± 0.0176
✓ 0.497± 0.0065 0.861± 0.0152

✓ ✓ 0.542± 0.0029 0.886± 0.0162
✓ ✓ ✓ 0.535± 0.0023 0.870± 0.0158

✓ ✓ 0.536± 0.0031 0.869± 0.0166
✓ ✓ ✓ 0.548 ± 0.0028 0.892 ± 0.0130

✓ ✓ ✓ ✓ 0.543± 0.0026 0.885± 0.0154

U-Net [172] 0.381± 0.1286 0.685± 0.0963
LGCN 0.414± 0.0492 0.741± 0.0327

Table 6.6: Comparison of attention model modifications: generating multiscale features
from intermediate layers; guided attention; use of the proposed gridded attention map;
and computing Gabor attention in addition to dual attention. Additional networks are
included for comparison. Results reported as mean segmentation IoU over 5 splits. First
row represents the control model.

this change should provide a more robust and diverse feature set to compute attention
across and result in a more accurate cirrus segmentation prediction. To account for this
larger network, we increase training epochs to 400. We secondly increase the size of both
the training and testing sets by dividing the validation samples between them. As the
performance of all components has already been extensively validated, we opt to not to
train over multiple splits for cross-validation. We also note that this practice is standard
in all works exploring segmentation on astronomical images that have been cited in this
chapter.

We experiment with different methods to extract the most accurate segmentation from
the methodology. We use test time augmentation, where multiple augmented version of
a sample are created, predictions are generated for each augmented version, and the
inverse augmentations applied to the predictions to obtain multiple predictions per input
sample. These predictions are then averaged, resulting in a more robust segmentation
maps. Specifically we apply all permutations of 90◦ rotations and flips resulting in eight
predictions which are averaged over. We also use ensemble predictions, where multiple
models are trained, and predictions from each model are averaged over to give the final
segmentation. Finally, the combination of both techniques is used.
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6.5.2 Results

We report both IoU and Dice scores for model predictions in this section. Dice is more
biased to precision rather than recall, so the use of both metrics provides provides a view
of the predictive characteristics of our trained models. Figure 6.8 shows the training
curves for a training run of the prediction model. We observe that there is a significant
difference between training and testing scores, which is expected given the limited sample
size of our dataset. Regardless of this, testing performance does trend upwards along with
training performance, indicating that the network is not overfitting. We also see that Dice
testing scores seem to increase at a higher rate and for longer than IoU scores, showing
that as the model is trained further it predicts less false positives than false negatives
relative to the true positive predictions.

Epoch / IoU
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0.50

0.75

100 200 300

Train Val

(a) IoU.

Epoch / Dice

0.25

0.50

0.75

100 200 300

Train Val

(b) Dice.

Figure 6.8: Training curves (smoothed) for the proposed model showing how IoU and
Dice scores change over training epochs on the training and testing sets. We also fit a
logarithmic curve to each plot to help illustrate the convergence trend.

Final segmentation scores on the testing set are shown in Table 6.7. We observe that
there is a very large performance increase from models in the comparative analysis, owing
to the larger parameter space, additional training samples and longer training period. We
see that a single prediction model is outperformed by all other techniques of combining
predictions, with the model ensemble achieving the highest scores. While test time aug-
mentation is beneficial on a single model, we find that it decreases performance on the

Single Test aug. Ensemble Combined
IoU 0.745 0.773 0.790 0.781
Dice 0.766 0.794 0.814 0.806

Table 6.7: Results for the final network with different prediction generation techniques.
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ensemble. Methods that aggregate predictions also appear to handle the class imbalance
issue better than the single model, when comparing the target class distribution (Fig. 6.9)
against predicted class distributions (Fig. 6.10). Kullback-Leibler divergences between
the target distribution and each predicted distribution support this, with values of 0.40,
0.19, 0.07 and 0.29 for the single, test time augmentation, ensemble and combined models,
respectively. We see that the ensemble model best matches the target distribution in ad-
dition to achieving the highest segmentation scores. Interestingly, prediction aggregation
appears to also increase the gap between IoU and Dice scores, indicating that precision is
increased through averaging over predictions.
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Figure 6.9: Histogram showing the proportion of cirrus coverage across testing images.

To better understand the characteristics of the trained segmentation models, we turn
to a brief qualitative assessment of generated predictions. The model handles typical
regions in LSB images well, as shown in Figure 6.11, confusing no areas as false positives.
This low false positive rate also extends to more difficult samples, as shown in Figure 6.12,
where even images with high background levels (NGC6017, UGC03960) or large areas of
diffuse light (NGC5846) are predicted correctly. It can also be seen that the ensemble
model does appear to increase accuracy in some uncertain scenarios, demonstrating the
strength of averaging over multiple predictions. As shown in Figure 6.13, the model
deals well with regions entirely contaminated by cirrus dust, with few errors. The inner
section of cirrus clouds appears to be reliably predicted, though the model struggles with
matching the envelope of contaminated regions. Figure 6.14 shows the 4 samples with the
lowest IoU scores: while the model performs well on most images, there are some examples
with poor accuracy. In particular the model appears to struggle with more localised areas
of contamination, especially when contamination is close to the boundary where there is
a small amount of global context.
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(a) Single.
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(b) Test time augmentation.
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(c) Ensemble.
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(d) Combined.

Figure 6.10: Histograms showing the proportion of predicted cirrus across all testing
LSB images, for different prediction techniques.

6.6 Discussion

A major strength of the proposed method is that segmentation is performed on images
with no preprocessing involving manual tuning of hyperparameters. Given that the scal-
ing transformation is learnable, it should be possible to obtain good performance on LSB
images produced with a variety of instruments. Using the presented model to identify
cirrus contamination in other astronomical surveys would require a small amount of fine-
tuning in order to recalibrate learned weights. In addition, the model can process an
entire image in one pass with minimal downscaling, meaning that the proposed method
can be easily integrated into the data processing pipeline for LSB instruments to obtain
cirrus contamination masks. We were able to perform inference with an average time of
approximately 0.4s per sample on a single GTX 1080 Ti. With optimisation efforts such
as model compilation, pruning or half precision weights, this time could be significantly
reduced making automated cirrus segmentation a relatively computationally inexpensive
part of a larger LSB survey’s processing pipeline.

In this work we were able to train a relatively accurate model, however there were
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Figure 6.11: Typical LSB images with no cirrus contamination. The proposed model
predicts zero false positives.

some limitations of the study. Imperfect dataset quality and small sample size were key
challenges, and while the proposed techniques mitigated against these factors, there were
some examples where the model failed to identify large regions of cirrus or predicted large
amounts of cirrus which did not exist, as in Figure 6.14. It is likely that more training
data would reduce these occurrences, though due to the infancy of high resolution and
high sensitivity LSB imaging it is not currently possible to measure how well our method
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Figure 6.12: Segmentation predictions on difficult examples with no cirrus coverage.
In this figure, we specifically chose examples with regions that present similarly to cirrus
contamination, such as large regions of diffuse light in NGC5846 (first row), or large areas
of high background levels in UGC03960 (fourth row).

would scale to a larger dataset of cirrus contamination. Furthermore, precise estimation
of cirrus boundaries was not achieved by our model in most cases. We note, however, that
this boundary is naturally ambiguous and there is often disagreement among annotators
on the exact envelope (see Fig. 6.3b), so this uncertainty is naturally propagated during



Segmentation of Cirrus Contamination: a Deep Learning Approach 115
N
G
C
25

92
N
G
C
67

03
N
G
C
74

65

r-band Target Standard Ensemble

Positive Negative False
Positive

False
Negative

Uncertain
Annotation

U
G
C
04

37
5

Figure 6.13: Segmentation predictions on examples with high cirrus coverage. Columns
three and four show predictions generated by a single model and an ensemble of models,
respectively. Light grey in the prediction map, as in the third row, indicates where the
model predicted an uncertain pixel as positive.

training even with the consensus loss, which helps mitigate against this issue. Thus it
is likely that with more annotators a consistent consensus on contamination boundaries
would be reached.

Due to the nature of our annotated data we treated the problem as a binary segmen-
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Figure 6.14: The four segmentation predictions with the lowest IoU scores across the
testing set. Dark grey in the prediction map, such as in the third row, indicates where
the model predicted an uncertain pixel as negative.

tation task. As is evident in various figures, the severity of cirrus contamination ranges
from occluding bright objects to a slight change in the background level. While all ranges
on this severity spectrum are important to identify, separation of cirrus into sub classes
such as strong and weak contamination may be helpful from both a computer vision and
astronomy perspective. For the former, this separation may implicitly guide the model
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towards learning discriminating features exhibited by each severity range. Comparing
performance across classes would also help identify what the model is lacking or where
it could be improved. In the case of the latter, the distinction could facilitate studies on
contaminated objects, where in the case of minor contamination, analysis could factor
in the localised increase in background levels. Prediction masks of specifically stronger
cirrus contamination could directly guide studies into the contamination itself.

6.7 Summary

In this chapter, we presented a comprehensive machine learning pipeline for automated
segmentation of cirrus clouds in LSB images. We proposed a simple consensus loss to
handle probabilistic annotations generated with a limited number of annotators. This
loss function coarsely divides probabilities into groups and then prioritises labels where
there is a strong consensus. We then designed an adaptive intensity scaling operation for
enhancing subtle pixels in LSB images. This operation fits into the deep learning model
as a standalone layer, where scaling parameters are learned alongside network weights.
Finally, these contributions were combined with the gridded tri-attention architecture
presented in Chapter 5.

Cirrus contamination is a significant hurdle for astronomers studying low surface
brightness galaxies, and statistical analysis of galactic structures requires masking areas
suffering from contaminating cirrus dust. In the near future, new surveys will generate
large amounts of LSB data making manual cataloguing of cirrus infeasible. With the
pipeline proposed in this work, we were able to segment cirrus contamination with re-
liable performance with only a small training dataset of LSB images. Future work will
involve applying the pipeline to a larger dataset of LSB images sourced from multiple
instruments. It would also be interesting, using the methodologies presented in this work,
to craft a deep generative model capable of removing cirrus contamination from images.

To our knowledge, automated cataloguing of cirrus in LSB images with deep learning
has not yet been attempted. Using our methodology, astronomy researchers will be able
to automate the process of masking cirrus in future surveys, saving valuable time and
greatly facilitating research into LSB galaxies and contaminated regions.



Chapter 7

Multi-class Segmentation of Galactic
Structures

We widen the scope of the automated cataloguing investigated thus far and explore detec-
tion and segmentation of galactic structures in LSB images. We construct a Mask R-CNN
[91] architecture with the methodology detailed in the previous chapter as a feature gener-
ating backbone. This network is then applied to an instance segmentation dataset created
using the dataset described in Chapter 3. We find that the proposed methodology is able
to reliably detect and segment objects. Furthermore, the trained network is able to gen-
erate predictions directly from MATLAS images, i.e. images require no preprocessing.

7.1 Introduction

Classification of galactic structures is a priority for LSB images. Given that high resolution
LSB images are a relatively recent advancement, many structures have been uncovered
that have not been previously catalogued or processed. For instance, tidal features, which
are remnants of interactions between galaxies, can be studied in LSB images. The presence
of tidal structures and the morphology they exhibit are clear indicators of galaxy formation
history. Stellar halos are also uncovered by LSB imaging, which are an accretion of diffuse
stellar material, such as dissolved tidal features. The processing of structures is a necessity
for statistical analysis which has the potential to lead to important findings on the nature
of LSB galaxies and thus general phenomena relating to galaxy evolution and formation.

It is key that reliable classification of LSB structures can be automated. Currently,
classification is possible through manual means, where domain experts visually inspect
images and record information on the structures present. This is the case as the quantity
of LSB data is limited, with such manual cataloguing efforts [21, 62] being performed

118
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on datasets with sample sizes in the hundreds. Future surveys, such as Euclid, seek
to produce datasets of similar images with sample sizes far larger than can be feasibly
manually classified. Development of a method to automatically classify LSB structures is
crucial for the sphere of LSB galaxy research.

We investigate the use of machine learning to detect and segment galactic structures
while simultaneously segmenting cirrus contamination in LSB images. Deep learning
models have been applied to astronomical images for instance segmentation in multiple
instances. Burke et al. [31] use a Mask-RCNN [91] model to detect and segment galaxies
and stars, using a training set of simulated images. Farias et al. [69] also utilise a Mask-
RCNN for instance segmentation, but focus on characterising galaxy morphology. The
strong performance offered by this architecture in combination with existing successful
use cases in astronomy provides a strong justification for its use.

An important distinction in segmentation problems is the idea of ‘stuff’ versus ‘things’
in classes of objects. The former refers to classes that present as uncountable amorphous
regions, such as sky, grass or road. The latter, refers to distinct objects that present as
countable entities, such as humans, cars or bikes. Semantic segmentation typically deals
with ‘stuff’ whereas instance segmentation handles ‘things’. In this chapter, we seek to
segment both ‘stuff’, in the form of cirrus, and ‘things’, in the form of galaxies and fine
galactic structures. Such a unified problem is referred to as panoptic segmentation.

We first evaluate a standard Mask-RCNN on instance segmentation of galactic struc-
tures, and experiment with a simple semi-supervised learning loop where unannotated
correct ‘false positives’ are manually added into the training dataset. With lessons learned
from previous chapters, we then modify a Mask-RCNN model for panoptic segmentation
and attempt to detect and segment galactic structures while simultaneously segment-
ing cirrus contamination in MATLAS images. We seek to train these networks to make
predictions directly from images with no preprocessing, making the method versatile.

7.2 Related Work

Instance segmentation with deep neural networks has become a rich area of research
in the past five years. Popular large benchmark datasets such as MS-COCO [129] and
Cityscapes [48] have enabled standardised quantitative evaluation and facilitated research
progress. The most widely used class of models for instance segmentation use a multi-
stage approach, where objects are first detected and then segmented. The object detection
component is typically carried out by a Region based CNN style network [82, 83, 168].
Here, regions of interest (RoIs) are identified with a convolutional subnetwork, pooled to
reduce the number of incorrect or overlapping RoIs, and then classified. Mask R-CNN
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[91] extended the R-CNN family of networks for instance segmentation, adding a mask
generator and improving backbone feature generation and object proposals. Mask R-CNN
has become a widely used baseline for instance segmentation due to its strong performance
and simple design. Numerous modifications to Mask R-CNN have been proposed to
improve performance. Liu et al. [136] prioritise the propagation of low-level features in
the RPN, based on the principle that earlier layers focus on entire objects whereas later
layers focus on local texture [217]. Cai and Vasconcelos [32] improve on object detection
by using multiple detection subnetworks each trained on proposals pooled at varying levels
of thresholds. Huang et al. [97] improve alignment of predicted masks by regressing the
IoU metric given the final proposal features and the generated mask.

There have been several applications of object detection and instance segmentation in
astronomy works. González et al. [84] employ a YOLO [166] detection network to detect
galaxies and classify morphology. Burke et al. [31] train a Mask R-CNN on simulated
images to classify and segment stars versus galaxies and achieve good performance even
on overlapping objects. Farias et al. [69] segment galaxies and classify their morphologies
in SDSS [23] images using a Mask R-CNN. Levy et al. [125] employ a Mask R-CNN on
LSB images and attempt to identify LSB galaxies, though the model suffers from very
poor precision due to cirrus contamination being confused with LSB structures. Mask
R-CNN has also been used to detect/segment LSB artefacts such as ghosted halos and
scattered light [190], though boundary delineation, fine classification, and poor precision
on cleaner images are weaknesses of the pipeline. Outside of instance segmentation,
reliable classification of galaxies [189] and even tidal structures [200] in LSB images has
been achieved, though cirrus contamination appears to be weak in both studies.

Until recently, research into image understanding through segmentation has been split
into two categories, semantic segmentation and instance segmentation. Kirillov et al. [113]
propose a novel segmentation task that unifies the two categories, named panoptic segmen-
tation. In this task, the model is required to simultaneously segment background classes
(referred to as stuff ) and foreground objects (referred to as things). A simple baseline
for panoptic segmentation is proposed in [112], where a popular semantic segmentation
model, FCN [138] is added into Mask R-CNN so that both instance and semantic networks
share a common feature generating backbone. A problem with this approach for most
datasets arises when combining the semantic and instance masks: as there is no encoding
of consistency between the two masks, overlapping pixels become a problem especially
with objects which are partially occluded. While several approaches have been developed
[120, 127, 149] to combat this issue, we note that occlusion or overlapping classes are not
an issue for data used in this chapter. This is the case as a pixel can be classified as more
than one class: for example, a pixel can be contaminated by cirrus and belong to a galaxy.
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Unification of segmentation of galactic structures and contaminants has not yet been
performed with deep learning. Given that: 1) approaches identifying LSB galaxies suffer
from high false positive rates due to cirrus contamination [125]; and 2) approaches iden-
tifying contaminants in LSB images suffer from high false positive rates where galactic
structures are confused with contaminants in cleaner images [190], there is a clear moti-
vation to combine the two tasks into a unified approach. There is also a plain motivation
for the use of Mask R-CNN in this study, as all astronomy works investigating instance
segmentation use the architecture and thus our results will be more easily comparable.

7.3 Method

In this section, we detail the methodology of this Chapter. The Mask R-CNN architecture
is described, beginning with a brief overview of the model’s design followed by a discussion
of more specific implementation details. The process of extending Mask R-CNN is then
discussed, where the attention segmentation model of the previous chapter is integrated
into Mask R-CNN to create a panoptic segmentation model.

7.3.1 Mask R-CNN Overview

At the core of Mask R-CNN is its feature generating backbone. Similarly to the attention
network described in Chapter 5, a large network, such as ResNet [90], is utilised to
extract features from the input, which are then used in the following components of
the architecture. Numerous early implementations of Faster R-CNN [168] use backbone
features from the final convolutional layer of ResNet-50 [50, 96]. Authors of Mask R-CNN
propose using features from multiple layers of the backbone through a feature pyramid
network [130] design, where intermediate layers produce features of differing scales. A
second network is then added which progressively combines smaller scale features with
larger scale features, exposing features of each scale to features of all other scales and
providing a hierarchy of multi-scale features.

Backbone features are fed into the region proposal network (RPN) [135] to scan for
possible RoIs, or areas of the image that have a potential to contain target objects, referred
to as anchors. The RPN is a small network consisting of a single convolutional layer,
which can be thought of as a sliding window which scans for the existence of an object
within the window, followed by two branching parallel convolutional layers. These sibling
layers have related tasks, one outputs the probability of the window containing an object,
and the other outputs coordinates of the exact region of interest. Candidate regions are
finally pruned through non-maximal suppression (NMS) where highly overlapping boxes
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Figure 7.1: Mask R-CNN diagram, based on the first figure of [91].

are removed.
Following the RPN network, features are extracted from candidate regions by an RoI

pooling subnetwork. This subnetwork consists of two components: a processing stage
where backbone features inside candidate regions are downsized into a smaller feature
map of standardised size; and a fully connected network for further feature refining.
Mask R-CNN improves on the original RoI pooling network, RoIPool [82], by modifying
the first component to downscale features through bilinear interpolation rather than max
pooling, referred to as RoIAlign [91]. A subnetwork then predicts both the class of the
potential object inside the candidate RoI (or lack of class) and regresses the coordinates
of a box bounding the object.

The final step of Mask R-CNN for instance segmentation is mask prediction. An
important design principle of the architecture is that mask and class prediction are de-
coupled. This is in contrast with typical multi-class segmentation networks which predict
a class for each pixel through a multinomial cross-entropy loss. In Mask R-CNN, masks
are predicted by feeding each output feature (candidate object) of RoIAlign into an FCN
[138]. Each mask is a binary segmentation, i.e. whether or not the pixel belongs to the
candidate object. The complete loss is then the sum of three tasks: class, bounding box,
and mask prediction, i.e. L = Lcls + Lbox + Lmask. By combining the three tasks into a
single loss function, there is a positive synergistic effect [91]. This is likely because the
three tasks are significantly intertwined, for example, the segmentation mask of an object
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is linked to the class of the object.

7.3.2 Implementation details

We implement Mask R-CNN with a ResNet-50 backbone as it is a proven choice and it
was used in earlier chapters in this work. We use mostly default off-the-shelf parameters:
RoIAlign size = 7×7px, RPN non-maximal suppression threshold = 0.7, object confidence
threshold = 0.05. While tuning of hyperparameters could lead to minor performance
improvements, we verified that this set up gave consistently good results and thus we
leave this computationally intensive optimisation for future work.

An important and relevant parameter to consider is the size of anchors considered
by the RPN. The anchors must be a sufficient variety of sizes so that all possible object
sizes and shapes are contained within an anchor size. It is also important that anchor
sizes/shapes that are unlikely to bound an object well are not used to reduce noise during
the training process. To determine reliable anchor sizes we compute histograms of the
heights and widths of all target objects, shown in Figure 7.2. It can be seen that the
majority of objects have heights and widths between 32px and 512px, and aspect ratios
between 0.25 and 2. We therefore set the RPN to consider anchor boxes of widths 32,
64, 128, 256 and 512, and for each box width three aspect ratios are considered: 0.5, 1,
and 2. While there are a significant number of object bounding boxes with aspect ratios
between 0.25 and 0.5, using unbalanced ratios has the possibility of introducing a bias
into the model where tall but narrow objects are favoured by the RPN. This is unwanted
as pose variation in localised astronomical objects is naturally balanced (ghosted halos
which are artefacts also have unit aspect ratio in most cases). This setup results in 15
total anchor box sizes considered.

Finally, an adaptive intensity scaling layer (see Section 6.3.3) is placed before the
backbone network to exaggerate fainter structures within the LSB images.

7.3.3 Cirrus Subnetwork

In this work, we wish to segment cirrus contamination along with localised objects. Mask
R-CNN is designed to handle the latter category; segmentation of extended amorphous
regions such as cirrus contamination fits poorly into the instance segmentation framework
which Mask R-CNN is formed upon. Handling categories of objects that cannot be di-
vided into discrete entities is typically handled by networks of different design, such as
FCN [138] or the attention network proposed in Chapter 5. Thus, there is a strong moti-
vation to extend Mask R-CNN to separate the task of cirrus segmentation from instance
segmentation.
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Figure 7.2: Distributions of heights, widths and aspect ratios of all target objects in the
annotation dataset.

We combine the gridded Gabor attention network proposed in Chapter 5 with Mask
R-CNN, as shown in Figure 7.3. We arrange the two networks so that they share the
same backbone features, unifying segmentation of discrete objects and segmentation of
galactic cirrus, i.e. the same ResNet-50 features are fed to both RPN/RoIAlign and the
gridded attention module. Computation along each branch is then performed in parallel
resulting in two segmentations which can be combined to achieve a segmentation of all
structures in an input LSB image.

7.4 Data

In this section, we first describe the training set of LSB images and strategies used to
improve generalisation of trained models to unseen samples. The preparation of anno-
tations is then detailed to create labels that are compatible with training an instance
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Figure 7.3: Diagram of the proposed segmentation model, combining a gridded Gabor
attention model with Mask R-CNN.

segmentation model.

7.4.1 Dataset

In this study, we use the same image set as in Chapter 6. This contains 186 MATLAS
LSB images with two spectral channels of average spatial size 6000×6000px. The same
training/testing split as Section 6.5 is used where respectively 80% and 20% of samples
are used for training and testing. We take a 3000×3000px crop around the target galaxy
of each image. We employ the same data augmentations of Section 6.5: images are
downsized to 1024×1024px, a combination of random flips and 90◦ rotations are applied,
then element-wise Gaussian noise is applied. Given that these augmentations resulted in
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a significant test set improvement on cirrus segmentation models, generalisation should
be improved on a modified task with the same images.

To further improve generalisation of the trained model and mitigate against overfitting
due to the limited sample size, transfer learning is utilised. Prior to training, Mask R-
CNN is loaded with weights trained on the MS-COCO dataset, provided by Torchvision’s
[143] default pretrained option. MS-COCO provides a training set of over 300000 natural
images with instance segmentation labels of 91 classes of objects. While natural images
obviously appear very different from astronomical images, learned features can still be
closely applicable on both sets. We also note that this practice is standard in works
combining astronomy and instance segmentation [31, 69, 190]. Following this process, the
network is further pretrained on the same synthesised cirrus dataset used for pretraining in
the previous chapter in order to adjust network weights to features more closely resembled
in astronomical images.

From the annotation dataset detailed in Chapter 3, target labels are narrowed down
to five classes. First, we combine galaxy classes into one class, i.e. main galaxies and
companions, as these definitions rely on the idea of how annotations are performed on
suspected galaxies of interest. We task the model with identifying all instances in an
image, thus this notion is not relevant to the machine learning model. Secondly, we
combine elongated tidal features, tidal tails, plumes and streams, into a single class.
These three features appear visually similar, and are all defined as a propulsion of stellar
material from a galaxy. Furthermore, given that the distinction between tails and streams
is the type of source galaxy, and we group galaxy classes into one class, combining these
tidal features naturally follows. Thirdly, we do not predict shells as the shape assigned
to their annotation does not enclose a space that can be segmented. Finally, we discard
contaminant classes other than ghosted halos and cirrus, as they are either very rare
(satellite trails/instrument artefacts) or very difficult to correctly predict without a larger
field of view. The final object classes used in this study are: galaxy, diffuse halo, elongated
tidal structure, ghosted halo and cirrus.

7.4.2 Obtaining instance masks

Formulating the delineation and detection of individual galactic structures into an in-
stance segmentation framework requires processing of annotation data. Thus far, expert
annotations have been combined into consensus masks for each semantic class, allowing
the training of semantic segmentation style models which through a softmax operation
predict a class label per pixel. Instance segmentation models, on the other hand, require
a format that encodes masks of each distinct object as well as their semantic class. There
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is thus the task of identifying distinct objects in consensus masks to create such instance
labels.

For the majority of object classes: galaxies, companion galaxies, diffuse halos, and
ghosted halos, a single shape is used for delineation. In these cases, a simple connected
component analysis is sufficient to separate most instances. For this process, consensus
masks are binarised by rounding. We consider two positive pixels connected within a mask
if there exists a path of positive pixels that starts at one and ends at the other. Parts of
the mask that are not connected are then assumed to be separate objects. Tidal features,
however, can be described by multiple shapes that are close together. For example,
consider a tail that appears separated in its centre. To isolate these shapes/features into
instances, we instead use proximity. We found that grouping tidal features that are less
than 0.025◦ (roughly 200 pixels) apart produced visually reasonable results.

There exist some cases where the connected component method does not separate
instances. Overlapping objects of the same class fall into this category, a scenario which
occurs with diffuse and ghost halos. We choose a compromise for ghost halos and exploit
the fact that ghost halos exhibit fixed size. Any ghost halo masks that significantly
differ from this size are simply excluded from the dataset. This choice resulted in losing
approximately 15% of ghost halo annotations, which is a reasonable trade-off to ensure
consistency in class definition.

Diffuse halos require more special attention, as approximately 40% of annotations
suffer from overlap. We proceed with a combination of visual inspection and geometry
analysis, as shown in Figure 7.4. We first apply a Euclidean distance transform, where
the shortest path connecting each positive pixel to a negative pixel is computed. The
value of each positive pixel is then set to the length of this path, so that pixels at the
centre of a shape have the highest values. Local maximum peaks are identified to find
the locations of these centres. We choose two or three of the most separated peaks, based
on the number of galaxies involved in the overlap (determined manually through visual
inspection). These peaks are then fed into the watershed segmentation algorithm [198]
as markers to identify the boundary separating each overlapping shape and separate the
combined shape into parts. Finally, in cases where the retrieved part is incomplete, an
ellipse is fit optimally to the part and used to interpolate the lost section of the shape.

7.5 Results

Results of the detailed methodology are presented in this section. We begin with a sim-
plified task where only localised objects are segmented with Mask R-CNN to provide a
baseline of performance on MATLAS LSB images. We then experiment with a simple
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Figure 7.4: Instance labels for diffuse halos surrounding NGC4281, NGC4277 and
NGC4273 before and after processing, with intermediate results.

human-in-the-loop training run and investigate how Mask R-CNN can be used on im-
ages with partial annotations. Following this, the panoptic segmentation model proposed
in Section 7.3.3 is tested on simultaneous segmentation of localised objects and cirrus
contamination.

7.5.1 Instance Segmentation with Mask R-CNN

To provide a performance baseline of instance segmentation on LSB images, Mask R-CNN
is trained and evaluated on only classes that contain localised objects from the annotated
MATLAS dataset. Cirrus contamination in MATLAS images presents a significant chal-
lenge when precisely delineating structures. To understand the relationship between the
tasks of contamination segmentation and galactic structure segmentation, it is highly
relevant to perform a study isolating both parts (see Section 6.5 for cirrus segmentation).

Metrics – For evaluation of network performance we calculate the precision and recall
for each image in the test set. A detection is considered positive if its predicted mask has
an overlap score (IoU) greater than or equal to a given threshold with a target label of
the same class. From these precision and recall values, we compute the average precision
(AP) score, which is defined as the area under the precision-recall curve averaged over all
images in the test set:

AP =
1

|R|
∑
r∈R

p(r). (7.1)
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Here, p(r) is the maximum precision at a given recall and R = {0, 0.01, . . . , 1.0} contains
each recall bin. This metric is computed multiple times with different IoU thresholds
∈ {0.5, 0.55, ..., 0.95} for deciding whether a detection is positive or negative. As the IoU
threshold increases, an increasing number of imperfect detections are considered negative
predictions and thus the AP should decrease. The AP at an IoU threshold x is denoted as
AP100x, e.g. AP50 for an IoU threshold of 0.5, and is calculated for each class individually
and combined.

Baseline results – The detailed Mask R-CNN model is trained for 200 epochs using
a simple stochastic gradient descent optimiser as in [168] with a learning rate of 0.01
which is halved every 25 epochs. Momentum and L2-regularisation penalty are set to 0.9
and 5 × 10−4, respectively. Training is performed on a single Nvidia GTX 1080 Ti over
approximately 12 hours.

Precision-recall curves are shown for each class in Figure 7.5. Segmentation of elon-
gated tidal structures proves to be a very difficult task, with the network making no
positive detections of such structures on the test set at any IoU threshold. The galaxy
and diffuse halo classes share similar performance profiles, with strong AP scores that are
strong at low IoU thresholds but quickly decrease over higher thresholds. This shared pat-
tern is not surprising as galaxy and diffuse halo annotations are naturally intertwined, as
the diffuse halo is the scattered light surrounding a galaxy captured by the LSB imaging
instrument. While prediction of ghosted halos exhibits a weaker performance at the low-
est overlap threshold, performance is sustained at a much higher rate than other classes.
This phenomenon could be due to a combination of two factors: ghost halos have clear
boundaries in most cases making localisation easier, and sizes of halos are fixed. Thus AP
begins to drop at higher overlap thresholds due to halos that overlap with other bright
diffuse light or cirrus contamination, making the halo’s boundary difficult or impossible
to observe (e.g. Figure 7.6).

Through manual inspection of network predictions on unseen images, it can be seen
that the network is able to predict reasonable boundaries for diffuse halos and galaxies,
even in cases where there is significant cirrus contamination (see Figures 7.6 and 7.7).
Given that traditional methods typically struggle in such scenarios, this is a significant
strength of the method. In Figure 7.7, the network predicts an elongated tidal structure
off the edge of the target galaxy, which is most likely cirrus contamination. However,
this perhaps demonstrates that the network is somewhat familiar with characteristics of
elongated tidal features, despite the null performance on this class, as the prediction is
reasonable. Indeed, the predicted region exhibits the correct local texture and is located
where a tidal feature could exist. Thus, it is reasonable that tidal feature prediction would
be largely improved by more training data.
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Figure 7.5: Precision-recall curves for each object class and associated AP scores over
different IoU thresholds. Horizontal axes show recall, vertical axes show precision.

Human-in-the-loop training – We also observe that false positives are, in almost
all cases, correct but unannotated objects. For example, in Figure 7.6, a diffuse halo, a
galaxy and a ghost halo have been correctly predicted but are considered false positives as
they were not annotated. Based on this fact, we extend the current experiment where we
implement a simple human-in-the-loop (HITL) training protocol, illustrated in Figure 7.8.
After training for an initial period, we review predictions made on all 184 images. Mask
predictions which are of good quality are added into the dataset to be used for training
and testing, as shown in Figure 7.11. The network is then trained on the new dataset
for a shorter period and then predictions are reviewed. This process is repeated several
times to construct a more densely annotated dataset. Specifically, we train for 30 epochs,
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Figure 7.6: Annotated and predicted objects in NGC6703. Numbers above network
predictions represent confidence scores.

alternate four times between reviewing and training for 5 epochs, and then alternate four
further times between reviewing and training for 10 epochs. The model is then trained
until a total of 200 epochs has been reached. Finally, we do not consider tidal structures
during this experiment, as they were annotated exhaustively in all MATLAS images.

Figure 7.9 illustrates the number of objects added into the dataset or rejected at
each review stage. Over the first four review stages, 67% of the total 472 false positive
predictions are added into the dataset. Galaxies, in particular, are reliably predicted,
with an acceptance rate of 89% over these review stages. At the fifth review stage there
is a large jump in incorrect false positive detections, with 33, 347 and 162 bad detections
predicted to be galaxies, diffuse halos and ghosted halos, respectively. This is likely due to
the large amount of added objects over previous stages which the model is still adapting
to, given that the problem does not repeat over following review stages where the number
of epochs between stages is increased. The largest number of added objects in a single
review occurs at the sixth review stage, where 250 false positive detections are added into
the dataset at an acceptance rate of 67%. The number of accepted objects drops in the
final two stages, likely as the annotation fields at this stage are saturated with no clear
detections left to add.

Results summarising the performance of instance segmentation experiments are de-
tailed in Table 7.1. On the standard annotation dataset, the model scores a lower AP50

when trained with HITL predictions than without. Given that the HITL trained model
detects more objects and, assuming that more false positives are predicted, this indicates
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Figure 7.7: Annotated and predicted objects in NGC7710. Numbers above network
predictions represent confidence scores. Dark blue belongs to the elongated tidal features
class.

HITL trained HITL eval. Galaxy Diffuse halo Tidal structures Ghosted halo All
0.778 0.754 0.000 0.522 0.514

✓ 0.624 0.720 0.000 0.635 0.495
✓ ✓ 0.797 0.856 0.000 0.814 0.617

Table 7.1: AP50 and AP75 scores across different classes from models trained with and
without HITL data, evaluated with and without HITL data.

that the number of false negatives is not significantly decreased on these classes. It is
the contrary for the ghosted halo class, where the decreased number of false negatives
outweighs the increase in false positives resulting in a higher AP score. This provides a
strong motivation for considering the HITL ghosted halos as part of the ground truth,
a scenario in which average precision actually increases by 56% due to HITL training.
Across all classes, however, the average pattern appears to fall into the former of the two
cases, as shown in Figures 7.10a and 7.10b, where the recall increase is outweighed by the
precision decrease. Unsurprisingly, the HITL model performs better on HITL data than
non-HITL data (see Figure 7.10c), as a positive bias is introduced where the model is
evaluated on objects it is known to be capable of detecting. Nonetheless, this shows that
all classes can be well represented by the model and thus much higher AP scores would
be possible with a larger dataset.
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Figure 7.8: Flowchart outlining the implemented human-in-the-loop training protocol.

7.5.2 Panoptic Results

We now turn to the task of panoptic segmentation in MATLAS images. The proposed
model is tasked with simultaneously segmenting galactic structures, localised contami-
nants and cirrus contamination. Specifically, the model must segment the four foreground
classes of the previous section: galaxies, diffuse halos, tidal structures and ghosted halos,
and the cirrus class. From this experiment, we seek to discover the impact of unifying
these segmentation tasks on the model’s predictive characteristics.

The proposed model is trained for 200 epochs with different optimisation strategies
for the instance and semantic portions of the network. For each branch, we attempt to
match the training setup of the isolated versions. This ensures that a fair comparison
can be made between results here and results of isolated tasks. The Mask R-CNN and
backbone sections of the model are trained with SGD using a learning rate of 0.01 which is
halved every 25 epochs, and L2-regularisation penalty of 5×10−4. The attention network
is trained with the Adam optimiser using a learning rate of 10−3 which is exponentially
decayed by a factor of 0.98 per epoch, and L2-regularisation penalty of 5×10−7. Training
is performed on a single Nvidia GTX 1080 Ti over approximately 24 hours.

Precision-recall curves for localised structures predicted by the proposed panoptic
segmentation model are shown in Figure 7.12, and summarised in Table 7.2. It can
be seen that average precision scores for the all classes except elongated tidal features
are increased in the panoptic model, across all IoU thresholds. For the galaxy class,
the proposed model offers a minor improvement, with AP50 increasing by 0.5%. This
difference is likely minimal as the galaxy core is a strong structure and can be delineated
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Figure 7.9: False positive objects predicted by Mask R-CNN at different epochs through-
out the human-in-the-loop training run. Solid colours represent correct predictions that
are added into the dataset, opaque colours are rejected predictions.
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Figure 7.10: Precision-recall curves for all classes over different IoU thresholds. Hori-
zontal axes show recall, vertical axes show precision, brighter colours denote higher IoU
thresholds.

relatively easily even in highly contaminated areas. Thus the synergistic benefits of tying
the tasks of contamination and object prediction are minimal for galaxy cores. Diffuse
halos and ghosted halos obtain a more significant increase, with the proposed model
increasing AP50 scores by 4.5% and 26.1%, respectively. This concurs with the previous
insight, as boundaries of such structures are impacted by cirrus contamination, and thus
the panoptic approach offers a larger synergistic benefit for diffuse halos and ghosted
halos than for galaxy cores. Scores for these classes are also increased throughout all IoU
thresholds on the precision-recall curve; AP75 scores are increased respectively by 3.3%,
7.0% and 34.3% for galaxies, diffuse halos and ghosted halos. This indicates that predicted
boundaries overlap better in the panoptic approach, i.e. correct detections/classifications
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(a) Non HITL target labels (b) Non HITL predictions

(c) HITL target labels (d) HITL predictions

Figure 7.11: Comparison of target and predicted labels (PGC050395) on training runs
with and without the human-in-the-loop protocol.

are of better quality.
In addition to improving on instance segmentation performance, the panoptic model

also scores higher on the cirrus segmentation task. In Chapter 6, the attention model
scored an IoU of 74.5% as a standalone predictor, and 79.0% as an ensemble predictor. The
same attention network, as part of a panoptic model, scored an IoU of 85.5%, representing
a relative increase of 14.9% and 8.2% over the standalone and ensemble contamination-
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Figure 7.12: Precision-recall curves for each object class and associated AP scores over
different IoU thresholds, with the proposed panoptic segmentation model. Horizontal axes
show recall, vertical axes show precision.

only models. Based on this significant increase, it would seem that instance segmentation
serves as a significantly beneficial auxiliary task for cirrus contamination segmentation.
Given that the two tasks are combined through sharing a feature generating backbone,
it follows that the addition of more semantic classes allows the model to generate fea-
tures that better discriminate between cirrus and non-cirrus pixels. Interestingly, the
distribution of predicted cirrus coverage appears to differ in the panoptic case versus the
non-panoptic case, with the model showing a tendency to binarise segmentation predic-
tions and either predict the image as completely contaminated or containing no cirrus.
This may be due to the fact that only a standalone panoptic predictor was used, due
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Galaxy Diffuse halo Tidal structures Ghosted halo All

Panoptic AP50 0.782 0.788 0.000 0.658 0.543
AP75 0.217 0.411 0.000 0.658 0.330

Instance AP50 0.778 0.754 0.000 0.522 0.514
AP75 0.210 0.384 0.000 0.490 0.271

Table 7.2: AP50 scores across different classes from models trained with and without
HITL data, evaluated with and without HITL data.

to the complication of combining instance segmentation results. Indeed, the Kullback-
Leibler divergence between the target and predicted distributions of cirrus coverage is
0.39, aligning closely with the 0.40 value of the standalone contamination-only model of
Chapter 6.

Predictions of elongated tidal features remains a large challenge in this study, with
the model failing to identify any of the structures in the test set. The limited number of
training samples and difficult class imbalance is likely the culprit here, and a larger study
would be required to discern whether or not the panoptic approach improves on the task
of segmenting elongated tidal features. Given the benefits observed in performance on
other classes, such an investigated is certainly warranted.

7.6 Summary

In this chapter, we presented a method for automated cataloguing of galactic structures in
LSB images. Literature surrounding instance segmentation in astronomy was surveyed,
and we identified that methods often suffer from a lack of unification of localised ob-
jects and homogeneous textures. Mask R-CNN was combined with the gridded Gabor
attention network of Chapter 5 to create a panoptic segmentation model. We described
the processing steps taken to prepare the MATLAS annotation data of Chapter 3 for
training such models requiring separation of consensus labels into distinct entities. Mask
R-CNN was first evaluated on an instance segmentation task involving galactic structures.
Following this, with a simple human-in-the-loop training protocol, we added 914 unanno-
tated objects into the dataset and significantly improved model accuracy on the ghosted
halo class. This success warrants investigation into a more sophisticated active learning
or semi supervised framework in future work, especially for the galaxy class which the
model consistently predicted correctly. Whereas input images and dataset size remained
constant across relabelling iterations, an active learning approach combined with more
available LSB images could involve strategically requesting annotations on images con-
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taining objects that the network is struggling with. Finally, the proposed method was
used to simultaneously segment galactic structures and cirrus contamination, where we
showed that unification of the tasks improves performance on both tasks. The proposed
panoptic model achieved respective increases of 5.6% and 8.2% over the isolated instance
and contaminant-only segmentation tasks.

Segmentation of galactic structures is feasible with deep learning, even in images suffer-
ing from heavy contamination. Galaxies and their surrounding diffuse halos, and ghosted
halo contaminants were detected reliably, with reasonable delineation boundaries in areas
of high cirrus. This success shows great potential for the future of automated cataloguing
with deep learning, with inference performed in under a second on images with minimal
preprocessing. Despite poor results on elongated tidal features, the nature of false positive
detections of elongated tidal features suggests that the network has some understanding
of their discriminating features. Thus, we hypothesise that with more training examples,
automated detection and segmentation of these subtle structures should be possible.



Chapter 8

Conclusion

In this thesis, we investigated the use of deep neural networks for automated cataloguing
of galactic structures and contaminants. The first obstacle of this investigation was that
there did not exist training data suitable for segmentation of such structures. A further
complicating factor associated with this fact was that a tool for generating 2D labels on
large multi-spectral astronomical images did not exist. In Chapter 3, we sought to address
both of these challenges and facilitate the training of modern neural network models for
segmentation in an astronomy context. A fully featured annotation tool was presented,
enabling astronomers to categorise and precisely draw shapes over galactic structures.
The tool was designed to accommodate the requirements specific to astronomical images,
such as being able to zoom and pan over surrounding regions, and tracking real world
coordinates of user interaction. Collaboration was also made possible due to the tool
being designed as a web application, where multiple users could contribute to the same
annotation. Following this, dataset created using the annotation tool was detailed, com-
prised of 6573 drawn shapes on 227 MATLAS images. We justified and described how
the annotations of the four users are combined into a single consensus labelling which can
be as ground truth targets for training neural networks. Finally, a dataset of synthesised
cirrus samples was detailed, including multiple variations of increasing difficulty. These
synthesised samples are suitable for pretraining CNNs, enabling transfer learning, and for
use in ablation studies to reinforce findings on real data.

Sensitivity to orientation is greatly desirable in processing astronomical images, as
objects often exhibit orientational patterns, such as the filamentary structures within cir-
rus clouds. While CNNs are well equipped to handle variation in translation, rotational
symmetries are poorly captured by the convolutional operator. In Chapter 4, we ad-
dressed this limitation through a novel convolutional layer involving Gabor filters, and
created an architecture, LGCN, capable of generating features dependent on exact ori-
entations without interpolation artefacts. We proposed an adaptive modulation method,
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where convolutional filters are multiplied by Gabor filters whose analytical parameters are
learned during backpropagation, alongside convolutional kernel weights. This learnable
modulation was implemented in a fully complex-valued CNN, to enable the use of the
full Gabor filter. The modulated convolution was then extended with the proposal of
cyclic modulation, where each filter of different modulation orientations are exposed to
all orientation dependent features. We demonstrated the effectiveness of LGCNs first on
classification of randomly rotated hand-drawn digits, secondly on segmentation of cirrus
structures in synthetic and real LSB images, and thirdly on boundary detection in natu-
ral images. We found that, in all problem scenarios, vanilla CNNs and static real-valued
Gabor modulation were outperformed by LGCNs. This multi-task success displayed the
general applicability of learnable complex-valued Gabor modulation.

Generating features dependent on global relations is extremely important for image
understanding. Scenes are understood through both short and long range correlations,
as the surrounding setting of an object often is linked to its characteristics. For global
contaminants in large images which can appear visually similar to interesting objects,
context is especially relevant for correct identification. Orientational information can also
be a useful distinguishing factor for such identification. A limitation of purely convolu-
tional networks is that global features are typically only learned in the final stages of the
network after heavy downsampling. In Chapter 5, we investigated the use of attention
to extract global features in contaminated large images. A multi-scale attention archi-
tecture was implemented, involving attention computed over different scales in parallel.
We utilised the Gabor filter modulation introduced in the previous chapter to extract
orientational features, and computed attention with respect to angles of each modulating
Gabor filter to capture long range orientational dependencies. To ease the computational
burden of attention calculation, a gridded attention method was proposed where features
are divided into tiles of different scales before computing attention. The detailed method
was validated thoroughly on multiple datasets, both in terms of accuracy performance
and computational characteristics, and an optimal network configuration was selected
through ablation studies. This optimal network was evaluated on the SWIMSEG dataset
of natural clouds, where the model achieved state of the art performance.

While the gridded Gabor attention work described above provided a ML architecture
well suited to the cirrus contamination problem, several steps remained for practical ap-
plication on the cirrus segmentation task in LSB images. In Chapter 6, we presented a
machine learning pipeline for segmentation of cirrus contamination. As annotation data
of Chapter 3 is naturally probabilistic, where more annotators labelling a structure cor-
responded with a higher label probability, we proposed a consensus based loss function
to enable neural networks to train on coarsely probabilistic labels. An adaptive intensity
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scaling operation was designed to enhance subtle structures and adjust scaling param-
eters based on performance. Scaling parameters were able to be learned alongside net-
work weights through backpropagation. We detailed the data augmentation and transfer
learning steps taken to ensure generalisation of the neural network despite limited data.
These measures were combined with the attention model of Chapter 5, and applied on
cirrus segmentation. A comprehensive study was performed evaluating the performance
characteristics of the pipeline, where we demonstrated that the proposed consensus loss
significantly tackled class imbalance issues. Methods of combining multiple predictions
were evaluated, where we found that an ensemble of multiple models produced the best
results. The final pipeline achieved reliable automated cirrus segmentation on limited
data with no preprocessing.

A central goal of this thesis was to build knowledge surrounding the application of ML
to LSB images and propose a method for automated cataloguing of galactic structures.
Armed with findings from thorough studies on applying CNNs to LSB images, detailed in
previous chapters, in Chapter 7 we refocused our attention to the wider goal of this thesis.
We surveyed literature surrounding instance segmentation and astronomy, and identified
that a common weakness in works is confusion between contaminants and interesting
structures. Based on this, we hypothesised that unification of contamination and galactic
structure segmentation would mitigate against this problem and investigated the use of
a panoptic segmentation model. We modified Mask R-CNN, a popular instance segmen-
tation model, combining it with the cirrus segmentation model of Chapter 6, to create a
model capable of segmenting both localised galactic structures and extended homogeneous
contaminants simultaneously. In the first experiment, Mask R-CNN was applied to only
instance segmentation of galactic structures. During this experiment, to investigate the
impact of training data quality and quantity, we used a human-in-the-loop training regime
where correct predictions of unannotated objects were added into the training dataset. A
simple approach resulted in a significant amount of unannotated objects being added into
the dataset, and we found that performance was increased on the original dataset for some
classes, showing the potential of both a larger training dataset and a more sophisticated
semi-supervised learning approach. Finally, we applied the proposed panoptic segmen-
tation model on the task of segmenting galactic structures and contaminants, where we
found that unification of tasks indeed led to greater performance. Reliable inference was
achieved with the panoptic approach using feasible computational resources and on im-
ages with minimal preprocessing, demonstrating the potential of careful deep learning
approaches for automated cataloguing in LSB images.
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8.1 Contributions

The main contributions of this work can be summarised as follows.

• Annotation tool for astronomical images and dataset of labelled struc-
tures in MATLAS images. We designed an annotation tool for astronomers to
draw shapes overlaying structures in astronomical images. Multiple domain specific
considerations were taken to ensure functionality for both machine learning and as-
tronomy researchers using the tool. We detailed a dataset produced using the tool
of shapes drawn by four users, delineating structures in MATLAS LSB images.

• Orientation robustness in convolutions with learnable complex-valued
Gabor modulated convolutions. We presented a convolutional layer where ker-
nels are modified with Gabor filters to render them more sensitive to orientational
patterns. This layer was extended to the cyclic Gabor convolution, where further
rotational weight-tying is enforced thus increasing orientational robustness.

• Efficient attention operator for global features rich in orientational in-
formation. We proposed a memory efficient attention layer capable of generating
global features on large images. We integrated Gabor filter modulation into the
attention operator to facilitate measuring long range orientational patterns.

• Pipeline for segmentation of cirrus contamination in LSB images. We ap-
plied the gridded Gabor attention network to segmentation of cirrus contamination
in LSB images. A loss function for training neural networks on coarsely probabilis-
tic target labels was proposed. We presented a simple adaptive intensity scaling
operation which adjusts scaling parameters based on network performance.

• Automated cataloguing of galactic structures and cirrus with a panoptic
segmentation model. We presented a panoptic segmentation model for simulta-
neous delineation of galactic structures and cirrus contamination. The processing of
MATLAS annotation data into instance segmentation labels was described. Mask
R-CNN was used to set a baseline on segmentation of localised galactic structures,
and to perform a preliminary study on the potential of a semi-supervised framework.

• Source code for all work will be freely available online. All source code
relating to methods, studies or tools described in this thesis will be publicly available
for other researchers to use.
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8.2 Future Work

Throughout each chapter within this thesis we have discussed ideas that would be in-
teresting to explore in future work. In this final section we will reiterate these ideas,
elaborate and build on them, and present new research ideas gleaned from viewing the
thesis as a holistic work.

Annotation tool – The presented annotation tool enabled efficient and precise draw-
ing of shapes on astronomical images, but after extended use we identified areas where it
could be improved. The ability to directly adjust contrast, saturation and hue of displayed
images would be greatly helpful for astronomers to be able to inspect subtle features.
While this feature can be made partially available by switching between HiPS layers or
surveys, it requires images with different colour characteristics to be pre-computed. In
addition, the option to annotate association between drawn shapes would be a greatly
beneficial feature, as structures such as diffuse halos and tidal features are inherently
linked to a ‘source’ galaxy. This feature would first facilitate astronomy motivated sta-
tistical analysis investigating correlating factors between the shapes of related objects,
and secondly open the possibility of computer vision research attempting to either pre-
dict association or use the information to improve segmentation methods, such as those
presented in this thesis.

Synthesised cirrus images – The cirrus synthesis approach developed to supplement
training data led to benefits through transfer learning, however the algorithm was fairly
elementary. It would be interesting to utilise recent advancements in generative modelling
to create more realistic examples of cirrus. GANs are one option for this task, having
achieved photo-realistic quality on image generation tasks. Another option would be
normalising flows which have seen recent use in physics aware contexts. Another avenue
extending the synthesis work would be to combine our method with real images as an
augmentation method. As cirrus contamination presents in roughly a quarter of MATLAS
images but contaminates a substantial region, there is exists a difficult class imbalance
problem which we discussed and tackled. Clean images augmented with synthesised cirrus
contamination could further help ease this problem and potentially increase prediction
accuracy. Data synthesis and these discussed ideas could also be extended to generate
tidal features, which we struggled to detect in later chapters due to the even more difficult
class imbalance problem and their subtle nature.

Gabor modulation – We found that modulating convolutional kernels with Gabor
filters worked well for rotation sensitivity, though it is possible that other analytical filters
could change performance characteristics. The use of Gabor filters was motivated by
previous works and that they are well understood filters on orientation-dependent tasks.
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A comparative analysis of other filters could more concretely justify this choice, or even
expose stronger choices on certain tasks. This analysis could also include applications
on different datasets to more clearly illuminate how different modulating filter choices
affect learned features. It would also be informative to integrate the proposed modulated
convolutions into more complex and popular architectures. For example, a ResNet style
architecture modified to use modulated convolutions and applied on typical benchmark
data would show how the proposed method scales to larger and more difficult tasks.

Gridded Gabor attention – With regards to the gridded Gabor attention method-
ology, we have identified several avenues for future work. Though the model achieved
strong segmentation results, the fixed nature of tile grids could introduce boundary arte-
facts between tiles. While there exists some overlap tiles of different scales, it could be
interesting to investigate how overlapping tiles further would impact results. This could
be achieved either by simply increasing each tile size so that boundary regions overlap, or
shifting the tiling grid in a cyclic fashion similar to modern transformer models. Further
applications of the model on different data would also be interesting to explore. Medical
images in particular often exhibit similar characteristics to those used in the study sur-
rounding the attention method, i.e. they are very large, require global features and often
suffer from artefacts. Finally, there are certainly other architectural modifications which
could be made to improve performance, such as increasing the complexity of the final
upsampling stage, and skip connections between the backbone and upsampling network
sections.

Cirrus segmentation – We tackled the cirrus contamination problem as a binary
segmentation task due to the annotated data available during the study. In reality, cirrus
contamination presents in a wide spectrum of strengths and taking this fact into account
would be very interesting. Given the large variety in strength, it is possible that there is
a detrimental effect on model performance by forcing all cirrus into a single class. This
seems likely given that there are instances where strong and obvious cirrus contamina-
tion fails to be predicted. Nonetheless, a study that accommodates this variation would
inform the community on how ML approaches handle different types of cirrus and impor-
tantly would provide guidance on which areas to focus efforts on. This accommodation
could be achieved by either adding multiple cirrus classes or using a strength parameter
which would be regressed. The annotation tool of this thesis could be adapted to allow
astronomers to provide training data for this more granular task.

Galactic structure segmentation – The task of segmenting galactic structures
was approached as a panoptic segmentation problem, for which we presented a model
combining Mask R-CNN and gridded Gabor attention. Despite the model’s simplicity,
we achieved increased performance on the galactic structure segmentation in comparison
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to the Mask R-CNN instance segmentation baseline. It would be interesting to explore
the impact of more complex panoptic segmentation models on prediction accuracy. This
could be achieved by intertwining the semantic and instance branches so that interme-
diate features of each branch inform the other, as was described in related work. While
we determined that this was not a priority as pixel classes overlapped in our problem,
connection between branches could alleviate any confusion between similar classes such as
tidal features and cirrus contamination. Aside from convolutional networks, transformer
models have achieved promising results on panoptic tasks, and thus could also be a good
path to pursue.

Semi-supervised segmentation – During experiments on galactic structure seg-
mentation, we performed a preliminary study on using semi-supervised learning to miti-
gate against weak annotations, i.e. images where not all present objects were annotated.
With a trivial human-in-the-loop training protocol, a significant number of objects was
discovered and added into the dataset. We also observed that performance was increased
on classes with particularly weak annotations, such as ghosted halos. It would be inter-
esting to investigate how a more sophisticated semi-supervised approach could be used to
leverage either of these findings. A possible avenue would be to explore using a noisy stu-
dent framework. This involves first training a ‘teacher’ model as normal, and then training
another model, the ‘student’, on available target labels and ‘pseudo-labels’ generated by
the first with noisy input data. This process is repeated iteratively with the student be-
ing recycled as the teacher. The noisy-student framework could be used to expand the
training dataset by adding new unannotated objects, as in our study, or generating labels
on new unannotated images.

Future survey data – Throughout this thesis, data quantity and quality were major
challenges. While we developed approaches to mitigate against these issues, they un-
doubtedly limited both model performance and the confidence in any insights drawn from
experiments. With future surveys providing higher quality data and more LSB images,
it would be incredibly interesting to examine the effects of relieving the data limitations
from our studies. Developing a better understanding of how the proposed methodologies
scale to future surveys is vital for research progress. A larger and less noisy training
dataset would also greatly clarify the strengths and weaknesses of our approaches and
guide future work. Increasing the number of annotators would also facilitate interesting
research, as target label confidence should increase and thus label noise should decrease.
This would also enable exploring the use of inherently probabilistic approaches such as
those mentioned during this work.

Cirrus contamination removal – Viewing the thesis as a whole, a project which
follows naturally would be to attempt to remove contaminants with deep learning. We
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developed techniques for automated cataloguing of structures, despite contaminants oc-
cluding objects. It would be interesting to explore how our methodologies could be ex-
tended to decontaminate these instances, given that in this thesis we tried to take into
account how ML models would process contaminants and interesting objects. Works util-
ising conditional GANs for image-to-image tasks have seen success, and decontamination
naturally falls into this category of tasks. Future work could involve somehow combining
the tasks of decontamination and segmentation, so that the tasks become intertwined.
We hypothesise that better decontamination should result in better instance segmenta-
tion predictions, and thus segmentation could provide a strong auxiliary goal to account
for the lack of ground truth.

To conclude, the application of modern deep learning to astronomy and especially LSB
image processing is in its infancy. In recent years, basic off-the-shelf approaches have
achieved great results in astronomy. With more careful design and domain motivated
computer vision research, such as in this thesis, we believe that machine learning will
have a large impact on automated cataloguing and the wider astronomy research sphere.
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Appendix A

Appendices

A.1 Annotation Database Design

The users relation stores records of all users registered on the annotation tool, detailed
in Table A.1. While there exists four attributes containing non-functional additional
information for registered users, other attributes serve some purpose for managing users
within the annotation tool. The exact functionalities of these attributes will be discussed
in the following section.

Attribute Description
u_id The user’s primary key identification.
username The user’s chosen login username.
email The user’s email address.
firstname The user’s first name.
lastname The user’s last name.
institution The user’s associated institution.
password_hash A hashing of the user’s chosen login password.
advanced The privilege level granted to the user, ranging from 0 to 3.

Table A.1: Descriptions of attributes belonging to the shapes relation. Primary key is
emboldened.

The galaxies relation stores galaxy information relevant to the annotation tool’s func-
tionality, detailed in Table A.2. Viewing specific information is held in the survey, bands,
fov and active attributes. Galaxy specific metadata is held in the name, ra and dec
attributes.

The annotations relation stores records of submitted annotations, detailed in Table
A.3. As each annotation is of a galaxy and created by a user, foreign key dependencies
are used between the users and galaxies relations and the annotations relation. This
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Attribute Description
g_id The primary key identification the galaxy record.
name The galaxy’s object identification, e.g. NGC1121.
survey The default survey to be displayed on loading the viewing tool.
bands The default available bands available in the viewing tool.
ra The galaxy’s right ascension.
dec The galaxy’s declination.
fov The initial field of view to be used in the viewing tool.
active Whether the galaxy is to be selected for annotation by any users.

Table A.2: Descriptions of attributes belonging to the galaxies relation. Primary key is
emboldened.

dependency is one to many as a user can submit multiple annotations, and a galaxy can
be annotated multiple times. The exact time the annotation is submitted to the central
server is recorded in the timestamp attribute.

Attribute Description
a_id The annotation’s primary key identification.
g_id The galaxy ID annotated.
u_id The user ID which submitted the annotation.
timestamp The exact time the annotation was submitted to the central server.

Table A.3: Descriptions of attributes belonging to the annotations relation. Primary
key is emboldened, foreign keys are italicised.

Information concerning each drawn shape is stored in the shapes relation, detailed
in Table A.4. Details related to the purpose of the shape, such as the classification, are
stored in the number, feature and note attributes. The exact spatial properties of the
shape are stored in the shape, x_points, y_points, ra_points and dec_points attributes.

A.2 Annotation Tool User Management

The annotation tool uses a login system to verify user credentials, integrated with the
database schema described in the previous section. Users are divided into two broad
categories: expert and non-expert. Non-expert users do not require a password to login
(see Figure A.1a), while experts do (see Figure A.1b). In the login interface there exists
a hyperlink directing to a registration interface shown in A.1c, where visitors can register
an account, thus creating a user record in the central database. New user accounts are
set as non-experts.
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Attribute Description
s_id The shape’s primary key identification.
a_id The annotation id which the shape belongs to.
shape The type of shape.
number The shape’s identifying number during the drawing process.
feature The feature or object classified by the shape.
note The shape’s note left by the user.
x_points The x-axis pixel location of each of the shape’s vertices.
y_points The y-axis pixel location of each of the shape’s vertices.
ra_points The right ascension location of each of the shape’s vertices.
dec_points The declination location of each of the shape’s vertices.

Table A.4: Descriptions of attributes belonging to the shapes relation. Primary key is
emboldened, foreign keys are italicised.

(a) Non-expert login. (b) Expert login.

(c) Registration interface.

Figure A.1: Different interfaces for user credential verification and registration.

Users are further divided into sub categories based on privilege levels, granting them
access to certain features. Privilege levels range from 0 to 3, with 0 as non-experts, and
experts between 1 and 3. As previously mentioned, basic non-expert users are not required
to set a password, but can submit annotations. Any user with a privilege level greater
than 0 and who does not have a password is redirected to set one. This is effectively the
only difference between users of privilege 0 and 1: users of privilege 1 are not granted
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Figure A.2: An interactive table showing the user’s annotations.

any tool related functionality aside a password protected account. All users are able to
view and search through a list of their own annotations, as shown in Figure A.2, where
they can revisit their annotation and submit edits. Finally, users of privilege 2 and 3
are able to view and edit annotations made by themselves and other users, enabling the
verification of other user’s annotations.

The annotation tool provides functionality to manage users, so that changes to user
records do not need to be made directly to the database. The ability to manage users
through the website is provided to users of privilege 2 and 3. Through this interface, the
logged in user or current user can lookup other users by searching for their username,
displayed in Figure A.3a. To manage another user, the current user must have a higher
privilege level than the searched for user, otherwise the search will not return any result.
Once a user has been found, the current user can reset the user’s password and increase
their privilege level to at most their own privilege level (see Figure A.3b).

(a) User search bar. (b) User settings panel.

Figure A.3: Elements that allow the management of other users by a user of high enough
privilege level.




