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Abstract
This paper introduces a novel upwind Updated Reference Lagrangian Smoothed Particle Hydrodynamics (SPH) algorithm for
the numerical simulation of large strain thermo-elasticity and thermo-visco-plasticity. The deformation process is described
via a system of first-order hyperbolic conservation laws expressed in referential description, chosen to be an intermediate
configuration of the deformation. The linearmomentum, the three incremental geometric strainsmeasures (between referential
and spatial domains), and the entropy density of the system are treated as conservation variables of this mixed coupled
approach, thus extending the previous work of the authors in the context of isothermal elasticity and elasto-plasticity. To
guarantee stability from the SPH discretisation standpoint, appropriate entropy-stable upwinding stabilisation is suitably
designed and presented. This is demonstrated via the use of the Ballistic free energy of the coupled system (also known
as Lyapunov function), to ensure the satisfaction of numerical entropy production. An extensive set of numerical examples
is examined in order to assess the applicability and performance of the algorithm. It is shown that the overall algorithm
eliminates the appearance of spurious modes (such as hour-glassing and non-physical pressure fluctuations) in the solution,
typical limitations observed in the classical Updated Lagrangian SPH framework.

Keywords Conservation laws · SPH · Riemann Solver · Explicit dynamics · Thermo-elasticity · Visco-plasticity

1 Introduction

Total Lagrangian Smoothed Particle Hydrodynamics (SPH)
[2–4] is a well-established numerical method for the simu-
lation of explicit solid dynamics. One of the most attractive
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features of SPH is its mesh-free nature, thus not relying on
the use of an underlying mesh. The absence of mesh, and the
calculation of pair-wise interactions among particles based
exclusively on their separation, allow ease of computation
for problems involving large deformation. Due to its ability
to handle large distortions within reasonable accuracy and
stability [5–7], the SPH method has been shown to be com-
petitive in comparison to alternative mesh-based methods,
where latter would typically require expensive remeshing
strategies.

However, for problems experiencing severe distortions,
a Total Lagrangian SPH formulation [8,9] will unavoidably
require updates of thematerial (or initial) configuration.Non-
physical zero-energy modes [10–14] are highly likely to be
activated when performing such updates (i.e. re-calculation
of kernel gradient and its correction). For instance, when very
few updates are performed during the entire simulation, the
accumulated errors may potentially remain small and unno-
ticed. However, when updates are frequently performed (for
example, at every time step of the time integration process),
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the solution can be negatively affected resulting in spurious
oscillations.

Significant efforts have been undertaken over the years
to rectify undesirable zero-energy modes [15] in the SPH
solution. Specifically, two types of techniques are widely
used. First, the instability is precluded by introducing artifi-
cial viscous stress [16–19], or other related (Laplacian-type)
techniques [20–23], conceptually similar to the treatment
of hour-glass modes used in finite element method [10].
Another common practice, in the framework of SPH, is the
introduction of higher order derivatives [8,24–29] to sta-
bilise numerical computations. In [24], the approach is shown
to be relatively expensive as it requires the evaluation of a
third-order tensor for stabilisation based on Hessian differ-
ence. Second, the introduction of a staggered SPH approach
[12,13,30,31] by incorporating a secondary set of particles
(known as stress points) for stress computation, allowing the
variables and their derivatives to be computed at different
positions. Despite significant development in the field, the ab
initio stability of SPH schemes still remains an open problem.

Moreover, even though the developments described above
has greatly improved the current state of SPH methods,
there is still a need for a robust Updated Lagrangian SPH
framework, especially when attempting to model problems
undergoing large geometry distortions, such as high-speed
impact or high-speed stretching. Under this circumstance,
consideration of thermal effects becomes necessary so as
to attain a realistic representation of stresses. With this in
mind, the aim of this paper is to further extend the recent
SPH work [1] presented in the context of isothermal elas-
ticity and plasticity models to account for possible strongly
thermally-coupled scenarios, through the consideration of
thermo-elasticity and thermo-visco-plasticity. Specifically,
and by adopting referential configuration as an intermedi-
ate configuration during the deformation process, an extra
conservation equation corresponding to the first law of ther-
modynamics (written in terms of the entropy density of the
system) is solved in addition to the conservation of linear
momentumand the three incremental geometric conservation
laws (measured from referential domain to spatial domain).
Interestingly, the methodology can indeed be degenerated
into either a mixed-based set of Total [32–46] or Updated
Lagrangian formulations [47] provided certain conditions
are met. One key aspect that requires careful consideration
is the overall stability of the algorithm. In the current work,
an upwinding (Riemann-based) approach is exploited where
a consistently derived numerical stabilisation is introduced
guaranteeing the production of total numerical entropy over
the entire simulation. The latter is shownbymonitoring of the
Ballistic energy of the system via the semi-discrete entropy
analysis known as Coleman-Noll procedure. Another objec-
tive of the paper is to show that the overall SPH algorithm is
capable of frequently carrying out updates of the reference

configuration without introducing non-physical modes. In
the numerical examples presented, unless otherwise stated,
updates of the reference configuration are performed at every
time step of the time integration process. Obviously this is
not necessary but it has been done in order to assess whether
the algorithm triggers possible instabilities.

The outline of the paper is organised as follows. Section2
summarises the first-order system of Updated Reference
Lagrangian conservation laws for isothermal hyperelastic-
ity. Section3 begins by introducing fundamental concepts of
thermodynamics, necessary for the remainder of the paper.
The section then presents two commonly used thermo-
mechanical models, namely Mie-Grüneisen-based thermo-
elasticmodel and thermo-visco-plastic JohnsonCookmodel.
Section4 presents the variational formulation of the problem
and the second law of thermodynamicswritten in terms of the
Ballistic free energy. Section5 presents the Smoothed Parti-
cle Hydrodynamics spatial discretisationwhere special focus
is paid to the upwinding numerical dissipation employed.
A proof of total entropy production (which is a summa-
tion of the physical dissipation introduced by the inelastic
model and the numerical dissipation introduced by the SPH
scheme) is included as a necessary condition for stability
at the semi-discrete level. For completeness, Sect. 6 illus-
trates the algorithmic flowchart of the resulting numerical
scheme. Section7 presents a number of challenging numeri-
cal exampleswith the objective to assess the robustness of the
algorithm, where comparisons will be performed against an
alternative mixed-based Total Lagrangian SPH implemen-
tation already benchmarked. Finally, Sect. 8 presents some
concluding remarks.

2 Updated reference Lagrangian
conservation laws for reversible processes

Consider the deformation of a solid from an initial unde-
formed configuration �V , of boundary ∂�V and outward
unit normal N , to a current deformed configuration �v ,
of boundary ∂�v and outward unit normal n, at time
instant t . Consider an additional configuration�χ , of bound-
ary ∂�χ and outward unit normal Nχ , corresponding to
an intermediate configuration of the solid. This additional
intermediate configuration can be adopted as a reference
configuration, leading to what we refer to as an Updated Ref-
erence Lagrangian description [1]. As a result, an Updated
Reference Lagrangian system of first-order hyperbolic con-
servation laws can be used to describe the motion of a solid
x = φχ (χ , t) as follows (refer to [1] for an extended presen-
tation):

∂ pχ

∂t
= divχσχ + fχ , (1a)
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∂ f
∂t

= divχ (v ⊗ i) , (1b)

∂h
∂t

= curlχ (v f ) , (1c)

∂ j

∂t
= divχ

(
hT v

)
. (1d)

In the system above, pχ = ρχv is the linear momentum
per unit reference volume, ρχ represents the reference den-
sity, v represents the velocity field, fχ is the body force per
unit reference volume, the triplet { f , h, j} represents the
incremental deformation gradient tensor, its co-factor and its
Jacobian (accounting for deformations from reference to spa-
tial configurations). The referential stress tensorσχ , obtained
from the push forward (or push back) of the first Piola-
Kirchhoff P (or Cauchy σ ) stress tensor to the referential
configuration, is described as σχ = J−1

χ PFT
χ = jσ f−T .

Symbol ⊗ represents the standard dyadic outer product,
whilst denotes the tensor cross product [40] between vec-
tors and/or second-order tensors. In addition, divχ and curlχ
represent the divergence and curl operators carried out with
respect to the referential configuration, and the respective
identity tensor i is defined as i = ∑3

i=1 e
i
χ ⊗ eiχ with

e1χ =
⎡
⎣
1
0
0

⎤
⎦ ; e2χ =

⎡
⎣
0
1
0

⎤
⎦ ; e3χ =

⎡
⎣
0
0
1

⎤
⎦ . (2)

The incremental deformation tensor and its co-factor
{ f , h} (1b) and (1c) must satisfy appropriate compatibility
conditions [1], namely

curlχ f = 0; divχh = 0. (3)

Once equations (1b)-(1d) are solved and the triplet of
incremental deformations { f , h, j} is obtained, the triplet
of deformation measures {F, H, J } (mapped from material
to spatial configurations) can then be obtained viamultiplica-
tive decomposition as

F = f Fχ ; H = hHχ ; J = j Jχ , (4)

where {Fχ , Hχ , Jχ } denote the triplet of (known) deforma-
tionmeasures between thematerial configuration and the ref-
erence configuration. Notice that, if we update {Fχ , Hχ , Jχ }
continuously throughout the time integration process, a
purely Updated Lagrangian first-order system [47] of con-
servation laws is retrieved. On the other hand, the Total
Lagrangian formulation [32–45] is recovered if {Fχ , Hχ , Jχ }
are strongly enforced at the origin (that is, the reference
configuration coincides with the material configuration).
Detailed explanation of the transformations between the var-
ious formulations can be found in Reference [1].

3 Extension to irreversible processes

3.1 First law of thermodynamics in terms of total
energy, internal energy and entropy

The system described in (1) can be generalised to take into
account thermal effects [35,40], as is the case in thermo-
elasticity or thermo-visco-plasticity scenarios. The resulting
process is irreversible and requires an additional conserva-
tion law (with corresponding unknown) describing the total
energy balance. This is known as the first law of thermody-
namics and, in the current work, is expressed in referential
description as

∂Eχ

∂t
+ divχ

(
qχ − σ T

χ v
)

= v · fχ + rχ , (5)

where qχ represents the heat flux per unit reference area and
rχ is the heat source term per unit reference volume. Notice
that the total energy density Eχ and heat flux vector qχ can be
related to the standardLagrangianmeasures as Eχ = J−1

χ ER

and qχ = H−T
χ Q, where ER and Q represents the total

energy density per unit undeformed volume and material
flux vector (per unit undeformed area), respectively. The total
energy density Eχ (χ , t) in the above equation includes both
kinetic energy and internal energy contributions.Multiplying
the linear momentum evolution equation (1a) by v and sub-
tracting it from the above energy expression (5), the internal
energy evolution equation becomes

∂eχ

∂t
+ divχqχ = σχ : ∇χv + rχ , (6)

where eχ (χ , t) represents the internal energy per unit ref-
erence volume and the symbol ∇χ represents the gradient
operator evaluated at the referential domain, which is defined
in indicial notation as [∇χ ]I = ∂

∂χI
. The internal energy den-

sity eχ (χ , t) is postulated to be a function of the incremental
deformation variables X = { f , h, j}, the entropy density
(per unit of reference volume) ηχ and a set of state variables
[48–51] (i.e. plastic deformation in this case) collected in the
form of a tensor α, namely

eχ (χ , t) = Eχ (X, ηχ ,α). (7)

Notice that Eχ denotes the same internal energy density as eχ

but with a different functional dependency. The entropy den-
sity field ηχ (χ , t) is defined as the (energy) dual conjugate
variable to the temperature θ(χ , t) described by

θ(χ , t) = ∂Eχ (X, ηχ ,α)

∂ηχ
. (8)
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Again, the pull back equivalents of both the referen-
tial entropy and the referential internal energy density
are defined as ηχ = J−1

χ η and Eχ ( f , h, j, ηχ ,α) =
J−1
χ E(F, H, J , η,αR). Here, η and E represent the Lagran-

gian entropy and the internal energy per unit undeformed vol-
ume, whereas αR represents a set of state variables measured
with respect to the material configuration.

Similarly, stress conjugate fields with respect to the incre-
mental deformation measures { f , h, j} are defined as [1]

� f = ∂Eχ (X, ηχ ,α)

∂ f
; �h = ∂Eχ (X, ηχ ,α)

∂h
;

� j = ∂Eχ (X, ηχ ,α)

∂ j
. (9)

Comparing the time derivative of the internal energy
density eχ (χ , t) (6) to that of its equivalent re-expression
Eχ (X, ηχ ,α), and using the tensor cross product properties
already presented in [41] together with expressions (8), (9)
and (1b-1d), it is possible to relate the incremental stress
tensor σχ to the conjugate stresses defined in (9) as

∂eχ

∂t
= ∂Eχ

∂ f
: ∂ f

∂t
+ ∂Eχ

∂h
: ∂h

∂t
+ ∂Eχ

∂ j

∂ j

∂t

+ ∂Eχ

∂ηχ

∂ηχ

∂t
+ ∂Eχ

∂α
: ∂α

∂t

= � f : ∇χv + �h : ( f ∇χv
)

+ � jh : ∇χv + θ
∂ηχ

∂t
+ ∂Eχ

∂α
: ∂α

∂t
= [

� f + �h f + � jh
] : ∇χv

+ θ
∂ηχ

∂t
+ ∂Eχ

∂α
: ∂α

∂t
,

(10)

which leads to the following relationship

σχ = � f + �h f + � jh. (11)

It is also possible to re-express the first law of thermody-
namics in terms of the entropy densityηχ (χ , t) by combining
(10) and (6) to give

θ
∂ηχ

∂t
+ divχqχ = rχ + ḊPhy; ḊPhy = −∂Eχ

∂α
: ∂α

∂t
,

(12)

with ḊPhy representing the rate of physical dissipation intro-
duced by the constitutive model, such as due to plasticity.
This term is indeed zero when considering a reversible
elastic model. Alternatively, and noting that 1

θ
divχqχ =

divχ

( qχ

θ

)+ 1
θ2

∇χθ · qχ , a conservation-type of law for the
entropy density emerges as [40]

∂ηχ

∂t
+ divχ

(qχ

θ

)
= 1

θ

(
rχ + ḊPhy

)− 1

θ2
∇χθ · qχ . (13)

Regarding the heat flux vector qχ , we consider a simple
Fourier’s law of heat conduction for an isotropic material as

qχ = −kχ∇χθ; kχ = hj−1hT h, (14)

with h representing the thermal conductivity coefficient cal-
ibrated in the spatial configuration.

3.2 General thermal relationship

In general, the Calorimetry relationships between internal
energy density Eχ , entropy density ηχ and temperature θ can
be derived [40] from the definition of the specific heat at
constant reference volume cχ

v . Specifically,

cχ
v = ∂ Ẽχ (X, θ,α)

∂θ
;

Ẽχ (X, θ,α) = Eχ (X, η̃χ (X, θ,α),α);
ηχ (χ , t) = η̃χ (X, θ,α), (15)

where the specific heat can be alternatively expressed as
cχ
v = J−1

χ cv = J−1
χ ρRCv = ρχCv > 0. Here, ρR represents

the material density and Cv and cv , respectively, represent
the specific heat per unit mass and the specific heat per unit
undeformed volume. Expression (15) can be re-written using
the chain rule to yield

cχ
v = ∂Eχ (X, ηχ ,α)

∂ηχ

∂η̃χ (X, θ,α)

∂θ
. (16)

Given the fact that ∂Eχ/∂ηχ = θ (8), a relationship
between the temperature θ and the entropy density ηχ at con-
stant elastic deformation can be established after rearranging
renders

∂η̃χ (X, θ,α)

∂θ
= cχ

v

θ
. (17)

With expression above, and for simplicity assuming con-
stant specific heat coefficient cχ

v (such that it does not depend
upon the elastic deformation and temperature), the relation-
ship between entropy and temperature can be integrated
exactly as [35,40]

η̃χ (X, θ,α) = η̃R
χ (X,α) + cχ

v ln
θ

θR
;

η̃R
χ (X,α) = η̃χ (X, θ = θR,α) . (18)

Reversing the above equation yields the expression for
temperature field 	 but now written in terms of {X, ηχ ,α}
to give
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	(X, ηχ ,α) = θRe
(ηχ−η̃R

χ )/cχ
v = θ(χ , t). (19)

As shown above, the notation 	 and θ is used to describe the
same temperature with different functional dependency.

In addition, it is also possible to write a relationship for
the internal energy density as functions of deformation X,
entropy density ηχ and a set of state variables α. This can
be achieved by integrating expression (15) with respect to
the temperature field between the limits θR and a given tem-
perature θ , and noting that θ(χ , t) = 	(X, ηχ ,α) (19) and
Ẽχ (X, θ,α) = Eχ (X, ηχ ,α) (15), to give

Eχ (X, ηχ ,α) = ẼRχ (X,α) + cχ
v θR

(
e

ηχ −η̃Rχ (X,α)

c
χ
v − 1

)
;

ẼRχ (X,α) = Ẽχ (X, θ = θR,α). (20)

3.3 Stress evaluation

To complete the definition of the incremental stress tensor
σχ (11), and given that the constitutive relation in gen-
eral depends on the standard deformation maps {F, H, J }
(from material domain to spatial domain), it is conve-
nient to utilise the previously described pull back equiv-

alent of the internal energy density ẼRχ ( f , h, j,α) =
J−1
χ ẼR(F, H, J ,αR) and of the entropy density func-

tion η̃R
χ ( f , h, j,α) = J−1

χ η̃R(F, H, J ,αR). For instance,
consider a simple volumetric-based Mie-Grüneisen model
described by

η̃R(F, H, J ,αR) ≈ η̃R(J ) = cv
0

(
Jq − 1

q

)
, (21)

where q is a dimensionless parameter varying from zero (i.e.
a perfect gas) to one (i.e. solid materials) and 
0 is a (pos-
itive) material constant. It is also convenient to relate the
stress conjugate fields {� f ,�h, � j } with those of a Total
Lagrangian description {�F,�H , �J } [35] defined as

�F = ∂ ẼR(F, H, J ,αR)

∂F
; �H = ∂ ẼR(F, H, J ,αR)

∂H
;

�J = ∂ ẼR(F, H, J ,αR)

∂ J
− 	

dη̃R(J )

d J
. (22)

Indeed, for the conjugate stresses � f , it yields

� f = ∂Eχ (X, ηχ ,α)

∂ f

= ∂ ẼRχ (X,α)

∂ f

= J−1
χ

[
∂ ẼR(F( f Fχ ), H(hHχ ), J ( j Jχ ),αR)

∂ f

]

= J−1
χ

∂ ẼR
∂F

: ∂F( f Fχ )

∂ f
= J−1

χ �F FT
χ .

(23)

Similarly, for the conjugate stresses �h and � j

�h = J−1
χ �H HT

χ ; � j = �J . (24)

Remark 1 It is particularly useful to obtain stress expres-
sions in terms of the symmetric Kirchhoff stress tensor
{τ F, τ H , τJ } since it is usually needed when considering
plasticity models. To achieve this, substitution of (4) into
(23) and (24) gives alternative expressions for {� f ,�h, � j }
to be described by

� f = J−1
χ τ F f−T ; �h = J−1

χ τ Hh−T ; (25)

� j = J−1τJ ,

with the stress relations being defined as

τ F = �F FT ; τ H = �H HT ; τJ = J�J . (26)

In the current work, two well-established thermo-
mechanical models, namely thermo-elasticity and thermal-
and rate-dependent Johnson-cook plasticity, will be pre-
sented and summarised in the following section.

3.3.1 Thermo-elastic model

For the case of a Mooney-Rivlin model, a standard
distortional-volumetric internal energy density formulated at
reference temperature θR is described as [40]

ẼMR
R (F, H, J ) = ζR(J−2/3(F : F) − 3)

+ξR(J−2(H : H)3/2 − 3
√
3) + χR

2
(J − 1)2

+cvθR
0(J − 1), (27)

where {ζR, ξR, χR} are material parameters. These param-
eters can then be calibrated against those of linear thermo-
elasticity, namely, shear modulus μ, bulk modulus κ and
thermal expansion coefficient α as [35]
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μ = 2ζR + 3
√
3ξR; κ = χR + cvθR
0(1 − q);

α = cv
0

3κ
. (28)

The material conjugate stresses (22) can now follow by
taking the derivative of expression (27) with respect to
{F, H, J },

�F = 2ζR J
−2/3F; �H = 3ξR J

−2 (H : H)1/2 H (29)

and

�J = −2

3
ζR J

−5/3(F : F) − 2ξR J
−3(H : H)3/2

−χR(J − 1) − cv
0

(
Jq−1	 − θR

)
. (30)

Notice that when the value of ξR = 0, the above material
degenerates to a neo-Hookean type of thermo-elastic model
[39]. It is now straightforward to obtain the components of
the referential stress {� f ,�h, � j } by a direct substitution
of the material stresses {�F,�H , �J } ((29) and (30)) into
(23) and (24).

3.3.2 Thermo-visco-plastic model

Many engineering applications often exhibit some irrecov-
erable (or permanent) strain and thermal-dependent plastic
deformation. To describe this behaviour, a von Mises plas-
ticity model incorporating Johnson Cook hardening law [2]
is considered and summarised here for completeness. In the
context of large strains, it is customary to decompose the
deformation gradient tensor F multiplicatively into an elas-
tic component Fe and a permanent deformation component
Fp as [52,53]

F = FeFp. (31)

This would subsequently lead to the evaluation of the elas-
tic left Cauchy Green strain tensor be, which is written in
terms of the incremental deformation gradient tensor f and
the inverse of the right Cauchy Green strain c−1

p measured at
reference domain, described by

be = FeFT
e = FC−1

p FT = f (FχC−1
p FT

χ ) f T = f c−1
p f T ;

c−1
p = FχC−1

p FT
χ . (32)

As shown in Reference [52], the formulations developed
to describe vonMises plasticitymodels are greatly simplified
by operating in principal directions. For this reason, the left
Cauchy Green strain tensor described in (32) can now be
alternatively obtained by evaluating the principal directions
of be, that is nα , to give

be =
3∑

α=1

λ2e,αnα ⊗ nα, (33)

where λe,α represents the elastic principal stretches. Recall-
ing the distortional stretches being λ̂e,α = J−1/3λe,α [52],
it is now instructive to introduce the Hencky-based internal
energy functional in terms of the elastic logarithmic stretches

ẼHenckyR (λ̂e,1, λ̂e,2, λ̂e,3, J ) = ÊR
(
λ̂e,1, λ̂e,2, λ̂e,3

)
+UR(J ).

(34)

The volumetric and distortional components are

UR(J ) = 1

2
κ (ln J )2 + cvθR
0(J − 1), (35)

and

ÊR = μ

[(
ln λ̂e,1

)2 +
(
ln λ̂e,2

)2 +
(
ln λ̂e,3

)2]

= μ

[(
ln
(
J−1/3λe,1

))2 +
(
ln
(
J−1/3λe,2

))2

+
(
ln
(
J−1/3λe,3

))2]

= μ
[(
ln λe,1

)2 + (
ln λe,2

)2 + (
ln λe,3

)2]

+ 1

3
μ (ln J )2− 2

3
μ (ln J )

(
ln λe,1+ln λe,2+ln λe,3

)
,

(36)

respectively. With these at hand, the principal components of
symmetric Kirchhoff stress tensor are obtained in a standard
manner [52] as

τ =
3∑

α=1

τααnα ⊗ nα; ταα = τ̂αα + pJ , (37)

with the deviatoric components τ̂αα and pressure p emerging
as

τ̂αα = τ ′
αα + τ ′

J ; τ ′
αα = ∂ ÊR

∂ ln λα

;

τ ′
J = ∂ ÊR

∂ J
J ; p = dUR(J )

d J
− 	

dη̃R(J )

d J
, (38)

which, after some algebra, gives
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τ ′
αα = 2μ ln λe,α− 2μ

3
ln J ; τ ′

J = 2μ

3
ln

(
J

λe,1λe,2λe,3

)
;

p = κ
ln J

J
− cv
0

(
Jq−1	 − θR

)
. (39)

Attention is now focussed on the evaluation of the radial
return mapping algorithm in order to ensure that τ̂ stays on
the yield surface function. In the current work, we consider
the von Mises-based Johnson Cook hardening rule defined
by a yield function of the deviatoric Kirchhoff stress τ̂ and
a yield stress τ̄y (depending on the equivalent plastic strain
ε̄p, its plastic strain rate ˙̄εp and temperature θ ) as

f (τ̂ , ε̄p, ˙̄εp, θ) =
√
3

2

(
τ̂ : τ̂

)− τ̄y(ε̄p, ˙̄εp, θ) ≤ 0. (40)

The nonlinear strain-rate dependent hardening law is in
the form of

τ̄y(ε̄p, ˙̄εp, θ)

=
(
τ̄ 0y + H ε̄Np

)[
1 + C ln

( ˙̄εp
ε̇0

)](
1 − (g(θ))M

)
,

(41)

where

g(θ) =
⎧
⎨
⎩

0 for θ < θtransition
θ−θtransition

θmelt−θtransition
for θtransition ≤ θ ≤ θmelt

1 for θ > θmelt.

(42)

Here, θ is the current temperature, θmelt is the melting
temperature of the material and θtransition is the temperature
at or below which there is no temperature dependence of
the yield stress. Moreover, τ̄ 0y is the initial yield stress and
ε̇0 represent the reference strain-rate. The remaining mate-
rial constants arematerial hardening parameter H , hardening
exponent N , strain-rate coefficient C and temperature expo-
nent M . Notice that when θ > θmelt, the material is assumed
to melt and behave like a fluid, offering no shear resistance
since τ̄y = 0.

An algorithmic representation of the one-step discrete
time integration process (i.e. from n to n+1) of the Hencky-
based model with vonMises rate-dependent plasticity model
described above is summarised in Algorithm 1. In the case of
JohnsonCookhardening rule, the plasticmultiplier�γ has to
be obtained via the enforcement of the yield condition (40).
This generally leads to the solution of nonlinear equations
which would require an iterative Newton-Raphson method.
In order to prevent singularities potentially arising from the
derivative of a function within each Newton-Raphson itera-
tive process, it is instructive to apply a change of variable by

defining a new variable β in terms of plastic strain ε̄p, plas-
tic multiplier �γ and Johnson Cook hardening exponent N ,
that is β = (

ε̄p + �γ
)N . For clarity, the iterative solution

procedure is summarised in Algorithm 2.

Algorithm 1: von Mises plasticity model with Johnson
Cook hardening law

Input : f n+1, hn+1, Jn+1,	n+1,
[
c−1
p

]n
, ε̄np

Output: σ n+1
χ ,

[
c−1
p

]n+1
, ε̄n+1

p

(1) Evaluate pressure: pn+1 = κ ln Jn+1

Jn+1 −cv
0(Jq−1	n+1 − θR)

(2) Compute trial elastic left strain tensor:

btriale = f n+1
[
c−1
p

]n [
f T
]n+1

(3) Spectral decomposition of btriale :

btriale = ∑3
α=1

(
λtriale,α

)2 (
nn+1

α ⊗ nn+1
α

)

(4) Obtain trial deviatoric Kirchoff stress:

τ̂ trialαα = 2μ ln λtriale,α − 2
3μ ln

(
λtriale,1 λtriale,2 λtriale,3

)

(5) Obtain yield criterion: f
(
τ̂ trialαα , ε̄np,

˙̄εnp,	n+1
)

=
[
3
2

∑3
β=1

(
τ̂ trialββ

)2]1/2 − τ̄y(ε̄
n
p,

˙̄εnp,	n+1);

(6) Compute direction vector and plastic multiplier:

if f
(
τ̂ trialαα , ε̄np,

˙̄εnp,	n+1
)

> 0 then

Direction vector: υn+1
α = τ̂ trialαα[

2
3

∑3
β=1

(
τ̂ trialββ

)2]1/2

Plastic multiplier: �γ (See Newton-Raphson algo-

rithm 2)
else

υn+1
α = �γ = 0

end

(7) Update deviatoric Kirchoff stress tensor:
τ̂
n+1 = τ̂ n+1

αα nn+1 ⊗ nn+1; τ̂ n+1
αα = τ̂ trialαα − 2μ�γυn+1

α

(8) Evaluate referential stress tensor: σ n+1
χ = σ̂

n+1
χ + pn+1hn+1;

σ̂ = J−1
χ τ̂ f−T

(9) Update elastic left Cauchy strain tensor:

bn+1
e = ∑3

α=1

(
λn+1
e,α

)2 (
nn+1

α ⊗ nn+1
α

) ; ln λn+1
e,α =

ln λtriale,α − �γ υn+1
α

(10) Compute plastic right Cauchy Green tensor:[
c−1
p

]n+1 = [
f−1

]n+1
bn+1
e

[
f−T

]n+1

(11) Update plastic strain: ε̄n+1
p = ε̄np + �γ

3.4 Combined equations

Combining equations (1) and (13) into a first-order hyper-
bolic system expressed in the reference configuration gives
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Algorithm 2: Evaluation of plastic multiplier through
Newton-Raphson algorithm

Input : τ̂ trialαα , ε̄np,
˙̄εnp,	n+1

Output: �γ

(1) Compute constant value T;
T = f

(
τ̂ trialαα , ε̄np,

˙̄εnp,	n+1
)

+ τ̄y(ε̄
n
p,

˙̄εnp,	n+1) =
(
3
2

∑3
α=1

(
τ̂ trialαα

)2) 1
2

(2) Initiate β =
(
ε̄np

)N

(3) Assign T OL = 1 × 10−6 and Err = 2 × T OL

while Err ≥ TOL do

(4) Compute L(β);

L(β) = 3μ
[
β1/N − ε̄np

]
+(

τ 0y + Hβ

[
1 + C ln

( ˙̄εnp
ε̇0

)](
1 −

(
g(	n+1)

)M))

︸ ︷︷ ︸
τ̄y (ε̄np+�γ, ˙̄εnp ,	n+1)

(5) Evaluate the residual R(β); R(β) = L(β) − T
(6) Compute the derivative of residual;

∂R
∂β

= 3μ
N β(1/N−1)+H

[
1 + C ln

( ˙̄εnp
ε̇0

)](
1 − (

g(	n+1)
)M)

(7) Update the variable β; β = β + ξ ;

ξ = −
[

∂R
∂β

]−1
R

(8) Obtain the error; Err = |R|
end

(9) Plastic multiplier: �γ = β1/N − ε̄np

∂Uχ

∂t
+

3∑
i=1

∂Fχ
i

∂χi
= Sχ ; in �χ . (43)

Here, Uχ is the vector of conservation variables (per unit
of reference configuration), Fχ

i is the flux vector in i-th
direction at reference domain and Sχ is the source term (per
unit of reference configuration). Their corresponding com-
ponents are

Uχ =

⎡
⎢⎢⎢⎢⎣

pχ

f
h
j

ηχ

⎤
⎥⎥⎥⎥⎦

, Fχ
i = −

⎡
⎢⎢⎢⎢⎢⎢⎣

σ eiχ
v ⊗ eiχ

f
(
v ⊗ eiχ

)

h :
(
v ⊗ eiχ

)

1
θ
qχ · eiχ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Sχ =

⎡
⎢⎢⎢⎢⎣

fχ
0
0
0

1
θ

(
rχ + ḊPhy

)− 1
θ2

∇χθ · qχ

⎤
⎥⎥⎥⎥⎦

. (44)

4 Variational formulation

In order to provide a proper physical implication to the conju-
gate fields of the first-order system (43) at hand, we introduce
the Ballistic energy density Bχ [40] per unit of reference
volume (also known as the Lyapunov function of the thermo-
mechanical process) defined by

Bχ (χ , t) = B̂χ ( pχ , f , h, j, ηχ ,α)

= 1

2ρχ
pχ · pχ

︸ ︷︷ ︸
kinetic energy

+ Eχ ( f , h, j, ηχ ,α)︸ ︷︷ ︸
internal energy

− θRηχ︸ ︷︷ ︸
heat component

,

(45)

with Bχ (χ , t) and B̂χ ( pχ , f , h, j, ηχ ,α) being alternative
functional representations of the same magnitude. In the
above equation, the first term of the right-hand side rep-
resents the kinetic energy, the second term represents the
internal energy density and third term represents the ther-
mal heat component. Recalling the definition of conjugate
stresses (9), it is now possible to obtain the associated work
conjugates Vχ as [35]

Vχ = ∂B̂χ

∂Uχ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂B̂χ

∂ pχ

∂B̂χ

∂ f
∂B̂χ

∂h
∂B̂χ

∂ j
∂B̂χ

∂ηχ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v
∂Eχ

∂ f
∂Eχ

∂h
∂Eχ

∂ j
ϑ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

v

� f

�h

� j

ϑ

⎤
⎥⎥⎥⎥⎦

, (46)

whereϑ = 	−θR denotes the temperature change.With this,
the standardweak statement [54,55] of the underlying system
is established by multiplying the differential equations (43)
with their suitable work conjugate virtual fields δVχ , and
integrating over the reference domain �χ of the body, to
give

∫

�χ

δVχ • ∂Uχ

∂t
d�χ = −

∫

�χ

δVχ • ∂Fχ
i

∂χi
d�χ

+
∫

�χ

δVχ • Sχ d�χ , (47)

where the symbol • is used to denote the inner product of
work conjugate pairs. In order to introduce physical boundary
contributions acting on the body, the flux term on the right
hand side of (47) is now integrated by parts and the resulting
equation yields
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∫

�χ

δVχ • ∂Uχ

∂t
d�χ =

∫

�χ

Fχ
i • ∂δVχ

∂χi
d�χ

−
∫

∂�χ

δVχ • Fχ
N d Aχ +

∫

�χ

δVχ • Sχ d�χ . (48)

Here, the normal fluxes are defined asFχ
N = Fχ

i N
χ
i with

Nχ
i being the outward unit normal to the reference domain

in the i-th direction. Above general representation (48) can
be particularised to the conservation equations under con-
sideration, namely the linear momentum pχ , the triplet of
incremental geometric deformation measures { f , h, j} and
the entropy density ηχ as

∫

�χ

δv · ∂ pχ

∂t
d�χ = −

∫

�χ

σχ : ∇χδv d�χ

+
∫

�χ

δv · fχ d�χ +
∫

∂�χ

δv · tB d Aχ ; (49a)

∫

�χ

δ� f : ∂ f
∂t

d�χ =
∫

�χ

δ� f : ∇χv d�χ ; (49b)

∫

�χ

δ�h : ∂h
∂t

d�χ =
∫

�χ

δ�h : ( f ∇χv
)
d�χ ; (49c)

∫

�χ

δ� j
∂ j

∂t
d�χ =

∫

�χ

δ� jh : ∇χv d�χ ; (49d)

∫

�χ

δϑ
∂ηχ

∂t
d�χ = −

∫

∂�χ

δϑ

(
qB
θB

)
d Aχ

+
∫

�χ

δϑ

(
rχ + ḊPhy

	

)
d�χ

+
∫

�χ

(qχ

	

)
· ∇χδϑ d�χ −

∫

�χ

δϑ

(
1

	2∇χ	 · qχ

)
d�χ .

(49e)

Recalling that
∫
�χ

qχ · ∇χ

(
δϑ
	

)
d�χ = ∫

�χ

( qχ

	

) ·
∇χδϑ d�χ − ∫

�χ
δϑ
(

1
	2 ∇χ	 · qχ

)
d�χ , an alternative

variational statement for (49e) can now follow

∫

�χ

δϑ
∂ηχ

∂t
d�χ = −

∫

∂�χ

δϑ

(
qB
θB

)
d Aχ

+
∫

�χ

δϑ

(
rχ + ḊPhy

	

)
d�χ +

∫

�χ

qχ · ∇χ

(
δϑ

	

)
d�χ .

(50)

Notice here that δϑ = δ	 is the virtual conjugate field of
the entropy ηχ . The objective of integrating by parts as shown
above is to enable the enforcement of boundary conditions
via physical boundary fluxes. This is especially useful for the
momentum update (49a) and the entropy density equation
(50) as both expressions naturally introduce the boundary
tractions tB , boundary heat fluxqB andboundary temperature
θB .

4.1 Second law of thermodynamics

It is instructive to revisit the global version of the second law
of thermodynamics when written in terms of the Ballistic
energy density B̂. Taking the derivatives with respect to its
arguments, the time derivative of the Ballistic energy density
is obtained via the chain rule as

d

dt

∫

�χ

Bχ d�χ

=
∫

�χ

∂B̂χ ( pχ , f , h, j, ηχ ,α)

∂t
d�χ

=
∫

�χ

(
∂B̂χ

∂ pχ
· ∂ pχ

∂t
+ ∂B̂χ

∂ f
: ∂ f

∂t
+ ∂B̂χ

∂h
: ∂h

∂t

+∂B̂χ

∂ j

∂ j

∂t
+ ∂B̂χ

∂ηχ

∂ηχ

∂t
+ ∂B̂χ

∂α
: ∂α

∂t

)
d�χ

=
∫

�χ

(
v · ∂ pχ

∂t
+ � f : ∂ f

∂t
+ �h : ∂h

∂t
+ � j

∂ j

∂t

+ϑ
∂ηχ

∂t
+ ∂Eχ

∂α
: ∂α

∂t

)
d�χ

=
∫

�χ

(
v · ∂ pχ

∂t
+ (

� f + �h f + � jh
) : ∇χv

+ϑ
∂ηχ

∂t
− ḊPhy

)
d�χ

=
∫

�χ

(
v · ∂ pχ

∂t
+ σχ : ∇χv + ϑ

∂ηχ

∂t
− ḊPhy

)
d�χ ,

(51)

where, equations (46), (1b-1d) and (11) have been substituted
in the second, third and fourth lines of (51), respectively.Con-
sequently, we can substitute the linear momentum equation
(1a) into (51) to give

d

dt

∫

�χ

Bχ d�V =
∫

�χ

[
v · fχ + v · divχσχ

+σχ : ∇χv + ϑ
∂ηχ

∂t
− ḊPhy

]
d�χ . (52)

Recalling that v · divχσχ + σχ : ∇χv = divχ

(
σ T

χ v
)
,

above equation reduces to

d

dt

∫

�χ

Bχ d�χ =
∫

�χ

[
v · fχ + divχ (σ T

χ v)

+ϑ
∂ηχ

∂t
− ḊPhy

]
d�χ . (53)

Moreover, let us now focus on the term associated with
the time rate of the entropy density. By replacing δϑ with ϑ
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in expression (50), and noticing that

qχ · ∇χ

(
ϑ

θ

)
= qχ · ∇χ

(
1 − θR

θ

)
= −θRqχ · ∇χθ−1

= θR

θ2
qχ · ∇χθ, (54)

the term involving entropy density rate on the right-hand side
of (53) becomes

∫

�χ

ϑ
∂ηχ

∂t
d�χ = −

∫

∂�χ

ϑ

(
qB
θB

)
d Aχ

+
∫

�χ

ϑ

(
rχ + ḊPhy

θ

)
d�χ +

∫

�χ

θR

θ2
qχ · ∇χθ d�χ .

(55)

Combining (55) and (53), and carrying out integration by
parts of the divχ term in equation (53), it after some re-
arrangement renders

d

dt

∫

�χ

Bχ d�χ − �̇ext
χ − Qext

χ =
∫

�χ

θR

θ2
qχ · ∇χθ d�χ

−
∫

�χ

θR

θ
ḊPhy d�χ , (56)

where �̇ext
χ denotes the mechanical power associated with

external forces, defined as

�̇ext
χ =

∫

�χ

v · fχ d�χ +
∫

∂�χ

vB · tB d Aχ , (57)

and Qext
χ represents both heat source and heat flux added

(removed) to (from) the system, defined as

Qext
χ =

∫

�χ

ϑ

θ
rχ d�χ −

∫

∂�χ

ϑ

θ
qB d Aχ . (58)

Recalling the Fourier’s law of heat conduction (14), the
first term on the right-hand side of (56) is non-positive, which
is demonstrated as below

qχ ·∇χθ = − (kχ∇χθ
) ·∇χθ = −kχ : (∇χθ ⊗ ∇χθ

) ≤ 0.

(59)

Additionally, consider the case of elasto-plasticity [49]
where the elastic potential energy (34) is expressed in terms
of elastic left Cauchy-Green tensor be = f c−1

p f T (with
c−1
p = FχC−1

p FT
χ ). Under this circumstance, the state

variable is in fact the inverse of the plastic right Cauchy
Green tensor (with respect to reference configuration), that is

α = c−1
p . With this, the rate of plastic (physical) dissipation

ḊPhy described in (56) becomes

ḊPhy = − ∂Eχ

∂c−1
p

: ∂c−1
p

∂t
. (60)

Insofar as the time rate of plastic strain ˙̄ε p
χ has been defined

as the work conjugate to the von Mises equivalent stress τ̄

[48], equation above can then be recast as [49]

ḊPhy = ˙̄ε p
χ τ̄ = J−1

χ
˙̄εp τ̄ ; τ̄ =

√
3

2

(
τ̂ : τ̂

)
, (61)

where τ̂ is the deviatoric component of the Kirchhoff stress
and the transformation ˙̄ε p

χ = J−1
χ

˙̄εp. Observing that in
the above expression the rate of dissipation is always non-
negative, that is ḊPhy ≥ 0, equation (56) can be transformed
into the following inequality

d

dt

∫

�χ

Bχ d�χ − �̇ext
χ − Qext

χ ≤ 0. (62)

This represents a valid expression for the second law of ther-
modynamics [48] of a system. Satisfaction of inequality (62)
is a necessary ab initio condition to ensure stability, other-
wise referred to as the classical Coleman–Noll procedure
[56]. This fundamental concept will be further exploited in
Sect. 5.2 when introducing consistently derived numerical
dissipation to the SPH discretisation.

5 Discretisation

5.1 SPH semi-discrete equations

Combining the use of nodal (or particle) integration for
approximating the weak form integrals (49) and the standard
corrected gradient evaluation for ∇χδVχ [35,57] to ensure
zeroth- and first-order completeness, that is

∇χδV(χa) =
∑

b∈�b
a

V χ
b (δVb − δVa) ⊗ ∇̃χWb(χa),

the SPH discretisation for the system { pχ , f , h, j, ηχ }
described in (49a-49d) and (50), after some algebraic manip-
ulation becomes

V χ
a

∂ paχ
∂t

=
∑

b∈�b
a

Tχ
ab + V χ

a f aχ + Aχ
a t

a
B +

∑

b∈�b
a

D pχ

ab , (63)

V χ
a

∂ fa
∂t

=
∑

b∈�b
a

1

2
(vb − va) ⊗ Cχ

ab, (64)
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V χ
a

∂ha
∂t

= fa

⎛
⎝∑

b∈�b
a

1

2
(vb − va) ⊗ Cχ

ab

⎞
⎠ , (65)

V χ
a

∂ ja
∂t

= ha :
⎛
⎝∑

b∈�b
a

1

2
(vb − va) ⊗ Cχ

ab

⎞
⎠+

∑

b∈�b
a

D j
ab,

(66)

V χ
a

∂ηaχ

∂t
= −

∑

b∈�b
a

1

2	a

(
qaχ · Cχ

ab − qbχ · Cχ
ba

)

+ V χ
a

(
raχ + Ḋa

Phy

	a

)
− qaB

θaB
Aχ
a , (67)

where the pair-wise internal force Tχ
ab is defined by

Tχ
ab = 1

2

(
σ a

χC
χ
ab − σ b

χC
χ
ba

)
, (68)

with the pseudo area operators, see Reference [34], being
defined, respectively, as

Cχ
ab = 2V χ

a V χ
b ∇̃χWb(χa), Cχ

ba = 2V χ
a V χ

b ∇̃χWa(χb).

(69)

In the above expressions, �b
a represents the set of neigh-

bouring particles b belonging to the domain of influence of a
given radius 2h of particle a, Aχ

a and V χ
a represent the refer-

ential tributary area and the volume. The boundary traction
taB is directly computed from the given (Neumann) bound-
ary conditions, whereas the heat flux qB and the boundary
temperature θB are the prescribed thermal boundary condi-
tions. Note that Aχ

a = 0 for those particles not located on the
boundary. It is alsoworthwhile pointing out that evenwith the
use of kernel gradient correction (69), expression (63) still
ensures the global conservation of linear momentum due to
the pair-wise nature of internal force representation (68).

Finally, in order to address non-physical zero-energy
modes due to the rank-deficiency inherent to the use of nodal
integration (e.g. collocation), appropriate numerical dissipa-
tion terms {D pχ

ab ,D j
ab} (refer to expressions (63) and (66))

must be introduced. These terms, being locally conserva-
tive by construction, can be suitably derived utilising the
semi-discrete version of the second law of thermodynam-
ics written in terms of the Ballistic energy (62), guaranteeing
non-negative entropy production. This will be demonstrated
in the following section. It is interesting to note that the stabil-
isation term incorporated to the linear momentum evolution
(63) addresses the appearance of hourglassmodes due to rank
deficiency,whereas the stabilisation in the Jacobian evolution
(66) would be used to remove pressure fluctuations.

Since the resulting set of equations is rather large, it will be
suitable to employ an explicit type of time marching scheme.

In this work, a three-stage Runge–Kutta explicit time inte-
grator presented in [1] is used.

5.2 Numerical entropy production

In this section, inequality (62) is assessed for the set of SPH
semi-discrete equations described in (63)-(67). The semi-
discrete form of (51) is

∑
a

V χ
a

dBa
χ

dt

=
∑
a

V χ
a

[
va · d p

a
χ

dt
+ �a

f : d fa
dt

+ �a
h : dha

dt

+�a
j
d ja
dt

+ ϑa
dηaχ

dt
− Ḋa

Phy

]

=
∑
a

V χ
a

[
va · d p

a
χ

dt
+
(
�a

f + �a
h fa + �a

j ha
)

: d fa
dt

+ϑa
dηaχ

dt
− Ḋa

Phy

]
+
∑
a

∑

b∈�b
a

�a
jD

j
ab

=
∑
a

V χ
a

[
va · d p

a
χ

dt
+ σ a

χ : d fa
dt

+ ϑa
dηaχ

dt
− Ḋa

Phy

]

+
∑
a

∑

b∈�b
a

�a
jD

j
ab,

(70)

where, equations (65), (66) and (11) have been substituted in
the first and second lines of (70), respectively. Consequently,
we can substitute the evolution of linear momentum equation
(63) and of the first law (67) into (70) and, after some simple
algebra, gives

∑
a

V χ
a

dBa
χ

dt
− �̇ext − Qext

=
⎛
⎝∑

a

∑

b∈�b
a

va · Tχ
ab +

∑
a

V χ
a σ a

χ : d fa
dt

⎞
⎠

−
∑
a

∑

b∈�b
a

ϑa

2	a

[
qaχ · Cχ

ab − qbχ · Cχ
ba

]

−
∑
a

V χ
a

θR

	a
Ḋa

Phy −
∑
a

∑

b∈�b
a

(
−va · D pχ

ab − �a
jD

j
ab

)

︸ ︷︷ ︸
Dtotal

.

(71)
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Here, �̇ext and Qext denote the semi-discrete power contri-
bution and total heat contribution, respectively, expressed as

�̇ext =
∑
a

V χ
a va · f aχ +

∑
γ

Aχ
γ t

B
γ · vB

γ ;

Qext =
∑
a

V χ
a

ϑa

	a
raχ −

∑
γ

Aχ
γ

ϑγ

	γ

qγ

B . (72)

Under the framework of variational consistency [33,58], the
first termon the first line of (71)must be zero. This can be eas-
ily proved if the discretisation of velocity gradient for internal
work is consistent with the discretisation for the incremental
geometric conservation equations, which indeed is our case
as shown below

∑
a

∑

b∈�b
a

va · Tχ
ab =

∑
a

∑

b∈�b
a

1

2

[
va ·(σ a

χC
χ
ab) − va ·(σ b

χC
χ
ba)
]

=
∑
a

∑

b∈�b
a

1

2

[
va · (σ a

χC
χ
ab) − vb ·(σ a

χC
χ
ab)
]

= −
∑
a

σ a
χ :
[
1

2
(vb − va) ⊗ Cχ

ab

]

= −
∑
a

V χ
a σ a

χ : d fa
dt

.

(73)

It is now the objective to prove that the remaining terms
on the right-hand side of (71) are non-positive (to be in
agreement with inequality (62)). With respect to the heat
conduction term (second term on the first line of (71)),

−
∑
a

∑

b∈�b
a

ϑa

2	a

(
qaχ · Cχ

ab − qbχ · Cχ
ba

)

=
∑
a

∑

b∈�b
a

qaχ ·
[
1

2

(
ϑb

	b
− ϑa

	a

)
Cχ
ab

]

=
∑
a

∑

b∈�b
a

qaχ ·
[
1

2

(
θR (	b − 	a)

	a	b

)
Cχ
ab

]

=
∑
a

∑

b∈�b
a

θR

	a	b
qaχ ·

[
1

2
(	b − 	a)C

χ
ab

]

=
∑
a

∑

b∈�b
a

V χ
a

θR

	a	b
qaχ · ∇χθ(χa, t) ≤ 0,

(74)

where the last inequality is fulfilled due to the nature of the
conductive heat flux. With respect to the physical model dis-
sipation term (the first term on the second line of (71)), it is
again non-positive due to the definition of the rate of plastic
dissipation, that is

−
∑
a

∑

b∈�b
a

V χ
a

θR

	a
Ḋa

Phy = −
∑
a

∑

b∈�b
a

V χ
a

θR

	a

˙̄ε p
χ ,a τ̄a

= −
∑
a

∑

b∈�b
a

Va
θR

	a

˙̄εap τ̄a ≤ 0. (75)

As for the numerical dissipation term (second term on the
second line of (71)), this term can be equivalently written by
swapping indices a and b to give

Dtotal = −
∑
a

∑

b∈�b
a

(
va · D pχ

ab + �a
jD

j
ab

)

= −
∑
a

∑

b∈�b
a

(
vb · D pχ

ba + �b
jD

j
ba

)
. (76)

Simple averaging the first and second terms of the expres-
sion above, and noting the local conservation nature of the
stablisation terms such asD pχ

ba = −D pχ

ab and D j
ba = −D j

ab,
an alternative expression for Dtotal is

Dtotal = 1

2

∑
a

∑

b∈�b
a

Dab
total;

Dab
total = (vb − va) · D pχ

ab +
(
�b

j − �a
j

)
D j

ab. (77)

Dissipation terms remained to be defined in order to guar-
antee non-negative total entropy production (and thus, the
fulfilment of the second law of thermodynamics). Sufficient
conditions to ensure this, namely Dtotal > 0, are given by

D pχ

ab = S
pχ

ab (vb − va); D j
ab = S j

ab(�
b
j − �a

j ), (78)

with {Spχ

ab , S j
ab} being defined as positive semi-definite sta-

bilisation matrices [1]

S
pχ

ab

=
ρAveχ ,ab‖Cχ ,Skew

ab ‖
2

[
cAvep,abnab⊗ nab+cAves,ab(I−nab⊗nab)

]
;

S j
ab = cSkewab · cSkewab

2ρAveχ ,abc
Ave
p,ab‖Cχ ,Skew

ab ‖
.

(79)

Here, [•]Aveab = 1
2 ([•]a + [•]b) and the direction vector is

given by nab = xb−xa‖xb−xa‖ . cs and cp correspond to the shear
and volumetric wave speeds obtained via the classical wave
propagation theory [49]. In addition, the pseudo-area vector
Cχ ,Skew
ab (along with its norm magnitude ‖Cχ ,Skew

ab ‖) and its
push forward equivalent (spatial) vector cSkewab are, respec-

tively, defined as Cχ ,Skew
ab = 1

2

(
Cχ
ab − Cχ

ba

)
and cSkewab =

1
2

(
haC

χ
ab − hbC

χ
ba

)
.
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Interestingly, the dissipation terms are directly related to
the jump (or difference) in velocity and stresses between
pairwise particles, typical upwind method [49] of first-order
Godunov-type scheme. In order to ensure second-order accu-
racy in space, and following our previous work [34], a linear
reconstruction procedure based on the use of corrected kernel
gradient operator is used for the reconstruction of the left and
right states at the mid-edge connecting particle a and parti-
cle b. In addition, we have also implemented the classical
monotonicity-preserving Venkatakrishnan slope limiter [59]
to better handle spurious oscillations in the region of shocks.

6 Algorithmic description

For ease of implementation, Algorithm (3) recaps the algo-
rithmic description of the Updated Reference Lagrangian
SPHmethodology for thermo-mechanical coupled problems
at finite strains. One interesting feature of the proposed SPH
algorithm is the ability to suitably update the reference con-
figuration when certain criteria are met. This indeed will be
explored in forthcoming publications, especially in the area
of dynamic fracture in brittle materials where the principal
stress criterion of Rankine will be employed. However, in
this work, we decide to update the reference domain at every
time step of the time integration process. This is to check
whether the proposed algorithm is capable of removing unde-
sirable spuriousmodes, a typical shortcoming of the standard
Updated Lagrangian SPH formulation [24].

7 Numerical examples

In this section, a series of three-dimensional numerical
examples is presented in order to assess the performance,
effectiveness and applicability of the proposed Updated
Reference Lagrangian Smoothed Particle Hydrodynamics
(URL-SPH) algorithm described above. It is crucial to show
that the overall URL-SPH formulation

• achieves equal second-order convergence for velocities,
stresses and temperature,

• alleviates spurious oscillations in the region of shocks (or
discontinuities),

• circumvents zero-energy modes (under dynamic stretch-
ing) and pressure instabilities,

• preserves the total linear and angular momenta over a
long term response, and

• guarantees a non-negative rate of production of total
entropy within a coupled system.

In the following numerical computations, the global a pos-
teriori angular momentum projection algorithm as shown

Algorithm 3: Updated Reference Lagrangian SPH
Algorithm

Input : initial geometry Xa and initial states of paχ , fa , ha , ja ,
ηaχ

Output: current geometry xa , particle velocity va and current
states of Fa , Ha , Ja

(1) INITIALISE Fa
χ = Ha

χ = I , Jaχ = 1 and xa = χa = Xa

(2) FIND neighbouring particles within a given support size

(3) COMPUTE corrected kernel and gradient approximations

for Time t0 to Time t do

if update at this step = TRUE then

(4) COMPUTE the velocity as va = Jaχ paχ
ρR

(5) ASSIGN Fa
χ ← faFa

χ , Hχ ,a ← haHa
χ ,

Jχ ,a ← ja J aχ and χa ← xa

(6) UPDATE the linear momentum paχ = J−1
χ ,aρRva

(7) REINITIALISE fa , ha , ja

(8) COMPUTE corrected kernel and gradient
approximations

(9) COMPUTE σ a
χ

end
(10) EVALUATE p and s-wave speeds: cp , cs

(11) COMPUTE time increment: �t

for RK time integrator = 1 to 3 do

(12) COMPUTE slope of linear reconstruction procedure

(13) COMPUTE right-hand-side of the mixed-based
system:

ṗaχ , ḟa , ḣa , j̇a and η̇aχ

(14) ENSURE conservation of angular momentum
(15) COMPUTE smoothed velocities using the corrected
kernel

(16) EVOLVE paχ , fa , ha , ja , η
a
χ and xa

(17) COMPUTE σ a
χ

end
(18) COMPUTE smoothed variables using the corrected
kernel

(19) EXPORT results for this time step

(20) ADVANCE in time

end

in [1] is activated. Moreover, the kernel function as well
as its gradient evaluation must be expressed in terms of
the reference configuration. To achieve this, we first map
the domain of interest from reference domain to material
domain, perform the necessary calculations (e.g. both ker-
nel and its gradient evaluation), and then push forward to
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Table 1 Linear thermo-elasticity: material parameters used in the sim-
ulation

Problem parameter U0 5 × 10−4 m

Lamé parameters μ 6.5385 MPa

λ 9.8077 MPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K

Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1


0 8.5889

the reference domain followed by the application of appro-
priate corrections for completeness. Details can be found in
Sect. 4.1 of Reference [1]. In terms of the temporal stabil-
ity of the algorithm, the Courant-Friedrichs-Lewy number
of 0.9 has been chosen [1]. In addition, comparisons are also
carried out against the results simulated using an alterna-
tive in-house Total Lagrangian SPH algorithm [35], which
can indeed be recovered by ensuring no updates of the
configuration takes place over the entire simulation, that is
Fχ = Hχ = I and Jχ = 1. It is not the premise of the
paper to claim that URL-SPH algorithm outperforms our
previously developed Total Lagrangian SPH algorithm [35],
but to demonstrate that the current URL-SPH algorithm can
indeed be equally compelling and competitive in the applica-
tions of solidmechanics. This in general is not necessarily the
case for standard Updated Lagrangian SPH algorithms [24],
where non-physical zero-energy modes can accumulate in
the solution over time and eventually lead to the breakdown
of the numerical scheme.

7.1 Swinging cube

To check the convergence pattern of the proposed URL-SPH
algorithm,we consider a unit cube subjected to bothmapping
and temperature profiles described, respectively, as

φexact(X, t)

= X +U0 cos(βπ t)

⎡
⎢⎢⎢⎢⎣

sin(πX
2 ) cos(πY

2 ) cos(π Z
2 )

cos(πX
2 ) sin(πY

2 ) cos(π Z
2 )

cos(πX
2 ) cos(πY

2 ) sin(π Z
2 )

⎤
⎥⎥⎥⎥⎦

(80)

and

θexact(X, t) = θR

(
1 − 3π

2
U0 cos(βπ t)
0

[
cos

(
πX

2

)
cos

(
πY

2

)
cos

(
π Z

2

)])
,(81)

with the parameter β being defined as

β =
√
3

2

√√√√
(
2μR + λR

ρR

)
+
(

θR
2
0cv

ρR

)
. (82)

With these equations at hand, and to guarantee the struc-
ture is in equilibriumstate, the exact profile for the heat source
term rR becomes

rR = −9π3

8
hθR
0U0 cos(βπ t)

[
cos

(
πX

2

)
cos

(
πY

2

)
cos

(
π Z

2

)]
, (83)

whilst the body force term remains zero, that is fR = 0. The
complete derivation procedure was detailed in [40]. In this
example, a linear thermo-elastic model1 is considered with
the parameters summarised in Table 1.

Regarding boundary conditions of the cube, we enforce
symmetry boundary conditions (i.e. restricted to tangential
movement) at the faces X = 0, Y = 0 and Z = 0 and
anti-symmetry boundary conditions (i.e. restricted to normal
movement) at the faces X = 1, Y = 1 and Z = 1. Addition-
ally, reference temperature θR must be enforced at every time
step of the time integration process at those three boundary
faces, namely X = 1, Y = 1 and Z = 1.

Comparing with the exact expressions provided in (80)
and (81), Fig. 1 illustrates the L2 global convergence anal-
ysis of the overall SPH algorithm at time t = 8 × 10−4 s.
Indeed, one crucial advantage of the proposed SPH formula-
tion over the standard (displacement-based) SPHalgorithm is
the ability to achieve equal second-order convergence for all
the variables solved, namely linear momentum (or velocity),
the stress tensor (or strain) and the temperature (or entropy).

7.2 Cable with step function loading

A wave propagation of a cable under the influence of shocks
is considered. The purpose of this test case is to show the
shock capturing capability of the proposed SPH algorithm.
Similar type of problems were also explored in References
[60–62]. A cable of length L = 10 m, with a unit cross
section A = 1 m2, is fixed at the left end (X = 0), whilst a
step traction loading is enforced at the right end (X = 10 m)
given as

1 Detailed discussion on the linear thermo-elastic model was docu-
mented in Appendix C of Reference [40].
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Fig. 1 Swinging cube: L2 global convergence analysis at time t = 8 × 10−4 s for (a) the components of linear momentum (or velocity), (b) the
components of the stress tensor and (c) the temperature. Results obtained using a linear thermo-elastic model and the material properties used are
summarised in Table 1

Fig. 2 Shock dominated problem: the first row illustrates the time his-
tory of (a) horizontal velocity component v1 and (b) axial stress σ 11

χ

measured at the middle of a structure. The second row shows the par-
ticle refinement analysis for (c) velocity component v1 and (d) axial

stress σ 11
χ . Exact solutions are also included for comparison purposes.

Results obtained using a linear elastic model without considering ther-
mal effects. The corresponding material parameters are reported in
Sect. 7.2
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Fig. 3 Shock dominated problem: time history of (a) horizontal veloc-
ity component v1 and (b) axial stress σ 11

χ measured at the middle of a
structure. Finite volume solutions [49] are also included for compari-
son purposes. Results obtained using a Johnson-Cook model without
considering thermal effects. The corresponding material parameters are
reported in Sect. 7.2

tB(t) =
⎡
⎣
T0
0
0

⎤
⎦ when t ≥ 0, (84)

with T0 = 0.001 Pa. Roller support (also known as sym-
metry boundary conditions) are applied on the remaining
boundaries. For simplicity, no thermal effects are included.
First, we consider a linear elastic model where the material
properties are Young’s modulus E = 1 Pa, material density
ρR = 1 kg/m3 and Poisson’s ratio ν = 0. The closed-form
expression for the horizontal displacement of the cable is
given as a function of position X and time t as

u(X , t) = 2T0
ρRL

∞∑
n=1

(−1)n+1
[
1 − cos(ωnt)

ω2
n

]

sin

(
(2n − 1)πX

2L

)
, (85)

where the natural frequencies ωn are given by

ωn = π(2n − 1)

2

√
E A

ρRL2 . (86)

Upon the sudden application of external force at the right
end of the cable, a shock stress wave propagates towards the
left fixed end and then gets reflected back. Figure2a and b
monitor the time history of both the horizontal velocity and
the axial stress wavemeasured at themiddle of a cable, that is
when X = 5m.As expected, first-orderURL-SPHalgorithm
(without kernel gradient evaluation for reconstruction) intro-
duces slightly more numerical dissipation to the solution. To
further improve the solution accuracy, a linear reconstruction
procedure is used. Minor under- and over-shoot oscillations
are seen in the presence of shocks. The oscillatory behaviour
however can be addressed with the introduction of appropri-
ate slope limiter.Moreover, a particle refinement study is also
carried out. Three model refinements are used, namely (M1)
606, (M2) 1206 and (M3) 2406 number of SPH particles.
As displayed in Fig. 2c,d, improved representation of shock
profile is clearly seen by increasing the number of particles.

Second, we examine the exact same problem but now
with Johnson-Cook plasticity model (41). Again, let us con-
sider isothermal condition which requires g(θ) = 0 to be
enforced in the yield function (41). The remaining parame-
ters used in the Johnson-Cook model are N = 1, C = 0,
τ̄ 0y = 0.0015 Pa and the hardening parameter H = 0.05 Pa.
For benchmarking purposes, the results obtained using the
in-house vertex-based finite volume algorithm [49] is also
plotted and compared. The proposed URL-SPH algorithm
combined with slope limiter removes unwanted oscillatory
behaviour and, more crucially, is in excellent agreement with
the finite volume results [49]. This is seen in Fig. 3.

7.3 L-shaped block

As documented in References [1,35,40], the primary aim of
this test case is to assess the capability of the proposed URL-
SPH algorithm in the preservation of both the linear and
angular momenta of a system. The geometry of the prob-
lem is illustrated in Fig. 4. The block is subjected to a pair of
(time-varying) boundary forces F1(t) and F2(t) which can
be mathematically described as

F1(t) = −F2(t) =
⎡
⎣
150
300
450

⎤
⎦ f (t),

f (t) =
⎧⎨
⎩
t 0 ≤ t < 2.5s,
5 − t 2.5 ≤ t < 5s,
0 t ≥ 5s.

(87)

When considering thermo-mechanical coupled physics,
we also need to prescribe an initial temperature distribution
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Fig. 4 Problem setup for
L-shaped block: a geometry and
b initial temperature profile

(a) (b)

Table 2 L-shaped block: material parameters used in the simulation

Lamé parameters μ 19.423 kPa
λ 29.135 kPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K

Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1


0 0.0255

across the structure defined as

θ

∣∣∣
t=0

=

⎧⎪⎨
⎪⎩

θR + (Y−3)
7 (300 − θR) K 3 ≤ Y ≤ 10 m,

θR + (X−3)
3 (250 − θR) K 3 ≤ X ≤ 6 m,

θR elsewhere.

This can be equivalently done by enforcing the associated
entropy profile via the relation between the entropy and tem-
perature (refer to (18)), that is

ηχ

∣∣∣
t=0

= η̃χ

(
F = I, H = I, J = 1, θ

∣∣∣
t=0

)

= cχ
v ln

⎛
⎜⎝

θ

∣∣∣
t=0

θR

⎞
⎟⎠ . (88)

A Mie-Grüneisen-based thermo-elastic model as detailed
in Sect. 3.3.1 is considered. The associated material param-
eters used in the simulation can be found in Table 2. For
completeness, three different levels of particle refinement are
considered: {M1,M2,M3} comprising {828, 5445, 13950}
number of particles, respectively.

First, a particle refinement study is carried out. This can be
seen in the first three columns (from left to right) of Fig. 5.
The deformation pattern, together with pressure and tem-
perature profiles, simulated using a relatively small number
of particles (M1), is in good agreement with those results
obtained using finer discretisations (M2 and M3 models).
For benchmarking purposes, an alternative in-house Total
Lagrangian SPH algorithm [35] with M3 discretisation is
also included and compared. Comparing the results of the
proposed algorithm and those of the Total Lagrangian SPH
algorithm, near-identical results are observed (see Fig. 5).

Second, Figs. 6a and b shows the ability of the proposed
algorithm in ensuring the conservation of global linear and
angular momenta. The global linear momentum, Ltotal =∫
�χ

pχ d�χ , is expected to oscillate around zero value
(machine error) at all times. The global angular momen-
tum, Atotal = ∫

�χ
x × pχ d�χ , is indeed conserved after

the loading phase t > 5 s. Another interesting variable to
be monitored is the global entropy ηtotalχ = ∫

�χ
ηχ d�χ ,

which increases over time throughout the entire simulation.
This is seen in Fig. 6c, indicating the discrete satisfaction of
second law of thermodynamics. In addition, Fig. 6d depicts
the evolution of various energy measures. These include
kinetic energy K total = ∫

�χ

1
2ρχ

pχ · pχ d�χ , internal

energy associated with mechanical contribution EtotalMech =∫
�χ

ẼRχ ( f , h, j) d�χ and internal energy associated with

thermal effects EtotalTher = ∫
�χ

cχ
v θR

(
e

ηχ −η̃Rχ (X)

c
χ
v − 1

)
d�χ . In

this case, the external power only arises as a result of external
boundary traction, that is ψ̇ext = ∫

∂�χ
tB ·vB d Aχ .With these

at hand, the total energyEtotal = K total+EtotalMech+EtotalTher−ψext

can now be computed. This consequently leads to an alter-
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Fig. 5 L-shaped block: comparison of deformed shapes at time t =
15s. The first three columns (left to right) show the particle refinement
of a structure simulated using the URL-SPH algorithm, whereas the
last column (on the right) shows a deformed structure via alternative
in-house Total Lagrangian SPH algorithm [35]. The first row depicts

the pressure contour and the second row illustrates temperature con-
tour. A Mie-Grüneisen thermo-elastic constitutive model as described
in Sect. 3.3.1 is used. The corresponding material parameters are sum-
marised in Table 2

native energy measure known as Ballistic energy, that is
Btotal = E

total−θRηtotalχ . A slight decrease in the total energy
is unavoidable after the loading phase due to the incorpora-
tion of upwinding-based numerical dissipation (76) to the
system.

Third, and for qualitative comparison purposes, Figs. 6e
and f monitor the time evolution of the velocity component
vx and the temperature at position X = [6, 0, 0]T . The solu-
tion converges with a successive level of refinement. Finally,
a sequence of deformed states are depicted in Figs. 7 and
8, where the colour contour plot indicates the pressure and
temperature distributions, respectively. Stable solutions are
observed even after a relatively long-term response.

7.4 Punch test

Weconsider a blockwith 3×3 of vertical holeswith diameter
D (see Fig. 9a). The block is left free on its top surface and
is constrained with roller supports (i.e. symmetric boundary
conditions) applied to the rest of the surfaces. The objective
of this test case [40] is to check if the proposed URL-SPH
algorithm is capable of alleviating the appearance of spurious
pressure in a highly constrained scenario. The deformation
of the block is initiated with a compressive velocity profile
applied in a quarter of the domain (X ≥ 0 and Y ≥ 0),
together with a linear temperature profile, described as

v
∣∣
t=0 = −5

⎡
⎣

0
0

Z/H

⎤
⎦ (m/s); θ

∣∣∣
t=0

= θR + 10
Z

H
(K),

(89)
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Fig. 6 L-shaped block: time evolution of (a) global linear momentum,
(b) global angular momentum, (c) global entropy, (d) different energy
measures plotted with two different scales, (e)velocity component vx at
position X = [6, 0, 0]T and (f) temperature at position X = [6, 0, 0]T .
In terms of the energy plot, the magnitudes of internal heat energy and

total energy refer to the vertical axis on the right, whereas the remaining
energy measures refer to the vertical axis on the left. A Mie-Grüneisen
thermo-elastic constitutive model as described in Sect. 3.3.1 is used.
The corresponding material parameters are summarised in Table 2
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Fig. 7 L-shaped block: a sequence of deformed structures with pres-
sure distribution at times t = {0, 2, 4, . . . , 48} s (left to right and top to
bottom), respectively. Results obtained using a Mie-Grüneisen thermo-

elastic constitutivemodel as described in Sect. 3.3.1. The corresponding
material parameters are summarised in Table 2
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Fig. 8 L-shaped block: a sequence of deformed structures with tem-
perature profile at times t = {0, 2, 4, . . . , 48} s (left to right and top to
bottom), respectively. Results obtained using a Mie-Grüneisen thermo-

elastic constitutivemodel as described in Sect. 3.3.1. The corresponding
material parameters are summarised in Table 2
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(a) (b) (c)

Fig. 9 Constrained punch block: (a) geometry, (b) initial velocity profile and (c) initial temperature profile

respectively. These are shown in Figs. 9b and c for complete-
ness. Moreover, a Mie-Grüneisen thermo-elastic model as
presented in 3.3.1 is used, where parameters for material and
geometry are summarised in Table 3.

In this example, three different model refinements are
explored, namely (M1) 22,420, (M2) 49,900, and (M3)
167,536 SPH particles. As illustrated in Fig. 10, despite
increasing the number of particles from 22,420 to 167,536,
the predicted deformation patterns are practically identical.
Improved resolution in pressure and temperature is indeed
observed. The proposed SPH algorithm captures very well
the finite deformation of the holes near the bottom surface,
showing good agreement with the results obtained using the
alternative Total Lagrangian SPH [35] counterpart.

From Figure11 spurious pressure fluctuations can be
detected using either the classical displacement-based SPH
or the unstabilised SPH algorithm (by setting the values of
D pχ

ab = 0 and D j
ab = 0). Such spurious mechanisms sim-

ilar to hour-glassing can be effectively eliminated with the
inclusion of appropriate numerical dissipation. Similar trend
can also be observed for the shear stress component. This is
shown in Fig. 12. In addition, the time history of the vertical
velocity component and vertical displacement component at
position X = [−0.5,−0.5, 0.5]T mare also monitored. This
is shown in Fig. 13.

In Fig. 14a, the time history of the kinetic energy, inter-
nal energies (e.g. heat and mechanical contributions), total
energy and Ballistic energy is monitored. Specifically, the
difference between the total energy (cyan dashed line) and
the Ballistic energy (green dashed line) is regarded as the
global entropy associated with irreversible heat conduction,
which must be positive in this case. This is shown in Fig. 14b
as the value of global entropy is non-negative and increases
over time. Moreover, the standard displacement-based SPH
algorithm [24]was reported to trigger possible instabilities by
carrying our frequent updates of the reference configuration.

Table 3 Punch block: geometry and material parameters used in the
simulation

Geometry H 0.5 m
D 0.2 m

Lamé parameters μ 6.5385 MPa

λ 9.8077 MPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K

Thermal conductivity h 10 WK−1m−1

Material density ρR 1000 kgm−3

Mie-Grüneisen coefficients q 1


0 8.5889

This would then lead to the breakdown of the overall scheme.
To highlight this issue, we update the reference configuration
at every 1, 10, 20 and 30 time steps.We thenmonitor the tem-
perature evolution at position X = [0, 0, 0.5]T m and also
the evolution of global dissipation. Almost identical results
(i.e. stable and smooth) are observed (refer to Fig14c and d).

For visualisation purposes, Figs. 15 and 16 display a series
of deformed states without exhibiting locking.

7.5 Taylor bar impact

This is another benchmark problem where a copper bar of
initial length L = 0.0324m and of initial radius r = 0.0032m
impacts against a rigid wall with a velocity of 227m/s. The
initial temperature profile of the bar is set to the reference
temperature, that is θ(χ , t = 0) = 298.15 K. The geometry
of the problem is illustrated inFig. 17. Its objective is to assess
the performance of the proposed SPH algorithm under high
speed impact. Specifically, a von Mises material with strain
rate- and thermal-dependent Johnson-Cook hardening law is
chosen. The material parameters used in the simulation are
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Fig. 10 Punch block: the first three columns (M1, M2 and M3, from
left to right) show the a sequence of particle refinement of a structure
simulated using URL-SPH algorithm, whereas the last column shows a
deformed structure via in-house Total Lagrangian SPH algorithm [35].
The first and third rows depict the pressure and temperature contour

at time t = 0.05 s, whereas the second and fourth rows illustrates the
pressure and temperature contour at time t = 0.12 s. A Mie-Grüneisen
thermo-elastic constitutive model described in Sect. 3.3.1 is used, with
material parameters being summarised in Table 3
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Fig. 11 Punch block: comparison of deformed shapes at time t = 0.25
s with M3 model: (a) URL-SPH algorithm, (b) URL-SPH algorithm
without dissipation (i.e. by setting the values ofD pχ

ab = 0 andD j
ab = 0)

and (c) Total Lagrangian SPH algorithm [1]. Colour indicates pressure
contour. A Mie-Grüneisen thermo-elastic constitutive model described
in Sect. 3.3.1 is used, with material parameters being summarised in
Table 3

Fig. 12 Punch block: comparison of deformed shapes at time t = 0.065
s with M3 model: (a) URL-SPH algorithm, (b) URL-SPH algorithm
without dissipation (i.e. by setting the values ofD pχ

ab = 0 andD j
ab = 0)

and (c) Total Lagrangian SPH algorithm [1]. Colour indicates one of the
shear stress components σ 21

χ . A Mie-Grüneisen thermo-elastic consti-
tutive model described in Sect. 3.3.1 is used, with material parameters
being summarised in Table 3

tabulated in Table 4. For ease of computation, we perform the
simulation of the bar impact by considering only a quarter
of the domain via appropriate symmetry boundary condition
such as roller support.

Aiming to demonstrate the consistency of the algorithm,
wediscretise the quarter of a bar using three different levels of
particle refinement, namely (M1) 1560, (M2) 3744 and (M3)
7280 number of SPH particles. In Fig. 18a, the evolution in
time of various energy measures is monitored. When impact
occurs, most of the kinetic energy is converted into irrecover-
able heat dissipation and plastic dissipation whilst part of the
kinetic energy is transferred into elastic strain energy. Fig-

ure18b shows the reduction of total numerical dissipation
when increasing the particle density. The global numeri-
cal entropy increases over time for the entire simulation,
hence guaranteeing long term stability.We also monitor both
radius and length evolution at position X = [0, 0.0032, 0]T
and X = [0.0032, 0, 0.0324]T , respectively. This is seen in
Fig. 18c and d. Our results agree extremely well with the
solutions obtained via the Total Lagrangian SPH counter-
part [35]. This is usually not the case when employing the
standard displacement-basedUpdatedLagrangian SPHalgo-
rithm [24] as it was reported to introduce particle clumping
at the contact boundary.

123



Computational Particle Mechanics

Fig. 13 Punch block: time evolution of (a) vertical velocity component vz and (b) vertical displacement component uz at position X =
[−0.5,−0.5, 0.5]T . A Mie-Grüneisen thermo-elastic constitutive model described in Sect. 3.3.1 is used, with material parameters being sum-
marised in Table 3

Fig. 14 Punch block: time evolution of (a) different energy measures, (b) global entropy, (c) temperature at position X = [0, 0, 0.5]T and (d)
global numerical dissipation. A Mie-Grüneisen thermo-elastic model as described in Sect. 3.3.1 is used. The corresponding material parameters are
summarised in Table 3
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Fig. 15 Punch block: a sequence of deformed structures with pressure
distribution at times t = {1, 2, 3, . . . , 30} ms (left to right and top to
bottom), respectively. Results obtained using a Mie-Grüneisen thermo-

elastic constitutivemodel as described in Sect. 3.3.1. The corresponding
material parameters are summarised in Table 3
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Fig. 16 Punch block: a sequence of deformed structures with temper-
ature profile at times t = {1, 2, 3, . . . , 30} ms (left to right and top to
bottom), respectively. Results obtained using a Mie-Grüneisen thermo-

elastic constitutivemodel as described in Sect. 3.3.1. The corresponding
material parameters are summarised in Table 3

In addition, and as shown in Fig. 19, the deformation pat-
tern of the structure together with its temperature and von
Mises contour matches extremely well across all the three

particle refinements. For visualisation purposes, Figs. 20 and
21 show a sequence of deformed states of the bar for a rela-
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Fig. 17 Taylor impact bar configuration

tively long period of time. Smooth pressure and temperature
profiles are seen.

Finally, we can further assess the robustness of the algo-
rithm by substantially increasing the value of the initial
temperature profile θ(χ , t = 0) from 298.15 K to 573.15 K .
Due to the softening behaviour caused by the high tempera-
ture accumulated at the contact plane, the time history of the
length and radius are relatively larger in comparison to that
of the previous case. Their plots are shown in Figs. 22c and
d. Finally, Fig. 23 displays a series of snapshots for the bar
impact in terms of temperature distribution, simulated via the
proposed method and the Total Lagrangian SPH algorithm.
Practically identical results are observed.

7.6 Necking bar

Similar to the Taylor bar previously explored in Sect. 7.5,
we now stretch the bar on both sides by reversing its initial
velocity field. In this example, no fracture is considered. To
account for thermal effects, the initial temperature profile of
the bar is prescribed as θ(χ , t = 0) = 573.15 K. The pri-
mary interest of this necking problem is to demonstrate that
the proposed URL-SPH methodology is capable of allevi-
ating spurious modes even for problems involving massive
stretching, a persistent shortcoming typically encountered
in the classical Updated Lagrangian SPH algorithm [24].
The material properties used in the simulation are exactly
the same as those reported in Table 4. A strain rate- and
thermal-dependent Johnson-Cook hardening rule is chosen.
Given the presence of symmetry planes, only one-eighth of
the structure is discretised with appropriate boundary condi-

Table 4 Taylor bar: material parameters used in the simulation

Lamé parameters μ 46.269 GPa
λ 98.321 GPa

Specific heat capacity Cv 383 JK−1kg−1

Reference temperature θR 298.15 K

Thermal conductivity h 386 WK−1m−1

Material density ρR 8960 kgm−3

Poisson’s ratio ν 0.34

Young’s modulus E 124 GPa

Mie-Grüneisen coefficients q 1


0 5.6459

Johnson-Cook model τ̄ 0y 90 MPa

H 292 MPa

N 0.31

C 0.025

ε̇0 1 s−1

M 1.09

θmelt 1356.2 K

θtransition 298.15 K

tions. For completeness, three levels of particle refinement
for the model are studied. Model M1 contains a number of
1740 SPH particles, modelM2 comprises 4108 particles and
modelM3 contains 8160 particles. To accurately capture the
onset of necking, it is important to placemore particleswithin
the necking region.

Figure24 illustrates a comparison of the proposed SPH
algorithm against our in-house Total Lagrangian SPH algo-
rithm [35] at time t = {20, 40} ms. Both formulations
yield similar results in terms of deformed shape and pres-
sure field. For qualitative comparison, we also monitor the
radius reduction of the bar in the necking region as a func-
tion of the elongation. Comparing with the Total Lagrangian
counterpart [35], it is interesting to notice that the proposed
SPH method is able to capture post-necking deformation
behaviour with a smaller number of particles. This is seen
in Fig. 25b. Figure26 compares the pressure resolution with
and without the dissipation term appearing in the incremen-
tal Jacobian conservation equation (66). Observe that, with
the incorporation of sufficient dissipation D j

ab, the overall
algorithm removes the non-physical mechanisms similar to
hour-glassing in the solution. Figure27 shows a series of
deformed states where unwanted low-energy modes are not
present. No temperature and/or plastic strain instabilities are
observed.

8 Conclusions

In this work, an Updated Reference Lagrangian Smoothed
Particle Hydrodynamics (SPH) algorithm for the numerical
analysis of large strain thermo-elasticity and thermo-visco-
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Fig. 18 Taylor bar impact: time evolution of (a) different energy mea-
sures, (b) global numerical dissipation, (c) radius at position X =
[0, 0.0032, 0]T m and (d) length at position X = [0.0032; 0; 0.0324]T

m. A Hencky-based Johnson-Cook hardening rule as described in
Sect. 3.3.2 is used. The corresponding material parameters are sum-
marised in Table 4

plasticity has been presented. From the continuumviewpoint,
the methodology is built upon a suitable multiplicative
decomposition of the conservation variables by introduc-
ing an intermediate (or incremental) configuration during
the thermally coupled deformation process. This requires
the re-formulation of a system of first-order hyperbolic con-
servation laws, usually expressed in material (or initial)
configuration, to this new intermediate configuration. In addi-
tion to conservation laws for the linear momentum and the
three incremental geometric conservation laws (for the defor-
mation gradient, its co-factor and its determinant) previously
used in isothermal process [1], a further conservation law rep-
resenting the first law of thermodynamics written in terms
of the entropy density is incorporated to extend the range
of applications into thermally coupled hyperelasticity and
strain-rate dependent plasticity.

From the spatial discretisation standpoint, a Smoothed
Particle Hydrodynamics method utilising the standard kernel

gradient corrections is presented. In order to address spuri-
ous energy modes inherent to the collocation nature of SPH,
appropriate upwinding numerical dissipation is introduced.
Such numerical dissipation is specifically designed via the
use of the Coleman-Noll procedure at the semi-discrete level,
demonstrated by monitoring the so-called Ballistic energy
of the system. From the time integration standpoint, a stan-
dard explicit three-stageRunge–Kutta timemarching scheme
is employed. With the aim of demonstrating the reliability
of the methodology, a wide spectrum of numerical exam-
ples is presented and compared. It has been shown that the
resulting SPH algorithm addresses several numerical arte-
facts posed by standard Updated Lagrangian SPH methods,
namely spurious pressure fluctuations, hour-glassing and
numerical errors related to global conservation, complete-
ness and long-term instability.
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Fig. 19 Taylor bar impact: comparison of deformed shapes at time t
= 80 ms. The first three columns (M1, M2 and M3, from left to right)
show the particle refinement of a structure simulated using the URL-
SPH algorithm, whereas the last column shows a deformed structure
via in-house Total Lagrangian SPH algorithm [1]. The first row depicts

the temperature distribution and the second row illustrates von Mises
field. A Hencky-based Johnson-Cook hardening rule as described in
Sect. 3.3.2 is used. The corresponding material parameters are sum-
marised in Table 4
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Fig. 20 Taylor bar: a sequence of deformed structures with pressure
distribution at times t = {0, 5, 10, 15, . . . , 70} μs (left to right and
top to bottom), respectively. Results obtained using a Hencky-based

Johnson-Cook hardening rule as described in Sect. 3.3.2. The corre-
sponding material parameters are summarised in Table 4
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Fig. 21 Taylor bar: a sequence of deformed structures with temper-
ature profile at times t = {0, 5, 10, 15, . . . , 70} μs (left to right and
top to bottom), respectively. Results obtained using a Hencky-based

Johnson-Cook hardening rule as described in Sect. 3.3.2. The corre-
sponding material parameters are summarised in Table 4
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Fig. 22 Taylor bar impact: time evolution of (a) different energy mea-
sures, (b) global entropy, (c) radius at position X = [0, 0.0032, 0]T
m and (d) length at position X = [0.0032; 0; 0.0324]T m. A Hencky-

based Johnson-Cook hardening rule as described in Sect. 3.3.2 is used.
The corresponding material parameters are summarised in Table 4
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Fig. 23 Taylor bar impact: a sequence of deformed structures with
temperature profile at times t = {15, 30, 45, 60, 80} ms (from left to
right) using (top row) the proposed URL-SPH algorithm and (bottom

row) Total Lagrangian SPH algorithm [35]. Results obtained using a
Hencky-based Johnson-Cook hardening rule as described in Sect. 3.3.2.
The corresponding material parameters are summarised in Table 4
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Fig. 24 Necking bar:
comparison of deformed shapes
at time (a) t = 20 ms and (b) t =
40 ms. The first three columns
(left to right representing M1,
M2 and M3) show the particle
refinement of a structure
simulated using the proposed
URL-SPH algorithm, whereas
the last column shows a
deformed structure via the
mixed-based Total Lagrangian
SPH algorithm [1] (viaM3).
Colour contour indicates
pressure field. A Hencky-based
Johnson-Cook hardening rule as
described in Sect. 3.3.2 is used.
The corresponding material
parameters are summarised in
Table 4
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Fig. 25 Necking bar: (a) time evolution of different energy measures and (b) radius reduction as function of elongation of the bar. A Hencky-based
Johnson-Cook hardening rule as described in Sect. 3.3.2 is used. The corresponding material parameters are summarised in Table 4

Fig. 26 Necking bar:
comparison of deformed shapes
at time t = 60 ms via M3
model: (Left) URL-SPH
algorithm without adding
numerical dissipation term D j

ab
in the conservation equation for
j (66), and (Right) URL-SPH
algorithm incorporating
sufficient numerical dissipation
term D j

ab. Zoom-in view of
region near necking is included.
A Hencky-based Johnson-Cook
hardening rule as described in
Sect. 3.3.2 is used. The
corresponding material
parameters are summarised in
Table 4
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Fig. 27 Necking bar: a
sequence of deformed structures
at times t = {0, 8, 16, . . . , 72}
μs (left to right and top to
bottom). In each subfigure, and
in terms of colour
representation, top half of the
bar represents plastic strain and
bottom half of the bar represents
temperature profile. Results
obtained using a Hencky-based
Johnson-Cook hardening rule as
described in Sect. 3.3.2. The
corresponding material
parameters are summarised in
Table 4

Acknowledgements Lee gratefully acknowledge the support provided
by the EPSRC Strategic Support Package: Engineering of Active
Materials by Multiscale/Multiphysics Computational Mechanics -
EP/R008531/1. Gil, Lee and Refachinho de Campos would like to
acknowledge the financial support received through the project Marie
Skłodowska-Curie ITN-EJD ProTechTion, funded by the European
Union Horizon 2020 research and innovation program with grant
number 764636. Giacomini acknowledges the support of the Serra
Húnter Programme of the Generalitat de Catalunya, the Spanish
Ministry of Science and Innovation and the Spanish State Research
Agency MCIN/AEI/10.13039/501100011033 (Grants No. PID2020-
113463RB-C33 and CEX2018-000797-S).

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Refachinho de Campos PR Gil AJ, Lee CH, Giacomini M, Bonet J
(2022) A new updated reference lagrangian smooth particle hydro-
dynamics algorithm for isothermal elasticity and elasto-plasticity.
Comput Methods Appl Mech Eng 392:114680. https://doi.org/10.
1016/j.cma.2022.114680

2. Rahimi MN, Moutsanidis G (2022) A smoothed particle hydro-
dynamics approach for phase field modelling of brittle fracture.
Comput Methods Appl Mech Eng 398:115191

3. Islam MRI, Ganesh KV, Patra PK (2022) On the equivalence
of eulerian smoothed particle hydrodynamics, total lagrangian
smoothed particle hydrodynamics and molecular dynamics sim-
ulation for solids. Comput Methods Appl Mech Eng 391:114591

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cma.2022.114680
https://doi.org/10.1016/j.cma.2022.114680


Computational Particle Mechanics

4. Pearl JM, Raskin CD, Owen JM (2022) Fsisph: an sph formu-
lation for impacts between dissimilar materials. J Comput Phys
469:111533

5. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability
analysis of meshless particle methods. Int J Numer Meth Engng
1(48):1359–1400. https://doi.org/10.1002/1097-0207

6. Gotoh H, Khayyer A, Shimizu Y (2021) Entirely lagrangian
meshfree computational methods for hydroelastic fluid-structure
interactions in ocean engineering - reliability, adaptivity and gener-
ality. Appl Ocean Res 115:102822. https://doi.org/10.1016/j.apor.
2021.102822

7. Khayyer A, Shimizu Y, Gotoh H, Hattori S (2022) A 3d sph-based
entirely lagrangian meshfree hydroelastic fsi solver for anisotropic
composite structures. Appl Math Model 112:560–613. https://doi.
org/10.1016/j.apm.2022.07.031

8. Bonet J, Kulasegaram S (2000) Correction and stabilisation of
smooth particle hydrodynamicsmethodswith applications inmetal
forming simulations. Int J Numer Meth Engng 47(1):1189–1214

9. Bonet J, Kulasegaram S (2001) Remarks on tension instability of
eulerian and lagrangian corrected smooth particle hydrodynamics
(csph)methods. Int JNumerMethEngng52(1):1203–1220. https://
doi.org/10.1002/nme.242

10. Belytschko T, Ong JS, Liu WK, Kennedy JM (1984) Hourglass
control in linear and nonlinear problems. Comput Methods Appl
Mech Eng 43:251–276

11. Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T, Zhuang
X, Arroyo M (2017) Meshfree methods. Encyclopedia of Com-
put Mech Second Edition 1(1):1–38. https://doi.org/10.1002/
9781119176817.ecm2005

12. Dyka CT, Ingel RP (1994) Addressing tension instability in sph
methods, Tech. Rep. NRL/MR/6384–94–7641, Naval Research
Laboratory

13. Dyka CT, Ingel RP (1995) An approach for tension instability in
smoothed particle hydrodynamics (sph).Comput Struct 57(4):573–
580. https://doi.org/10.1016/0045-7949(95)00059-P

14. Puso MA, Chen JS, Zywicz E, Elmer W (2008) Meshfree and
finite element nodal integration methods. Int J Numer Meth Engng
74(1):416–446. https://doi.org/10.1002/nme.2181

15. Vacondio R, Altomare C, Leffe MD, Hu X, Touze DL, Lind
S, Marongiu J-C, Marrone S, Rogers BD, S-Iglesias A (2020)
Grand challenges for smoothed particle hydrodynamics numeri-
cal schemes. Computational Particle Mech 8:575–588. https://doi.
org/10.1007/s40571-020-00354-1

16. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics.
Comput Methods Appl Mech Eng 190:6641–6662

17. Islam MRI, Bansal A, Peng C (2020) Numerical simulation of
metal machining process with eulerian and total lagrangian sph.
Eng Anal Boundary Elem 117:269–283

18. Zhang C, Zhu Y, Yu Y, Wu D, Rezavand M, Shao S, Hu X (2022)
An artificial damping method for total lagrangian sph method with
application in biomechanics. Eng Anal Boundary Elements 143:1–
13

19. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev
Astron Astrophys 30(1):543–574

20. Ganzenmüller GC, Hiermaier S, May M (2015) On the similarity
of meshless discretizations of peridynamics and smooth-particle
hydrodynamics. Comput Struct 150(1):71–78. https://doi.org/10.
1016/j.compstruc.2014.12.011

21. GanzenmüllerGC,SauerM,MayM,Hiermaier S (2016)Hourglass
control for smooth particle hydrodynamics removes tensile and
rank-deficiency instabilities. Eur Phys J Special Top 225:385–395.
https://doi.org/10.1140/epjst/e2016-02631-x

22. Mohseni-Mofidi S, Bierwisch C (2021) Application of hourglass
control to eulerian smoothed particle hydrodynamics. Comput Par-
ticle Mech 8:51–67

23. Islam MRI, Zhang W, Peng C (2022) Large deformation analysis
of geomaterials using stabilized total lagrangian smoothed particle
hydrodynamics. Eng Anal Boundary Elem 136:252–265

24. Vidal Y, Bonet J, Huerta A (2007) Stabilized updated lagrangian
corrected sph for explicit dynamics problems. Int J Numer Meth
Engng 69(1):2687–2710. https://doi.org/10.1002/nme.1859

25. Khayyer A,GotohH, ShimizuY,NishijimaY (2021) 3d lagrangian
meshfree projection-based solver for hydroelastic fluid-structure
interactions. J Fluids Struct 105:103342. https://doi.org/10.1016/
j.jfluidstructs.2021.103342

26. Shimizu Y, Khayyer A, Gotoh H (2022) An implicit sph-based
structure model for accurate fluid-structure interaction simulations
with hourglass control scheme. Eur J Mech B Fluids 96:122–145.
https://doi.org/10.1016/j.euromechflu.2022.07.007

27. Feng R, Fourtakas G, Rogers BD, Lombardi D (2021) Large defor-
mation analysis of granular materials with stabilized and noise-free
treatment in smoothed particle hydrodynamics. Comput Geotech
138:104356. https://doi.org/10.1016/j.compgeo.2021.104356

28. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-
surface flows solved by means of SPH schemes with numerical
diffusive terms. Comput Phys Commun 181(3):532–549. https://
doi.org/10.1016/j.cpc.2009.11.002

29. You Y, Khayyer A, Zheng X, Gotoh H, Ma Q (2021) Enhancement
of δ-sph for ocean engineering applications through incorpora-
tion of a background mesh scheme. Appl Ocean Res 110:102508.
https://doi.org/10.1016/j.apor.2020.102508

30. Randles PW, Libersky LD (1996) Smoothed particle hydrody-
namics: some recent improvements and applications. Comput
Methods Appl Mech Engrg 139(1):375–408. https://doi.org/10.
1016/S0045-7825(96)01090-0

31. Vignjevic R, Campbell J, Libersky L (2000) A treatment of zero-
energy modes in the smoothed particle hydrodynamics method.
Comput Methods Appl Mech Engrg 184(1):67–85. https://doi.org/
10.1016/S0045-7825(99)00441-7

32. Lee CH, Gil AJ, Greto G, Kulasegaram S, Bonet J (2016) A new
Jameson-Schmidt-Turkel smooth particle hydrodynamics algo-
rithm for large strain explicit fast dynamics. ComputMethodsAppl
Mech Engrg 311(1):71–111. https://doi.org/10.1016/j.cma.2016.
07.033

33. Lee CH, Gil AJ, Hassan OI, Bonet J, Kulasegaram S (2017) A
variationally consistent strealine upwind petrov-galerkin smooth
particle hydrodynamics algorithm for large strain solid dynamics.
Comput Methods Appl Mech Engrg 318(1):514–536. https://doi.
org/10.1016/j.cma.2017.02.002

34. Lee CH, Gil AJ, Ghavamian A, Bonet J (2019) A total lagrangian
upwind smooth particle hydrodynamics algorithm for large strain
explicit solid dynamics. Comput Methods Appl Mech Engrg
344(1):209–250. https://doi.org/10.1016/j.cma.2018.09.033

35. Ghavamian A, Gil AJ, Lee CH, Bonet J, Heuze T, Stainier L (2021)
An entropy stable smooth particle hydrodynamics algorithm for
large strain thermo-elasticity. Comput Methods Appl Mech Eng
379(1):113736. https://doi.org/10.1016/j.cma.2021.113736

36. Lee CH, Gil AJ, Bonet J (2013) Development of a cell centred
upwind finite volume algorithm for a new conservation law formu-
lation in structural dynamics. Comput Struct 118(1):13–38. https://
doi.org/10.1016/j.compstruc.2012.12.008

37. LeeCH,Gil AJ, Bonet J (2014)Development of a stabilised petrov-
galerkin formulation for conservation laws in lagrangian fast solid
dynamics. Comput Methods Appl Mech Engrg 268(1):40–64.
https://doi.org/10.1016/j.cma.2013.09.004

38. Gil AJ, Lee CH, Bonet J, Aguirre M (2014) A stabilised petrov-
galerkin formulation for linear tetrahedral elements in compress-
ible, nearly incompressible and truly incompressible fast dynamics.
Comput Methods Appl Mech Engrg 276(1):659–690. https://doi.
org/10.1016/j.cma.2014.04.006

123

https://doi.org/10.1002/1097-0207
https://doi.org/10.1016/j.apor.2021.102822
https://doi.org/10.1016/j.apor.2021.102822
https://doi.org/10.1016/j.apm.2022.07.031
https://doi.org/10.1016/j.apm.2022.07.031
https://doi.org/10.1002/nme.242
https://doi.org/10.1002/nme.242
https://doi.org/10.1002/9781119176817.ecm2005
https://doi.org/10.1002/9781119176817.ecm2005
https://doi.org/10.1016/0045-7949(95)00059-P
https://doi.org/10.1002/nme.2181
https://doi.org/10.1007/s40571-020-00354-1
https://doi.org/10.1007/s40571-020-00354-1
https://doi.org/10.1016/j.compstruc.2014.12.011
https://doi.org/10.1016/j.compstruc.2014.12.011
https://doi.org/10.1140/epjst/e2016-02631-x
https://doi.org/10.1002/nme.1859
https://doi.org/10.1016/j.jfluidstructs.2021.103342
https://doi.org/10.1016/j.jfluidstructs.2021.103342
https://doi.org/10.1016/j.euromechflu.2022.07.007
https://doi.org/10.1016/j.compgeo.2021.104356
https://doi.org/10.1016/j.cpc.2009.11.002
https://doi.org/10.1016/j.cpc.2009.11.002
https://doi.org/10.1016/j.apor.2020.102508
https://doi.org/10.1016/S0045-7825(96)01090-0
https://doi.org/10.1016/S0045-7825(96)01090-0
https://doi.org/10.1016/S0045-7825(99)00441-7
https://doi.org/10.1016/S0045-7825(99)00441-7
https://doi.org/10.1016/j.cma.2016.07.033
https://doi.org/10.1016/j.cma.2016.07.033
https://doi.org/10.1016/j.cma.2017.02.002
https://doi.org/10.1016/j.cma.2017.02.002
https://doi.org/10.1016/j.cma.2018.09.033
https://doi.org/10.1016/j.cma.2021.113736
https://doi.org/10.1016/j.compstruc.2012.12.008
https://doi.org/10.1016/j.compstruc.2012.12.008
https://doi.org/10.1016/j.cma.2013.09.004
https://doi.org/10.1016/j.cma.2014.04.006
https://doi.org/10.1016/j.cma.2014.04.006


Computational Particle Mechanics

39. Gil AJ, Lee CH, Bonet J, Ortigosa R (2016) A first order hyper-
bolic framework for large strain computational solid dynamics
part ii?: total lagrangian compressible nearly incompressible and
truly incompressible elasticity. ComputMethodsApplMechEngrg
300(1):146–181. https://doi.org/10.1016/j.cma.2015.11.010

40. Bonet J, Lee C, Gil A, Ghavamian A A first order hyperbolic
framework for large strain computational solid dynamics. part
iii: Thermo-elasticity, Comput. Methods Appl. Mech. Engrg. 373.
https://doi.org/10.1016/j.cma.2020.113505

41. Bonet J, Gil AJ, LeeCH,AguirreM,OrtigosaR (2015)Afirst order
hyperbolic framework for large strain computational solid dynam-
ics part i: total lagrangian isothermal elasticity. Comput Methods
Appl Mech Engrg 283(1):689–732. https://doi.org/10.1016/j.cma.
2014.09.024

42. Karim IA, Lee CH, Gil AJ, Bonet J (2014) A two-steo taylor-
galerkin formulation for fast dynamics. Eng Comput 31:366–387.
https://doi.org/10.1108/EC-12-2012-0319

43. Haider J, Lee CH, Gil AJ, Bonet J (2016) A first-order hyper-
bolic framework for large strain computational solid dynamics: an
upwind cell centred total lagrangian scheme. Int J Numer Meth
Engng 109(3):407–456. https://doi.org/10.1002/nme.5293

44. Haider J, Lee CH, Gil AJ, Huerta A, Bonet J (2018) An upwind cell
centred total lagrangian finite volume algorithm for nearly incom-
pressible explicit fast solid dynamic applications. ComputMethods
Appl Mech Engrg 1(340):684–727. https://doi.org/10.1016/j.cma.
2018.06.010

45. Aguirre M, Gil AJ, Bonet J, Lee CH (2015) An upwind vertex cen-
tred finite volume solver for lagrangian solid dynamics. J Comput
Phys 300:387–422. https://doi.org/10.1016/j.jcp.2015.07.029

46. Greto G, Kulasegaram S (2020) An efficient and stabilised SPH
method for large strainmetal plastic deformations. Comput Particle
Mech 7:523–539

47. Hassan OI, Ghavamian A, Lee CH, Gil AJ, Bonet J, Auricchio
F (2019) An upwind vertex centred finite volume algorithm for
nearly and truly incompressible explicit fast solid dynamic appli-
cations:Total andupdated lagrangian formulations. JComputPhys:
X 3:100025

48. Bonet J, Gil AJ, Wood RD (2020) Nonlinear solid mechanics for
finite element analysis: dynamics, Cambridge University Press

49. Runcie CJ, Lee CH, Haider J, Gil AJ, Bonet J (2022) An acoustic
riemann solver for large strain computational contact dynamics. Int
J Numer Meth Eng 123(23):5700–5748

50. Abboud N, Scovazzi G (2021) A variational multiscale method
with linear tetrahedral elements for multiplicative viscoelasticity.
Mech Res Commun 112:103610

51. Zeng X, Scovazzi G, Abboud N, Colomes O, Rossi S (2018) A
dynamic variationalmultiscalemethod for viscoelasticity using lin-
ear tetrahedral elements. Int J Numer Methods Eng 112(13):1951-
2003

52. Bonet J, Gil AJ, Wood RD (2016) Nonlinear solid mechanics for
finite element analysis: statics, Cambridge University Press,

53. Abboud N, Scovazzi G (2018) Elastoplasticity with linear tetrahe-
dral elements: a variational multiscale method. Int J Numer Meth
Eng 115(1):913–955. https://doi.org/10.1002/nme.5831

54. Scovazzi G, Carnes B, Zeng X, Rossi S (2016) A simple, stable,
and accurate linear tetrahedral finite element for transient, nearly
and fully incompressible solid dynamics: A dynamic variational
multiscale approach. Int J Numer Meth Eng 106:799–839

55. Scovazzi G, Song T, Zeng X (2017) A velocity/stress mixed
stabilized nodal finite element for elastodynamics: analysis and
computations with strongly and weakly enforced boundary condi-
tions. Comput Methods Appl Mech Eng 325:532–576. https://doi.
org/10.1016/j.cma.2017.07.018

56. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear
finite elements for continua and structures, 2nd Edition, JohnWiley
& Sons Inc

57. LowKWQ, Lee CH, Gil AJ, Haider J, Bonet J (2021) A parameter-
free Total Lagrangian smooth particle hydrodynamics algorithm
applied to problems with free surfaces. Comput Particle Mech
8:859–892. https://doi.org/10.1007/s40571-020-00374-x

58. Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled
incompressible sph-hamiltonian sph solver for hydroelastic fsi cor-
responding to composite structures.ApplMathModel 94:242–271.
https://doi.org/10.1016/j.apm.2021.01.011

59. Venkatakrishnan V On the accuracy of limiters and convergence to
steady state solutions, 27th Aerospace Sciences Meetings, AIAA
Paper 93-0880https://doi.org/10.2514/6.1993-880

60. Liu Z, Zhang J, Zhang H, Ye H, Zhang H, Zheng Y (2022) Time-
discontinuous state-based peridynamics for elasto-plastic dynamic
fracture problems. Eng FractMech 266:108392. https://doi.org/10.
1016/j.engfracmech.2022.108392

61. Baek J, Chen J-S, Zhou G, Arnett KP, Hillman MC, Hegemier G,
Hardesty S (2021) A semi-lagrangian reproducing kernel particle
method with particle-based shock algorithm for explosive welding
simulation. ComputMech 67:1601–1627. https://doi.org/10.1007/
s00466-021-02008-2

62. Liu L, Cheng J-B, Shen Y (2020) An exact riemann solver
for one-dimensional multimaterial elastic-plastic flows with mie-
gruneisen equation of state without vacuum. Int J Numer Meth
Fluids 93:1001–1030. https://doi.org/10.1002/fld.4917

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cma.2015.11.010
https://doi.org/10.1016/j.cma.2020.113505
https://doi.org/10.1016/j.cma.2014.09.024
https://doi.org/10.1016/j.cma.2014.09.024
https://doi.org/10.1108/EC-12-2012-0319
https://doi.org/10.1002/nme.5293
https://doi.org/10.1016/j.cma.2018.06.010
https://doi.org/10.1016/j.cma.2018.06.010
https://doi.org/10.1016/j.jcp.2015.07.029
https://doi.org/10.1002/nme.5831
https://doi.org/10.1016/j.cma.2017.07.018
https://doi.org/10.1016/j.cma.2017.07.018
https://doi.org/10.1007/s40571-020-00374-x
https://doi.org/10.1016/j.apm.2021.01.011
https://doi.org/10.2514/6.1993-880
https://doi.org/10.1016/j.engfracmech.2022.108392
https://doi.org/10.1016/j.engfracmech.2022.108392
https://doi.org/10.1007/s00466-021-02008-2
https://doi.org/10.1007/s00466-021-02008-2
https://doi.org/10.1002/fld.4917

	An entropy-stable updated reference Lagrangian smoothed particle hydrodynamics algorithm for thermo-elasticity and thermo-visco-plasticity
	Abstract
	1 Introduction
	2 Updated reference Lagrangian conservation laws for reversible processes
	3 Extension to irreversible processes
	3.1 First law of thermodynamics in terms of total energy, internal energy and entropy
	3.2 General thermal relationship
	3.3 Stress evaluation
	3.3.1 Thermo-elastic model
	3.3.2 Thermo-visco-plastic model

	3.4 Combined equations

	4 Variational formulation
	4.1 Second law of thermodynamics

	5 Discretisation
	5.1 SPH semi-discrete equations
	5.2 Numerical entropy production

	6 Algorithmic description
	7 Numerical examples
	7.1 Swinging cube
	7.2 Cable with step function loading
	7.3 L-shaped block
	7.4 Punch test
	7.5 Taylor bar impact
	7.6 Necking bar

	8 Conclusions
	Acknowledgements
	References


