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effect of the orientation of the device with respect to 
the crystallographic coordinates of the silicon and 
the effect of the orientation of the piezoresistive lay-
ers with respect to the microbeam length on the sen-
sitivity of the device is also investigated. Thanks to 
the nonlinearity and the orientation adjustment of the 
device and piezoresistive layers, a twofold sensitivity 
enhancement due to the added mass was achieved. 
This achievement is due to the combined amplifica-
tion of the sensitivity in the vicinity of the bifurca-
tion point, which is attributed to the nonlinearity and 
maximizing the sensitivity by orientation adjustment 
of the anisotropic piezoresistive coefficients.

Keywords  Mass sensor · Nonlinearity · Piezo 
resistivity · Bifurcation · Sensitivity · Cantilever

1  Introduction

The last decade has witnessed an ever-increasing 
demand for the application of microelectromechani-
cal systems (Bhattacharyya et  al. 2008; Azizi et  al. 
2022; Azizi et  al. 2014; Pasquale and Somà 2010). 
Their low costs and high sensitivity have made 
them a very attractive option for detecting a variety 
of physical and chemical quantities, including very 
small mass, gas concentration and temperature vari-
ations (Park et al. 2012; Lin and Wang 2006; Madi-
nei et  al. 2015). Measuring very small biomedical 
masses such as viruses, bacteria, biomolecules, DNA, 

Abstract  This research investigates the feasibil-
ity of mass sensing in piezoresistive MEMS devices 
based on catastrophic bifurcation and sensitivity 
enhancement due to the orientation adjustment of the 
device with respect to the crystallographic orientation 
of the silicon wafer. The model studied is a cantilever 
microbeam at the end of which an electrostatically 
actuated tip mass is attached. The piezoresistive lay-
ers are bonded to the vicinity of the clamped end of 
the cantilever and the device is set to operate in the 
resonance regime by means of harmonic electrostatic 
excitation. The nonlinearities due to curvature, short-
ening and electrostatic excitation have been consid-
ered in the modelling process. It is shown that once 
the mass is deposited on the tip mass, the system 
undergoes a cyclic fold bifurcation in the frequency 
domain, which yields a sudden jump in the output 
voltage of the piezoresistive layers; this bifurcation is 
attributed to the nonlinearities governing the dynam-
ics of the response. The partial differential equations 
of the motion are derived and discretized to give a 
finite degree of freedom model based on the Galer-
kin method, and the limit cycles are captured in the 
frequency domain by using the shooting method. The 
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or protein has always been a very challenging issue 
(Jafari et al. 2017; Baguet et al. 2019; Younis 2011). 
Various sensing mechanisms have been proposed for 
small mass sensing purposes; these methods include 
frequency shift in the resonance zone due to the 
added mass (Park et  al. 2012; Chauhan and Ansari 
2021; Chellasivalingam et al. 2020; Joshi et al. 2019) 
symmetry-breaking of the vibration (Baguet et  al. 
2019; Chellasivalingam et  al. 2020) and nonlinear 
bifurcations (Meesala et  al. 2020). From the sens-
ing type point of view, various sensing mechanisms 
have been applied so far which include piezoelectric 
(Chellasivalingam et al. 2020; Joshi et al. 2019; Azizi 
et  al. 2017; Kumar et  al. 2011), piezoresistive (Chu 
et  al. 2018), electrostatic (Baguet et  al. 2019), mag-
netic (Jafari et al. 2017) and nanocrystalline ZnO thin 
films (Bhattacharyya et al. 2008). The dynamic range 
enhancement of MEMS mass sensors has also been 
studied. Considering the geometry of the model can-
tilever beams with and without a tip mass have been 
widely studied in the literature for various applica-
tions ranging from energy harvesting (Zhang et  al. 
2022; Ghavami et al. 2018) to mass detection (Kumar 
et al. 2011; Zhao et al. 2018). From the analysis of the 
motion equations point of view, various approaches 
including numerical integration, nonlinear perturba-
tion techniques, isogeometric analysis (IGA), (Madi-
nei et  al. 2015; Phung-Van et  al. 2017; Thanh et  al. 
2022; Cuong-Le et al. 2022). Zhao et al. (Zhao et al. 
2018) proposed a piezoelectric-based mass sensor 
with enhanced sensitivity due to the operation in 
the nonlinear bi-stable regime. Yaqoob et  al. (2022) 
proposed a MEMS mass sensor for analyte detection 
using multi-mode excitation of a resonator. Wasisto 
et al. (2022) proposed a phase-locked loop frequency 
tracking system for portable piezoresistive cantilever 
mass sensors; their proposed model offered a mass 
detection in the order of ng. Toledo et al. (2019) dem-
onstrated the potential of a piezoelectric resonator to 
develop a low-cost sensor for detecting microscopic 
masses; their model was capable of measuring mass 
with a sensitivity of 8.8 Hz/ng. Setiono et al. (2020) 
proposed an electrothermally actuated piezoresistive 
mass sensor to measure and monitor the changes of 
mass concentration of carbon nano particles in air. 
Their experiments were performed on two kinds of 
piezoresistive cantilever sensors and tipless atomic 
force microscopy cantilevers where the quality factor 
of the electrothermally actuated sensor in the in-plane 

operational mode was considerably higher than the 
out-of-plane vibration mode. Pinto et al. (2019) repre-
sented the most important metrics in the characteriza-
tion of the dynamic mass sensors; they also showed 
that the quality factor dominates the mass sensing 
sensitivity as it improves from the order of some pg 
in atmospheric pressure to approximately 100  fg in 
the vacuum condition. Nayfeh et al. (2010) developed 
a mathematical model for a resonant gas sensor with 
the structure of a cantilever beam with a tip-mass 
exposed to electrostatic actuation; they captured the 
periodic orbits in the steady state by the finite differ-
ence method and applied Melnikov analysis for the 
detection of the homoclinic point, but did not account 
for the inertial and geometric nonlinearities. Stachiv 
et al. (2022) developed a 3D finite element model to 
accurately predict the resonant frequency and the cor-
responding mode shapes of a nano cantilever beam 
and the bound analyte as the added mass; they studied 
the impact of the size, mass, and the position of the 
analyte mass on the resonant frequency and the vibra-
tional modes of the model. Despite the great efforts 
and studies, especially in SARS and COVID-19 virus 
detection (Broughton et  al. 2020; Chan et  al. 2020; 
Chan et al. 2019), ultraprecise bio-detection is still a 
challenging problem in biomedical and engineering 
sciences. Wang et  al. (2022) proposed a molecular 
electromechanical system (MolEMS) consisting of 
an aptamer probe bound to a flexible single-stranded 
DNA cantilever which was connected to a self-assem-
bled stiff tetrahedral double-stranded DNS structure 
which enabled super sensitive detection of proteins 
and small molecules in biofluids. Biomass sensing, 
especially for disease diagnosis, is very demanding 
and a very challenging problem (Ihling et  al. 2020) 
in the engineering field, especially when the measure-
ment range is less than pg range.

As mentioned, biomass sensing in the bio-med-
ical research field is a highly demanding topic; in 
this paper, we propose a super sensitive piezoresis-
tive MEMS mass sensor/switch whose sensitivity is 
enhanced by taking advantage of nonlinearity and 
setting the orientation of the structure and the pie-
zoresistive layer with respect to the crystallographic 
coordinates of the silicon such that the highest pos-
sible sensitivity is achieved. The model consists of 
a cantilever beam with a tip mass at the end. The 
system is excited in the vicinity of the catastrophic 
bifurcation point, once the added mass is deposited 
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on the tip mass, due to frequency shift as a result of 
mass addition, the system exhibits a jump in the time 
response which is applied as a measure of the added 
mass. The nonlinear equation of the motion, which 
accounts for the effect of geometric and inertial non-
linearities and the nonlinear electrostatic excitation is 
discretized and the frequency response curves for the 
reduced order model are calculated using the shooting 
method.

2 � Modelling

As shown in Fig. 1, the proposed mass sensor is com-
posed of a silicon cantilever beam of length l, width 
b and thickness h with a tip mass of length 2lc and 
width bp. The coordinate system x–y–z is attached to 
the center of mass at the clamped end. The tip mass 
is excited by a DC voltage, VDC, superimposed by an 
AC voltage, VAC. The initial distance between the tip 
mass and the substrate is denoted by g. In order to 
compensate for the effect of the temperature change 
and counteract its effect on the resistance change of 
the piezoresistive layers, the piezoresistive layers are 
connected in a Wheatstone bridge configuration (Bao 

2000; Fras et  al. 2018; Zhao et  al. 2016), as shown 
in Fig. 1(a). The piezoresistive layers are represented 
by R1,R2,R3,R4 where R1 − R4 and R2 − R3 are par-
allel to each other and formed by diffusion or ion-
implantation on the surface of the cantilever beam. 
The orientation of the cantilever beam with respect to 
the crystallographic direction <1 0 0> is denoted by � 
and the angle of R1 − R4 with respect to the direction 
of beam is denoted by  � (Fig. 1b).

The equation of the motion is given as (Azizi et al. 
2022; Ali and Nayfeh 2004):

where w is the transverse displacement, ρ is mass 
density, A is cross-sectional area and E is modulus 
of elasticity. Here I is area moment of inertia of the 
cantilever beam with respect to neutral axis, J is the 
rotary inertia of the tip mass and t is time.

The boundary conditions are defined as (Nayfeh 
et al. 2010):
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Fig. 1   a Schematic of the piezoresistive mass sensor, b orientation of the device with respect to the crystallographic coordinate <1 0 
0> 
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where M is the tip mass modelled as a rigid body with 
mass moment of inertia JM =

1

3
(M + �m)l2

c
 , and �m 

is the added mass which is assumed to be uniformly 
distributed on the tip mass, � is the permittivity of air. 
Introducing the following non-dimensional param-
eters (Azizi et al. 2016; Zamanzadeh et al. 2020),

and removing the hat notation, the dimensionless 
governing equation reduces to Azizi et al. (2022):
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In Eq. (4), α1 and α2 are defined as:

The associated boundary conditions in non-dimen-
sional form reduce to Nayfeh et al. (2010):
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where �3 =
�bpl

4

2EId3
.

Equation  (4) is a homogenous partial differential 
equation (PDE) subjected to non-homogenous bound-
ary conditions. To solve this equation, one possibil-
ity is to discretize the equation and then numerically 
integrate it over time with updated shape functions 
in each time step which requires a huge amount of 
computational time. The other possibility is to apply 
the Galerkin discretization method based on the lin-
ear mode shapes to the extended Hamiltonian (Nay-
feh et al. 2010; Phung-Van et al. 2019) which yields 
a nonlinear non-homogenous ordinary differential 
equation (ODE). The other method is to apply the 
Galerkin discretization to the Lagrangian (Firoozy 
et al. 2017) which results in a number of non-homog-
enous ODEs. The latter approach is adopted in this 
study to derive the governing reduced order model. 
The shape functions are assumed to be linear which 
satisfy the PDE with only the linear terms retained 
(Eq. 4) subjected to non-homogenous linear boundary 
conditions (Eq. 6). For this purpose, the kinetic and 
the potential energies are given as:

Substituting the expression:
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following nonlinear ODE, for a single term 
(i.e.n = 1) subjected to the initial conditions. Hence 
(dropping the subscripts on q and�)

where:

In Eq. (10), � is a dummy parameter to carry out 
the integral over the length of the tip mass. For the 
numerical solution, the phase space variables are 
defined (Madinei et  al. 2015; Meng et  al. 2022; 
Wang et  al. 2022) and the governing nonlinear 
ODEs are integrated over the time to get the time 
response.
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3 � Resistivity tensor and orientation definition

Despite the isotropic and orientation-independent 
mechanical properties of silicon, the piezoresistive 
coefficient for some single crystalline semiconductors 
such as silicon and germanium is dependent on the 
orientation and accordingly anisotropic (Chan et  al. 
2020). The stress tensor ( ̃T ) in crystalline material 
causes a change in the resistivity tensor ( �). The rela-
tion between the resistivity tensor and the stress ten-
sor is given as (Bao 2000):

In Eq.  (11) the Ti, i = 1, 2… 6 and �i, i = 1, 2… 6 
are the components of the second rank stress and 
resistivity tensors and are related by the piezoresistive 
coefficient tensor ( � ) which is a tensor of fourth rank. 
Ti and �i are represented in matrix notation as:

(11)
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In the crystallographic coordinate system for sili-
con there are only three non-zero independent com-
ponents for the piezoresistive coefficients which are 
�11 = �22 = �33,�12 = �21 = �13 = �31 = �23 = �32 
and �44 = �55 = �66 . The components of the stress 
and resistivity tensor in another orientation rather 
than the crystallographic coordinate system are deter-
mined based on the coordinate transformation of the 
second order tensors; however the piezoresistive coef-
ficient tensor obeys the corresponding rule for fourth-
order tensors. The components of the piezoresistive 
tensor for both p-Si and n-Si are given in Table  1 
(Smith 1954).

As the piezoresistive layers are positioned on the 
surface of the structure, in most applications the 
plane stress condition ( T3 = T4 = T4 = T5 = 0 ) holds 
and accordingly the component of the resistivity ten-
sor along the length of the piezoresistive layers (two 
terminals are located at either end of the terminals) 
reduces to:

Equation  (13) implies that the sensitivity along 
direction 1, is

(
Δ�∕�0

)
1
= �11T1 + �12T2 + �16T6 . 

Here T1 , T2 and T6 are longitudinal, transverse 
and shear stresses in a two dimensional element 
in which the longitudinal direction lies along the 
length of the piezoresistive layer; for simplic-
ity the corresponding sensitivity is modified as 
(Δ�∕�)l = �

l
Tl + �

t
Tt + �

s
Ts where l, s, and t refer 

to the longitudinal, transverse and shear respectively; 
the components of the piezoresistive coefficients and 
stress tensors are computed based on determining the 
� and � angles and the tensor transformation rules 
corresponding to the second and fourth order tensors 
respectively.

4 � Results and discussions

The geometric and mechanical properties of the stud-
ied model are given in Table 2.

Considering the coefficients of the piezoresis-
tive tensor in the crystallographic coordinate system 
( � = 0 ), the orientation dependency of the piezoresis-
tive coefficients in terms of � for both p-Si and n-Si 
are illustrated in Fig. 2.

(13)�1 = �0
(
1 + �11T1 + �12T2 + �16T6

)

Table 1   Components of the piezoresistive tensor of silicon (in 
10

−11∕Pa)

�
11

�
12

�
44

p-Si 6.6 − 1.1 138.1
n-Si − 102.2 53.4 − 13.6

Table 2   Mechanical and electrical properties of the studied 
model

l 250 μm
b 5 μm
h 1.5 μm
g 4  μm
lc 25  μm
bp 20  μm
E 169  GPa
� 2300  Kg/m3
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The longitudinal, transversal and shear stress dis-
tribution for R1 and R4 in terms of � and  � are shown 
in cylindrical coordinates in Fig. 3; here, we assume 
for a horizontal cross-section (a fixed � ), � varies in 
the range of 0◦ to 360◦ . The components of stress ten-
sor for the pair of R2 and R3 can be determined by 
adding 90◦ to the corresponding � of the pair R1 and 
R4.

As illustrated, for � = 0 , the longitudinal stress 
�l has a maximum which does not change with the 
variation of � . As � increases, �l reduces while �t 
increases. For � = 90

◦ , �l is zero while �t becomes 
maximum. The variation of the shear stress in terms 
of � and � is given in Fig.  3c which shows that the 
shear stress is maximum for � = 45

◦.
Each horizontal cross section in Fig. 4 shows the 

variation of the stress tensor components for a fixed � 
while � varies from 0◦ to 360◦ . As illustrated, regard-
less of � , the maximum value for �l occurs at � = 0 , 
however the transverse and shear stresses reach their 
maximum values at � = 90

◦ and � = 45
◦ , respectively.

As discussed in the previous section, the sensitiv-
ity depends on stress and resistivity tensors. Consid-
ering a p-Si and assuming a 1  MPa uniaxial tensile 
stress along the length of the beam, we examine the 

sensitivity of the R1 and R4 resistors to determine the 
most sensitive orientation in terms of � and � . Fig-
ures 5a and b show the corresponding sensitivity for 
fixed � and variable � and for fixed � and variable � , 
respectively. The maximum sensitivity corresponds 
to � = 45

◦ for an orientation of  < 110 > and � = 0
◦ 

which are set as the desired orientations in the rest of 
this study.

The frequency response curves of the cantilever 
beam in the vicinity of both superharmonic and pri-
mary resonances are shown in Fig.  6 for VDC = 1v 
and VAC = 0.1v.

Various sources of nonlinearity such as electro-
static, inertial, and geometric nonlinearity are pre-
sent, however, electrostatic nonlinearity dominates 
the response. Electrostatic nonlinearity is in the form 
of quadratic nonlinearity and accordingly doubling 
and halving the excitation frequency mechanisms are 
active in the system; This ends up with super-har-
monic and sub-harmonic nonlinear resonance zones 
on the frequency response curves of the system. Dou-
bling of the excitation frequency, activates of the pri-
mary resonance of the system when the micro beam 
is excited by half of the frequency of the primary res-
onance. The existence of frequency doubling (in case 

(a) (b)

Fig. 2   Dependency of the piezoresistive coefficients in terms of � , a p-Si, b n-Si
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of super-harmonic resonance) and frequency halving 
(in case of sub-harmonic resonance) in the dynam-
ics of the system cause this nonlinear behaviour. This 
suggests that the amplitude of the motion should be 
increased to enhance the nonlinearity which accord-
ingly produces nonlinear bifurcation points in the fre-
quency domain; these bifurcation points are likely to 
exhibit super sensitivity for mass detection purposes. 
Figure 7 illustrates the frequency response curves for 
two different values of VDC and for VAC = 0.1V .

By increasing VDC , the bistable solutions approach 
each other and accordingly the higher amplitude 
branch of the solution for VDC = 7V falls under the 

 )b( )a(

 
(c) 

Fig. 3   The components of stress tensor distribution (for each value of � on the vertical axis � varies from 0◦ to360◦ ) a �
l
 , b�

t
 , c �

s

one corresponding to VDC = 4V . Once the excitation 
frequency is increased, the lower amplitude branch 
of the solution loses stability through a cyclic fold 
bifurcation point (Azizi et  al. 2022). This point is 
where the stable and unstable manifolds intersect, 
and the system undergoes a sudden jump; the aim is 
to operate the system close to this bifurcation to take 
advantage of the sudden jump which offers a super 
sensitive regime for mass detection. Here we excite 
the system in the vicinity of the bifurcation point. 
The reason to not to operate exactly at the bifurca-
tion point is because of the super sensitivity to very 
small disturbances since the low amplitude stable 
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(a) (b)

Fig. 4   The components of stress tensor distribution (for each value of � on the vertical axis � varies from 0◦ to 360◦ ) a three-dimen-
sional view, b top view

(a) (b)

Fig. 5   a Sensitivity assuming p-Si and 1 MPa uniaxial stress along the length of the cantilever beam, a fixed � and variable � , b 
fixed � and variable �
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solution disappears beyond the bifurcation point. The 
consequence of even very small disturbances at point 
A in Fig. 8 might be a loss of stability and, accord-
ingly a jump to a higher stable branch. The frequency 
response curves are shown in Fig. 8 for two different 
cases. The first case is in the absence of the added 
mass; whereas in the second case it is assumed that 
a 100 pg mass is uniformly deposited on the tip mass 

which shifts the frequency response curve toward the 
left and this means that any excitation frequency left 
of the bifurcation point which used to be on the lower 
stable manifold of the bistable solution, might remain 
right of the bifurcation point after the mass deposi-
tion and accordingly settle on the upper stable branch 
of the frequency response curve.

 
 )b( )a(

Fig. 6   Frequency response corresponding to a x = 1 on the cantilever beam and b the center of the tip mass

 )b( )a(

Fig. 7   Frequency responses corresponding to a x = 1 on the cantilever beam and b the center of the tip mass
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In this section, we excite the tip mass with the 
frequency � = 1.44 ( 13.244kHz ) corresponding to 
point C which is on the left of bifurcation point A 
( � = 1.445 ( 13.290kHz )) with the electrostatic exci-
tation VAC = 0.1V , VDC = 4.0V . Figure  9 illustrates 
the time responses of both the tip of the cantilever 
beam and the center of the tip mass; here we assume 

that a uniformly added mass 10 pg is deposited on the 
tip mass at point C. The added mass shifts the fre-
quency response curve to the left and accordingly, the 
excitation frequency approaches the bifurcation point 
on the modified frequency response curve. As repre-
sented here the added mass is not big enough to push 
the excitation frequency to the right of bifurcation 

 
 )b( )a(

Fig. 8   Frequency responses corresponding to a x = 1 on the cantilever beam and b the center of the tip mass

(a) (b)

Fig. 9   Time responses before and after 10 pg added mass a x = 1 on the cantilever beam and b the center of the tip mass



	 S. Azizi et al.

1 3
Vol:. (1234567890)

point A and accordingly enable the jump to the higher 
amplitude stable solution. Once the 10  pg mass 
is deposited on the tip mass, the amplitude of the 
motion increases slightly which is attributed to the 
approach of the excitation frequency to the resonance 
zone but not to the jump.

Figure 10 gives the time responses of the cantile-
ver tip and the center of the tip mass before and after 
the deposition of the 100 pg added mass.

With the deposition of the 100  pg added mass, 
the frequency response curve moves to the left more 
than the distance of the excitation frequency from 
the bifurcation point and accordingly, the system 

(a) (b)

Fig. 10   Time responses before and after 100 pg added mass a x = 1 on the cantilever beam and b the center of the tip mass

(a) (b)

Fig. 11   Time responses before and after deposition of 100 pg added mass, a �
l
 along the R

1
 and R

4
 resistances b Sensitivity for R

1
 

and R
4
 resistances
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jumps through point D (Fig.  8) as the only possi-
ble stable response to which it eventually settles. 
The corresponding longitudinal normal stress �l and 
sensitivity variations along the R1 and R4 resistances 
are illustrated in Fig. 11.

We demonstrated that for the response to jump to 
the higher stable branch of the solution, the added 
mass needs to be more than the minimum required 
to trigger the bifurcation. It was shown that 10  pg 
added mass does not trigger the bifurcation in case 
the system is set to operate at C on the frequency 
domain; however, Fig.  12 shows that a jump is 
trigger when the system is set to initially oper-
ate at point B (shown in Fig.  8) with � = 1.4445 
( 13.285kHz ) which is 4.6  Hz from the bifurcation 
point A.

5 � Conclusion

In this paper, the nonlinear dynamics of a cantilever 
microbeam with a tip mass for mass sensing was inves-
tigated. The tip mass was subjected to electrostatic 
actuation as a combination of DC and AC voltages. 
Four piezoresistive layers in a Whetstone bridge con-
figuration were connected to each other in the vicin-
ity of the clamped end which undergoes the maximum 
normal stress. Since silicon is a non-isotropic material 

in terms of resistivity, we accounted for the effect of the 
orientation of the structure with respect to the crystal-
lographic coordinates and its effect on the components 
of the resistivity tensor. The dependency of the sensitiv-
ity on the orientation of the piezoresistive layers with 
respect to the cantilever length was also investigated. We 
accounted for the geometric, inertial and electrostatic 
nonlinearities in the modelling. It was demonstrated that 
due to the nonlinearity of the response, there exists a 
cyclic fold bifurcation point on the frequency response 
curves where the stable and unstable branches of the 
solution on the frequency domain approach each other 
and they intersect at the cyclic fold bifurcation point 
beyond which both branches disappear and accordingly 
a jump occurs. It was shown that mass deposition moves 
the frequency response curves leftward in the frequency 
domain. Should the system be run to the left of the jump 
bifurcation, for an added mass higher than the threshold 
value, the operation frequency remains to the right of 
the bifurcation point, where system finds no stable low 
amplitude solutions and consequently jumps to the high 
amplitude stable response. We not only took the benefit 
of the nonlinearity to force the system to exhibit a sud-
den jump in the amplitude of the motion once the added 
mass is deposited on the tip mass, but also, we investi-
gated the most sensitive direction of the piezoresistive 
layers with respect to the crystallographic orientation of 
the silicon. The study was performed for both p-Si and 

(a) (b)

Fig. 12   Time responses before and after 10 pg added mass a x = 1 on the cantilever beam and b the center of the tip mass
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n-Si. The joint enhancement of the sensitivity due to the 
nonlinearity and orientation adjustment of the piezore-
sistive layers, offered a twofold sensitivity enhancement 
which is a promising improvement in the design of mass 
sensors for biological applications.
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