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Abstract

This paper introduces a novel upwind Updated Reference Lagrangian Smoothed Particle Hydrodynamics (SPH) algorithm for
the numerical simulation of large strain thermo-elasticity and thermo-visco-plasticity. The deformation process is described
via a system of first-order hyperbolic conservation laws expressed in referential description, chosen to be an intermediate
configuration of the deformation. The linear momentum, the three incremental geometric strains measures (between referential
and spatial domains), and the entropy density of the system are treated as conservation variables of this mixed coupled
approach, thus extending the previous work of the authors in the context of isothermal elasticity and elasto-plasticity. To
guarantee stability from the SPH discretisation standpoint, appropriate entropy-stable upwinding stabilisation is suitably
designed and presented. This is demonstrated via the use of the Ballistic free energy of the coupled system (also known
as Lyapunov function), to ensure the satisfaction of numerical entropy production. An extensive set of numerical examples
is examined in order to assess the applicability and performance of the algorithm. It is shown that the overall algorithm
eliminates the appearance of spurious modes (such as hour-glassing and non-physical pressure fluctuations) in the solution,
typical limitations observed in the classical Updated Lagrangian SPH framework.
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1 Introduction

Total Lagrangian Smoothed Particle Hydrodynamics (SPH)
[2—4] is a well-established numerical method for the simu-
lation of explicit solid dynamics. One of the most attractive
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features of SPH is its mesh-free nature, thus not relying on
the use of an underlying mesh. The absence of mesh, and the
calculation of pair-wise interactions among particles based
exclusively on their separation, allow ease of computation
for problems involving large deformation. Due to its ability
to handle large distortions within reasonable accuracy and
stability [5—7], the SPH method has been shown to be com-
petitive in comparison to alternative mesh-based methods,
where latter would typically require expensive remeshing
strategies.

However, for problems experiencing severe distortions,
a Total Lagrangian SPH formulation [8,9] will unavoidably
require updates of the material (or initial) configuration. Non-
physical zero-energy modes [10—14] are highly likely to be
activated when performing such updates (i.e. re-calculation
of kernel gradient and its correction). For instance, when very
few updates are performed during the entire simulation, the
accumulated errors may potentially remain small and unno-
ticed. However, when updates are frequently performed (for
example, at every time step of the time integration process),
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the solution can be negatively affected resulting in spurious
oscillations.

Significant efforts have been undertaken over the years
to rectify undesirable zero-energy modes [15] in the SPH
solution. Specifically, two types of techniques are widely
used. First, the instability is precluded by introducing artifi-
cial viscous stress [16—19], or other related (Laplacian-type)
techniques [20-23], conceptually similar to the treatment
of hour-glass modes used in finite element method [10].
Another common practice, in the framework of SPH, is the
introduction of higher order derivatives [8,24-29] to sta-
bilise numerical computations. In [24], the approach is shown
to be relatively expensive as it requires the evaluation of a
third-order tensor for stabilisation based on Hessian differ-
ence. Second, the introduction of a staggered SPH approach
[12,13,30,31] by incorporating a secondary set of particles
(known as stress points) for stress computation, allowing the
variables and their derivatives to be computed at different
positions. Despite significant development in the field, the ab
initio stability of SPH schemes still remains an open problem.

Moreover, even though the developments described above
has greatly improved the current state of SPH methods,
there is still a need for a robust Updated Lagrangian SPH
framework, especially when attempting to model problems
undergoing large geometry distortions, such as high-speed
impact or high-speed stretching. Under this circumstance,
consideration of thermal effects becomes necessary so as
to attain a realistic representation of stresses. With this in
mind, the aim of this paper is to further extend the recent
SPH work [1] presented in the context of isothermal elas-
ticity and plasticity models to account for possible strongly
thermally-coupled scenarios, through the consideration of
thermo-elasticity and thermo-visco-plasticity. Specifically,
and by adopting referential configuration as an intermedi-
ate configuration during the deformation process, an extra
conservation equation corresponding to the first law of ther-
modynamics (written in terms of the entropy density of the
system) is solved in addition to the conservation of linear
momentum and the three incremental geometric conservation
laws (measured from referential domain to spatial domain).
Interestingly, the methodology can indeed be degenerated
into either a mixed-based set of Total [32-46] or Updated
Lagrangian formulations [47] provided certain conditions
are met. One key aspect that requires careful consideration
is the overall stability of the algorithm. In the current work,
an upwinding (Riemann-based) approach is exploited where
a consistently derived numerical stabilisation is introduced
guaranteeing the production of total numerical entropy over
the entire simulation. The latter is shown by monitoring of the
Ballistic energy of the system via the semi-discrete entropy
analysis known as Coleman-Noll procedure. Another objec-
tive of the paper is to show that the overall SPH algorithm is
capable of frequently carrying out updates of the reference
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configuration without introducing non-physical modes. In
the numerical examples presented, unless otherwise stated,
updates of the reference configuration are performed at every
time step of the time integration process. Obviously this is
not necessary but it has been done in order to assess whether
the algorithm triggers possible instabilities.

The outline of the paper is organised as follows. Section 2
summarises the first-order system of Updated Reference
Lagrangian conservation laws for isothermal hyperelastic-
ity. Section 3 begins by introducing fundamental concepts of
thermodynamics, necessary for the remainder of the paper.
The section then presents two commonly used thermo-
mechanical models, namely Mie-Griineisen-based thermo-
elastic model and thermo-visco-plastic Johnson Cook model.
Section4 presents the variational formulation of the problem
and the second law of thermodynamics written in terms of the
Ballistic free energy. Section 5 presents the Smoothed Parti-
cle Hydrodynamics spatial discretisation where special focus
is paid to the upwinding numerical dissipation employed.
A proof of total entropy production (which is a summa-
tion of the physical dissipation introduced by the inelastic
model and the numerical dissipation introduced by the SPH
scheme) is included as a necessary condition for stability
at the semi-discrete level. For completeness, Sect.6 illus-
trates the algorithmic flowchart of the resulting numerical
scheme. Section 7 presents a number of challenging numeri-
cal examples with the objective to assess the robustness of the
algorithm, where comparisons will be performed against an
alternative mixed-based Total Lagrangian SPH implemen-
tation already benchmarked. Finally, Sect.8 presents some
concluding remarks.

2 Updated reference Lagrangian
conservation laws for reversible processes

Consider the deformation of a solid from an initial unde-
formed configuration Qy, of boundary 02y and outward
unit normal N, to a current deformed configuration €2,,
of boundary 02, and outward unit normal n, at time
instant ¢. Consider an additional configuration £2, of bound-
ary 92, and outward unit normal NX, corresponding to
an intermediate configuration of the solid. This additional
intermediate configuration can be adopted as a reference
configuration, leading to what we refer to as an Updated Ref-
erence Lagrangian description [1]. As a result, an Updated
Reference Lagrangian system of first-order hyperbolic con-
servation laws can be used to describe the motion of a solid
xX=¢ X (x, t) as follows (refer to [1] for an extended presen-
tation):

5
% = divyoy + fy. (1a)
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)
a—{ = div, (v®1). (1b)
E;—il =curly (WX f), (1¢)
% = div, (th) . (1d)

In the system above, py = pyv is the linear momentum
per unit reference volume, p, represents the reference den-
sity, v represents the velocity field, f is the body force per
unit reference volume, the triplet { f, k, j} represents the
incremental deformation gradient tensor, its co-factor and its
Jacobian (accounting for deformations from reference to spa-
tial configurations). The referential stress tensor o , obtained
from the push forward (or push back) of the first Piola-
Kirchhoff P (or Cauchy o) stress tensor to the referential
configuration, is described as o, = Jx_lPFXT = jofT.
Symbol ® represents the standard dyadic outer product,
whilst X denotes the tensor cross product [40] between vec-
tors and/or second-order tensors. In addition, div, and curl,
represent the divergence and curl operators carried out with
respect to the referential configuration, and the respective
identity tensor i is defined as i = Z?:l eg( & e; with

0
3 _
y=101- 2)
1

The incremental deformation tensor and its co-factor
{f, h} (1b) and (1c) must satisfy appropriate compatibility
conditions [1], namely
curly f =0;  divyh =0. 3

Once equations (1b)-(1d) are solved and the triplet of
incremental deformations {f, h, j} is obtained, the triplet
of deformation measures {F, H, J} (mapped from material
to spatial configurations) can then be obtained via multiplica-
tive decomposition as
F=fF; H=hH; J=jJy, “)
where {Fy, Hy, Jy} denote the triplet of (known) deforma-
tion measures between the material configuration and the ref-
erence configuration. Notice that, if we update {Fy, Hy, J;}
continuously throughout the time integration process, a
purely Updated Lagrangian first-order system [47] of con-
servation laws is retrieved. On the other hand, the Total
Lagrangian formulation [32—45]isrecoveredif {Fy , Hy, Jy}
are strongly enforced at the origin (that is, the reference
configuration coincides with the material configuration).
Detailed explanation of the transformations between the var-
ious formulations can be found in Reference [1].

3 Extension to irreversible processes

3.1 First law of thermodynamics in terms of total
energy, internal energy and entropy

The system described in (1) can be generalised to take into
account thermal effects [35,40], as is the case in thermo-
elasticity or thermo-visco-plasticity scenarios. The resulting
process is irreversible and requires an additional conserva-
tion law (with corresponding unknown) describing the total
energy balance. This is known as the first law of thermody-
namics and, in the current work, is expressed in referential
description as

OE
— X+ divy (ax —ofv) =v- S +re ©)

where g, represents the heat flux per unit reference area and
ry 1s the heat source term per unit reference volume. Notice
that the total energy density £, and heat flux vector g, canbe
related to the standard Lagrangian measures as Ey = J,~ YEr
and gy = H, T'Q, where Eg and Q represents the total
energy density per unit undeformed volume and material
flux vector (per unit undeformed area), respectively. The total
energy density E, (x, t) in the above equation includes both
kinetic energy and internal energy contributions. Multiplying
the linear momentum evolution equation (la) by v and sub-
tracting it from the above energy expression (5), the internal
energy evolution equation becomes

de .
a—:+d1vXqX=ax:va+rX, (6)

where e, (x, t) represents the internal energy per unit ref-
erence volume and the symbol V, represents the gradient
operator evaluated at the referential domain, which is defined
inindicial notationas [V ]; = 337. The internal energy den-
sity ey (X, t) is postulated to be a function of the incremental
deformation variables X = {f, h, j}, the entropy density
(per unit of reference volume) 1, and a set of state variables
[48-51] (i.e. plastic deformation in this case) collected in the
form of a tensor &, namely

eX(X7[)=5X(Xa 77)(,“)- (7)

Notice that £, denotes the same internal energy density as e
but with a different functional dependency. The entropy den-
sity field ny (x, ) is defined as the (energy) dual conjugate
variable to the temperature 6 (x, ¢) described by

. 0EY (X, ny, )

O(x,1) = o ®)
X
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Again, the pull back equivalents of both the referen-
tial entropy and the referential internal energy density
are defined as n, = Jx_ln and Ey(f, h, j,ny, ) =
Jx’lfi'(F, H, J,n,ag). Here, n and € represent the Lagran-
gian entropy and the internal energy per unit undeformed vol-
ume, whereas o g represents a set of state variables measured
with respect to the material configuration.

Similarly, stress conjugate fields with respect to the incre-
mental deformation measures { f, k, j} are defined as [1]

5 (X iy, @) (X iy, @)
f_—7 h = — >
af oh
0EL (X, ny, )
=X 8," ) 9
J

Comparing the time derivative of the internal energy
density e, (x, ) (6) to that of its equivalent re-expression
Ex (X, ny, o), and using the tensor cross product properties
already presented in [41] together with expressions (8), (9)
and (1b-1d), it is possible to relate the incremental stress
tensor o , to the conjugate stresses defined in (9) as

dey 0Ey Of  0E Oh  3E D]
ot of ot oh T or  dj ot
&, 0 &y o
4 ox 9x | 9Cx 0%
dny ot da Ot
:Ef:va—i—Eh:(foxv) (10)
ony 0E oa
Yih:V 00—+ —:—
M I PR PR
=[Zr+ZuXf+Zjh]:Vyv
+98ﬂ &:a_a’
ot da Ot
which leads to the following relationship
oy =2;+ZpX f+Zh (11)

It is also possible to re-express the first law of thermody-
namics in terms of the entropy density 1, (x, t) by combining
(10) and (6) to give

0E 0
da Ot
(12)

37]X . _ . ] . _
9? + divygy = ry + Dppy; Dphy = —

with Dphy representing the rate of physical dissipation intro-
duced by the constitutive model, such as due to plasticity.
This term is indeed zero when considering a reversible
elastic model. Alternatively, and noting that édivqu =
divy (%") + G%V x? - 4y, a conservation-type of law for the
entropy density emerges as [40]
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any . qx 1 : 1

2+ divy (7) = 2 (rz +Dony) = 3V -y (13)
Regarding the heat flux vector g, , we consider a simple

Fourier’s law of heat conduction for an isotropic material as

Gy = —kyVy0:  ky=hj"'h"h, (14)

with i representing the thermal conductivity coefficient cal-

ibrated in the spatial configuration.

3.2 General thermal relationship

In general, the Calorimetry relationships between internal
energy density £, entropy density n, and temperature 6 can
be derived [40] from the definition of the specific heat at
constant reference volume cX . Specifically,

v 30
Ex(X,0,a) = Ex (X, 14 (X, 0, ), @);
nx(X, 1) =Ny (X, 0, a), (15)

where the specific heat can be alternatively expressed as
cl’f = Jx_lcv = JX_IpRCv = pyCy > 0. Here, pg represents
the material density and C, and c,, respectively, represent
the specific heat per unit mass and the specific heat per unit
undeformed volume. Expression (15) can be re-written using
the chain rule to yield

agx (X3 r)X7 u) aﬁx (X’ 97 ¢x)

X —
v any 96

(16)

Given the fact that &y /dn, = 6 (8), a relationship
between the temperature ¢ and the entropy density 7, atcon-
stant elastic deformation can be established after rearranging
renders

Ay (X, 0,a)  cf

a6 {17

With expression above, and for simplicity assuming con-
stant specific heat coefficient cX (such that it does not depend
upon the elastic deformation and temperature), the relation-
ship between entropy and temperature can be integrated
exactly as [35,40]

i R oo 0
Ny (X, 0,a) =17, (X, &) +cjln "
R
X (X, o) =iy (X, 0 =0, ). (18)

Reversing the above equation yields the expression for
temperature field ® but now written in terms of {X, ny, a}
to give
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O(X, ny. ) = Oge ™0/ = oy 1). (19)

As shown above, the notation ® and 6 is used to describe the
same temperature with different functional dependency.

In addition, it is also possible to write a relationship for
the internal energy density as functions of deformation X,
entropy density n, and a set of state variables a. This can
be achieved by integrating expression (15) with respect to
the temperature field between the limits 6z and a given tem-
perature 0, and noting that 8(x, 1) = O (X, ny, &) (19) and
Ex (X, 0, @) = E (X, ny, @) (15), to give

R ny ik (X
Ex (X, nx,oc)zé'x(X,a)+c§9R (e o —l);

~R ~
E (X ) =& (X, 0 =g, a).

3.3 Stress evaluation

To complete the definition of the incremental stress tensor
oy (11), and given that the constitutive relation in gen-
eral depends on the standard deformation maps {F, H, J}
(from material domain to spatial domain), it is conve-
nient to utilise the previously described pull back equiv-

alent of the internal energy density E’f( foh j,a) =
Jx_lé'R(F, H.,J,ag) and of the entropy density func-
tion ﬁ)lf(f, h,j,a) = Jx_lﬁR(F, H, J,ap). For instance,
consider a simple volumetric-based Mie-Griineisen model
described by

nr(F, H, J,aR)%ﬁR(J)=CuFo< 2D

Jq—l)
q k

where ¢ is a dimensionless parameter varying from zero (i.e.
a perfect gas) to one (i.e. solid materials) and Iy is a (pos-
itive) material constant. It is also convenient to relate the
stress conjugate fields {X ¢, Xp, X;} with those of a Total
Lagrangian description {X r, X g, X} [35] defined as

_ 0Er(F.H,J, ag)

B dF ’

_ 0ER(F.H,J,ap) o 4R
3J dJ

_ 0Er(F.H,J, ap)

>
F oH

H

2y

(22)

Indeed, for the conjugate stresses X ¢, it yields

0EY (X, ny, )
af
0E (X, )
o
/- , 23)
_ IER(F(fFy), H(hHy), J(jJy), otr)
= J e

&R AFfF) g p
=J 1= L X _ jolypFTl,

X 9F T af x =Fx
Similarly, for the conjugate stresses X and X

y=J'SyH: ¥;=13,. (24)
Remark 1 1t is particularly useful to obtain stress expres-
sions in terms of the symmetric Kirchhoff stress tensor
{tFr,TH, 7} since it is usually needed when considering
plasticity models. To achieve this, substitution of (4) into
(23) and (24) gives alternative expressions for {X g, Xp, X}

to be described by

Sp=Jdtwe T = e (25)
Y= J_ITJ,

with the stress relations being defined as

tp=3%pF"; tp=3XgH": 1, =J%,. (26)

In the current work, two well-established thermo-
mechanical models, namely thermo-elasticity and thermal-
and rate-dependent Johnson-cook plasticity, will be pre-
sented and summarised in the following section.

3.3.1 Thermo-elastic model

For the case of a Mooney-Rivlin model, a standard
distortional-volumetric internal energy density formulated at
reference temperature 0g is described as [40]

ExC(F H,J) = tp(J"2PF : F) - 3)
FER(JTXH - HYY? —3V3) + XTR(J —1)?

+cubrlo(J — 1), 27

where {¢g, Er, xg} are material parameters. These param-
eters can then be calibrated against those of linear thermo-
elasticity, namely, shear modulus p, bulk modulus « and
thermal expansion coefficient « as [35]
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= 2¢g + 3+/3kg;
r
=20 (28)
3k

k= xR + cy0rT0o(1 — q);

The material conjugate stresses (22) can now follow by
taking the derivative of expression (27) with respect to
{F,.H,J},
2(H:H)'*H (29)

Yp=20RJ PF;, Xy =3&J"

and

2
Sy = =3I TPE ) =260 7 (H  H)

—xx(J = 1) = ¢, (Jq—le)—eR). (30)

Notice that when the value of £ = 0, the above material
degenerates to a neo-Hookean type of thermo-elastic model
[39]. It is now straightforward to obtain the components of
the referential stress {X s, Xj, X} by a direct substitution
of the material stresses {Xr, X g, X7} ((29) and (30)) into
(23) and (24).

3.3.2 Thermo-visco-plastic model

Many engineering applications often exhibit some irrecov-
erable (or permanent) strain and thermal-dependent plastic
deformation. To describe this behaviour, a von Mises plas-
ticity model incorporating Johnson Cook hardening law [2]
is considered and summarised here for completeness. In the
context of large strains, it is customary to decompose the
deformation gradient tensor F' multiplicatively into an elas-
tic component F, and a permanent deformation component
F, as [52,53]
F =F.F),. 3D

This would subsequently lead to the evaluation of the elas-
tic left Cauchy Green strain tensor b,, which is written in
terms of the incremental deformation gradient tensor f and
the inverse of the right Cauchy Green strain c;l measured at
reference domain, described by

b.=F.F/ =FC,'F" =
-1 _ —1 T
= FxC,'F].

S C'ED fT = fe,' fT

As shown in Reference [52], the formulations developed
to describe von Mises plasticity models are greatly simplified
by operating in principal directions. For this reason, the left
Cauchy Green strain tensor described in (32) can now be
alternatively obtained by evaluating the principal directions
of b,, that is n,, to give
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(32)

3
b, = Zkz’ana Q ng,

a=1

(33)

where A, o represents the elastic principal stretches. Recall-
ing the distortional stretches being )A»e,a = J’I/S)»e’a [52],
it is now instructive to introduce the Hencky-based internal
energy functional in terms of the elastic logarithmic stretches

k; ~
& O R dens ) = Er (e e hea) +UR(D.

(34
The volumetric and distortional components are
Ur(J) = %K (In J)? + ¢ 0rTo(J — 1), (35)
and

1>>2+<m (r502))
+<1 < )]

ln Ae 2)

m

=/ |: ln ke 1 1n e 2)2 + <1n):e,3>2]

+ (In2e3)’]

2
+ —p(In 1)2—-M (InJ) (Inhe1+1InAen+In ke 3),
(36)

/1*|: ln)\el
1
3

respectively. With these at hand, the principal components of
symmetric Kirchhoff stress tensor are obtained in a standard
manner [52] as

3
T = Zfaa"a Q ny; Toa = Taa + pJ, 37

a=1

with the deviatoric components 7y, and pressure p emerging
as

R IR

faa = Toa + T3 Toa = 375 s
A& dUR(J dir(J

r}:—RJ, _ r( )_® nR( )7 (38)
aJ dJ dJ

which, after some algebra, gives
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2 2 J
r’a=2uln)ue,a——'uln.]; r}:—'uln(—);
3 3 )\e,l)‘«e,2)"e,3
InJ

P=KT—CUF0 (J’Fl@—@R)- (39)

Attention is now focussed on the evaluation of the radial
return mapping algorithm in order to ensure that T stays on
the yield surface function. In the current work, we consider
the von Mises-based Johnson Cook hardening rule defined
by a yield function of the deviatoric Kirchhoff stress 7 and
a yield stress T, (depending on the equivalent plastic strain
€ p, its plastic strain rate 3 p» and temperature 0) as

T /3
f(T,8p,8p,0) = E(T t)—r),(ap,sp,6)<0 (40)

The nonlinear strain-rate dependent hardening law is in
the form of

Ty(Ep. £p. 0)
£
= (@ +me) [1+cm(2) ] (1- o),
J 80
41)
where
0 for 6 < Bansition

g0) = & —Brnsiion for Biransition < 0 < Omelt

Omelt —Oiransition

for 60 > Opeit.
(42)

Here, 6 is the current temperature, 6 is the melting
temperature of the material and Oyansition 1S the temperature
at or below which there is no temperature dependence of
the yield stress. Moreover, fS is the initial yield stress and
&o represent the reference strain-rate. The remaining mate-
rial constants are material hardening parameter H, hardening
exponent N, strain-rate coefficient C and temperature expo-
nent M. Notice that when 6 > Opet, the material is assumed
to melt and behave like a fluid, offering no shear resistance
since T, = 0.

An algorithmic representation of the one-step discrete
time integration process (i.e. from n to n + 1) of the Hencky-
based model with von Mises rate-dependent plasticity model
described above is summarised in Algorithm 1. In the case of
Johnson Cook hardening rule, the plastic multiplier Ay hasto
be obtained via the enforcement of the yield condition (40).
This generally leads to the solution of nonlinear equations
which would require an iterative Newton-Raphson method.
In order to prevent singularities potentially arising from the
derivative of a function within each Newton-Raphson itera-
tive process, it is instructive to apply a change of variable by

defining a new variable 8 in terms of plastic strain £, plas-
tic multiplier Ay and Johnson Cook hardening exponent N,
thatis g = (E »t Ay)N. For clarity, the iterative solution
procedure is summarised in Algorithm 2.

Algorithm 1: von Mises plasticity model with Johnson
Cook hardening law

n
Illpllt :fn+l,hn+l’ Jn+l, @n+l’ I:c;li| ’g\;
n+1

. ntl —1 an+1
Output.ax ,[cp] 2 Ep

P Jrl -1 1
e L —e, To(J4710m ! — o)

(2) Compute trial elastic left strain tensor:

btrlal fn+l [ ] [fT]”‘H

(3) Spectral decomposition of pUrial:
()Lmal) ( g+1 ® nZ-H)

(4) Obtain trial deviatoric Kirchoff stress:
2l = 2 In el — 3 In (g

(1) Evaluate pressure: p"+! =

ptrial _ 3
el =

(5) Obtain yield criterion: f (7, (A"‘al g, gn O"*l)

X ‘ 172
[ ()] s

(6) Compute direction vector and plastic multiplier:

if f( trml " _’11)’ @n+1) > 0 then

~trial
Direction vector: v*! = “7“1/2
trial 2
350 ()]
Plastic multiplier: Ay (See Newton-Raphson algo-

rithm 2)
else
Ut = Ay =0

end
(7) Update deviatoric Kirchoff stress tensor:

i,n+1 — fﬂrtt(;klnn+l ® nn-H; fﬂr;&H [rld] 2/»LA)/U

(8) Evaluate referential stress tensor: aﬁ“ = 6”“ + prtiprtl,
~_ -1z o-T
o=J1f
(9) Update elastic left Cauchy strain tensor:
1 3 1)2 1 1.
bt =30y () (mgt @ ngt);
In )»2121 — A),Ugt'+l

n+l _
InAg% =

(10) Compute plastic right Cauchy Green tensor:
]t el _pntl
[ ] =t )

(11) Update plastic strain: é;*' =g, + Ay

3.4 Combined equations

Combining equations (1) and (13) into a first-order hyper-
bolic system expressed in the reference configuration gives
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Algorithm 2: Evaluation of plastic multiplier through
Newton-Raphson algorithm

. ptrial zn Zn n+1
Input : 7 ,s,,,s,,,@)

Output: Ay
(1) Compute constant value 7;

T= 7 (35, 2, &, 0"+1) + 7,8, &, ©7*1) =

ao
1
3 Atrial\ 2 2
(3 22 5’
N
(2) Initiate B = (é;)
(3) Assign TOL =1 x 10 %and Err =2 xTOL

while Err > TOL do
(4) Compute L(B);

() =3u [ BN — ] +

<r§ L HB [1 +Cln (2)} (1 - (g(®”+‘))M>>

Ty () +Ay.E5,0m T
(5) Evaluate the residual R(B); RB)=LPB)—-T
(6) Compute the derivative of residual;

R _ up(IND g [1 +Cln (%)] (1 - (g(®"+‘))M>

(7) Update the variable S; B=pB+E;
-1
IR
%_ = - I:W:I R
(8) Obtain the error; Err = |R|

end

(9) Plastic multiplier: Ay = plYN — &y

3

Uy OFF
—L 4y —L=5:; in Q. (43)
ot ; axi X

Here, U, is the vector of conservation variables (per unit
of reference configuration), .’le is the flux vector in i-th
direction at reference domain and Sy is the source term (per
unit of reference configuration). Their corresponding com-

ponents are

b oey
Jﬁ( v®e3('
U= || FH=-|Ix(ved
J h:(v@e&)
=X %qx"’;(
_ £
0
Sy = 0 (44)
0
_é(rx"‘bl’hy)_g%vxe'qx
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4 Variational formulation

In order to provide a proper physical implication to the conju-
gate fields of the first-order system (43) at hand, we introduce
the Ballistic energy density B, [40] per unit of reference
volume (also known as the Lyapunov function of the thermo-
mechanical process) defined by

Bx(th) = Bx(anf’h»jvnxaa)

1 :
= Px'Px‘ng(fshs]s’?xv“)— eRnX ’
20y ——
—_— internal energy heat component

kinetic energy

(45)

with By (x,t) and Bx (px, f.h, j,ny, o) being alternative
functional representations of the same magnitude. In the
above equation, the first term of the right-hand side rep-
resents the kinetic energy, the second term represents the
internal energy density and third term represents the ther-
mal heat component. Recalling the definition of conjugate
stresses (9), it is now possible to obtain the associated work
conjugates Vy as [35]

p v
Bigi A& v
; 7 9 DY
B 4 ‘
V=X = | B | = ﬁ == |, (46)
oy o -l
aBy X X
K % 0
3By v
any |

where ¥ = ®—60g denotes the temperature change. With this,
the standard weak statement [54,55] of the underlying system
is established by multiplying the differential equations (43)
with their suitable work conjugate virtual fields §Vy, and
integrating over the reference domain 2, of the body, to
give

ou aFx
SV, ¢ —X dQ =—/ SV, ¢ —L dQ
/Qx x® 75 X o 5y X

1

+ f 5V, » Sy dy., 47)
QX

where the symbol e is used to denote the inner product of
work conjugate pairs. In order to introduce physical boundary
contributions acting on the body, the flux term on the right
hand side of (47) is now integrated by parts and the resulting
equation yields
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ou sy
SV, ¢ —X dQ :/ FX e X aQ
/Qx x® 7oy X o, " A X

—/ 5vxo.7-'§dAx+/ SVy 08y dQy.
082y Q

X

(48)

Here, the normal fluxes are defined as .7:'1{, = .’F?( Nl.x with
Nl.x being the outward unit normal to the reference domain
in the i-th direction. Above general representation (48) can
be particularised to the conservation equations under con-
sideration, namely the linear momentum p,, the triplet of
incremental geometric deformation measures { f, k, j} and
the entropy density 1, as

5
/ 5v - deQX_—/ LV S0 dQy
Qy at
+/ 5v - fy dy + / 8v -ty dAy; (49a)
QX
/ 5% - :/ 5% 1 VyvdSy; (49b)
QX QX
oh
/ 8%y 5o dy =f 554 (f X Vyv) dy: (49)
QX QX
j
/52,a—tdsz,(=/ 5%k 1 VyvdSy; (49d)
QX QX

ony
50X o, = — [ 89 dA,
Q, Ot 9%y, 93
D
+/ SO (M) A9,
o ®

X

+/(q—x)~v 59 dQ —f 319<iv ©.q )dQ .
QXG) X X QX ®2 X X X

(49¢)

50 q
- Vx (@) dS2y fo (UX) ’
V89 dQy — o 80 (éVXG) : qx> dS2y, an alternative
variational statement for (49¢) can now follow

502X 4y = — [ o0 dAy

Q, 0 a9y 93

+/ 5o (2 PPy +/ 4y -V <w>d9
Qx @ X QX X X @ X

(50)

Recalling that fo qy

Notice here that §0 = §© is the virtual conjugate field of
the entropy n, . The objective of integrating by parts as shown
above is to enable the enforcement of boundary conditions
via physical boundary fluxes. This is especially useful for the
momentum update (49a) and the entropy density equation
(50) as both expressions naturally introduce the boundary
tractions £ g, boundary heat flux g p and boundary temperature
0B.

4.1 Second law of thermodynamics

It is instructive to revisit the global version of the second law
of thermodynamics when written in terms of the Ballistic
energy density B. Taking the derivatives with respect to its
arguments, the time derivative of the Ballistic energy density
is obtained via the chain rule as

d
— B, d$2
di Jo, x diay
By (py. f. b j. 0y,
:/ x(Px f Js Mx a) de
Qy at
B, o B of 9k
Q, \0py Ot af - ar ah ot
B, dj 9B, d aB, 9
Kt e Aot o) Qe B [P 1o
d0j ot  dny Ot da Ot
APy af oh dj
= RS SN W RN, ) PP
/52)((” gr T TR T iy,
Iy  0E Oa
P—= 4+ —= 0 — ) dQ
RLAFY da ot X

bl
=/ (v-%+(zf+):hxf+2jh):v v
QX

oy,
—i—ﬂ% - Dphy) A9,

opy ony .
= —= A% —= — D a2,
/Qx (” 9y T Ox P Vxv U Phy X
(51)
where, equations (46), (1b-1d) and (11) have been substituted
in the second, third and fourth lines of (51), respectively. Con-

sequently, we can substitute the linear momentum equation
(1a) into (51) to give

d
—/ BdeV=/ [v- fy +v-divgoy
dt Qy Qy

oy .
—i—o’xlvxv—i-l?%—pphy] dsy. (52)

Recalling that v - divyoy + 0y : Vyv = divy (oiv),
above equation reduces to

d
2| B =/ [v-f +div, (0 v)
dt Jo, x @Sy o, X x(0y

3 .
podx _ Dphy] A9y (53)

Jt

Moreover, let us now focus on the term associated with
the time rate of the entropy density. By replacing §9 with ¢
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in expression (50), and noticing that

1% Or ~1
qx - Vx ) =4qx - Vy 1_7 = —Orqy - V40

= 2qy - Vyb, (54)

the term involving entropy density rate on the right-hand side
of (53) becomes

9
/ 9 Q= —/ 9 ("—B> dA,
Q, Ot 02, \0B

D 0
+/ Y ] dQX+/ R gy - Vx0dSy.
Q 0 QXG

(55)

Combining (55) and (53), and carrying out integration by
parts of the div, term in equation (53), it after some re-
arrangement renders

d . Or
— | B,d& —next—Qexlzf —qy - V,0dQ
dt o X X X X o, 92 X X X

Or
- — Dphy dS2y, (56)
o 0

where l;I‘;(XI denotes the mechanical power associated with
external forces, defined as

ﬁext — /
X Q

and Q‘;'(’“ represents both heat source and heat flux added
(removed) to (from) the system, defined as

v-fXdQX+/ vB-thAX, &)

be 32y

9 )
t_
o _/Q 5T A9y —/B S4B dAy. (58)

X Q)(

Recalling the Fourier’s law of heat conduction (14), the
first term on the right-hand side of (56) is non-positive, which
is demonstrated as below

Gy V0 = — (kyVy0)-Vy0 = —ky : (V0 @ V,0) <0.
(59

Additionally, consider the case of elasto-plasticity [49]
where the elastic potential energy (34) is expressed in terms
of elastic left Cauchy-Green tensor b, = f c;l fT (with
c;l = FXC;IFXT ). Under this circumstance, the state
variable is in fact the inverse of the plastic right Cauchy

Green tensor (with respect to reference configuration), that is
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o= c;l. With this, the rate of plastic (physical) dissipation
Dphy described in (56) becomes

dEx .80171
3c;1' ot

Drhy = — (60)

Insofar as the time rate of plastic strain & )’; has been defined
as the work conjugate to the von Mises equivalent stress T
[48], equation above can then be recast as [49]

. . 3
DPhy = 8)[(7‘[? = J_lépf; T = 5 (i’ . i'), (61)

where 7 is the deviatoric component of the Kirchhoff stress
and the transformation é; = Jy lép. Observing that in
the above expression the rate of dissipation is always non-
negative, that is Dphy > 0, equation (56) can be transformed

into the following inequality

d rext ext

I BydQy — " — Q5 <0. (62)
X

This represents a valid expression for the second law of ther-
modynamics [48] of a system. Satisfaction of inequality (62)
is a necessary ab initio condition to ensure stability, other-
wise referred to as the classical Coleman—Noll procedure
[56]. This fundamental concept will be further exploited in
Sect.5.2 when introducing consistently derived numerical
dissipation to the SPH discretisation.

5 Discretisation

5.1 SPH semi-discrete equations

Combining the use of nodal (or particle) integration for
approximating the weak form integrals (49) and the standard

corrected gradient evaluation for V8V, [35,57] to ensure
zeroth- and first-order completeness, that is

VxSV = Y VE GOV, —8Va) @ Vy Wi (xa),
beAl

the SPH discretisation for the system {p,, f,h, j, ny}

described in (49a-49d) and (50), after some algebraic manip-
ulation becomes

ap4 »
VESE = Y Th VIS AN+ Y D (63)

benb benb
3 fa 1 X
Vist = > 5 =) ® CGi, (64)
beAb
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oh 1
VX ata =fax| Y 5 (¥ = va) ®Ck |, (65)
beAb
X =ha > 5 =) ®Cl | + Y Dl
beAb beAb
(66)
Iny ! X _ b X
Vi =T Z 20, (a3 - €l — a3 C)
+V/ ®—a - @Aa, (67)
where the pair-wise internal force Ta)gl is defined by
1
1) = 5 (o5 Ch —o%CL,). (68)

with the pseudo area operators, see Reference [34], being

defined, respectively, as

CX =2VXVIV, Wy(x,),  CF, =2VIVEV, Wa(xy).
(69)

In the above expressions, AZ represents the set of neigh-
bouring particles b belonging to the domain of influence of a
given radius 24 of particle a, AX and VX represent the refer-
ential tributary area and the volume. The boundary traction
t is directly computed from the given (Neumann) bound-
ary conditions, whereas the heat flux gp and the boundary
temperature Op are the prescribed thermal boundary condi-
tions. Note that AX = 0 for those particles not located on the
boundary. It is also worthwhile pointing out that even with the
use of kernel gradient correction (69), expression (63) still
ensures the global conservation of linear momentum due to
the pair-wise nature of internal force representation (68).

Finally, in order to address non-physical zero-energy
modes due to the rank-deficiency inherent to the use of nodal
integration (e.g. collocation), appropriate numerical dissipa-
tion terms {’Dﬁ,’j, ab} (refer to expressions (63) and (66))
must be introduced. These terms, being locally conserva-
tive by construction, can be suitably derived utilising the
semi-discrete version of the second law of thermodynam-
ics written in terms of the Ballistic energy (62), guaranteeing
non-negative entropy production. This will be demonstrated
in the following section. It is interesting to note that the stabil-
isation term incorporated to the linear momentum evolution
(63) addresses the appearance of hourglass modes due to rank
deficiency, whereas the stabilisation in the Jacobian evolution
(66) would be used to remove pressure fluctuations.

Since the resulting set of equations is rather large, it will be
suitable to employ an explicit type of time marching scheme.

In this work, a three-stage Runge—Kutta explicit time inte-
grator presented in [1] is used.

5.2 Numerical entropy production
In this section, inequality (62) is assessed for the set of SPH

semi-discrete equations described in (63)-(67). The semi-
discrete form of (51) is

(A
vaﬂ
4 dt
a
d dh
—ZVX[va- L+3s: dft"+za~ dt“
dja dny
+Tf P — Dhny
d d
_ZVX[va-L+<>:‘}+zaxfa+zh> dft”

d
dif’
+oa— Dphy]+22 z4D),

a peAb

dpi dfa .
:ZVLIX [va7+ai d[ +l9a d[ DPhy:|

+ZZ 4D}y,

a peAb
(70)

where, equations (65), (66) and (11) have been substituted in
the first and second lines of (70), respectively. Consequently,
we can substitute the evolution of linear momentum equation
(63) and of the first law (67) into (70) and, after some simple
algebra, gives

Z VX— — TMext — Qext
Z Z v b+ZVX . dfa
a peAb
b
_Xa:bgh 26, 9%+ Cly — ax -l
= ZV —:DPhy > (~ve D~ 247,
a peAb
Drotal
(71)
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Here, ﬁext and Qe denote the semi-discrete power contri-
bution and total heat contribution, respectively, expressed as

ext—zv Vg - fX +ZAxtB ;

0
Qe = Y VX ®—"r§; - AL @V a4 (72)
a a y

Under the framework of variational consistency [33,58], the
first term on the first line of (71) must be zero. This can be eas-
ily proved if the discretisation of velocity gradient for internal
work is consistent with the discretisation for the incremental
geometric conservation equations, which indeed is our case
as shown below

DI 3D %[va.(a;q{b) (@ k)]

a benb a peAb
=Y 2 [ o5 —meeyel)]
a beAb
:—Za‘)’( : [% (vb—va)®C3fb:|
a
_ _va c)t( :df“

(73)

It is now the objective to prove that the remaining terms
on the right-hand side of (71) are non-positive (to be in
agreement with inequality (62)). With respect to the heat
conduction term (second term on the first line of (71)),

_2226

(qx Cly—dy - Cba)

a peAb
=22 4 [1(& ﬁ“)cx}
- ¢ — 24 X
oy 2\e, ©,) ¢
1 (Or (Op —Ou)\ x
Y Y [5 (25t e
a peAb 2 ©aOp ‘ 7
1
;[5 (®h_®“)cc)z(b]
a pe Ab
=> Y VX g% - Vx0(Xa 1) <0,
a peAb

where the last inequality is fulfilled due to the nature of the
conductive heat flux. With respect to the physical model dis-
sipation term (the first term on the second line of (71)), it is
again non-positive due to the definition of the rate of plastic
dissipation, that is
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-3 3 VaX—Dphy I —Raﬁafa

a peAb a peAb
0
=33 Ve tEi, <0. (75)
a b 04
beA,

As for the numerical dissipation term (second term on the
second line of (71)), this term can be equivalently written by
swapping indices a and b to give

Diotal = _Z Z (va Dl’x + E DJ )

a peAb
==> > (w- Dt +xD],). (76)
a penh

Simple averaging the first and second terms of the expres-
sion above, and noting the local conservation nature of the

stablisation terms such as D,f; = —’DS,’)‘ and D), = —D!,,
an alternative expression for Digtg) 1S
Diotal = Z Z Dtotal;
a peAb
DU — (v, — v,) - DPX + (22— 24) D/ (77)
total — \Ub a ab J i ab*

Dissipation terms remained to be defined in order to guar-
antee non-negative total entropy production (and thus, the
fulfilment of the second law of thermodynamics). Sufficient
conditions to ensure this, namely Diya1 > 0, are given by

Px _ P o _ ¢ (b
D, =S, (vy —vy); Dy = Sy (35 — Z?), (78)
with {S: 58 J -} being defined as positive semi-definite sta-
bilisation matrices [1]

sPx

Ave X Skew
pive ek Sy
) [ P apab® "ab"’cs ab(I ngp ®nab)]

. cSkew | Skew
J Cab Cab
Sab = Ave Ave X, Skew
200 v 105K

(79)

Here, [o]Ave = é ([e], + [®]p) and the direction vector is
given by ny, = Hiz—xll ¢s and ¢, correspond to the shear
and volumetric wave speeds obtained via the classical wave

propagation theory [49]. In addition, the pseudo-area vector

c ;‘b Skew (along with its norm magnitude Icx; Skew) 1y and its
push forward equivalent (spatial) vector cSlb‘eW are, respec-

tively, defined as C ;S;Skew = % (C ‘)fb C li(a) and cSkeW =
1 X X
2 (h“Cab - hbcba)‘
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Interestingly, the dissipation terms are directly related to
the jump (or difference) in velocity and stresses between
pairwise particles, typical upwind method [49] of first-order
Godunov-type scheme. In order to ensure second-order accu-
racy in space, and following our previous work [34], a linear
reconstruction procedure based on the use of corrected kernel
gradient operator is used for the reconstruction of the left and
right states at the mid-edge connecting particle a and parti-
cle b. In addition, we have also implemented the classical
monotonicity-preserving Venkatakrishnan slope limiter [59]
to better handle spurious oscillations in the region of shocks.

6 Algorithmic description

For ease of implementation, Algorithm (3) recaps the algo-
rithmic description of the Updated Reference Lagrangian
SPH methodology for thermo-mechanical coupled problems
at finite strains. One interesting feature of the proposed SPH
algorithm is the ability to suitably update the reference con-
figuration when certain criteria are met. This indeed will be
explored in forthcoming publications, especially in the area
of dynamic fracture in brittle materials where the principal
stress criterion of Rankine will be employed. However, in
this work, we decide to update the reference domain at every
time step of the time integration process. This is to check
whether the proposed algorithm is capable of removing unde-
sirable spurious modes, a typical shortcoming of the standard
Updated Lagrangian SPH formulation [24].

7 Numerical examples

In this section, a series of three-dimensional numerical
examples is presented in order to assess the performance,
effectiveness and applicability of the proposed Updated
Reference Lagrangian Smoothed Particle Hydrodynamics
(URL-SPH) algorithm described above. It is crucial to show
that the overall URL-SPH formulation

e achieves equal second-order convergence for velocities,
stresses and temperature,

e alleviates spurious oscillations in the region of shocks (or
discontinuities),

e circumvents zero-energy modes (under dynamic stretch-
ing) and pressure instabilities,

e preserves the total linear and angular momenta over a
long term response, and

e guarantees a non-negative rate of production of total
entropy within a coupled system.

In the following numerical computations, the global a pos-
teriori angular momentum projection algorithm as shown

Algorithm 3: Updated Reference Lagrangian SPH
Algorithm

Input : initial geometry X, and initial states of py, fa, ha, ja
ny

Qutput: current geometry x,, particle velocity v, and current
states of F,, H,, J,

(D INITIALISE Fy = Hy =1, J} = landx, = x, = X

(2) FIND neighbouring particles within a given support size

(3) COMPUTE corrected kernel and gradient approximations

for Time ty to Time t do

if update at this step = TRUE then

(4) COMPUTE the velocity as v, = %

(5) ASSIGN Fy < foFy, Hy o < hoHy,
Jy.a < JjaJy and x4 < x4

(6) UPDATE the linear momentum p‘)‘( =J, ‘ll,oR v,
(7) REINITIALISE f,, hy, ja

(8) COMPUTE corrected kernel and gradient
approximations

(9) COMPUTE o

end
(10) EVALUATE p and s-wave speeds: ¢, g

(11) COMPUTE time increment: At
for RK time integrator = 1 to 3 do
(12) COMPUTE slope of linear reconstruction procedure

(13) COMPUTE right-hand-side of the mixed-based
system:

1.7;, Jas ha, jo and 77;1(
(14) ENSURE conservation of angular momentum

(15) COMPUTE smoothed velocities using the corrected
kernel

(16) EVOLVE p;, fa>has jas nj’( and x,
(17) COMPUTE o

end
(18) COMPUTE smoothed variables using the corrected
kernel

(19) EXPORT results for this time step
(20) ADVANCE in time

end

in [1] is activated. Moreover, the kernel function as well
as its gradient evaluation must be expressed in terms of
the reference configuration. To achieve this, we first map
the domain of interest from reference domain to material
domain, perform the necessary calculations (e.g. both ker-
nel and its gradient evaluation), and then push forward to
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Table 1 Linear thermo-elasticity: material parameters used in the sim-
ulation

Problem parameter Up 5% 107 m
Lamé parameters " 6.5385 MPa

A 9.8077 MPa
Specific heat capacity C, 1 JK Tkg™!
Reference temperature Or 293.15 K
Thermal conductivity h 10 WK~ 'm~!
Material density PR 1100 kgm ™3
Mie-Griineisen coefficients q 1

Iy 8.5889

the reference domain followed by the application of appro-
priate corrections for completeness. Details can be found in
Sect.4.1 of Reference [1]. In terms of the temporal stabil-
ity of the algorithm, the Courant-Friedrichs-Lewy number
of 0.9 has been chosen [1]. In addition, comparisons are also
carried out against the results simulated using an alterna-
tive in-house Total Lagrangian SPH algorithm [35], which
can indeed be recovered by ensuring no updates of the
configuration takes place over the entire simulation, that is
F, = Hy = I and J, = 1. It is not the premise of the
paper to claim that URL-SPH algorithm outperforms our
previously developed Total Lagrangian SPH algorithm [35],
but to demonstrate that the current URL-SPH algorithm can
indeed be equally compelling and competitive in the applica-
tions of solid mechanics. This in general is not necessarily the
case for standard Updated Lagrangian SPH algorithms [24],
where non-physical zero-energy modes can accumulate in
the solution over time and eventually lead to the breakdown
of the numerical scheme.

7.1 Swinging cube
To check the convergence pattern of the proposed URL-SPH
algorithm, we consider a unit cube subjected to both mapping

and temperature profiles described, respectively, as

¢exact(X’ t)

sin(%) cos(%) cos(%)
= X + Upcos(Bmt) | cos(B)sin(EF) cos(ZE) | (80)
cos(%) cos(%) sin(%)

and

3
9 (X 1) = 0g (1 — ;UO cos(Brt)ly

o () (D)o
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with the parameter 8 being defined as

2 PR PR

2
= ﬁ <2MR +/\R> N (QRFOCU). 82)

With these equations at hand, and to guarantee the struc-
ture is in equilibrium state, the exact profile for the heat source
term rg becomes

3

9
rp = —%h@RFoUo cos(Brt)

(D@2 w

whilst the body force term remains zero, thatis fg = 0. The
complete derivation procedure was detailed in [40]. In this
example, a linear thermo-elastic model' is considered with
the parameters summarised in Table 1.

Regarding boundary conditions of the cube, we enforce
symmetry boundary conditions (i.e. restricted to tangential
movement) at the faces X = 0, Y = 0 and Z = 0 and
anti-symmetry boundary conditions (i.e. restricted to normal
movement) at the faces X = 1,Y = 1 and Z = 1. Addition-
ally, reference temperature g must be enforced at every time
step of the time integration process at those three boundary
faces,namely X = 1,Y =1land Z = 1.

Comparing with the exact expressions provided in (80)
and (81), Fig. 1 illustrates the L, global convergence anal-
ysis of the overall SPH algorithm at time = 8 x 107 s.
Indeed, one crucial advantage of the proposed SPH formula-
tion over the standard (displacement-based) SPH algorithm is
the ability to achieve equal second-order convergence for all
the variables solved, namely linear momentum (or velocity),
the stress tensor (or strain) and the temperature (or entropy).

7.2 Cable with step function loading

A wave propagation of a cable under the influence of shocks
is considered. The purpose of this test case is to show the
shock capturing capability of the proposed SPH algorithm.
Similar type of problems were also explored in References
[60-62]. A cable of length L = 10 m, with a unit cross
section A = 1 m?, is fixed at the left end (X = 0), whilst a
step traction loading is enforced at the right end (X = 10 m)
given as

! Detailed discussion on the linear thermo-elastic model was docu-
mented in Appendix C of Reference [40].
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10°

Fig. 1 Swinging cube: L, global convergence analysis at time f = 8 x 10~ s for (a) the components of linear momentum (or velocity), (b) the
components of the stress tensor and (c) the temperature. Results obtained using a linear thermo-elastic model and the material properties used are

summarised in Table 1

Velocity vy (m/s)

Velocity vy (m/s)

Fig.2 Shock dominated problem: the first row illustrates the time his-
tory of (a) horizontal velocity component v; and (b) axial stress o
measured at the middle of a structure. The second row shows the par-
ticle refinement analysis for (c) velocity component v; and (d) axial

%107

x10°

—— No reconstruction

—s=—Reconstruction with limiter
Exact

—e—Reconstruction without limiter

43 44 45 46 47 1

Exact

——No reconstruction
] —o—Reconstruction without limiter
—=—Reconstruction with limiter

10 20 30 40

60 0 10

40 50

60

Sect.7.2

stress 11 Exact solutions are also included for comparison purposes.
)}1 Results obtained using a linear elastic model without considering ther-
mal effects. The corresponding material parameters are reported in
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x10°°
——No reconstruction
—o— Reconstruction without limiter
—=—Reconstruction with limiter
Vertex-based Finite Volume Method
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-
[$}]
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o
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X

a

S
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3 x107
——No reconstruction
25 —o—Reconstruction without limiter x10™
—s—Reconstruction with limiter 10
2 Vertex-based Finite Volume Method
5
1.5

0 10 20 30 40 50 60
Time (s)
(b)

Fig.3 Shock dominated problem: time history of (a) horizontal veloc-
ity component vy and (b) axial stress o }! measured at the middle of a
structure. Finite volume solutions [49] are also included for compari-
son purposes. Results obtained using a Johnson-Cook model without
considering thermal effects. The corresponding material parameters are
reported in Sect.7.2

Tp
ts)=| 0
0

whent > 0, 84

with Tp = 0.001 Pa. Roller support (also known as sym-
metry boundary conditions) are applied on the remaining
boundaries. For simplicity, no thermal effects are included.
First, we consider a linear elastic model where the material
properties are Young’s modulus £ = 1 Pa, material density
pr = 1 kg/m? and Poisson’s ratio v = 0. The closed-form
expression for the horizontal displacement of the cable is
given as a function of position X and time 7 as

w(X.1) = 2T0 Z( Jynt! [ Cos(a)nt)]

l’l

2n — X
n <<"_>”> , (85)
2L
where the natural frequencies wj, are given by
_ 7(2n—1) | EA (86)
w, = 2 pRLz.
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Upon the sudden application of external force at the right
end of the cable, a shock stress wave propagates towards the
left fixed end and then gets reflected back. Figure2a and b
monitor the time history of both the horizontal velocity and
the axial stress wave measured at the middle of a cable, that is
when X = 5m. As expected, first-order URL-SPH algorithm
(without kernel gradient evaluation for reconstruction) intro-
duces slightly more numerical dissipation to the solution. To
further improve the solution accuracy, a linear reconstruction
procedure is used. Minor under- and over-shoot oscillations
are seen in the presence of shocks. The oscillatory behaviour
however can be addressed with the introduction of appropri-
ate slope limiter. Moreover, a particle refinement study is also
carried out. Three model refinements are used, namely (M1)
606, (M2) 1206 and (M3) 2406 number of SPH particles.
As displayed in Fig.2c,d, improved representation of shock
profile is clearly seen by increasing the number of particles.

Second, we examine the exact same problem but now
with Johnson-Cook plasticity model (41). Again, let us con-
sider isothermal condition which requires g(9) = 0 to be
enforced in the yield function (41). The remaining parame-
ters used in the Johnson-Cook model are N = 1, C = 0,
fg = 0.0015 Pa and the hardening parameter H = 0.05 Pa.
For benchmarking purposes, the results obtained using the
in-house vertex-based finite volume algorithm [49] is also
plotted and compared. The proposed URL-SPH algorithm
combined with slope limiter removes unwanted oscillatory
behaviour and, more crucially, is in excellent agreement with
the finite volume results [49]. This is seen in Fig. 3.

7.3 L-shaped block

As documented in References [1,35,40], the primary aim of
this test case is to assess the capability of the proposed URL-
SPH algorithm in the preservation of both the linear and
angular momenta of a system. The geometry of the prob-
lem is illustrated in Fig. 4. The block is subjected to a pair of
(time-varying) boundary forces Fi(¢) and F>(t) which can
be mathematically described as

150

Fi(t) = —F,(t) = | 300
450

t 0<t<2.5s,

5—1t25<t <S5s,
0 t > 5s.

AOR

f@ = (87)

When considering thermo-mechanical coupled physics,
we also need to prescribe an initial temperature distribution
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Fig.4 Problem setup for
L-shaped block: a geometry and
b initial temperature profile

0y = 300K

Table 2 L-shaped block: material parameters used in the simulation

Lamé parameters nw 19.423 kPa

A 29.135 kPa
Specific heat capacity Cy 1 JKTkg™!
Reference temperature Or 293.15 K
Thermal conductivity h 10 WK~ 'm™!
Material density PR 1100 kgm™3
Mie-Griineisen coefficients q 1

o 0.0255
across the structure defined as

F-3)
Or +-—=—B00—-0r) K 3 <Y <10m,

or + X52(250 —0r) K 3 <X <6m,
Or elsewhere.

This can be equivalently done by enforcing the associated
entropy profile via the relation between the entropy and tem-
perature (refer to (18)), that is
)
0

t=0
— 1. 88
o (88)

Nx

:m(p:LH:LJZLe

t=0

— X
=cXn

A Mie-Griineisen-based thermo-elastic model as detailed
in Sect.3.3.1 is considered. The associated material param-
eters used in the simulation can be found in Table 2. For
completeness, three different levels of particle refinement are
considered: {M1, M2, M3} comprising {828, 5445, 13950}
number of particles, respectively.

Temperature

First, a particle refinement study is carried out. This can be
seen in the first three columns (from left to right) of Fig.5.
The deformation pattern, together with pressure and tem-
perature profiles, simulated using a relatively small number
of particles (M1), is in good agreement with those results
obtained using finer discretisations (M2 and M3 models).
For benchmarking purposes, an alternative in-house Total
Lagrangian SPH algorithm [35] with M3 discretisation is
also included and compared. Comparing the results of the
proposed algorithm and those of the Total Lagrangian SPH
algorithm, near-identical results are observed (see Fig.5).

Second, Figs.6a and b shows the ability of the proposed
algorithm in ensuring the conservation of global linear and
angular momenta. The global linear momentum, L@ —
fo Py A2y, is expected to oscillate around zero value
(machine error) at all times. The global angular momen-
tum, Aol — fo X X py dS2y, is indeed conserved after
the loading phase + > 5 s. Another interesting variable to
be monitored is the global entropy n;’tal = fo Ny dS2y.,
which increases over time throughout the entire simulation.
This is seen in Fig. 6¢, indicating the discrete satisfaction of
second law of thermodynamics. In addition, Fig.6d depicts
the evolution of various energy measures. These include
kinetic energy K@ = fo ﬁ Px - Py dS2y, internal

energy associated with mechanical contribution ﬁ?clh =

fo S’f( S, h, j)dQy and internal energy associated with
nx—k (%)

X
thermal effects £l = fo cXorle <@ —1)dQy.In

this case, the external power only arises as a result of external
boundary traction, thatis Yex; = . 29, tg-vp dAy. Withthese

athand, the total energy B = gtowl 4 gtol 4 gtotal oy,
can now be computed. This consequently leads to an alter-
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M1 M2

M3 Total Lagrangian SPH [35]

Pressure (Pa)

-2.5e+03

-2000

-1500 -1000 -500

M1 M2

500 1000 1500 2000 2.5e+03

‘ L d—

M3 Total Lagrangian SPH [35]

Temperature (K)

25e+02 285 260 265 270 275

—

Fig. 5 L-shaped block: comparison of deformed shapes at time ¢ =
155s. The first three columns (left to right) show the particle refinement
of a structure simulated using the URL-SPH algorithm, whereas the
last column (on the right) shows a deformed structure via alternative
in-house Total Lagrangian SPH algorithm [35]. The first row depicts

native energy measure known as Ballistic energy, that is
Bl = E% —grn'el Aslight decrease in the total energy
is unavoidable after the loading phase due to the incorpora-
tion of upwinding-based numerical dissipation (76) to the
system.

Third, and for qualitative comparison purposes, Figs. 6e
and f monitor the time evolution of the velocity component
vy and the temperature at position X = [6, 0, 0]7. The solu-
tion converges with a successive level of refinement. Finally,
a sequence of deformed states are depicted in Figs.7 and
8, where the colour contour plot indicates the pressure and
temperature distributions, respectively. Stable solutions are
observed even after a relatively long-term response.
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285 290 295 300 305  3.1e+02

‘ L eee—

the pressure contour and the second row illustrates temperature con-
tour. A Mie-Griineisen thermo-elastic constitutive model as described
in Sect.3.3.1 is used. The corresponding material parameters are sum-
marised in Table 2

7.4 Punch test

We consider a block with 3 x 3 of vertical holes with diameter
D (see Fig.9a). The block is left free on its top surface and
is constrained with roller supports (i.e. symmetric boundary
conditions) applied to the rest of the surfaces. The objective
of this test case [40] is to check if the proposed URL-SPH
algorithm is capable of alleviating the appearance of spurious
pressure in a highly constrained scenario. The deformation
of the block is initiated with a compressive velocity profile
applied in a quarter of the domain (X > 0 and ¥ > 0),
together with a linear temperature profile, described as

0
=-5 0 (m/s); 6

z
— 0g + 102 (K),
Z/H = H

v|t:0

(89)
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Fig.6 L-shaped block: time evolution of (a) global linear momentum,
(b) global angular momentum, (c) global entropy, (d) different energy
measures plotted with two different scales, (e)velocity component vy at
position X = [6, 0, 017 and (f) temperature at position X = [6, 0, 017.
In terms of the energy plot, the magnitudes of internal heat energy and
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total energy refer to the vertical axis on the right, whereas the remaining
energy measures refer to the vertical axis on the left. A Mie-Griineisen

thermo-elastic constitutive model as described in Sect.3.3.1 is used.
The corresponding material parameters are summarised in Table 2
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Pressure (Pa)

-2.5e+03 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2.5e+03
e : ' L ees—
Fig. 7 L-shaped block: a sequence of deformed structures with pres- elastic constitutive model as described in Sect. 3.3.1. The corresponding
sure distribution at times ¢ = {0, 2, 4, ..., 48} s (left to right and top to material parameters are summarised in Table 2

bottom), respectively. Results obtained using a Mie-Griineisen thermo-
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Temperature (K)
25e+02 255 260 265 270 275 280 285 290 295 300 305  3.1e+02

s | : ' L ee——

Fig. 8 L-shaped block: a sequence of deformed structures with tem- elastic constitutive model as described in Sect. 3.3.1. The corresponding
perature profile at times t = {0, 2,4, ..., 48} s (left to right and top to material parameters are summarised in Table 2
bottom), respectively. Results obtained using a Mie-Griineisen thermo-
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Fig.9 Constrained punch block: (a) geometry, (b) initial velocity profile and (¢) initial temperature profile

respectively. These are shown in Figs. 9b and ¢ for complete-
ness. Moreover, a Mie-Griineisen thermo-elastic model as
presented in 3.3.1 is used, where parameters for material and
geometry are summarised in Table 3.

In this example, three different model refinements are
explored, namely (M1) 22,420, (M2) 49,900, and (M3)
167,536 SPH particles. As illustrated in Fig. 10, despite
increasing the number of particles from 22,420 to 167,536,
the predicted deformation patterns are practically identical.
Improved resolution in pressure and temperature is indeed
observed. The proposed SPH algorithm captures very well
the finite deformation of the holes near the bottom surface,
showing good agreement with the results obtained using the
alternative Total Lagrangian SPH [35] counterpart.

From Figure 11 spurious pressure fluctuations can be
detected using either the classical displacement-based SPH
or the unstabilised SPH algorithm (by setting the values of
’ng = 0 and Dﬁb = 0). Such spurious mechanisms sim-
ilar to hour-glassing can be effectively eliminated with the
inclusion of appropriate numerical dissipation. Similar trend
can also be observed for the shear stress component. This is
shown in Fig. 12. In addition, the time history of the vertical
velocity component and vertical displacement component at
position X = [—0.5, —0.5, 0.5]7 m are also monitored. This
is shown in Fig. 13.

In Fig. 14a, the time history of the kinetic energy, inter-
nal energies (e.g. heat and mechanical contributions), total
energy and Ballistic energy is monitored. Specifically, the
difference between the total energy (cyan dashed line) and
the Ballistic energy (green dashed line) is regarded as the
global entropy associated with irreversible heat conduction,
which must be positive in this case. This is shown in Fig. 14b
as the value of global entropy is non-negative and increases
over time. Moreover, the standard displacement-based SPH
algorithm [24] was reported to trigger possible instabilities by
carrying our frequent updates of the reference configuration.
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Table 3 Punch block: geometry and material parameters used in the
simulation

Geometry H 0.5 m

D 0.2 m
Lamé parameters nw 6.5385 MPa

A 9.8077 MPa
Specific heat capacity Cy 1 JK'kg™!
Reference temperature Or 293.15 K
Thermal conductivity h 10 WK~ 'm™!
Material density OR 1000 kgm™3
Mie-Griineisen coefficients q 1

Ty 8.5889

This would then lead to the breakdown of the overall scheme.
To highlight this issue, we update the reference configuration
atevery 1, 10, 20 and 30 time steps. We then monitor the tem-
perature evolution at position X = [0, 0, 0.5]” m and also
the evolution of global dissipation. Almost identical results
(i.e. stable and smooth) are observed (refer to Fig 14c and d).

For visualisation purposes, Figs. 15 and 16 display a series
of deformed states without exhibiting locking.

7.5 Taylor bar impact

This is another benchmark problem where a copper bar of
initial length L = 0.0324 m and of initial radius » = 0.0032 m
impacts against a rigid wall with a velocity of 227 m/s. The
initial temperature profile of the bar is set to the reference
temperature, that is 6(x, t = 0) = 298.15 K. The geometry
of the problemis illustrated in Fig. 17. Its objective is to assess
the performance of the proposed SPH algorithm under high
speed impact. Specifically, a von Mises material with strain
rate- and thermal-dependent Johnson-Cook hardening law is
chosen. The material parameters used in the simulation are
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M1 M2 M3 Total Lagrangian SPH [35]

M1 M2 M3 Total Lagrangian SPH [35]

Pressure (Pa)
-7.0e+03 -5.00e+3-4.00e+3-3.00e+3-2.00e+3-1.00e+3 0.00 1.00e+3 2.00e+3 3.00e+3 4.00e+3 5.00e+3 6.00e+3 7.0e+03

S | ' ' | L —

M1 M2 M3 Total Lagrangian SPH [35]

M1 M2 M3 Total Lagrangian SPH [35]

Temperature (K)

2.9e+02 292, 293. 294. 295, 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 3.1e+02
| | | | | | | |

Fig. 10 Punch block: the first three columns (M1, M2 and M3, from at time t = 0.05 s, whereas the second and fourth rows illustrates the
left to right) show the a sequence of particle refinement of a structure pressure and temperature contour at time ¢ = 0.12 s. A Mie-Griineisen
simulated using URL-SPH algorithm, whereas the last column shows a thermo-elastic constitutive model described in Sect.3.3.1 is used, with
deformed structure via in-house Total Lagrangian SPH algorithm [35]. material parameters being summarised in Table 3

The first and third rows depict the pressure and temperature contour
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(a)
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Pressure (Pa)
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Fig. 11 Punch block: comparison of deformed shapes at time t = 0.25
s with M3 model: (a) URL-SPH algorithm, (b) URL-SPH algorithm

without dissipation (i.e. by setting the values of 'Df; 5 =0and D’ »=0)

a.

-5.00e+3-4.00e+3-3.00e+3-2.00e+3-1.00e+3 0.00

1.00e+3 2.00e+3 3.00e+3 4.00e+3 5.00e+3 6.00e+3 7.0e+03

' ‘ O e——

and (c) Total Lagrangian SPH algorithm [1]. Colour indicates pressure
contour. A Mie-Griineisen thermo-elastic constitutive model described
in Sect.3.3.1 is used, with material parameters being summarised in
Table 3

(2)

(©)

Shear stress component (Pa)

-3.0e+03  -2500 -2000 -1500 -1000 -500

e m— | |

Fig.12 Punch block: comparison of deformed shapes at time t = 0.065
s with M3 model: (a) URL-SPH algorithm, (b) URL-SPH algorithm

without dissipation (i.e. by setting the values of ’Df; 5 =0and Dfl »=0)

tabulated in Table 4. For ease of computation, we perform the
simulation of the bar impact by considering only a quarter
of the domain via appropriate symmetry boundary condition
such as roller support.

Aiming to demonstrate the consistency of the algorithm,
we discretise the quarter of a bar using three different levels of
particle refinement, namely (M1) 1560, (M2) 3744 and (M3)
7280 number of SPH particles. In Fig. 18a, the evolution in
time of various energy measures is monitored. When impact
occurs, most of the kinetic energy is converted into irrecover-
able heat dissipation and plastic dissipation whilst part of the
kinetic energy is transferred into elastic strain energy. Fig-
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and (c) Total Lagrangian SPH algorithm [1]. Colour indicates one of the
shear stress components o2!. A Mie-Griineisen thermo-elastic consti-
tutive model described in Sect.3.3.1 is used, with material parameters
being summarised in Table 3

ure 18b shows the reduction of total numerical dissipation
when increasing the particle density. The global numeri-
cal entropy increases over time for the entire simulation,
hence guaranteeing long term stability. We also monitor both
radius and length evolution at position X = [0, 0.0032, O]T
and X = [0.0032,0, 0.0324]T, respectively. This is seen in
Fig. 18c and d. Our results agree extremely well with the
solutions obtained via the Total Lagrangian SPH counter-
part [35]. This is usually not the case when employing the
standard displacement-based Updated Lagrangian SPH algo-
rithm [24] as it was reported to introduce particle clumping
at the contact boundary.
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Fig. 13 Punch block: time evolution of (a) vertical velocity component v, and (b) vertical displacement component u, at position X =
[—0.5, —0.5,0.5]7. A Mie-Griineisen thermo-elastic constitutive model described in Sect.3.3.1 is used, with material parameters being sum-
marised in Table 3
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Fig. 14 Punch block: time evolution of (a) different energy measures, (b) global entropy, (¢) temperature at position X = [0, 0, 0.5]7 and (d)
global numerical dissipation. A Mie-Griineisen thermo-elastic model as described in Sect. 3.3.1 is used. The corresponding material parameters are

summarised in Table 3
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Fig. 15 Punch block: a sequence of deformed structures with pressure elastic constitutive model as described in Sect. 3.3.1. The corresponding
distribution at times r = {1,2,3,...,30} ms (left to right and top to material parameters are summarised in Table 3
bottom), respectively. Results obtained using a Mie-Griineisen thermo-
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Temperature (K)
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Fig. 16 Punch block: a sequence of deformed structures with temper-
ature profile at times r = {1, 2,3, ..., 30} ms (left to right and top to
bottom), respectively. Results obtained using a Mie-Griineisen thermo-

In addition, and as shown in Fig. 19, the deformation pat-
tern of the structure together with its temperature and von
Mises contour matches extremely well across all the three

| |

elastic constitutive model as described in Sect. 3.3.1. The corresponding
material parameters are summarised in Table 3

particle refinements. For visualisation purposes, Figs.20 and
21 show a sequence of deformed states of the bar for a rela-
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(0,0,0.0324)

(0,0,0)

Fig. 17 Taylor impact bar configuration

tively long period of time. Smooth pressure and temperature
profiles are seen.

Finally, we can further assess the robustness of the algo-
rithm by substantially increasing the value of the initial
temperature profile 8(x, t = 0) from 298.15 K to 573.15 K.
Due to the softening behaviour caused by the high tempera-
ture accumulated at the contact plane, the time history of the
length and radius are relatively larger in comparison to that
of the previous case. Their plots are shown in Figs.22c¢ and
d. Finally, Fig. 23 displays a series of snapshots for the bar
impact in terms of temperature distribution, simulated via the
proposed method and the Total Lagrangian SPH algorithm.
Practically identical results are observed.

7.6 Necking bar

Similar to the Taylor bar previously explored in Sect.7.5,
we now stretch the bar on both sides by reversing its initial
velocity field. In this example, no fracture is considered. To
account for thermal effects, the initial temperature profile of
the bar is prescribed as 6(x,t = 0) = 573.15 K. The pri-
mary interest of this necking problem is to demonstrate that
the proposed URL-SPH methodology is capable of allevi-
ating spurious modes even for problems involving massive
stretching, a persistent shortcoming typically encountered
in the classical Updated Lagrangian SPH algorithm [24].
The material properties used in the simulation are exactly
the same as those reported in Table 4. A strain rate- and
thermal-dependent Johnson-Cook hardening rule is chosen.
Given the presence of symmetry planes, only one-eighth of
the structure is discretised with appropriate boundary condi-
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Table 4 Taylor bar: material parameters used in the simulation

Lamé parameters I 46.269 GPa

A 98.321 GPa
Specific heat capacity Cy 383 JK Tkg™!
Reference temperature Or 298.15 K
Thermal conductivity h 386 WK~ !m~!
Material density PR 8960 kgm_3
Poisson’s ratio v 0.34
Young’s modulus E 124 GPa
Mie-Griineisen coefficients q 1

Ty 5.6459
Johnson-Cook model f)(,) 90 MPa

H 292 MPa

N 0.31

C 0.025

&0 1 g1

M 1.09

Omelt 1356.2 K

Otransition 298.15 K

tions. For completeness, three levels of particle refinement
for the model are studied. Model M1 contains a number of
1740 SPH particles, model M2 comprises 4108 particles and
model M3 contains 8160 particles. To accurately capture the
onset of necking, it is important to place more particles within
the necking region.

Figure 24 illustrates a comparison of the proposed SPH
algorithm against our in-house Total Lagrangian SPH algo-
rithm [35] at time ¢t = {20,40} ms. Both formulations
yield similar results in terms of deformed shape and pres-
sure field. For qualitative comparison, we also monitor the
radius reduction of the bar in the necking region as a func-
tion of the elongation. Comparing with the Total Lagrangian
counterpart [35], it is interesting to notice that the proposed
SPH method is able to capture post-necking deformation
behaviour with a smaller number of particles. This is seen
in Fig.25b. Figure 26 compares the pressure resolution with
and without the dissipation term appearing in the incremen-
tal Jacobian conservation equation (66). Observe that, with
the incorporation of sufficient dissipation Déb, the overall
algorithm removes the non-physical mechanisms similar to
hour-glassing in the solution. Figure27 shows a series of
deformed states where unwanted low-energy modes are not
present. No temperature and/or plastic strain instabilities are
observed.

8 Conclusions

In this work, an Updated Reference Lagrangian Smoothed
Particle Hydrodynamics (SPH) algorithm for the numerical
analysis of large strain thermo-elasticity and thermo-visco-



Computational Particle Mechanics

120 —e—Kinetic Energy

—— External work
—s—Internal Energy (mechanical)
- % - Internal Energy (heat)
Ballistic Energy
Total Energy

*

K
e *

0 2 4 6
Time (s)
(c)

%10

Fig. 18 Taylor bar impact: time evolution of (a) different energy mea-
sures, (b) global numerical dissipation, (c) radius at position X =
[0, 0.0032, 0]7 m and (d) length at position X = [0.0032; 0; 0.032417

plasticity has been presented. From the continuum viewpoint,
the methodology is built upon a suitable multiplicative
decomposition of the conservation variables by introduc-
ing an intermediate (or incremental) configuration during
the thermally coupled deformation process. This requires
the re-formulation of a system of first-order hyperbolic con-
servation laws, usually expressed in material (or initial)
configuration, to this new intermediate configuration. In addi-
tion to conservation laws for the linear momentum and the
three incremental geometric conservation laws (for the defor-
mation gradient, its co-factor and its determinant) previously
used inisothermal process [1], a further conservation law rep-
resenting the first law of thermodynamics written in terms
of the entropy density is incorporated to extend the range
of applications into thermally coupled hyperelasticity and
strain-rate dependent plasticity.

From the spatial discretisation standpoint, a Smoothed
Particle Hydrodynamics method utilising the standard kernel
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m. A Hencky-based Johnson-Cook hardening rule as described in
Sect.3.3.2 is used. The corresponding material parameters are sum-
marised in Table 4

gradient corrections is presented. In order to address spuri-
ous energy modes inherent to the collocation nature of SPH,
appropriate upwinding numerical dissipation is introduced.
Such numerical dissipation is specifically designed via the
use of the Coleman-Noll procedure at the semi-discrete level,
demonstrated by monitoring the so-called Ballistic energy
of the system. From the time integration standpoint, a stan-
dard explicit three-stage Runge—Kutta time marching scheme
is employed. With the aim of demonstrating the reliability
of the methodology, a wide spectrum of numerical exam-
ples is presented and compared. It has been shown that the
resulting SPH algorithm addresses several numerical arte-
facts posed by standard Updated Lagrangian SPH methods,
namely spurious pressure fluctuations, hour-glassing and
numerical errors related to global conservation, complete-
ness and long-term instability.
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Fig. 19 Taylor bar impact: comparison of deformed shapes at time ¢ the temperature distribution and the second row illustrates von Mises
= 80 ms. The first three columns (M1, M2 and M3, from left to right) field. A Hencky-based Johnson-Cook hardening rule as described in
show the particle refinement of a structure simulated using the URL- Sect.3.3.2 is used. The corresponding material parameters are sum-
SPH algorithm, whereas the last column shows a deformed structure marised in Table 4

via in-house Total Lagrangian SPH algorithm [1]. The first row depicts
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Fig. 20 Taylor bar: a sequence of deformed structures with pressure Johnson-Cook hardening rule as described in Sect.3.3.2. The corre-
distribution at times t = {0, 5, 10, 15, ...,70} us (left to right and sponding material parameters are summarised in Table 4
top to bottom), respectively. Results obtained using a Hencky-based
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Temperature (K)
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s T —

Johnson-Cook hardening rule as described in Sect.3.3.2. The corre-
sponding material parameters are summarised in Table 4

Fig. 21 Taylor bar: a sequence of deformed structures with temper-
ature profile at times t = {0, 5, 10, 15, ..., 70} us (left to right and
top to bottom), respectively. Results obtained using a Hencky-based
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Fig.22 Taylor bar impact: time evolution of (a) different energy mea-
sures, (b) global entropy, (c) radius at position X = [0, 0.0032, 017
m and (d) length at position X = [0.0032; 0; 0.0324]7 m. A Hencky-
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based Johnson-Cook hardening rule as described in Sect.3.3.2 is used.
The corresponding material parameters are summarised in Table 4
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Temperature (K)
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Fig. 23 Taylor bar impact: a sequence of deformed structures with row) Total Lagrangian SPH algorithm [35]. Results obtained using a
temperature profile at times r = {15, 30, 45, 60, 80} ms (from left to Hencky-based Johnson-Cook hardening rule as described in Sect. 3.3.2.
right) using (top row) the proposed URL-SPH algorithm and (bottom The corresponding material parameters are summarised in Table 4
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Fig.24 Necking bar:
comparison of deformed shapes
at time (a) 1 =20 ms and (b) ¢ =
40 ms. The first three columns
(left to right representing M1,
M2 and M3) show the particle
refinement of a structure
simulated using the proposed
URL-SPH algorithm, whereas
the last column shows a
deformed structure via the
mixed-based Total Lagrangian
SPH algorithm [1] (via M3).
Colour contour indicates
pressure field. A Hencky-based
Johnson-Cook hardening rule as
described in Sect.3.3.2 is used.
The corresponding material
parameters are summarised in
Table 4
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Fig.25 Necking bar: (a) time evolution of different energy measures and (b) radius reduction as function of elongation of the bar. A Hencky-based
Johnson-Cook hardening rule as described in Sect. 3.3.2 is used. The corresponding material parameters are summarised in Table 4

Fig.26 Necking bar:
comparison of deformed shapes
at time ¢ = 60 ms via M3
model: (Left) URL-SPH
algorithm without adding
numerical dissipation term D(Jl b
in the conservation equation for
J (66), and (Right) URL-SPH
algorithm incorporating
sufficient numerical dissipation
term Dé »- Zoom-in view of
region near necking is included.
A Hencky-based Johnson-Cook
hardening rule as described in
Sect.3.3.2 is used. The
corresponding material
parameters are summarised in
Table 4
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Fig.27 Necking bar: a
sequence of deformed structures
attimes t = {0, 8, 16, ..., 72}
us (left to right and top to
bottom). In each subfigure, and
in terms of colour
representation, top half of the
bar represents plastic strain and
bottom half of the bar represents
temperature profile. Results
obtained using a Hencky-based
Johnson-Cook hardening rule as
described in Sect.3.3.2. The
corresponding material
parameters are summarised in
Table 4
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