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A novel mixed framework and energy-momentum consistent integration scheme in
the field of coupled nonlinear thermo-electro-elastodynamics is proposed. The mixed
environment is primarily based on a framework for elastodynamics in the case of poly-
convex strain energy functions. For this elastodynamic framework, the properties of
the so-called tensor cross product are exploited to derive a mixed formulation via a
Hu-Washizu type extension of the strain energy function. Afterwards, a general path
to incorporate non-potential problems for mixed formulations is demonstrated. To this
end, the strong form of the mixed framework is derived and supplemented with the
energy balance as well as Maxwell’s equations neglecting magnetic and time depen-
dent effects. By additionally choosing an appropriate energy function, this procedure
leads to a fully coupled thermo-electro-elastodynamic formulation which benefits from
the properties of the underlying mixed framework. In addition, the proposed mixed
framework facilitates the design of a new energy-momentum consistent time integra-
tion scheme by employing discrete derivatives in the sense of Gonzalez. A one-step
integration scheme of second-order accuracy is obtained which is shown to be stable
even for large time steps. Eventually, the performance of the novel formulation is
demonstrated in several numerical examples.
Keywords: nonlinear thermo-electro-elastodynamics, polyconvexity, tensor cross prod-
uct, non-potential mixed formulation, energy-momentum scheme.

1 Introduction

Electroactive polymers (EAPs) represent a class of multi-functional materials capable of display-
ing significant changes in their shape when actuated by means of an electrical stimulus [PKJ98].
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These can be broadly grouped into ionic polymers and electronic EAPs. In the former, the appli-
cation of an electric field triggers an internal transport of ions, which ultimately yields bending
type deformations. In the latter, however, Coulomb forces are responsible for the electrically
induced deformations of the EAPs, which can result in more complex shape changes compared
to their ionic counterparts.
Among electronic EAPs, dielectric elastomers (DEs) have demonstrated remarkable electrically
induced actuation properties facilitated by their lightness, fast response, biomimetism, and low
stiffness properties [Pel+00; Pel+02]. DEs are indeed capable of exhibiting massive electrically in-
duced deformations, as demonstrated by experimental studies [Li+13], where electrically induced
area expansions of 1962% in DEs have been reported. As a result, DEs have been identified
as ideal candidates for their use in the field of soft robotics, where cutting-edge technological
developments start evidencing the onset of a paradigm switch: Traditional hard robotic systems
will be replaced by soft robotic solutions [Maj19], especially in applications requiring safe interac-
tions with humans or, when human avatars are demanded in extremely hazardous environmental
conditions [Orb+21]. However, the applications of DEs are not limited to the field of electrically
induced actuation, as DEs have been successfully applied as Braille displays, deformable lenses,
haptic devices, and energy generators, to name but a few [Kof+03].
Advances in the field of soft robotics can be accelerated through high fidelity finite element simula-
tions for which a reliable material characterization of these materials, and of DEs in particular, is
of major importance. Recently, Mehnert et al. [MHS19] devoted great effort to the mechanical and
coupled electro-mechanical characterization of so-called very high bond (VHB) polymers. This
characterization was extended to account for the thermo-viscoelastic behavior in these materials.
The experimental works in [HVS15; Lia+20; MHS19; MHS21b] enabled a comprehensive charac-
terization of the thermo-electro-viscoelastic properties of particle filled silicone EAPs. Crucially,
the characterization conducted on these experimental studies has led to subsequent works with
deep roots in continuum mechanics, thermodynamics, and even micromechanics. In [MHS21a],
the analytical strain energy function is formulated based on thermo-electro-mechanical invariants
and internal variables (accounting for viscoelastic effects). A calibration of the analytical consti-
tutive model was carried out by fitting their response to the data generated in the experimental
work using optimization techniques. Crucially, as proven by the aforementioned works, the perfor-
mance of DEs is highly sensitive to temperature variations and its consideration is of paramount
importance. This is for instance the case, when understanding the dynamics of DE-based soft
robotic underwater applications [Ber+18], where the temperature of the surrounding fluid might
vary. Accordingly, these findings clearly justify the necessity of embedding temperature effects
into the constitutive models of DEs.
Analytical constitutive models should not only approximate the available data of the material
response (whether available from experiments or analytical computations or computational ho-
mogenization), but also comply with physical requirements, i.e., objectivity, material symmetry,
etc. [BGW16; GS08]. Further mathematical assumptions have to be embedded by realistic con-
stitutive models. It is well assumed that these must satisfy the ellipticity or rank-one convexity
condition [Bal76]. This condition prevents the formation of extremely localized deformation
modes, guarantees the propagation of real travelling plane waves in the material [SNB05], and
ensures the well-posedness of the underlying boundary value problem [MH94]. A sufficient con-
dition complying with the ellipticity condition is the polyconvexity [Bal76; SN03] of the strain
energy function (analytical constitutive model). This concept was later extended from elasticity
to the field of nonlinear electro-mechanics [GO16; OG16a; OG16b].
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In addition to reliable and physically-mathematically sound constitutive models, long-term time
dependent finite element simulations of DEs require the use of stable and robust spatial and
temporal discretizations. In this vein, energy-momentum (EM) time integration schemes emerge
as elegant and robust candidates, proving higher stability and robustness properties than other
classical time integration schemes [CG17; Gon00; GB10; HB11; ST92]. The underlying reason
for this lies in their thermodynamic roots, as they are endowed by construction with the discrete
analogue of the conservation properties of the continuum, namely the conservation of total energy,
total linear momentum, and total angular momentum. Consistency of these methods, namely
their ability to conserve (or dissipate for non-reversible constitutive models) the total energy of
a system in agreement with the laws of thermodynamics [ST92], is attained by replacing the
(exact) partial derivatives of the strain energy function (or other types of energy like, e.g., the
internal energy function) with respect to its arguments with their carefully designed algorithmic
counterparts.
Recently, Betsch et al. [BJH18] proposed a novel EM scheme in the context of nonlinear elasticity,
by taking advantage of the concept of polyconvexity and the use of a novel tensor cross product
pioneered by de Boer [de 82] and re-discovered in the context of nonlinear continuum mechanics
by Bonet et al. [BGO15; BGO16]. In essence, the authors in [BJH18] proposed the consideration
of three discrete derivatives which were used to form an algorithmic version of the second Piola-
Kirchhoff stress tensor. These three discrete derivatives represent the algorithmic counterparts
of the work conjugates of the right Cauchy-Green deformation tensor, its cofactor, and its deter-
minant. This strategy leads to a simplified expression of the algorithmic second Piola-Kirchhoff
stress tensor, compared to those obtained by the classical approach [Gon00; ST92]. Later, this
work has been extended to multiphysics scenarios such as thermoelasticity [Fra+18; Ort+20],
nonlinear electro-mechanics [Fra+19; Ort+18], and more recently to thermo-electro-mechanics
[Fra+22a]. In [Fra+22a], a simple thermo-electro-mechanical constitutive model is considered in
which the thermal effects are coupled exclusively with the volumetric deformations, excluding any
direct interaction between thermal and electrical effects. The present work aims at incorporating
more generic and sophisticated constitutive models. In addition, it advocates for a multi-field
formulation where not only displacements, electric potential, and temperature are regarded as
unknown fields. Rather, strains, electric displacement, and suitable stress-type Lagrange multi-
pliers, are incorporated as unknown fields, relying on a stable spatial discretization of all fields
involved. In that regard, a noteworthy contribution lies in the introduction of a general path to
incorporate non-potential problems for mixed formulations, where this path is not limited to the
considered area of thermo-electro-elastodynamics.
The manuscript is organized as follows: Sect. 2 describes the multiphysics initial boundary value
problem (IBVP) associated with the underlying governing equations for DEs in non-isothermal
scenarios. Sect. 3 introduces the necessary elements of algebra associated with the tensor cross
product operation. In this context, the tensor cross product is used to conveniently rewrite the co-
factor of the deformation gradient. Furthermore, this section presents the analytical constitutive
model considered. In addition, a Hu-Washizu type variational formulation for the purely me-
chanical elastostatic case is presented. From its stationary conditions, the associated multi-field
strong form is derived. This strong form serves as a starting point for the subsequent extension
to the non-conservative multiphysics case of interest, where electrical and thermal effects are in-
corporated. Sect. 4 presents the weak form of the multi-field multiphysics IBVP presented at the
end of Sect. 3. Additionally, the conservation properties of the proposed continuous formulation
are examined. Sect. 5 illustrates the algorithmic treatment of the weak form in Sect. 4, where
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derivatives of the analytical constitutive model are replaced with their algorithmic counterparts to
embed the desired conservation properties into the resulting EM time integration scheme. Sect. 6
presents the spatial discretization of the algorithmic weak form shown in Sect. 5. Eventually, nu-
merical tests are conducted throughout Sect. 7 with the aim of testing the spatial and temporal
convergence properties of the proposed multi-field EM time integrator, as well as its long-term
stability. Finally, concluding remarks are provided in Sect. 8.

2 Nonlinear continuum thermo-electro-mechanics

We consider a deformable continuum body B with boundary ∂B subject to time t ∈ I = [0, T ],
where T ∈ R+. We distinguish between the reference configuration B0 ⊂ R3 and the current
configuration Bt = φ(B0, t), where φ : B0 × I → R3 denotes the bijective mapping that maps
material coordinates X ∈ B0 to its spatial counterparts x = φ(X, t) ∈ Bt.

2.1 Initial boundary value problem
The IBVP for thermo-electro-mechanics is obviously composed of contributions from the mechan-
ical, the thermal, and the electrical fields and is introduced in the following.

2.1.1 Elastodynamics

The basic kinematic quantity in elastodynamics is the deformation gradient F : B0 × I → R3×3

defined as

F = ∇Xφ(X, t), dx = F dX, (1)

which maps infinitesimal line elements dX ∈ B0 to their spatial counterparts dx ∈ Bt. The IBVP
for elastodynamics is given by

ρ0 φ̈ = Div P + B̄ in B0 × I,
P N = T̄ on ∂T B0 × I,

φ = φ̄ on ∂φB0 × I,
φ(X, 0) = φ0 in B0,
φ̇(X, 0) = v0 in B0.

(2)

The above set of equations is comprised of the balance of linear momentum (2)1, where ρ0 : B0 →
R is the material mass density, the dot ˙(•) indicates material time differentiation of quantity (•),
P : B0 × I → R3×3 is the first Piola-Kirchhoff stress tensor, and B̄ : B0 × I → R3 denotes the
prescribed volume force per unit undeformed volume B0. Furthermore, the Neumann boundary
condition is given by (2)2, where N : ∂T B0 × I → R3 denotes the material outward normal vector
to the Neumann boundary ∂T B0 ∈ ∂B0, and T̄ : ∂T B0 × I → R3 is the prescribed Piola stress
vector. Equation (2)3 denotes the Dirichlet boundary condition with the prescribed displacement
field φ̄ on ∂φB0 ∈ ∂B0. The whole boundary for the mechanical field is comprised of both
introduced boundaries, which may not overlap, such that

∂T B0 ∪ ∂φB0 = ∂B0, ∂T B0 ∩ ∂φB0 = ∅. (3)

Finally, (2)4-(2)5 are the initial conditions for configuration and velocity with φ0 and v0 being
the initial configuration and velocity, respectively.
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2.1.2 Thermodynamics

The IBVP for thermodynamics is given by

θ η̇ = R̄ − Div Q in B0 × I,
Q · N = −Q̄ on ∂QB0 × I,

θ = θ̄ on ∂θB0 × I,
θ(X, 0) = θ0 in B0,

(4)

where (4)1 denotes the local energy balance with θ : B0 ×I → R+ being the absolute temperature
field and η : B0 × I → R is the entropy density. Furthermore, R̄ : B0 × I → R denotes a
prescribed heat source per unit undeformed volume B0 and Q : B0 × I → R3 denotes the Piola
heat flux vector per unit undeformed volume B0. Equations (4)2 and (4)3 are the Neumann and
Dirichlet boundary conditions, respectively. Therein, Q̄ : ∂QB0 ×I → R denotes a prescribed rate
of heat transfer across a unit of undeformed area applied on ∂QB0 ⊂ ∂B0. Essential temperature
boundary conditions θ̄ are applied on ∂θB0 ⊂ ∂B0. The boundaries for the thermal field in (4)
need to satisfy

∂QB0 ∪ ∂θB0 = ∂B0, ∂QB0 ∩ ∂θB0 = ∅. (5)
Eventually, the initial thermal field is prescribed in (4)4 with the initial temperature θ0.

2.1.3 Electrostatics

Restricting our focus to capacitor-like DEs allows us to neglect magnetic and time-dependent
electrical effects. Thus, it is possible to reduce Maxwell’s equations to

Div D0 = ρ̄e
0 in B0 × I,

E0 = −∇XΦ in B0 × I,
D0 · N = −ω̄e

0 on ∂ωB0 × I,
Φ = Φ̄ on ∂ΦB0 × I.

(6)

Therein, D0 : B0×I → R3 represents the Lagrangian electric displacement vector, ρ̄e
0 : B0×I → R

is the prescribed electric volume charge per unit of undeformed volume B0, and ω̄e
0 : ∂ωB0 ×I → R

denotes the electric surface charge per unit of undeformed area ∂ωB0 ⊂ ∂B0. Furthermore,
E0 : B0 × I → R3 represents the Lagrangian electric field vector and Φ : B0 × I → R is the
electric potential field which is prescribed with Φ̄ on ∂ΦB0 ⊂ ∂B0. The boundaries are composed
of the Dirichlet and Neumann boundaries which may not overlap, thus

∂ωB0 ∪ ∂ΦB0 = ∂B0, ∂ωB0 ∩ ∂ΦB0 = ∅. (7)

2.2 Constitutive equations
The behavior of body B0 is characterized by the chosen energy density function. For many
applications it is important to incorporate coupling effects between the fields, i.e., to consider
interactions between the mechanical, thermal, and electric fields. In doing so, we herein assume an
energy function F̂ = F̂(F, D0, θ) (cf. [Fra+22a]). Considering the second law of thermodynamics,
the constitutive equations

P = ∂FF̂ , E0 = ∂D0F̂ , η = −∂θF̂ , (8)
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must hold for the first Piola-Kirchhoff stress tensor P, the entropy density η, and the Lagrangian
electric field vector E0. Furthermore, the constitutive equations are supplemented by the Piola
heat flux

Q = −F−1 K F−T γ, (9)
which is governed by Duhamel’s law of heat conduction. Therein, K is the material thermal
conductivity tensor and γ : B0×I → R3 denotes the material gradient of the absolute temperature
field

γ = −∇Xθ. (10)
Assuming a suitable energy F , and K to be a positive semi-definite second-order tensor, the
constitutive equations (8) and (9) satisfy the Clausius-Duhem inequality and can thus be regarded
as thermodynamically consistent.

3 Advanced modeling aspects within the continuous description

In this section, we outline advanced modeling aspects within the continuous description. We
want to emphasize that many of these aspects are not necessarily limited to the thermo-electro-
mechanical system considered in Sect. 2, but can be applied to other problems as well. More
precisely, we present a polyconvexity-inspired framework based on the tensor cross product op-
eration, thermo-electro-mechanical constitutive models, a Hu-Washizu type mixed formulation
for non-potential (coupled) systems and an alternative energy balance formulation to facilitate
the design of the desired energy-momentum consistent time integration scheme. Eventually, we
propose a multiphysics, mixed IBVP for thermo-electro-elastodynamics.

3.1 Polyconvexity-inspired framework
In order to find a polyconvexity-based energy density function describing the constitutive be-
havior of a DE, the tensor cross product operation between second-order tensors is introduced.
Afterwards, kinematics and constitutive equations are reconsidered by the beneficial properties
of the tensor cross product.

3.1.1 Tensor cross product

The tensor cross product was introduced in [de 82], exploited in the context of nonlinear contin-
uum mechanics by [BGO15] and subsequently extended to multiphysics problems (cf. [Fra+19;
Fra+22a; Fra+18; Ort+18; Ort+20]). It enables to simplify algebraic derivations, especially when
polyconvex constitutive models are considered.
The tensor cross product between two second-order tensors A, B ∈ R3×3 can be defined as

(A B)ij = ϵiαβ ϵjab Aαa Bβb. (11)

Therein, Einstein’s summation convention is employed to pairs of repeated indices, where i, j, α, β,
a, b ∈ {1, 2, 3}. In addition, ϵijk denotes the third-order permutation tensor. A noteworthy feature
of the tensor cross product is that it allows to redefine the cofactor of a second-order tensor
A ∈ R3×3 as

cof(A) = det(A) A−T = 1
2 (A A). (12)

Furthermore, the determinant of a second-order tensor A ∈ R3×3 can be written in an elegant
manner as

det(A) = 1
6 (A A) : A. (13)
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Some further helpful properties of the tensor cross product can be found, e.g., in [Fra+22a].

3.1.2 Kinematics

In addition to the deformation gradient F in (1), alternative kinematic measures can be defined.
More precisely, its cofactor H : B0 × I → R3×3 can now be defined with the help of the tensor
cross product as in (12), namely

H = cof(F) = 1
2 F F, da = H dA. (14)

This allows to map infinitesimal material area elements dA ∈ ∂B0 to their spatial counterparts
da ∈ ∂Bt. Furthermore, with the help of equation (13), the Jacobian determinant of F can be
written in terms of the tensor cross product as

J = det(F) = 1
6 (F F) : F, dv = J dV . (15)

The Jacobian determinant maps infinitesimal volume elements of the reference configuration
dV ∈ B0 to their spatial counterparts dv ∈ Bt. For an objective (material frame indifferent)
representation of the energy density function, we introduce the symmetric right Cauchy-Green
strain tensor C : B0 × I → R3×3 with

C = FT F. (16)
In addition to that, the cofactor of C can be defined in a similar fashion as in (14), i.e.,

G = cof(C) = HT H = 1
2 C C, (17)

where G : B0 × I → R3×3. Eventually, we introduce the determinant of C in analogy to (15), i.e.,

C = det(C) = J2 = 1
6 (C C) : C, (18)

where C : B0 × I → R+.

3.1.3 Energy density function

We assume that the behavior of DEs can be characterized by means of the energy density function

F̂(F, D0, θ) = F̃(F, cof(F), det(F), D0, d(F, D0), θ) = F̃(F, H, J, D0, d, θ), d = FD0, (19)

where F̃ : R3×3 × R3×3 × R+ × R3 × R3 × R+ → R is convex with respect to its arguments
F, H, J, D0, d and concave with respect to θ. With the objective representation of the kinematics
(see Sect. 3.1.2), we can re-express F̃ as

F̃(F, H, J, D0, d, θ) = F⋆(C, G, C, D0, CD0, θ) = F(C, G, C, D0, θ). (20)

Example 1. Inspired by the works [MHS18; Ver+13], we exemplarily consider the following
additive decomposition of the energy density function F(C, G, C, D0, θ)12 as

F(C, G, C, D0, θ) = fθ(θ) Fem(C, G, C, D0) + Ftm(C, θ) + Ft(θ), (21)

1 The model given in (20) is typically known as a modified entropic electro-elasticity model.
2 It is important to remark that the proposed framework is not restricted to the suggested energy function given

in (20).
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where Fem : R3×3 × R3×3 × R+ × R3 → R represents the electro-mechanical contribution to the
energy density function, which, for example, can be additively decomposed into a compressible
Mooney-Rivlin model (mechanical) and an ideal dielectric elastomer model (electro-mechanical),
i.e.,

Fem(C, G, C, D0) = a tr C + b tr G + c
2 (

√
C − 1)2 − d log

√
C + 1

2 εr ε0
√

C
D0 · (C D0). (22)

In the above, the mechanical parameters a, b, c ∈ R+ and d = 2 (a + 2 b) have been employed.
Moreover, the permittivity of vacuum is denoted by ε0 = 8.8541 × 10−12 AsV−1m−1 and εr ∈ R+

is the relative permittivity of the considered medium. Furthermore, Ftm(C, θ) : R+ × R+ → R
represents the coupled thermo-mechanical contribution, for which we use3

Ftm(C, θ) = −3 β e (C − 1) (θ − θR), (23)

following [Fra+22a]. Therein, β, e ∈ R+ are thermo-mechanical parameters and θR ∈ R+ is the
reference temperature. In addition, Ft(θ) : R+ → R represents the purely thermal contribution
[Fra+22a], defined as

Ft(θ) = κ

(
θ − θR − θ log

(
θ

θR

))
, (24)

where κ ∈ R+ denotes the specific heat capacity. Finally, the factor fθ : R+ → R+ in front of the
electro-mechanical contribution Fem : R3×3 × R3×3 × R+ × R3 → R is chosen as

fθ(θ) = θ

θR
, (25)

following the work of [Ver+13]. Notice that multiplication of fθ and Fem aims at a fully coupled
model (cf. [MHS18; Ver+13]), which contrasts with our previous publication [Fra+22a], where
fθ = 1. Accordingly, the constitutive equations are given by

P = F S, S = 2 (∂CF + ∂GF C + ∂CF G), E0 = ∂D0F , η = −∂θF , (26)

where S : B0 × I → R3×3 denotes the second Piola-Kirchhoff stress tensor. In addition, as-
suming thermal isotropy, Duhamel’s law of heat conduction (9) reduces to Fourier’s law of heat
conduction. Accordingly, with K = k0I we obtain

Q = −k0C−1 γ = −k0

C
G γ, (27)

where k0 ∈ R+ denotes the coefficient of thermal conductivity with respect to the reference config-
uration.

Remark 2. The proposed constitutive model (21) within Ex. 1 can be considered as polyconvex
only up to a certain temperature θcr. More precisely, F̃ must satisfy the conditions

δF
δH
δJ

δD0
δd

 :



∂2
FFF̃ ∂2

FHF̃ ∂2
FJF̃ ∂2

FD0F̃ ∂2
FdF̃

∂2
HFF̃ ∂2

HHF̃ ∂2
HJF̃ ∂2

HD0F̃ ∂2
HdF̃

∂2
JFF̃ ∂2

JHF̃ ∂2
JJF̃ ∂2

JD0F̃ ∂2
JdF̃

∂2
D0FF̃ ∂2

D0HF̃ ∂2
D0JF̃ ∂2

D0D0F̃ ∂2
D0dF̃

∂2
dFF̃ ∂2

dHF̃ ∂2
dJF̃ ∂2

dD0F̃ ∂2
ddF̃


︸ ︷︷ ︸

[H
F̃

]

:


δF
δH
δJ

δD0
δd

 ≥ 0, ∂2
θθF̃ < 0, (28)

3 The polyconvexity properties of (23) are discussed in more detail in Appx. A [Bon+21].
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for this to be true. However, as can be seen in [Fra+22a], the critical temperature is typically
relatively high, so we will not address this topic further.

Remark 3. Mehnert et al. [MHS18] considered a similar additive decomposition to that in equa-
tion (21) within Ex. 1, where the main difference resided in the higher nonlinearity associated
with the temperature dependent factor fθ(θ), defined therein as

fθ(θ) = θ

θR
+ g(θ), g(θ) = −

θ
(

tanh (a2(θ − θR))
)3

θR + a1
, (29)

where a1, a2 ∈ R are material parameters. Such nonlinearity was introduced with a two-fold
purpose. First, to introduce a dependence of the specific heat capacity with respect to deformations.
This can be seen from the definition of the specific heat capacity, i.e.,

k̄(C, G, C, D0, θ) = −θ∂2
θθF = κ − θg′′(θ)Fem(C, G, C, D0). (30)

Second, a definition of fθ(θ) as in (29) ensures a nonlinear dependence of both stresses and
electric fields with respect to temperature, which, according to equation (8), would depend on a
linear fashion with respect to fθ(θ), comprising the linear term θ/θR and the nonlinear term g(θ).

3.2 Mixed formulation for non-potential coupled systems
In order to develop a multi-field, mixed formulation for non-potential systems, we carry out
two steps. First and foremost, we start with a variational Hu-Washizu type formulation for
elastostatics (cf. [BJH18]) and convert it to its associated (mixed) strong form. In a second step,
we augment the (mixed) strong form to a mixed thermo-electro-mechanics strong formulation.
A noteworthy feature of the above procedure is that it is not restricted to thermo-electro-
mechanical coupled problems but does also work for various coupled systems including non-
potential contributions.

3.2.1 Variational Hu-Washizu type formulation for elastostatics

For the elastostatic case under consideration, the potential energy can be defined as

Πm(φ) = Πm,int(φ) + Πm,ext(φ), (31)

with its internal and external contributions

Πm,int(φ) =
∫

B0
Ŵ (F(φ)) dV, Πm,ext(φ) = −

∫
B0

B̄ · φ dV −
∫

∂T B0
T̄ · φ dA, (32)

respectively, where Ŵ : R3×3 → R denotes the strain energy. In the above, the solution function
φ ∈ Vφ is employed with space

Vφ = {φ : B0 → R3 | φi ∈ H1 (B0) ∧ φ = φ̄ on ∂φB0 ∧ det(∇Xφ) > 0 in B0}, (33)

where H1 denotes the Sobolev space. The principle of stationary potential energy states that
the first variation of the potential energy disappears if equilibrium prevails (cf. [Hol00]). The
principle of stationary potential energy is equivalent to the procedure of deriving the weak form
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directly from the strong formulation of a problem. By introducing the objective kinematic set
within a cascade manner4 as

C = (∇Xφ)T ∇Xφ,
G = 1

2 C C,
C = 1

3 G : C,
(34)

the potential energy can be re-expressed as an augmented 7-field Hu-Washizu type version

Π̃m(φ, Σ, Λ) =
∫

B0
W(C, G, C) + ΛC :

(
(∇Xφ)T ∇Xφ − C

)
+ ΛG :

(
1
2 C C − G

)
+ ΛC :

(
1
3 G : C − C

)
dV + Πm,ext(φ),

(35)

where the above kinematic set is enforced (cf. [BJH18]). Therein, the kinematic set Σ = (C, G, C)
and the set of Lagrange multipliers Λ = (ΛC, ΛG, ΛC) have been introduced to simplify notation.
Furthermore, the solution functions C, G, ΛC, ΛG ∈ VA, with generalized space

VA = V0
A = {A : B0 → S | Aij ∈ L2(B0)}, (36)

and C, ΛC ∈ VA, with generalized space

VA = V0
A = {A : B0 → R | A ∈ L2(B0)}, (37)

are used, where S denotes the space of symmetric second-order tensors and L2 is the space of square
integrable functions. Imposing stationarity conditions to (35), i.e., variation with respect to the
independent variables and setting the variation to zero yields the mixed variational formulation
for elastostatics

δφΠ̃m =
∫

B0
ΛC :

(
(∇Xδφ)T ∇Xφ + (∇Xφ)T ∇Xδφ

)
dV + Πm,ext(δφ) = 0,

δCΠ̃m =
∫

B0
δC :

(
∂CW − ΛC + ΛG C + 1

3 ΛC G
)

dV = 0,

δGΠ̃m =
∫

B0
δG :

(
∂GW − ΛG + 1

3 ΛC C
)

dV = 0,

δCΠ̃m =
∫

B0
δC

(
∂CW − ΛC

)
dV = 0,

δΛCΠ̃m =
∫

B0
δΛC :

(
(∇Xφ)T ∇Xφ − C

)
dV = 0,

δΛGΠ̃m =
∫

B0
δΛG :

(
1
2C C − G

)
dV = 0,

δΛC Π̃m =
∫

B0
δΛC

(
1
3 G : C − C

)
dV = 0,

(38)

where the equations above have to hold for arbitrary δφ ∈ V0
φ, with

V0
φ = {wφ : B0 → R3 | wφi ∈ H1 (B0) ∧ wφ = 0 on ∂φB0}, (39)

4 G is bounded to independent variable C instead of C(φ) = (∇Xφ)T ∇Xφ. The same applies for the independent
variable C which is bounded to the independent variables G and C, respectively instead of G(C(φ)) and C(φ).
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3 Advanced modeling aspects within the continuous description 11

δC, δG, δΛC, δΛG ∈ V0
A, and δC, δΛC ∈ V0

A. The variational formulation (38) can be converted
to its strong form using basic algebraic operations. This strong form consists of the equations

Div(2 F ΛC) + B̄ = 0
∂CW − ΛC + ΛG C + 1

3 ΛC G = 0
∂GW − ΛG + 1

3 ΛC C = 0
∂CW − ΛC = 0
(∇Xφ)T ∇Xφ − C = 0
1
2 C C − G = 0
1
3 G : C − C = 0



in B0 (40)

and the corresponding boundary conditions

φ = φ̄ on ∂φB0,
(2 F ΛC) N = T̄ on ∂T B0.

(41)

3.2.2 Mixed thermo-electro-mechanical strong formulation

To extend the BVP in (40)-(41) to the case of thermo-electro-elastodynamics, we proceed as
follows. First, we take into account the inertia term within the balance of linear momentum,
i.e., in equation (40)1. Second, we consider the IBVP of thermodynamics (4) and the BVP of
electrostatics (6) to incorporate thermal and electrical effects. Finally, we employ the energy
density function F = F(C, G, C, D0, θ) from (21) to achieve coupling between the different
physical processes. The above steps yield the final multiphysics, mixed IBVP5 consisting of
the equations

ρ0 (φ̇ − v) = 0
Div(2 F ΛC) + B̄ = ρ0 v̇
θ η̇ + Div Q − R̄ = 0
Div D0 − ρ̄e

0 = 0
∂D0F + ∇XΦ = 0
∂CF − ΛC + ΛG C + 1

3 ΛC G = 0
∂GF − ΛG + 1

3 ΛC C = 0
∂CF − ΛC = 0
(∇Xφ)T ∇Xφ − C = 0
1
2 C C − G = 0
1
3 G : C − C = 0



in B0 × I, (42)

5 By additionally enforcing constraint (6)2 directly, we also yield a mixed formulation with regard to the electric
part, which is known as ‘hybrid finite-element model’ (see [GH97]) and is commonly applied in electrostatics
due to some advantages (cf. [Fra+19; Fra+22a; Sch+12]).
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4 Weak formulation 12

the boundary conditions
φ = φ̄ on ∂φB0 × I,

(2 F ΛC) N = T̄ on ∂T B0 × I,
θ = θ̄ on ∂θB0 × I,

Q · N = −Q̄ on ∂QB0 × I,
D0 · N = −ω̄e

0 on ∂ωB0 × I,
Φ = Φ̄ on ∂ΦB0 × I,

(43)

and the initial conditions
φ(t = 0) = φ0

v(t = 0) = v0

θ(t = 0) = θ0

 in B0. (44)

3.3 Energy formulation to facilitate discrete energy consistency
In order to facilitate the design of an energy-momentum consistent time integration scheme, the
local energy balance on a continuum level in (42)3 is reconsidered as

d
dt

(θη) − θ̇η + Div Q − R̄ = 0 in B0 × I, (45)

which was already proposed in [Ort+18] and applied in the context of thermo-electro-mechanics
in [Fra+22a].

4 Weak formulation

Based on the strong formulation given in (42), but exchanging the local energy balance in (42)3
with (45), the associated symmetric weak formulation of (42) is obtained after multiplying each
equation with a suitable test function, integrating over the domain B0, and applying basic alge-
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4 Weak formulation 13

braic operations. This yields∫
B0

wv · (φ̇ − v) ρ0 dV = 0,∫
B0

(
wφ · v̇ ρ0 + ΛC :

(
(∇Xwφ)T ∇Xφ + (∇Xφ)T ∇Xwφ

))
dV + Πm,ext(wφ) = 0,∫

B0

(
wθ

(
d
dt

(θη) − θ̇η

)
− ∇Xwθ · Q

)
dV + Πt,ext(wθ) = 0,∫

B0
∇XwΦ · D0 dV + Πe,ext(wΦ) = 0,∫

B0
wD0 · (∂D0F + ∇XΦ) dV = 0,∫

B0
wC :

(
∂CF − ΛC + ΛG C + 1

3 ΛC G
)

dV = 0,∫
B0

wG :
(
∂GF − ΛG + 1

3 ΛC C
)

dV = 0,∫
B0

wC (∂CF − ΛC) dV = 0,∫
B0

wΛC :
(
∇Xφ)T ∇Xφ − C

)
dV = 0,∫

B0
wΛG :

(
1
2 C C − G

)
dV = 0,∫

B0
wΛC

(
1
3 G : C − C

)
dV = 0,

(46)

where the external thermal and electrical potentials are given by

Πt,ext(wθ) = −
∫

B0
wθR̄ dV −

∫
∂QB0

wθ Q̄ dA,

Πe,ext(wΦ) =
∫

B0
wΦρ̄e

0 dV +
∫

∂ωB0
wΦ ω̄e

0 dA,
(47)

respectively. The above weak equations are valid for suitable test functions, i.e., wv ∈ V0
v,

wφ ∈ V0
φ, wθ ∈ V0

θ, wΦ ∈ V0
Φ, wD0 ∈ V0

D0 , wC, wG, wΛC , wΛG ∈ V0
A, and wC , wΛC ∈ V0

A,
with

Vv = V0
v = {v : B0 → R3 | vi ∈ L2 (B0)},

V0
θ = {wθ : B0 → R | wθ ∈ H1 (B0) ∧ wθ = 0 on ∂θB0},

V0
Φ = {wΦ : B0 → R | wΦ ∈ H1 (B0) ∧ wΦ = 0 on ∂ΦB0},

VD0 = V0
D0 = {D0 : B0 → R3 | D0i ∈ L2 (B0)}.

(48)

Moreover, v ∈ Vv, φ ∈ Vφ, θ ∈ Vθ, Φ ∈ VΦ, D0 ∈ VD0 , C, G, ΛC, ΛG ∈ VA, and C, ΛC ∈ VA

must hold for the solution functions, with the remaining function spaces defined by

Vθ = {θ : B0 → R | θ ∈ H1 (B0) ∧ θ = θ̄ on ∂θB0},
VΦ = {Φ : B0 → R | Φ ∈ H1 (B0) ∧ Φ = Φ̄ on ∂ΦB0}.

(49)

4.1 Balance laws
In this section, the balance laws of the coupled problem given by (46) are examined. In particular,
total angular momentum and total energy are considered. To this end, a homogeneous Neumann
problem is assumed by applying ∂φB0 = ∂θB0 = ∂ΦB0 = ∅.
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4 Weak formulation 14

4.1.1 Conservation of angular momentum

The total angular momentum of the continuum body with respect to the origin of the inertial
frame is given by

J =
∫

B0
φ × ρ0v dV . (50)

To verify conservation of angular momentum, we take the following admissible values for the test
functions wv = ζ × φ̇ ∈ V0

v and wφ = ζ × φ ∈ V0
φ in (46) using arbitrary but constant values

for ζ ∈ R3. With the above, (46)1 yields∫
B0

φ̇ × ρ0v dV = 0. (51)

Accordingly, the conservation of total angular momentum can be written as

J̇ =
∫

B0
φ × ρ0v̇ dV = 0. (52)

Furthermore, we introduce the skew-symmetric matrix ζ̂ ∈ R3×3 by ζ × a = ζ̂a with property
ζ̂

T + ζ̂ = 0, such that (46)2 with (52) can be written as

ζ ·
(
J̇ − Mm,ext

)
= 0. (53)

In the above the total external mechanical torque exerted by body and surface loads is introduced
as

Mm,ext =
∫

B0
φ × B̄ dV +

∫
∂T B0

φ × T̄ dA. (54)

Hence, for vanishing external mechanical loads, the total angular momentum is conserved.

4.1.2 Conservation of energy

The total energy of the thermo-electro-mechanical body
E = T + U , (55)

consists of the total kinetic energy

T = 1
2

∫
B0

ρ0v · v dV , (56)

and (cf. [Fra+22a])
U =

∫
B0

F(C, G, C, D0, θ) + D0 · ∇XΦ + θη dV . (57)

Accordingly, conservation of total energy is achieved if
Ė = Ṫ + U̇ = 0. (58)

Therein, the derivatives of the energies with respect to time can be written as

Ṫ =
∫

B0
ρ0v · v̇ dV ,

U̇ =
∫

B0

(
∂CF : Ċ + ∂GF : Ġ + ∂CF Ċ + ∂D0F · Ḋ0 + ∂θF θ̇

)
dV

+
∫

B0

(
Ḋ0 · ∇XΦ + D0 · ∇XΦ̇ + θ̇η + θη̇

)
dV

=
∫

B0

(
∂CF : Ċ + ∂GF : Ġ + ∂CF Ċ

)
dV

+
∫

B0

(
(∂D0F + ∇XΦ) · Ḋ0 + D0 · ∇XΦ̇ + θη̇

)
dV .

(59)
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5 Time discretization: Energy-momentum scheme 15

In order to verify the conservation of total energy, we replace the test functions (wv, wφ, wθ, wΦ, wD0)
in (46) with (v̇, φ̇, 1, Φ̇, Ḋ0) ∈ V0

v ×V0
φ ×V0

θ ×V0
Φ ×V0

D0 and obtain∫
B0

v̇ · (φ̇ − v) ρ0 dV = 0,∫
B0

(
φ̇ · ρ0v̇ + ΛC :

(
(∇Xφ̇)T ∇Xφ + (∇Xφ)T ∇Xφ̇

))
dV + Πm,ext(φ̇) = 0,∫

B0

(
d
dt

(θη) − θ̇η

)
dV + Πt,ext(1) = 0,∫

B0
∇XΦ̇ · D0 dV + Πe,ext(Φ̇) = 0,∫

B0
Ḋ0 · (∂D0F + ∇XΦ) dV = 0.

(60)

Furthermore, we apply (wC, wG, wC) = (Ċ, Ġ, Ċ) ∈ V0
A ×V0

A ×V0
A in (46), which leads to∫

B0
Ċ :

(
∂CF − ΛC + ΛG C + 1

3ΛCG
)

dV = 0,∫
B0

Ġ :
(
∂GF − ΛG + 1

3ΛCC
)

dV = 0,∫
B0

Ċ
(
∂CF − ΛC

)
dV = 0.

(61)

Eventually, we use (wΛC , wΛG , wΛC ) = (ΛC, ΛG, ΛC) ∈ V0
A ×V0

A ×V0
A in (46), which yields∫

B0
ΛC :

(
(∇Xφ̇)T∇Xφ + (∇Xφ)T∇Xφ̇ − Ċ

)
dV = 0,∫

B0
ΛG :

(
C Ċ − Ġ

)
dV = 0,∫

B0
ΛC

(
1
3Ġ : C + 1

3G : Ċ − Ċ
)

dV = 0.

(62)

Finally, we add equations (60)2-5 to (61)1-3 and subtract (60)1 and (62)1-3, respectively, such that
we obtain the desired result

Ṫ + U̇ + Πm,ext(φ̇) + Πt,ext(1) + Πe,ext(Φ̇) = 0. (63)

Accordingly, for vanishing external loads, the total energy is a constant of the motion.

5 Time discretization: Energy-momentum scheme

In this section, we conduct the time discretization of the weak equations (46) derived in the
previous section. For that, we divide the interval I into subintervals [tn, tn+1] ⊂ I. In doing
so, we assume that the values of the fields φ, v, θ, Φ, D0, Σ, and Λ are known at time tn and
unknown at time tn+1. For completeness, we denote the fields at time tn by (•)n and at time tn+1
by (•)n+1. Furthermore, we introduce the average value

(•)n+ 1
2

= 1
2 [(•)n + (•)n+1] , (64)
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5 Time discretization: Energy-momentum scheme 16

and the time step size
∆t = tn+1 − tn. (65)

The objective is to develop a numerical one-step method that permits to compute the values of
the unknown fields at time tn+1. For this purpose, we choose the time discretization∫

B0
wv ·

( 1
∆t

(φn+1 − φn) − vn+ 1
2

)
ρ0 dV = 0,∫

B0
wφ · ρ0

∆t
(vn+1 − vn)

+ ΛC
n+1 :

(
(∇Xwφ)T ∇Xφn+ 1

2
+
(
∇Xφn+ 1

2

)T
∇Xwφ

)
dV + Πm,ext

n+ 1
2

(wφ) = 0,∫
B0

wθ

( 1
∆t

(θn+1ηn+1 + θnηn) − 1
∆t

(θn+1 − θn)DθF
)

dV

−
∫

B0
∇Xwθ · Qn+ 1

2
dV + Πt,ext

n+ 1
2
(wθ) = 0,∫

B0
∇XwΦ · D0n+ 1

2
dV + Πe,ext

n+ 1
2
(wΦ) = 0,∫

B0
wD0 ·

(
DD0F + ∇XΦn+ 1

2

)
dV = 0

(66)

for the weak equations (46)1−5. In addition, we propose∫
B0

wC :
(
DCF − ΛC

n+1 + ΛG
n+1 Cn+ 1

2
+ 1

3ΛC
n+1Gn+ 1

2

)
dV = 0,∫

B0
wG :

(
DGF − ΛG

n+1 + 1
3ΛC

n+1Cn+ 1
2

)
dV = 0,∫

B0
wC

(
DCF − ΛC

n+1

)
dV = 0

(67)

for the weak equations (46)6−8 and∫
B0

wΛC :
((

∇Xφn+1

)T
∇Xφn+1 − Cn+1

)
dV = 0,∫

B0
wΛG :

(
1
2Cn+1 Cn+1 − Gn+1

)
dV = 0,∫

B0
wΛC

(
1
3Gn+1 : Cn+1 − Cn+1

)
dV = 0

(68)

for the weak equations (46)9−11.
In (66), the time-discrete versions of the external mechanical, thermal, and electrical contributions
are given by

Πm,ext
n+ 1

2
(wφ) = −

∫
B0

B̄n+ 1
2

· wφ dV −
∫

∂T B0
T̄n+ 1

2
· wφ dA,

Πt,ext
n+ 1

2
(wθ) = −

∫
B0

R̄n+ 1
2
wθ dV −

∫
∂QB0

Q̄n+ 1
2
wθ dA,

Πe,ext
n+ 1

2
(wΦ) =

∫
B0

ρ̄e
0n+ 1

2
wΦ dV +

∫
∂ωB0

ω̄e
0n+ 1

2
wΦ dA.

(69)

The proposed discretization in time conforms to an EM scheme. An essential part of this
scheme is the utilization of the so-called discrete derivatives DCF , DGF , DCF , DD0F , and DθF ,
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5 Time discretization: Energy-momentum scheme 17

which were introduced in [Gon96] and can be interpreted as algorithmic or time-discrete coun-
terparts of ∂CF , ∂GF , ∂CF , ∂D0F , and ∂θF . According to [Bet16], the concept of discrete
derivatives is a further development of the original idea from [ST92], limited to St. Venant-
Kirchhoff material. The five discrete derivatives can be defined, using the abbreviated notation
V = (V1, V2, V3, V4, V5) = (C, G, C, D0, θ), by

DViF = 1
2 (DViFn+1,n + DViFn,n+1) , i ∈ Y = {1, 2, 3, 4, 5},

DViFn+1,n = DViF(V i
n+1, V i

n)
∣∣∣
Vj

n+1,Vk
n

, ∀j ∈ Y : j < i; ∀k ∈ Y : k > i,

DViFn,n+1 = DViF(V i
n, V i

n+1)
∣∣∣
Vj

n,Vk
n+1

, ∀j ∈ Y : j < i; ∀k ∈ Y : k > i,

(70)

where DViF(V i
n+1, V i

n)|Vj
n+1,Vk

n
and DViF(V i

n, V i
n+1)|Vj

n,Vk
n+1

are given by

DViF|Vj
n+1,Vk

n
= ∂ViF

(
V i

n+ 1
2

)∣∣∣
Vj

n+1,Vk
n

+
F
(
V i

n+1

)∣∣∣
Vj

n+1,Vk
n

− F (V i
n)|Vj

n+1,Vk
n

−
〈

∂ViF
(

V i
n+ 1

2

)∣∣∣∣
Vj

n+1,Vk
n

, ∆V i

〉
⟨∆V i, ∆V i⟩

∆V i,

DViF|Vj
n,Vk

n+1
= ∂ViF

(
V i

n+ 1
2

)∣∣∣
Vj

n,Vk
n+1

+
F
(
V i

n+1

)∣∣∣
Vj

n,Vk
n+1

− F (V i
n)|Vj

n,Vk
n+1

−
〈

∂ViF
(

V i
n+ 1

2

)∣∣∣∣
Vj

n,Vk
n+1

, ∆V i

〉
⟨∆V i, ∆V i⟩

∆V i.

(71)

Therein, ⟨•, •⟩ denotes the inner product and ∆V i = V i
n+1 − V i

n.

Remark 4. If V i is a scalar quantity, the definition of the discrete derivatives is simplified. It is
then reminiscent of Greenspan’s formula (cf. [Gre84]) and becomes

DViF|Vj
n+1,Vk

n
=

F
(
V i

n+1

)∣∣∣
Vj

n+1,Vk
n

− F (V i
n)|Vj

n+1,Vk
n

∆V i
,

DViF|Vj
n,Vk

n+1
=

F
(
V i

n+1

)∣∣∣
Vj

n,Vk
n+1

− F (V i
n)|Vj

n,Vk
n+1

∆V i
.

(72)

As shown in detail in [Fra+22a], the discrete derivatives possess two important properties:
1. Directionality:

This property is crucial to show the conservation of energy and states that

F(Vn+1) − F(Vn) = DCF : ∆C + DGF : ∆G + DCF ∆C

+ DD0F · ∆D0 + DθF ∆θ.
(73)

2. Consistency:
One can show that the discrete derivatives are well defined in the limit ||∆V i|| → 0, where
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||∆V i|| =
√

⟨∆V i,∆V i⟩, because

DViF = ∂ViF
(
Vn+ 1

2

)
+

5∑
j=1

O
(
||∆Vj||2

)

+
5∑

k=1,k ̸=i

5∑
l=k+1,l ̸=i

O(||∆Vk||||∆V l||).
(74)

Remark 5. Note that DViF is not defined for ||∆V i|| = 0. This case may occur, for example,
during the first iteration of Newton’s method. To overcome this potential numerical difficulty, it
is reasonable to compute the discrete derivatives for ||∆V i|| → 0 as for the midpoint rule, i.e.,

DViF = ∂ViF
(
Vn+ 1

2

)
. (75)

The validity of (75) follows from (74).

5.1 Semi-discrete balance laws
In this section, we show that the proposed time integration scheme in equations (66)-(68) satisfies
the conservation laws for any time step size. As customary in doing so (cf. [Fra+18]), we assume
the homogeneous Neumann case.

5.1.1 Conservation of angular momentum

The total angular momentum at time tn+1 and at time tn is defined as

Jn+1 =
∫

B0
φn+1 × ρ0vn+1 dV , Jn =

∫
B0

φn × ρ0vn dV . (76)

The total angular momentum is conserved if its variation from tn to tn+1 vanishes, namely

Jn+1 − Jn =
∫

B0
φn+1 × ρ0vn+1 − φn × ρ0vn dV

=
∫

B0

(
φn+1 − φn

)
× ρ0vn+ 1

2
+ φn+ 1

2
× ρ0 (vn+1 − vn) dV = 0.

(77)

To show that the time-discrete version of the weak form satisfies this requirement, we assume
that wv = ζ × 1

∆t
(φn+1 − φn) ∈ V0

v, where ζ ∈ R3 is arbitrary but constant. Inserting this value
into (66)1 results in

ζ ·
(∫

B0

1
∆t

(
φn+1 − φn

)
× ρ0vn+ 1

2
dV

)
= 0. (78)

By adding (78) to (66)2 and assuming that wφ = ζ × φn+ 1
2

∈ V0
φ, we obtain

ζ ·
( 1

∆t

∫
B0

(
φn+1 − φn

)
× ρ0vn+ 1

2
+ φn+ 1

2
× ρ0 (vn+1 − vn) dV

)
+
∫

B0
ΛC

n+1 :
((

∇Xφn+ 1
2

)T
(

ζ̂
T + ζ̂

)
∇Xφn+ 1

2

)
dV − ζ · Mm,ext

n+ 1
2

= 0,
(79)

where ζ̂ is again a skew-symmetric matrix and

Mm,ext
n+ 1

2
=
∫

B0
φn+ 1

2
× B̄n+ 1

2
dV +

∫
∂T B0

φn+ 1
2

× T̄n+ 1
2

dA. (80)
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Considering the properties of ζ̂, we finally arrive at

ζ ·
( 1

∆t
(Jn+1 − Jn) − Mm,ext

n+ 1
2

)
= 0. (81)

Thus, as long as Mm,ext
n+ 1

2
= 0, e.g., when there are no external mechanical torques acting on the

body, we can conclude that the proposed formulation conserves the total angular momentum.

5.1.2 Conservation of energy

The total energy at time steps tn+1 and tn can be written as

En+1 = Tn+1 + Un+1, En = Tn + Un, (82)

with the corresponding kinetic energies

Tn+1 = 1
2

∫
B0

ρ0vn+1 · vn+1 dV , Tn = 1
2

∫
B0

ρ0vn · vn dV , (83)

and

Un+1 =
∫

B0
F(Cn+1, Gn+1, Cn+1, D0n+1, θn+1) + D0n+1 · ∇XΦn+1 + θn+1ηn+1 dV ,

Un =
∫

B0
F(Cn, Gn, Cn, D0n, θn) + D0n · ∇XΦn + θnηn dV .

(84)

The total energy is conserved from tn to tn+1 if its variation vanishes, i.e.,
En+1 − En = Tn+1 − Tn + Un+1 − Un = 0. (85)

To show that the proposed time-discrete formulation conserves the total energy, we start by
assuming that in equation (66)1, wv = vn+1 − vn ∈ V0

v, which yields∫
B0

(vn+1 − vn) · ρ0

∆t

(
φn+1 − φn

)
dV =

∫
B0

(vn+1 − vn) · vn+ 1
2
ρ0 dV

= 1
2

∫
B0

(vn+1 · vn+1 − vn · vn) ρ0 dV

= Tn+1 − Tn.

(86)

Next, we replace the test functions (wC, wG, wC) in (67) with (Cn+1 − Cn, Gn+1 − Gn, Cn+1 −
Cn) ∈ V0

A ×V0
A ×V0

A, and thus obtain∫
B0

DCF : (Cn+1 − Cn) dV =∫
B0

(
ΛC

n+1 − ΛG
n+1 Cn+ 1

2
− 1

3ΛC
n+1Gn+ 1

2

)
: (Cn+1 − Cn) dV ,∫

B0
DGF : (Gn+1 − Gn) dV =

∫
B0

(
ΛG

n+1 − 1
3ΛC

n+1Cn+ 1
2

)
: (Gn+1 − Gn) dV ,∫

B0
DCF (Cn+1 − Cn) dV =

∫
B0

ΛC
n+1 (Cn+1 − Cn) dV .

(87)

In addition, we replace the test functions (wθ, wΦ, wD0) in (66)3-5 with (1, Φn+1 − Φn, D0n+1 −
D0n) ∈ V0

θ × V0
Φ × V0

D0 . Inserting the constitutive relations and subtracting (66)4 from (66)5
then yields ∫

B0
DθF(θn+1 − θn) dV =

∫
B0

(−θn+1ηn+1 + θnηn) dV ,∫
B0

DD0F · (D0n+1 − D0n) dV =
∫

B0
(−∇XΦn+1D0n+1 + ∇XΦnD0n) dV .

(88)
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The enforcement of the constraints on position level in the equations of (68) can be transferred
to the velocity level, as shown in [BJH18]. More precisely, if the equations in (68) hold at both
time tn and time tn+1, one can show that∫

B0
wΛC : (Cn+1 − Cn) dV =∫

B0
wΛC :

(((
∇Xφn+1

)T
− (∇Xφn)T

)
∇Xφn+ 1

2

+
(
∇Xφn+ 1

2

)T (
∇Xφn+1 − ∇Xφn

))
dV ,∫

B0
wΛG :

(
Cn+ 1

2
(Cn+1 − Cn) − (Gn+1 − Gn)

)
dV = 0,∫

B0
wC

(
1
3Cn+ 1

2
: (Gn+1 − Gn) + 1

3Gn+ 1
2

: (Cn+1 − Cn) − (Cn+1 − Cn)
)

dV = 0

(89)

also holds.
Next, we consider the directionality property of the discrete derivatives (73) as well as the relations
(87) and (88). By making the additional assumption that the test functions (wΛC , wΛG , wΛC )
in (89) take the admissible values (ΛC

n+1, ΛG
n+1, ΛC

n+1) ∈ V0
A ×V0

A ×V0
A, we can show that the

difference Un+1 − Un (see (84)) yields

Un+1 − Un =
∫

B0
F(Vn+1) − F(Vn) dV

+
∫

B0
D0n+1 · ∇XΦn+1 − D0n · ∇XΦn + θn+1ηn+1 − θnηn dV

=
∫

B0
DCF : ∆C + DGF : ∆G + DCF∆C + DD0F · ∆D0 dV

+
∫

B0
DθF∆θ + D0n+1 · ∇XΦn+1 − D0n · ∇XΦn + θn+1ηn+1 − θnηn dV

=
∫

B0
ΛC

n+1 : (Cn+1 − Cn) dV

−
∫

B0
ΛG

n+1 :
(
Cn+ 1

2
(Cn+1 − Cn) − (Gn+1 − Gn)

)
dV

−
∫

B0

(
1
3Cn+ 1

2
: (Gn+1 − Gn) + 1

3Gn+ 1
2

: (Cn+1 − Cn) − (Cn+1 − Cn)
)

dV

=
∫

B0
ΛC

n+1 :
(((

∇Xφn+1

)T
− (∇Xφn)T

)
∇Xφn+ 1

2

+
(
∇Xφn+ 1

2

)T (
∇Xφn+1 − ∇Xφn

))
dV

= −
∫

B0

(
φn+1 − φn

)
· ρ0

∆t
(vn+1 − vn) dV ,

(90)

where (66)2 is used on the last step of equation (90), for the specific case where wφ = φn+1 −φn ∈
V0

φ. Finally, with the help of (86), we can conclude that indeed the last expression in (90) coincides
with the (minus) increment of the kinetic energy, namely

Un+1 − Un = −
∫

B0

(
φn+1 − φn

)
· ρ0

∆t
(vn+1 − vn) dV = − (Tn+1 − Tn) . (91)

In summary, the proposed time-discrete version of the weak form conserves the total energy of
the system, which is essentially due to the directionality property of the discrete derivatives.
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6 Space discretization: Finite element method

We employ the finite element method for the spatial discretization of the time-discrete weak form
proposed throughout equations (66)-(68). For this purpose, the body B0 is subdivided into ne

non-overlapping finite elements such that

B0 ≈ Bh
0 =

ne⋃
e=1

Be
0, (92)

where the superscript (•)h indicates an approximation. Furthermore, we utilize the isoparametric
concept for the discretization in space. Accordingly, we interpolate the continuous field quantities
C = (vt, φt, θt, Φt) as specified by the function spaces Vh

v ×Vh
φ ×Vh

θ ×Vh
Φ, given by

Vh
v = {vt ∈ Vv | vh

t |Be
0

=
nC

node∑
a=1

Nava
t }, Vh

φ = {φt ∈ Vφ | φh
t |Be

0
=

nC
node∑

a=1
Naφa

t },

Vh
θ = {θt ∈ Vθ | θh

t |Be
0

=
nC

node∑
a=1

Naθa
t }, Vh

Φ = {Φt ∈ VΦ | Φh
t |Be

0
=

nC
node∑

a=1
NaΦa

t }.

(93)

Therein, nC
node indicates the number of nodes used per element for the approximation of the

corresponding continuous quantity and Na : Be
0 → R denotes the nodal shape functions. Following

the work in [Fra+19], we make use of a discontinuous interpolation of the remaining fields D =
(D0t, Ct, Gt, Ct, ΛC

t , ΛG
t , ΛC

t ). This entails that these fields can actually be discretized
independently on each element of the mesh, enabling the use of a static condensation process
before assembling the global tangent matrix (for more details see Appx. A). Doing so leads to an
efficient formulation from a computational costs standpoint. The interpolation of these fields is
carried out according to the function spaces Vh

D0 ×Vh
A ×Vh

A ×Vh
A ×Vh

A ×Vh
A ×Vh

A, specified as

Vh
D0 = {D0t ∈ VD0 | Dh

0 t|Be
0

=
nD

node∑
a=1

MaDa
0t}, Vh

A = {At ∈ VA | Ah
t |Be

0
=

nD
node∑

a=1
MaAa

t },

Vh
A = {At ∈ VA | Ah

t |Be
0

=
nD

node∑
a=1

MaAa
t },

(94)

where nD
node denotes the number of nodes used to interpolate the discontinuous fields D within

one finite element. Note that it is also possible to approximate the variables in a different way.
However, for the sake of simplicity, we restrict ourselves in this work to the form presented above.
The test functions are approximated following a Bubnov-Galerkin approach. More precisely, we
choose (wv, wφ, wθ, wΦ) ∈ V0,h

v ×V0,h
φ ×V0,h

θ ×V0,h
Φ , where

V0,h
v = {wv ∈ V0

v | wh
v|Be

0
=

nC
node∑

a=1
Nawa

v}, V0,h
φ = {wφ ∈ V0

φ | wh
φ|Be

0
=

nC
node∑

a=1
Nawa

φ},

V
0,h
θ = {wθ ∈ V0

θ | wh
θ |Be

0
=

nC
node∑

a=1
Nawa

θ}, V
0,h
Φ = {wΦ ∈ V0

Φ | wh
Φ|Be

0
=

nC
node∑

a=1
Nawa

Φ},

(95)
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and (wD0 , wC, wG, wC , wΛC , wΛG , wΛC ) ∈ Vh
D0 ×Vh

A ×Vh
A ×Vh

A ×Vh
A ×Vh

A ×Vh
A. Inserting

the spatial approximations into the time-discrete weak form in (66)-(68) yields

ne

A
e=1

nC
node∑

a=1
wa

v · Ra,e
v = 0,

ne

A
e=1

nC
node∑

a=1
wa

φ · Ra,e
φ = 0,

ne

A
e=1

nC
node∑

a=1
wa

θRa,e
θ = 0,

ne

A
e=1

nC
node∑

a=1
wa

ΦRa,e
Φ = 0,

ne

A
e=1

nD
node∑

a=1
wa

D0 · Ra,e
D0 = 0,

ne

A
e=1

nD
node∑

a=1
wa

C : Ra,e
C = 0,

ne

A
e=1

nD
node∑

a=1
wa

G : Ra,e
G = 0,

ne

A
e=1

nD
node∑

a=1
wa

CRa,e
C = 0,

ne

A
e=1

nD
node∑

a=1
wa

ΛC : Ra,e

ΛC = 0,
ne

A
e=1

nD
node∑

a=1
wa

ΛG : Ra,e

ΛG = 0,

ne

A
e=1

nD
node∑

a=1
wa

ΛC Ra,e
ΛC = 0,

(96)

where Ane
e=1 denotes the assembly operator and where the nodal residuals are defined as

Ra,e
v =

∫
Be

0

Na
( 1

∆t

(
φn+1 − φn

)
− vn+ 1

2

)
ρ0 dV ,

Ra,e
φ =

∫
Be

0

Na
(

ρ0

∆t
(vn+1 − vn)

)
+ BaT

n+ 1
2

(
2ΛC

n+1

)V
dV −

∫
Be

0

NaB̄n+ 1
2

dV ,

Ra,e
θ =

∫
Be

0

Na
( 1

∆t
(θn+1ηn+1 − θnηn) + 1

∆t
(θn+1 − θn)DθF

)
dV

−
∫

Be
0

∇XNa · Qn+ 1
2

dV −
∫

Be
0

NaR̄n+ 1
2

dV ,

Ra,e
Φ =

∫
Be

0

∇XNa · D0n+ 1
2

dV +
∫

Be
0

Naρe
0n+ 1

2
dV ,

Ra,e
D0 =

∫
Be

0

Ma
(
DD0F + ∇XΦn+ 1

2

)
dV ,

Ra,e
C =

∫
Be

0

Ma
(
DCF − ΛC

n+1 + ΛG
n+1 Cn+ 1

2
+ 1

3ΛC
n+1Gn+ 1

2

)
dV ,

Ra,e
G =

∫
Be

0

Ma
(
DGF − ΛG

n+1 + 1
3ΛC

n+1Cn+ 1
2

)
dV ,

Ra,e
C =

∫
Be

0

Ma
(
DCF − ΛC

n+1

)
dV ,

Ra,e

ΛC =
∫

Be
0

Ma
((

∇Xφn+1

)T
∇Xφn+1 − Cn+1

)
dV ,

Ra,e

ΛG =
∫

Be
0

Ma
(

1
2Cn+1 Cn+1 − Gn+1

)
dV ,

Ra,e
ΛC =

∫
Be

0

Ma
(

1
3Gn+1 : Cn+1 − Cn+1

)
dV .

(97)

In the above, Ba ∈ R6×3 is the standard nodal operator matrix and (•)V refers to Voigt’s vector
notation of symmetric stress-related quantities. Note that we have omitted the superscript (•)h

Marlon Franke, Felix Zähringer, Moritz Hille, Rogelio Ortigosa, Peter Betsch, and Antonio J. Gil, 17.1.2023



7 Numerical examples 23

in the representation of the residuals (97), for clarity.

7 Numerical examples

In this section, we investigate the properties of the novel mixed thermo-electro-mechanic formu-
lation numerically in a variety of examples. Therein, three different finite element families are
employed for space discretization. These are:

1. H1 cH0 d : Continuous trilinear hexahedral elements for φ, Φ, and θ. Discontinuous constant
hexahedral elements for D0, Σ, and Λ.

2. P2 cP1 d : Continuous triquadratic tetrahedral elements for φ, Φ, and θ. Discontinuous
trilinear tetrahedral elements for D0, Σ, and Λ.

3. H2 cH1 d : Continuous triquadratic serendipity-type hexahedral elements for φ, Φ, and θ.
Discontinuous trilinear hexahedral elements for D0, Σ, and Λ.

The nodal points of the different finite element mesh types are given in Fig. 1 for convenience.

B

C

A

H1 cH0 d

B

C

A

P2 cP1 d

B

C

A

H2 cH1 d

Figure 1: Nodal points of the different finite element families. The nodes of the continuous fields are represented
by bullets ◦, whereas the nodes of the discontinuous mixed fields are indicated by crosses ×.

We employ the enhanced Mooney-Rivlin material model proposed in Ex. 1 for the numerical
investigations. In that regard, the material parameters provided by Tab. 1 are used for all
subsequent examples.

Marlon Franke, Felix Zähringer, Moritz Hille, Rogelio Ortigosa, Peter Betsch, and Antonio J. Gil, 17.1.2023



7 Numerical examples 24

Mechanical parameters a 25000 Pa
b 50000 Pa
c 500000 Pa
d 250000 Pa
e 5209 Pa

Mass density (transient examples) ρ0 1000 kgm−3

Specific heat capacity κ 1500 JK−1m−3

Coupling coefficient β 2.233 × 10−4 K−1

Thermal conductivity k0 0.23 WK−1m−1

Reference temperature θR 293.15 K
Relative permittivity εr 4 -

Table 1: Material parameters employed for the numerical examples.

7.1 Patch test
The purpose of the widely used patch test is to verify that a finite element formulation is capable
of correctly reproducing homogeneous states of stress - even with distorted meshes. This is a
fundamental condition that any admissible finite element formulation has to fulfill. To show that
the novel mixed formulation passes this patch test requirement, we consider a cube-shaped body
B0 = [0, 1]3 m3, which has an initial temperature of θ0 = 293.15 K and is investigated with two
different finite element meshes (see Fig. 2). The initial coordinates of the inner nodes of the
distorted mesh can be found in [MH85]. We employ H2 cH1 d elements for both the regular and
the distorted mesh. For the sake of simplicity, equivalent results for the H1 cH0 d and P2 cP1 d

elements are not shown in Fig. 2-5.

B

A

C

B

A

C

Figure 2: The regular (left) and the distorted (right) mesh employed in the patch test.

The simulation is performed for a total time T = 1 s with a time step size ∆t = 0.1 s and a
tolerance of Newton’s method of eps = 1 × 10−6. During the simulation, the body is held on
three faces to prevent translational and rotational movements and is compressed displacement-
driven to half of its original height. These specifications can be expressed with respect to the
initial configuration by the mechanical Dirichlet boundary conditions

φ̄1(X1 = 0, X2, X3) = 0,
φ̄2(X1, X2 = 0, X3) = 0,
φ̄3(X1, X2, X3 = 0) = 0,

(98)
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and
φ̄3(X1, X2, X3 = 1 m) = 1 m − t

T
0.5 m. (99)

The compression causes the body to expand in the X1 and X2 directions and to heat up, which
is due to the chosen material model. Note that the patch test presented here is a quasi-static
example, since we neglect the transient effects for the mechanical and the electrical part, but
consider them for the thermal part. Thus, the proposed integrator is active and the discrete
gradients are in use. Furthermore, we choose ρ0 = 0. We subsequently investigate, whether
the formulation is able to reproduce a homogeneous state of stress as well as a homogeneous
temperature distribution and a homogeneous distribution of the electric potential, as it can be
expected for the patch test. We use von Mises stress σvM as stress measure, where the required
Cauchy stress tensor can be obtained by

σ = 2
J

FΛCFT. (100)

As Figs. 3, 4, and 5 show, the novel formulation satisfies the patch test requirement. More
precisely, a simulation with the given parameters leads to a homogeneous stress, temperature,
and electric potential distribution for both the regular and the distorted mesh.

A

A

A

A

A

A

Figure 3: Von Mises stress distribution σvM [Pa] resulting from the patch test for the regular and the distorted
mesh.

A

A

A

A

A

A

Figure 4: Temperature distribution θ [K] resulting from the patch test for the regular and the distorted mesh.
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A

A

A

A

A

A

Figure 5: Electric potential distribution Φ [V] resulting from the patch test for the regular and the distorted mesh.

7.2 Analytical convergence analysis
The idea of this example is to numerically verify the spatial order of all fields for the finite
element families H1cH0d, P2cP1d, and H2cH1d (cf. [Fra+19; Fra+22a; Poy+18]). For this ad-
hoc manufactured example all time effects are neglected, such that we have a thermo-electro-
elastostatic problem with stationary heat conduction. Accordingly, the proposed integrator is not
employed for this example.
We again consider a cube-shaped body B0 = [0, 1]3 m3. For the analytical convergence analysis
we assume solutions of the form

φa = (X1 + Γ1 X3
1 ) e1 + (X2 + Γ2 X3

2 ) e2 + (X3 + Γ3 X3
3 ) e3,

θa = θ̃ X3
2 + 293.15 K,

Φa = Φ̃ X3
1 ,

(101)

for the primary fields, where Γk = 0.01 k, k ∈ {1, 2, 3}, θ̃ = 10 K, and Φ̃ = 100 V. These
assumed solutions allow to compute the first Piola-Kirchhoff stress tensor, the Lagrangian electric
displacement vector, and the Piola heat flux vector6 analytically. Eventually, we compute the
body force, charge density, and heat source analytically via the strong form given by (42) as

B̄a = − Div Pa, ρ̄e,a
0 = Div Da

0, R̄a = Div Qa, (102)

where all time effects are neglected. The above analytically computed values are subsequently
used for the numerical simulations. In that regard, Dirichlet boundaries are imposed at the
faces of the body for all fields in agreement with the assumed analytical solutions (101). In
particular, considering Fig. 6, outer faces (patterned surfaces) of the body are imposed with
Dirichlet boundary conditions by φa, Φa, and θa, given by (101). The simulation is performed
for a total time T = 1 s with a time step size ∆t = 0.1 s and a tolerance of Newton’s method of
eps = 1 × 10−6. Snapshots of the final mesh with von Mises stress, electric potential distribution,
and absolute temperature field are depicted in Fig. 7 for P2cP1d and H2cH1d elements. Eventually,
the analytical solutions in (101) for all fields (•)a are compared to the numerically computed
solutions (•). For this purpose, the h-convergence rate is computed by employing the L2 norm of
the error e(•), given by

∥e(•)∥L2 = ∥(•) − (•)a∥L2

∥(•)a∥L2

, (103)

6 A detailed survey of the analytical computations is provided in Appx. B.
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where
∥(•)∥L2 =

[∫
B0

⟨(•), (•)⟩ dV
] 1

2
. (104)

To this end, the h-convergence results are depicted in Fig. 8. As expected, at least p+1 convergence
is observed for all fields for the considered elements.

a  b

c

u

phi

Figure 6: Dirichlet boundary conditions (left), initial P2cP1d (mid), and H2cH1d (right) meshes employed for the
analytical convergence analysis example.

0 0.5 1 1.5 2
·104

0 20 40 60 80 100 294 296 298 300 302

Figure 7: Von Mises stress σvM [Pa] (left), electric potential Φ [V] (mid), and absolute temperature θ [K] (right)
for P2cP1d (top), and H2cH1d (bottom) meshes, respectively.
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−0.9 −0.8 −0.7 −0.6−8
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)

−0.9 −0.8 −0.7 −0.6
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log10(h)
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log10(h)
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Φ
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Figure 8: Spatial convergence analysis for H1cH0d (left), P2cP1d (mid), and H2cH1d (right) elements for the
analytical convergence analysis example.

7.3 Rotating cross-shaped body
The objective of the first transient example is to illustrate the conservation properties as well as
the order of accuracy of the novel mixed formulation. For this purpose, we consider a cross-shaped
body, whose geometry and finite element mesh is given in Fig. 9. The finite element mesh consists
of a total of 104 H2 cH1 d elements. We further specify electrical Dirichlet boundary conditions
of the form

Φ̄(X1, X2, X3 = −0.5 m, t) = f(t),
Φ̄(X1, X2, X3 = 0 m, t) = 0,

(105)

where
f(t) =

{
sin

(
πt1

s

)
for t ≤ 0.5 s

1 for t > 0.5 s
[MV]. (106)

Apart from that, no other Dirichlet boundary conditions are imposed. However, due to a pre-
scribed initial velocity

v0 = ω × X, ω = [0, 0, 4]T s−1, X = [X1, X2, X3]T, (107)

the body rotates around the X3-axis during simulation. The system is simulated for a total time
T = 10 s with a time step size ∆t = 0.05 s. Furthermore, we set the tolerance of Newton’s method
to eps = 1 × 10−3 and the initial temperature of the body to θ0 = 293.15 K.
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Figure 9: Geometry and finite element mesh of the cross-shaped body

A simulation with the given parameters yields the total angular momentum evolution depicted
in Fig. 10. Looking at the differences of the total angular momentum from one time step to the
next, it is evident that the novel mixed framework is consistent with respect to the total angular
momentum for both the midpoint rule (MP) and the energy-momentum scheme (EM). As Fig. 11
shows, this does not apply to the total energy. While the energy is conserved for t > 0.5 s (dashed
line) when using the energy-momentum scheme, using the midpoint rule results in an energy blow
up.
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Figure 10: Left: Evolution of the total angular momentum resulting from the rotating cross-shaped body example
over the course of the simulation computed using both the energy-momentum scheme (EM) and the
midpoint rule (MP). Right: Incremental differences of the total angular momentum from one time step
to the next.
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Figure 11: Left: Evolution of the total energy resulting from the rotating cross-shaped body example over the
course of the simulation computed using both the energy-momentum scheme (EM) and the midpoint
rule (MP). Right: Incremental differences of the total energy from one time step to the next.

Next, we investigate the order of accuracy of the energy-momentum scheme. For this purpose,
we compute the L2 norm of the error, which accumulates in the time interval 0.5 s ≤ t ≤ 0.6 s,
for different time step sizes and for all primary variables (φ, θ, Φ). The L2 norm of the error is
computed according to (103). However, for this example, we replace the analytical solution with
a reference solution that is computed with a very small time step size (∆t = 2.5 × 10−5 s) due
to the lack of an analytical solution. As Fig. 12 shows, the energy-momentum scheme inherits,
as expected, the second-order accuracy of the midpoint rule (slopes of the regression lines are
(φ, Φ, θ) = (2.0449, 2.0127, 2.0242)).
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Figure 12: L2 norm of the error resulting from the rotating cross-shaped body example, plotted for different time
step sizes and all primary variables.

7.4 Microfluidic pumping device
The purpose of the final example is to evaluate the proposed energy-momentum scheme within a
realistic long-term application.
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A sophisticated technical realization of temperature sensitive DEs are microfluidic pumping de-
vices. Such microfluidic pumping devices are employed, for instance, as medical implants, e.g.,
for micro injection of drugs (see [MHS18]). The microfluidic pumping device to be considered
is closely related to the one presented in [MHS18; MPS17] and likewise does not consider fluid-
structure interaction. The full shape of the cylindrical pumping device with H2cH1d mesh is
shown in Fig. 13.

Figure 13: Mesh of the microfluidic pumping device.

Radii and dimensions of main body and outlet nozzle and boundary conditions of the pump-
ing device are provided by Fig. 14. According to the symmetry only one eighth of the device
with corresponding symmetry boundary conditions is considered during the simulation (see also
Fig. 14).
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Figure 14: Top view (left) and side view (right) including mechanical (symmetry lines and hatching), electrical
(Φ̄1−4), and thermal (Q̄) boundary conditions employed for microfluidic pumping device example.

For the pumping purpose two elastomer layers are sandwiched between two compliant electrodes
at top and bottom walls, respectively (see Fig. 14, right). In particular, the pumping motion is
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controlled by a Dirichlet boundary condition of the electric potential field via

Φ̄1 = 0 V, Φ̄2 = Φ̄0



sin(π
2

t
t1
k
) ∀ t ∈ [t0

k, t1
k)

1 ∀ t ∈ [t1
k, t2

k)
cos(π

2
t−t2

k

t3
k

−t2
k
) ∀ t ∈ [t2

k, t3
k)

0 ∀ t ∈ [t3
k, t4

k)

, Φ̄3 = −Φ̄2(t + 16 s), (108)

where Φ̄0 = 0.75 GV and t0
k = 32(k − 1) s, t1

k = t0
k + 4 s, t2

k = t1
k + 4 s, t3

k = t2
k + 4 s, t4

k = t0
k + 32 s,

k ∈ Z>0 = 1, 2, ..., ncyc (see also Fig. 15). Furthermore, the heating of the pumped fluid is
idealized by a thermal Neumann boundary condition imposed at all internal walls and controlled
by

Q̄ = 0.8


t for t ≤ 2 s
4 − t for 2 s < t ≤ 4 s
0 for t > 4 s

[
W
m2

]
. (109)

The simulation is performed with a total simulation time of T = 100 s, a time step size of
∆t = 0.1 s, and a tolerance of Newton’s method of eps = 1 × 10−6. Accordingly, more than three
pumping cycles are performed.
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Figure 15: Heating of the pump with Q̄ (left) and electric potential fields Φ̄2 and Φ̄3 for the pumping process
(right) employed for microfluidic pumping device example.

A mesh for one eigth of the device is comprised of 320 H2cH1d elements with a total of 9290
displacement, electric potential, and absolute temperature unknowns (size of the system of linear
equations to be solved after static condensation) is employed.
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Figure 16: Total energy of the microfluidic pumping device (left) and energy difference (right) for the first pumping
cycle, see also Fig. 15 (right).

Snapshots of the motion with electric potential, absolute temperature, and von Mises stress
results are shown in Fig. 17 for half of the pumping device. Due to the chosen setting, large
deformations, temperature, and electric potential evolutions can be observed. After the heating
phase and during constant phases of the applied potential fields (see Fig. 15) the total energy
is a constant of motion. To this end the total energy and the energy difference are shown in
Fig. 16. As can be observed the energy is perfectly reproduced by the proposed EM integration
and is numerically stable during the long-term simulation with periodic loading. Furthermore,
the energy difference is bounded by the chosen tolerance of Newton’s method.
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·108
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Figure 17: Snapshots of the microfluidic pumping device with electric potential field Φ [V] (left), the absolute
temperature field θ [K] (mid), and von Mises stress σvM [Pa] (right) at t = 0 s (top), t = 6 s (mid), and
t = 22 s (bottom).

8 Concluding remarks

In this paper we have presented a novel framework for coupled thermo-electro-elastodynamics.
Building upon previous works in the field of elastodynamics [BJH18], electro-elastodynamics
[Fra+19; Ort+18], and recently upon thermo-electro-elastodynamics [Fra+22a], we have proposed
a new tailor-made multi-field, mixed finite element formulation for the multiphysics context con-
sidered. It is worth mentioning that the approach we have chosen to address the problem is not
limited to thermo-electro-elastodynamics, but can be applied to design mixed formulations for
non-potential (multi-field) systems in general.
The starting point is a variational mixed formulation for elastostatics that is subsequently con-
verted to its associated mixed strong form. In a second step, the mixed strong form is then ex-
tended to a mixed coupled strong form by supplementing the equations with the desired physics
in form of additional initial boundary value problems and a suitable coupling within, e.g., the en-
ergy density function. These two steps can be applied for a variety of different systems, including
those with non-potential contributions.
Our present work is based on a mixed elastostatic formulation, which is specifically designed for the
case of polyconvex strain energy functions (cf. [BJH18]). This formulation is particularly elegant
due to the cascading introduction of independent strain fields and the use of a rather unknown
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algebraic operation, namely the tensor cross product. We were able to extend the benefits of
this formulation to the case of thermo-electro-elastodynamics by following the aforementioned
path. In this context, we have incorporated a state of the art polyconvexity-based thermo-electro-
mechanical constitutive model that characterizes the behavior of dielectric elastomers. This model
embeds a full interplay between the three physics involved, namely, thermo-electro-mechanics.
This is in contrast with a more simplified constitutive model considered in our previous publication
[Fra+22a], where the thermal field was coupled exclusively with volumetric deformations.
Furthermore, we have shown how the advantages of energy and momentum consistent time
integration schemes can be transferred to multiphysics problems, in particular thermo-electro-
elastodynamics.
Finally, we have included a series of numerical examples to investigate the proposed framework.
More precisely, we have evaluated the time and space convergence properties as well as the long
term stability of the formulation. In doing so, we were able to emphasize the advantageous
characteristics of our formulation.

Software

The source code used for the finite element computations is implemented in Matlab under MIT
license and is available at https://github.com/kit-ifm/moofeKIT. Version 1.00 of the code,
used in this paper, is archived at [Fra+22b].
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A Static condensation

Analogous to [BJH18], we suggest using a static condensation procedure to obtain an efficient
implementation of our framework. To achieve this, we reconsider (97)1,2 as

Ra,e
v = Mab,e

( 1
∆t

(
φbn+1 − φbn

)
− vb

n+ 1
2

)
,

Ra,e
φ =

( 1
∆t

Mab,e
(
vbn+1 − vbn

))
+
∫

Be
0

BaT

n+ 1
2

(
2ΛC

n+1

)V
dV −

∫
Be

0

NaB̄n+ 1
2

dV ,
(110)

where a, b = 1, ..., nC
node and we introduce the mass matrix Mab,e ∈ R3×3 with7

Mab,e =
∫

Be
0

ρ0 Na N b dV I. (111)

In order to reduce the number of variables within the static condenstation procedure, we first
consider (110)1, which can be transformed into

vbn+1 = 2
∆t

(φbn+1 − φbn
) − vbn . (112)

Inserting the above equation into (110)2 yields

R̃
a,e

φ = 2
∆t

Mab,e
( 1

∆t

(
φbn+1 − φbn

)
− vbn

)
+
∫

Be
0

BaT

n+ 1
2

(
2ΛC

n+1

)V
dV −

∫
Be

0

NaB̄n+ 1
2

dV , (113)

which replaces (97)1 and (97)2, such that we eventually obtain the vector of nodal residuals

Re =
[

Re
C̃

Re
D

]
, Re

C̃ =

R̃
e

φ

Re
θ

Re
Φ

 , Re
D =



Re
D0

Re
C

Re
G

Re
C

Re
ΛC

Re
ΛG

Re
ΛC


, (114)

where C̃ = {φ, θ, Φ} and D = {D0, C, G, C, ΛC, ΛG, ΛC}.
Linearization within the framework of Newton’s method eventually results in

DR ∆qn+1 = KT ∆qn+1, (115)

where R = Ane
e=1 Re denotes the assembled residual vector, q = [qT

C̃
, qT

D]T contains all degrees of
freedom, and KT = Ane

e=1 Ke
T is the assembled tangent matrix with the element contributions

Ke
T =

[
Ke

C̃C̃ Ke
C̃D

Ke
DC̃ Ke

DD

]
. (116)

For the particular choice of the material model in Ex. 1, we obtain

Ke
C̃C̃ =

Ke
φφ 0 0
0 Ke

θθ 0
0 0 0

 , (117)

7 Note that summation convention applies to pairs of repeated indices in (110).
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Ke
C̃D =

 0 0 0 0 Ke
φΛC 0 0

Ke
θD0 Ke

θC Ke
θG Ke

θC 0 0 0
Ke

ΦD0 0 0 0 0 0 0

 , (118)

Ke
DC̃ =



0 Ke
D0θ Ke

D0Φ
0 Ke

Cθ 0
0 Ke

Gθ 0
0 Ke

Cθ 0
Ke

ΛCφ 0 0
0 0 0
0 0 0


, (119)

and

Ke
DD =



Ke
D0D0 Ke

D0C 0 Ke
D0C 0 0 0

Ke
CD0 Ke

CC Ke
CG Ke

CC Ke
CΛC Ke

CΛG Ke
D0ΛC

0 Ke
GC 0 0 0 Ke

GΛG Ke
GΛC

Ke
CD0 Ke

CC 0 Ke
CC 0 0 Ke

CΛC

0 Ke
ΛCC 0 0 0 0 0

0 Ke
ΛGC Ke

ΛGG 0 0 0 0
0 Ke

ΛCC Ke
ΛCG Ke

ΛCC 0 0 0


. (120)

For the sake of simplicity, the specific contributions of Ke
φφ, Ke

θθ, etc. are not provided here. In
particular, Ke

(•)1(•)2 denotes linearization of Re
(•)1 w.r.t. (•)2 where (•)1, (•)2 ∈ {C̃, D}.

For the static condenstation, we first consider the full system of linear equations[
Ke

C̃C̃ Ke
C̃D

Ke
DC̃ Ke

DD

] [∆qe˜̃C
∆qe

D

]
= −

[
Re

C̃
Re

D

]
, (121)

for the unknowns ∆qe
C and ∆qe

D. Solving the full system of linear equations after assembling the
element contributions in (121) is very demanding, but can be reduced considerably by employing
static condensation. On element level, from (121)2 we obtain

∆qe
D = −

(
(Ke

DD)−1 Re
D + (Ke

DD)−1 Ke
DC̃ ∆qe

C̃

)
. (122)

Afterwards, we eliminate ∆qe
D by inserting (122) into (121)1, which yields(

Ke
C̃C̃ − Ke

C̃D (Ke
DD)−1 Ke

DC̃

)
︸ ︷︷ ︸

K̂
e

∆qe
C̃ = −

(
Re

C̃ − Ke
C̃D (Ke

DD)−1 Re
D

)
︸ ︷︷ ︸

R̂
e

. (123)

This static condensation procedure eliminates the number of unknowns for the system of linear
equations to the minimal set ∆qe

C̃
with the reduced residual vector R̂

e and the associated tangent
matrix K̂

e. Accordingly, the computational effort to obtain the solution is significantly reduced.
After computation of ∆qe

C̃
, we are able to compute ∆qe

D via relation (122).

B Analytical convergence analysis example: analytical computations

The assumed analytical solutions in (101) build the starting point of the analytical computations,
that we need to provide for the numerical example in Sect. 7.2. In the following, we provide the
related computations in order to compute the source terms which are neccessary to plug in (102):
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• With (1), (16), (17), and (18) we are able to compute the kinematic relations

Fa =∇Xφa(X)
=(1 + 2 Γ1 X2

1 ) e1 ⊗ e1 + (1 + 2 Γ2 X2
2 ) e2 ⊗ e2 + (1 + 2 Γ3 X2

3 ) e3 ⊗ e3, (124)
Ca =(Fa)T Fa, (125)

Ga =1
2Ca Ca, (126)

Ca =1
3 Ca : Ga. (127)

• With (6), (10) we compute the gradients of the electric potential and the thermal field

Ea
0 = −∇XΦa(X), γa = ∇Xθa(X). (128)

• With (21) and E0 = ∂D0F we are able to compute the Lagrangian electric displacement
vector

Da
0 = εrε0

√
Ca

f a
θ

(Ca)−1 Ea
0, f a

θ = θa

θR
. (129)

• With (21), the derivatives of the energy density function are given by

∂CFa =f a
θ

(
a I + 1

2 εrε0
√

Ca
Da

0 ⊗ Da
0

)
, (130)

∂GFa =f a
θ b I, (131)

∂CFa = − 3 β e (θa − θR)

+ f a
θ

(
c

2

(
1 − 1√

Ca

)
− d

2 Ca − 1
4 εrε0 (Ca)3/2 Da

0 · (CaDa
0)
)

. (132)

• With (42)8,7,6, we eventually compute the Lagrange multipliers

ΛCa = ∂CFa, (133)

ΛGa = ∂GFa + 1
3 ∂CFa Ca, (134)

ΛCa = ∂CFa + ΛGa Ca + 1
3 ΛCa Ga. (135)

With the above equations, with (42)2, and (27), we are able to compute the desired first and
second Piola-Kirchhoff stress tensor, and the Piola heat flux vector

Pa = Fa Sa, Sa = 2 ΛCa, Qa = k0

Ca Ga γa. (136)
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