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Abstract

In this paper, we study the problem of shape-programming of incompress-

ible hyperelastic shells through differential growth. The aim of the current

work is to determine one of the possible growth tensors (or growth functions)

that can produce the deformation of a shell to the desired shape. First, a

consistent finite-strain shell theory is introduced. The shell equation sys-

tem is established from the 3D governing system through a series expansion

and truncation approach. Based on the shell theory, the problem of shape-

programming is studied under the stress-free assumption. For a special case

in which the parametric coordinate curves generate a net of curvature lines on

the target surface, the sufficient condition to ensure the vanishing of the stress
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components is analyzed, from which the explicit expression of the growth

tensor can be derived. In the general case, we conduct the variable changes

and derive the total growth tensor by considering a two-step deformation

of the shell. With these obtained results, a general theoretical scheme for

shape-programming of thin hyperelastic shells through differential growth

is proposed. To demonstrate the feasibility and efficiency of the proposed

scheme, several typical examples are studied. The derived growth tensors in

these examples have also been implemented in the numerical simulations to

verify their correctness and accuracy. The simulation results show that the

target shapes of the shell samples can be recovered completely. The scheme

for shape-programming proposed in the current work is helpful in designing

and manufacturing intelligent soft devices.

Keywords: Hyperelastic shell, Differential growth, Shape-programming,

Theoretical scheme, Numerical simulations

1. Introduction

Growth of soft biological tissues and swelling (or expansion) of soft poly-

meric gels are commonly observed in nature (Ambrosi et al., 2011; Liu et al.,

2015). Due to the inhomogeneity or incompatibility of the growth fields, soft

material samples usually exhibit diverse morphological changes and surface

pattern evolutions during the growing processes, which is referred to as the

‘differential growth’ and has attracted extensive research interest in recent

years (Goriely and Ben Amar, 2005; Li et al., 2012; Kempaiah and Nie, 2014;

Huang et al., 2018). To fulfill the requirements of engineering applications,

it is usually desired that the configurations of soft material samples are con-
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trollable during the growing processes, such that certain kinds of functions

are realized. This goal can be achieved through sophisticated composition

or architectural design in the soft material samples. The technique is known

as ‘shape-programming’ (Liu et al., 2016; van Manen et al., 2018), which

has been utilized for manufacturing a variety of intelligent soft devices, e.g.,

biomimetic 4D printing of flowers (Gladman et al., 2016), pressure-actuated

deforming plate (Siéfert et al., 2019), pasta with transient morphing effect

(Tao et al., 2021), and polymorphic metal-elastomer composite (Hwang et al.,

2022).

From the viewpoint of solid mechanics, soft materials can be treated as

certain kinds of hyperelastic materials. The growth field in a soft material

sample is usually modeled by incorporating a growth tensor. Due to the

residual stresses triggered by the incompatibility of the growth field, as well

as the external loads and boundary restrictions, the sample also undergoes

elastic deformations. Thus, the total deformation gradient tensor should

be decomposed into an elastic strain tensor and a growth tensor (Kondaurov

and Nikitin, 1987; Rodriguez et al., 1994; Ben Amar and Goriely, 2005). The

elastic incompressible constraint should also be adopted since the elastic de-

formations of soft materials are typically isochoric (Wex et al., 2015; Kadapa

et al., 2021). Based on these constitutive and kinematic assumptions, the

growth behaviors of soft material samples can be studied by solving the sys-

tem of mechanical field equations. Because of the inherent nonlinearities in

the large growth-induced deformations, mechanical instabilities can also be

triggered in the soft material samples (Ben Amar and Goriely, 2005; Li et al.,

2011; Goriely, 2017; Pezzulla et al., 2018; Xu et al., 2020).
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Despite the numerous studies on the growth behaviors of soft material

samples, the majority of the modeling works pay attention to the direct

problem, i.e., determining the deformations of soft material samples when

the growth fields are specified. However, in order to utilize the shape-

programming technique for engineering applications, one also needs to study

the inverse problem. That is, how to determine the growth fields in the sam-

ples such that the current configurations induced by differential growth can

achieve certain target shapes? This inverse problem has also been studied in

some previous works (cf. Dias et al., 2011; Jones and Mahadevan, 2015; van

Rees et al., 2017; Acharya, 2019; Wang et al., 2019a; Nojoomi et al., 2021;

Li et al., 2022; Wang et al., 2022). In these works, the initial configurations

of soft material samples usually have the thin plate form. Although the shell

form is more common in nature and engineering fields, it is seldom chosen

as the initial configuration of the soft material samples due to the difficulties

associated with modelling shell structures. Besides that, the growth fields

(or growth functions) in the samples are usually determined through the nu-

merical and optimization approach. From the obtained numerical results, it

is not convenient to find out the relations between the growth functions and

the target geometrical shapes of the samples. To our knowledge, the explicit

analytical results for shape-programming of soft material samples are still

rare in the literature. Furthermore, the growth fields obtained in some works

are represented by the tensors with general/complicated forms, which are

difficult to be realized in practical conditions.

To achieve the goal of shape-programming, a prerequisite is to predict

the relations between the growth fields and the morphologies of soft mate-
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rial samples. It is thus of significance to establish an efficient and accurate

mathematical model by taking configurations of samples, material properties,

boundary conditions and other factors into account. In terms of shell theo-

ries for growth deformations, the Kirchhoff shell theory has been adopted to

describe mechanical behavior in growing soft membranes (Vetter et al., 2013;

Rausch and Kuhl, 2014), which relies on ad hoc assumptions of the stress

components and deformation gradient. Another shell theory is proposed

based on the non-Euclidean geometry, where the deformation of samples is

determined by the intrinsic geometric properties attached to surfaces, such

as the first and second fundamental forms, and the applied growth fields

(Souhayl Sadik et al., 2016; Pezzulla et al., 2018). In Song and Dai (2016),

a consistent finite-strain shell theory has been proposed within the frame-

work of nonlinear elasticity, where the shell equation is derived from the 3D

formulation through a series-expansion and truncation approach. This ap-

proach has been extended in Li et al. (2019) to derive a finite-strain shell

theory for incompressible hyperelastic materials and in Yu et al. (2020) to

establish a consistent dynamic finite-strain shell theory. To apply this theory

for growth-induced deformations, Yu et al. (2022) incorporated the growth

effect through the decomposition of the deformation gradient and derived the

shell equation system for soft shell samples.

In this paper, we aim to propose a general theoretical scheme for shape-

programming of incompressible hyperelastic shells through differential growth.

Following the shell theory proposed in Yu et al. (2022), the shell equation

system is established from the 3D governing system, where a series expan-

sion and truncation approach is adopted. To fulfill the purpose of shape-
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programming, the shell equation system is tackled by assuming that all the

stress components vanish. Under this stress-free assumption, we first consider

a special case in which the parametric coordinate curves generate a net of

curvature lines on the target surface. By analyzing the sufficient condition to

ensure the vanishing of the stress components, the explicit expression of the

growth tensor is derived (i.e., the inverse problem is solved), which depends

on the intrinsic geometric properties of the target surface. In the general

case that the parametric coordinate curves cannot generate a net of curva-

ture lines on the target surface, we conduct the variable changes and derive

the total growth tensor by considering a two-step deformation of the shell

sample. Based on these results, a theoretical scheme for shape-programming

of hyperelastic shells is formulated. The feasibility and efficiency of this

scheme are demonstrated by studying several typical examples.

Compared with the previous works on shape-programming of soft material

samples, our current work has the following advantages:

• We solve the problem of shape-programming for thin hyperelastic shells,

i.e., the initial configurations of the samples have general 3D shell forms

and they can change to another 3D shell forms through differential

growth.

• We derive the explicit analytical formulas for shape-programming of

thin hyperelastic shells, from which the relations between the growth

functions and the geometrical properties of the target configurations of

the samples can be seen clearly. Besides that, it can be proved that

these formulas are satisfied for the shells made of different kinds of

hyperelastic materials.
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• The obtained growth tensors have simple forms (cf. the diagonal forms

of G in Eq. (45) and G1 in Eq. (57)), which are easier to be realized

in practical conditions.

This paper is organized as follows. In section 2, the finite-strain shell

theory for modeling the growth behaviors of thin hyperelastic shells is intro-

duced. In section 3, the problem of shape programming is solved and the

theoretical scheme is proposed. In section 4, some typical examples are stud-

ied to show the efficiency of the theoretical scheme. Finally, some conclusions

are drawn. In the following notations, the Greek letters (α, β, γ...) run from

1 to 2, and the Latin letters (i, j, k...) run from 1 to 3. The repeated summa-

tion convention is employed and a comma preceding indices (·), represents

the differentiation.

2. The finite-strain shell theory

In this section, we first formulate the 3D governing system for modeling

the growth behavior of a thin hyperelastic shell. Then, through a series-

expansion and truncation approach, the finite-strain shell equation system of

growth will be established.

2.1. Kinematics and the 3D governing system

We consider a thin homogeneous hyperelastic shell locating in the three-

dimensional (3D) Euclidean spaceR3. Within an orthonormal frame {O; e1, e2, e3},

the reference configuration of the shell occupies the region Kr = Sr × [0, 2h],

where the thickness parameter h is much smaller than the dimensions of
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the base (bottom) surface Sr and its local radius of curvature. The posi-

tion vector of a material point in the reference configuration Kr is denoted

by X = X iei (cf. Fig. 1a). The geometric description of a shell has been

systematically reported in the literature (cf. Ciarlet, 2005; Steigmann, 2012;

Song and Dai, 2016), which is simply introduced below.

First, a curvilinear coordinate system {θα}α=1,2 is utilized to parametrize

the base surface Sr of the shell in the reference configuration, which yields

the parametric equation as

s(θα) =
{
X1(θα), X2(θα), X3(θα)

}
, (θα)α=1,2 ∈ Ωr. (1)

This parametric equation represents a continuous map from the region Ωr ⊂

R2 to the surface Sr ⊂ R3. At a generic point on Sr, the tangent vectors

along the coordinate curves are given by gα = s,α = ∂s/∂θα, which span the

tangent plane to the surface Sr at that point. The two vectors {gα}α=1,2

are also referred to as the covariant basis of the tangent plane. Another two

vectors {gα}α=1,2 on the tangent plane can be determined unambiguously

through the relations gα · gβ = δβα, which form the contravariant basis of

the tangent plane. Then, the unit normal vector of the surface Sr should be

defined by n = (g1 ∧ g2)/ |g1 ∧ g2| (cf. Fig. 1b). By denoting g3 = g3 = n,

{gi}i=1,2,3 and {gi}i=1,2,3 constitute two sets of right-handed orthogonal bases

on the base surface Sr. The first and second fundamental forms of the surface

Sr can be written into

Ir = gαβdθ
αdθβ, IIr = bαβdθ

αdθβ, (2)

where gαβ = gα · gβ and bαβ = s,αβ · n are the fundamental quantities.

8



Conventionally, the fundamental quantities are also denoted by

Er = g11, Fr = g12 = g21, Gr = g22,

Lr = b11, Mr = b12 = b21, Nr = b22.
(3)
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Figure 1: Position vector in the reference configuration Kr: (a) reference configuration

of the shell and decomposition of the position vector X; (b) the curvilinear coordinate

system and the local covariant basis on the base surface Sr of the shell.

As shown in Fig.1a, the position vector X of a material point in the

reference configuration Kr of the shell can be decomposed into

X = s(θα) + Zn(θα), 0 ≤ Z ≤ 2h, (4)

where Z is the coordinate of the point along the normal direction n. Accord-

ingly, the differential of X yields that

dX = ds + Zdn + ndZ = gαdθ
α + Zn,αdθ

α + ndZ. (5)

From the Weingarten equation(Chen, 2017), we have

dn = n,αdθ
α = (n,α ⊗ gα) gβdθ

β = −Kds, (6)

where K = −n,α ⊗ gα is the curvature tensor. The mean and Gaussian

curvatures of the surface Sr are given by

H =
1

2
tr (K) , K = Det (K) . (7)

9



By substituting (6) into (5), we obtain

dX = Uds + ndZ = ĝαdθ
α + ndZ, (8)

where U = gα⊗gα−ZK and ĝα = Ugα. We further denote ĝα = U−Tgα, then

{ĝα}α=1,2 and {ĝα}α=1,2 form the covariant and contravariant base vectors at

an arbitrary point in the shell, which are also orthogonal to n. Notice that

the thickness of the shell is much smaller than the radius of curvature of Sr;

thus, U should be an invertible tensor. From (8), the area element on the

base surface and the volume element in the shell can be written into

dA = |g1 ∧ g2| dθ1dθ2 =
√
g11g22 − g212 dθ1dθ2,

dV = Det(U)dAdZ =
(
1− 2HZ +KZ2

)
dAdZ.

(9)

Regarding area element on the lateral surface da, the local differential follows

(8) that

Nda = (Uτ )× n dsdZ, (10)

where N is the outward normal unit vector of the lateral surface, and τ is

the unit tangent vector along the edge curve ∂Sr of the base surface, and s is

the arc-length variable on the edge curve ∂Sr of the base surface. The norm

of vector (Uτ )× n is denoted by
√
gτ such that da =

√
gτdsdZ.

Due to the growth effect and the external loads, the configuration of the

shell will deform from Kr to the current configuration Kt in R3. Within the

orthonormal frame {O; e1, e2, e3}, the position vector of a material point in

Kt is denoted by x(θα, Z) = xi(θα, Z)ei. The deformation gradient tensor F

can then be calculated through

F = x,α ⊗ ĝα +
∂x

∂Z
⊗ n = (∇x)U−1 +

∂x

∂Z
⊗ n, (11)
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where ∇ is the in-plane 2-D gradient on the base surface Sr (∇x = x,α⊗gα).

Following the basic assumption of growth mechanics (Kondaurov and

Nikitin, 1987; Rodriguez et al., 1994; Ben Amar and Goriely, 2005; Dort-

divanlioglu et al., 2017; Mehta et al., 2021; Groh, 2022), the deformation

gradient tensor F is decomposed into

F = AG, (12)

where A is the elastic strain tensor and G is the growth tensor. It is known

that the rate of growth is relatively slow compared with the elastic response

of the material, thus the distribution of the growth tensor G in the shell is

assumed to be given and does not change.

As the elastic deformations of soft materials (e.g., soft biological tissues,

polymeric gels) are generally isochoric, the following constraint equation

should be adopted

R(F,G) = JGR0(A) = JG (Det(A)− 1) = 0, (13)

where JG = Det(G). Furthermore, we suppose the material has an elastic

strain-energy function

φ(F,G) = JGφ0(A) = JGφ0(FG−1). (14)

Then, the nominal stress tensor S can be calculated through the constitutive

equation

S =
∂φ

∂F
− p∂R

∂F
= JGG−1

(
∂φ0(A)

∂A
− p∂R0(A)

∂A

)
, (15)

where p(θα, Z) is the Lagrange multiplier associated with the constraint (13).
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During the growing process, the hyperelastic shell satisfies the following

mechanical equilibrium equation

Div S = (S,α)T ĝα +

(
∂S
∂Z

)T
n = 0, in Sr × [0, 2h]. (16)

We suppose that the bottom and top surfaces of the shell are subjected to

the applied traction q±, which yields the boundary conditions

STn|Z=0 = −q−, STn|Z=2h = q+, on Sr. (17)

On the lateral surface ∂Sr × [0, 2h] of the shell, we suppose the applied

traction is q(s, Z), where s is the arc-length variable of boundary curve ∂Sr.

So, we also have the boundary condition

STN = q(s, Z) on ∂Sr × [0, 2h]. (18)

Eqs. (13) and (16) together with the boundary conditions (17) and (18)

constitute the 3D governing system of the shell model, which contains the

unknowns {x, p}.

2.2. Shell equation system

Starting from the 3D governing system of the shell model, the shell equa-

tion system can be derived through a series-expansion and a truncation ap-

proach. This approach has been proposed in Dai and Song (2014); Song and

Dai (2016); Wang et al. (2016); Li et al. (2019); Yu et al. (2020) for devel-

oping the consistent finite-strain plate and shell theories without the growth

effect. In Wang et al. (2018); Yu et al. (2022), the finite-strain plate and shell

theories of growth have also been established through this approach. For the

sake of completeness of the current paper, the key steps of this approach to
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derive the shell equation system are introduced below (see Yu et al. (2022)

for a comprehensive introduction). It should be noted that the derived shell

equation system can attain the accuracy of O(h2). However, to fulfill the

requirements of shape-programming in the following sections, we only need

to present the shell equation to the asymptotic order of O(h).

To eliminate the thickness variable Z from the 3D governing system, we

first conduct the series expansions of the unknowns as follows

x(θα, Z) =
2∑

n=0

x(n)

n!
Zn +O

(
Z3
)
, p(θα, Z) =

2∑
n=0

p(n)

n!
Zn +O

(
Z3
)
,

(19)

where (·)(n) = ∂n(·)/ ∂Zn|Z=0. According to (19), the deformation gradient

tensor F, the elastic strain tensor A and the nominal stress tensor S can also

be expanded as

F = F(0) + ZF(1) +O(Z2),

A = A(0) + ZA(1) +O(Z2),

S = S(0) + ZS(1) +O(Z2).

(20)

Furthermore, we denote

G = G(0) + ZG(1) +O(Z2),

G−1 = Ḡ(0) + ZḠ(1) +O(Z2),

JGG−1 = Ĝ(0) + ZĜ(1) +O(Z2).

(21)

Once the growth tensor G is given, Ḡ(n) and Ĝ(n) (n = 0, 1) can be calculated

directly.

By using the kinematic relations (11) and (12), the concrete expressions

of F(n) and A(n) (n = 0, 1) in terms of x(n) (n = 0, 1, 2) can be derived.
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Further from the constitutive equation (15), we obtain

S(0) = Ĝ(0)
(
A(0) − p(0)R(0)

)
,

S(1) = Ĝ(0)
(
A(1) : A(1) − p(0)R(1) : A(1) − p(1)R(0)

)
+ Ĝ(1)

(
A(0) − p(0)R(0)

)
,

(22)

where A(n) = ∂n+1φ0/∂An+1|A=A(0) and R(n) = ∂n+1R0/∂An+1|A=A(0) (n =

0, 1).

We substitute (19) and (20) into the constraint equation (13) and the

mechanical equilibrium equation (16). The coefficients of Zn (n = 0, 1) in

these equations should be zero, which yield that

Det
(
A(0)

)
− 1 = 0, R(0) : A(1) = 0, (23)

and

∇ · S(0) +
(
S(1)
)T

n = 0,

∇ · S(1) +
(
S(2)
)T

n + KTgα · S(0)
,α = 0.

(24)

Further substituting (19) and (20) into the boundary conditions (17), another

two equations can be obtained(
S(0)
)T

n = −q−,(
S(0) + 2hS(1) + 2h2S(2)

)T
n = q+.

(25)

Eqs. (23)2 and (24)1 constitute a linear system for x(2) and p(1). By solving

these two equations, we obtain (Yu et al., 2022)

x(2) = D−1
(
p(1)y − f

)
, p(1) =

y · D−1f − T
y · D−1y

, (26)
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where

(D)ij =Det(G(0))
(
A(1) − p(0)R(1)

)
kilj

((
Ḡ(0)

)T
n
)
k

((
Ḡ(0)

)T
n
)
l
,

y =R(0)T Ĝ(0)T n,

f =
[ (
A(1) − p(0)R(1)

)
:
[
F(0)Ḡ(1) +

(
x(1) ⊗∇+ x(0) ⊗K

)
Ḡ(0)

] ]T
Ĝ(0)T n

+
(
A(0) − p(0)R(0)

)T Ĝ(1)T n +∇ · S(0),

T =Det(G(0))R(0) :
[(

x(1) ⊗∇+ x(0) ⊗∇K
)
Ḡ(0) + F(0)Ḡ(1)

]
.

The expressions of x(1) and p(0) in terms of x(0) can be obtained by solving

the equations (23)1 and (25)1. However, as these two equations are non-

linear, the explicit expressions of x(1) and p(0) can only be presented when

a concrete form of the strain-energy function φ0(A) is given. If the shell is

made of the incompressible neo-Hookean material, the explicit expressions of

x(1) and p(0), as well as the expressions of x(2) and p(1), can be found in Eqs.

(A.3) and (A.4) of Appendix A.

To incorporate the effect of curvature of the shell, the factor Det(U)|Z=2h =

1 − 4hH + 4h2K is multiplied onto (25)2 (Song and Dai, 2016). In the re-

mainder of this paper, we assume H ≤ O(1) and K ≤ O(1), to ensure

1 > |4hH| > |4h2K| such that the terms consisting h2H and h2K can be

dropped reasonably when the required order of equation is set as O(h). By

subtracting (25)1 from (25)2 and dividing it by 2h, the following equation is

obtained (where the terms of order higher than O(h) have been dropped)

(1− 4hH)
(
S(1)
)T

n + h
(
S(2)
)T

n =
(1− 4hH) q+ + q−

2h
, on Sr. (27)

By virtue of the relations given in (24), (27) can be rewritten into 2D vector
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shell equation

(1− 4hH)∇·S(0)+h
(
∇ · S(1) + KTgα · S(0)

,α

)
= −(1− 4hH) q+ + q−

2h
, on Sr.

(28)

which contains the unknown x(0)(θα). In fact, x(0)(θα) provides the para-

metric equation for the base surface S in the current configuration of the

shell.

To establish a complete shell equation system, the boundary conditions

on the edge ∂Sr should also be proposed. Based on the boundary condition

(18) in the 3D governing system, the following edge boundary conditions can

be proposed

(
S(0) + hS(1)

)T
N =

∫ 2h

0

q(s, Z)dZ/(2h) = q̄,∫
∂Sr

∫ 2h

0

(
STN

)
∧ (x(s, Z)− x(s, h))

√
gτdZds

=

∫
∂Sr

∫ 2h

0

q(s, Z) ∧ (x(s, Z)− x(s, h))
√
gτdZds = m̄,

(29)

where q̄ and m̄ are the average traction and the bending moment (about the

middle surface Z = h) applied on the lateral surface of the shell. Eqs. (28)

and (29) constitute the shell equation system.

The current shell theory is established within the framework of finite-

strain elasticity, which takes the growth effect and the constraint of elastic

incompressibility into account. Except some smoothness requirements to

conduct series expansions, this shell theory makes no ad hoc assumptions on

the displacement or stress components. Thus, this shell theory is adequate for

modeling the growth-induced large deformations of thin hyperelastic shells.

By incorporating more high-order terms in the series expansions (19), one
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can derive the shell equation system with the accuracy of O(h2) (the detailed

derivation process can be found in Li et al. (2019) and Yu et al. (2022)). If the

growth effect is neglected and some a priori hypotheses are adopted (e.g., the

Kirchhoff-Love hypothesis), the current shell theory can also be reduced to

some classical shell theories (e.g., the Reissner-Mindlin shell theory) within

the small-strain range or some other nonlinear shell (or membrane) theories.

3. Shape-programming of the thin hyperelastic shell

The shell equation system (28)-(29) can be applied to study the growth-

induced deformations of the thin hyperelastic shell. For any given growth

tensor G and boundary conditions, once the shell equation system is solved,

the obtained solution x(0)(θα) just represents the base surface S of the shell

in the current configuration Kt. By further using the relations (A.3) and

(A.4) given in Appendix A, the 3D configuration of the shell Kt can also be

recovered.

The objective of the current work is to solve an inverse problem. That

is, to ensure the shape change of the base surface from Sr to a certain target

shape S, how to arrange the growth tensor (or growth functions) in the shell

sample? This problem is referred to as ‘shape-programming’ of thin hyper-

elastic shells (Liu et al., 2016). It should be noted that our goal is not to

control the whole 3D configuration of the shell. As the shell equation system

(28)-(29) is established on the base surface (Z = 0) of the shell, we also focus

on the base surface in solving the problem of shape-programming. Different

from some previous works of shape-programming through the numerical ap-

proach, we aim to derive some explicit analytical formulas that can reveal
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the relations between the growth functions and the geometrical properties of

the base surface clearly. For the purpose of simplicity, we only consider the

case that the surfaces of the shell are traction-free, i.e., q± = q(s, Z) = 0 in

(28) and (29).

,  

Growth

!  
,! ! ,!

(")

#

(") !  

$

, 
(")(b) (c)

(a)

 

!

"
!

"
 

$

Mapping to $

Mapping to 

Parametric plane

Figure 2: Illustration of the growth process and the mapping from the parametric plane:

(a) the variables region Ωr on the parametric plane θ1θ2; (b) initial base surface Sr; (c)

target base surface S.

Suppose the initial and current configurations of the base surface of the

shell have the following parametric equations (as shown in Fig. 2):

Sr : s(θα) =
{
X1(θα), X2(θα), X3(θα)

}
, (θα) ∈ Ωr, (30)

and

S : x(0)(θα) =
{
x1(θα), x2(θα), x3(θα)

}
, (θα) ∈ Ωr. (31)

18



Eqs. (30) and (31) can be viewed as two continuous mappings from the 2D

region Ωr to Sr and S, respectively. By fixing one of the variables θ1 or

θ2, variation of the the other variable can generate the coordinate curves

on the surfaces. All of these curves constitute the parametric curves net on

Sr and S. It has been introduced that on the initial configuration Sr, the

tangent vectors along the coordinate curves are s,α = gα = ∂s/∂θα and unit

normal vector is n = (g1 ∧ g2)/ |g1 ∧ g2|. Similarly, on base surface S in

the current configuration, the tangent vectors along the coordinate curves

are x
(0)
,α = ∂x(0)/∂θα, and the unit normal vector is denoted by nt = (x

(0)
,1 ∧

x
(0)
,2 )/

∣∣∣x(0)
,1 ∧ x

(0)
,2

∣∣∣ (cf. Fig. 2). If Sr and S are regular surfaces, we always

have g1 ∧ g2 6= 0 and x
(0)
,1 ∧ x

(0)
,2 6= 0. Thus, the normal vector fields are

well-defined on Sr and S.

To facilitate the following derivations, we assume that the parametric

curves net generated by {θα} is an orthogonal net of curvature lines on Sr.

This assumption means that the tangent vectors g1 and g2 are perpendicular

to each other (i.e., g1 · g2 = 0) and they direct along the two principal

directions at any point on Sr. It is known that on a regular surface, such an

orthogonal net always exists in the neighbour region of a non-umbilic point

(Chen, 2017; Toponogov, 2006). Due to this assumption, some geometrical

quantities defined in section 2.1 can be simplified into

Fr = g12 = g21 = 0, Mr = b12 = b21 = 0,

K = −nα ⊗ gα = κ1g1 ⊗ g1 + κ2g2 ⊗ g2,

H =
1

2
(κ1 + κ2), K = κ1κ2,

U = I2 − ZK = (1− κ1Z)g1 ⊗ g1 + (1− κ2Z)g2 ⊗ g2,

(32)

where κ1 and κ2 are called the principal curvatures.
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With the above preparations, we begin to solve the problem of shape-

programming of the thin hyperelastic shell. The major task is to reveal the

relations between the growth tensor (or growth functions) and the geomet-

rical properties of the target surface S. In general, the solution of shape-

programming through differential growth may not be unique, i.e., the same

target shape of the shell may be generated from different growth fields (Wang

et al., 2019b). In the current work, we focus on the case that the shell attains

the stress-free state in the current configuration Kt, i.e., all the components

in S(0) and S(1) are zero. It is clear that in the stress-free condition, the shell

equation system (28) and (29) is satisfied automatically.

Remarks:

• For any given target surface S, one may set different kinds of growth

fields in the shell such that the base surface of the shell can attain S

through differential growth. In fact, most of these growth fields will

induce the distributions of residual stresses in the shell sample. In the

current work, we do not aim to find all of the possible growth fields

that can generate the target surface S (which would be a very difficult

task). For simplicity, we only consider the stress-free condition of the

shell and try to find one of the possible growth fields such that the

target surface S can be achieved through differential growth.

• Under the assumption of stress free of the shell, the problem of shape-

programming becomes easier to be solved. It will be shown that for any

given target surface S, we can solve the problem of shape-programming

under the stress-free condition and derive the explicit expression of the

corresponding growth tensor. Although the stress-free state is only
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a specific state of the shell, it has important meaning for engineering

applications. For example, the elastic energy of the shell sample attains

the minimum value in the stress-free state, which implies that the shell

sample is stable in this state. Thus, the obtained results can be utilized

for designing intelligent soft devices in the engineering fields.

3.1. Growth tensor in a special case

To analyze the relations between the growth tensor (or growth functions)

and the geometrical properties of the target surface S, we first assume that

the coordinate curves of {θα} also generate a net of curvature lines on the

base surface S in the current configuration. In this special case, the following

specific form of the growth tensor will be adopted

G = G(0) + ZG(1),

G(0) =
λ
(0)
1√
Er

g1 ⊗ g1 +
λ
(0)
2√
Gr

g2 ⊗ g2 + n⊗ n,

G(1) =
λ
(1)
1√
Er

g1 ⊗ g1 +
λ
(1)
2√
Gr

g2 ⊗ g2,

(33)

where λ
(0)
1 , λ

(0)
2 , λ

(1)
1 and λ

(1)
2 are the growth functions to be determined. By

substituting (32) and (33) into the kinematic relations (11) and (12), the

following expression of the elastic strain tensor A = FG−1 can be obtained

A =

√
Er

(1− κ1Z)(λ
(0)
1 + Zλ

(1)
1 )

x,1 ⊗ g1

+

√
Gr

(1− κ2Z)(λ
(0)
2 + Zλ

(1)
2 )

x,2 ⊗ g2 +
∂x

∂Z
⊗ n,

(34)
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The right Cauchy-Green strain tensor C = ATA is then given by

C =
x,1 · x,1

(1− κ1Z)2(λ
(0)
1 + Zλ

(1)
1 )2

ĝ1 ⊗ ĝ1 +
x,2 · x,2

(1− κ2Z)2(λ
(0)
2 + Zλ

(1)
2 )2

ĝ2 ⊗ ĝ2

+
x,1 · x,2

(1− κ1Z)(1− κ2Z)(λ
(0)
1 + Zλ

(1)
1 )(λ

(0)
2 + Zλ

(1)
2 )

(
ĝ1 ⊗ ĝ2 + ĝ2 ⊗ ĝ1

)
+

x,1 · x,Z
(1− κ1Z)(λ

(0)
1 + Zλ

(1)
1 )

(
n⊗ ĝ1 + ĝ1 ⊗ n

)
+

x,2 · x,Z
(1− κ2Z)(λ

(0)
2 + Zλ

(1)
2 )

(
n⊗ ĝ2 + ĝ2 ⊗ n

)
+ (x,Z · x,Z) n⊗ n,

(35)

where ĝ1 =
√
Erg

1 and ĝ2 =
√
Grg

2 are two unit vectors. By substituting

(19)1 into (35) and conducting the series expansion of C with respect to Z,

we have the following coefficients of Z0 and Z1

C(0) =
x
(0)
,1 · x

(0)
,1

λ
(0)
1

2 ĝ1 ⊗ ĝ1 +
x
(0)
,2 · x

(0)
,2

λ
(0)
2

2 ĝ2 ⊗ ĝ2 +
(
x(1) · x(1)

)
n⊗ n

+
x
(0)
,1 · x(1)

λ
(0)
1

(
ĝ1 ⊗ n + n⊗ ĝ1

)
+

x
(0)
,2 · x(1)

λ
(0)
2

(
ĝ2 ⊗ n + n⊗ ĝ2

)
,

(36)

C(1) =
2

λ
(0)
1

2

[
x
(0)
,1 · x

(1)
,1 +

(
κ1 −

λ
(1)
1

λ
(0)
1

)
x
(0)
,1 · x

(0)
,1

]
ĝ1 ⊗ ĝ1

+
2

λ
(0)
2

2

[
x
(0)
,2 · x

(1)
,2 +

(
κ2 −

λ
(1)
2

λ
(0)
2

)
x
(0)
,2 · x

(0)
,2

]
ĝ2 ⊗ ĝ2

+
(
2x(1) · x(2)

)
n⊗ n +

x
(0)
,2 · x

(1)
,1 + x

(0)
,1 · x

(1)
,2

λ
(0)
1 λ

(0)
2

(
ĝ1 ⊗ ĝ2 + ĝ2 ⊗ ĝ1

)
+

[
x
(1)
,1 · x(1) + x

(0)
,1 · x(2)

λ
(0)
1

+
x
(0)
,1 · x(1)

λ
(0)
1

(
κ1 −

λ
(1)
1

λ
(0)
1

)](
ĝ1 ⊗ n + n⊗ ĝ1

)
+

[
x
(1)
,2 · x(1) + x

(0)
,2 · x(2)

λ
(0)
2

+
x
(0)
,2 · x(1)

λ
(0)
2

(
κ2 −

λ
(1)
2

λ
(0)
2

)](
ĝ2 ⊗ n + n⊗ ĝ2

)
,

(37)
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For isotropic incompressible hyperelastic material, it is known that the elastic

strain-energy function only depends on the two invariants I1 and I2 of C, i.e.,

φ0(A) = φ0(I1, I2). Based on this constitutive form of φ0, the nominal stress

tensor S given in (15) can be rewritten into

S = JGG−1
[
∂φ0

∂I1

∂I1
∂A

+
∂φ0

∂I2

∂I2
∂A
− pA−1

]
= JGG−1

[
2
∂φ0

∂I1
AT + 2

∂φ0

∂I2
(I1I− C)AT − pA−1

]
,

(38)

where the relations ∂I1/∂A = 2AT and ∂I2/∂A = 2(I1I − C)AT have been

used. We denote

A−1 = Ā(0) + ZĀ(1) +O(Z2),

C = C(0) + ZC(1) +O(Z2), I1 = I
(0)
1 + ZI

(1)
1 +O(Z2),

∂φ0

∂I1
= d

(0)
1 + Zd

(1)
1 +O(Z2),

∂φ0

∂I2
= d

(0)
2 + Zd

(1)
2 +O(Z2),

(39)

Then, the following expressions of S(0) and S(1) can be derived from (38)

S(0) = Ĝ(0)
{

2
[
d
(0)
1 + d

(0)
2

(
I
(0)
1 I− C(0)

)] (
A(0)

)T − p(0)Ā(0)
}
,

S(1) = Ĝ(0)
{

2
[
d
(0)
1 + d

(0)
2

(
I
(0)
1 I− C(0)

)] (
A(1)

)T}
+ Ĝ(0)

{
2
[
d
(1)
1 + d

(1)
2

(
I
(0)
1 I− C(0)

)
+ d

(0)
2

(
I
(1)
1 I− C(1)

)] (
A(0)

)T}
+ Ĝ(0)

(
−p(0)Ā(1) − p(1)Ā(0)

)
.

(40)

To ensure S(0) and S(1) to be zero tensors, one sufficient condition is that

C(0) = I, C(1) = 0, p(0) = 2
(
d
(0)
1 + 2d

(0)
2

)
, p(1) = 2

(
d
(1)
1 + 2d

(1)
2

)
.

(41)

From (41)1 and (41)2, the growth functions {λ(0)α } and {λ(1)α } can be easily

determined. In fact, by substituting (36) into (41)1, we obtain

λ
(0)
1 =

√
E, λ

(0)
2 =

√
G, (42)
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where E = x
(0)
,1 · x

(0)
,1 and G = x

(0)
,2 · x

(0)
,2 are two of the first fundamental

quantities of surface S. As we assume the coordinate curves of {θα} generate

a net of curvature lines on S, another first fundamental quantity F = x
(0)
,1 ·

x
(0)
,2 = 0. Further from the relation (41)1, we have

x
(0)
,1 · x(1) = 0, x

(0)
,2 · x(1) = 0, x(1) · x(1) = 1,

⇒ x(1) =
x
(0)
,1 ∧ x

(0)
,2∣∣∣x(0)

,1 ∧ x
(0)
,2

∣∣∣ = nt.
(43)

By substituting (42) and (43) into (37), then from (41)2, we obtain

λ
(1)
1 =

(
κ1 −

L

E

)√
E, λ

(1)
2 =

(
κ2 −

N

G

)√
G, (44)

where L = −x
(0)
,1 ·nt,1 and N = −x

(0)
,2 ·nt,2 are two of the second fundamental

quantities of surface S. Another second fundamental quantity M = −x
(0)
,1 ·

nt,2 = −x
(0)
,2 ·nt,1 = 0 due to the net of curvature lines on S. To ensure all the

components of C(1) to be zero, we also need to set x(2) = 0. By substituting

(42) and (44) into (33), we obtain

G =

[
1 + Z

(
κ1 −

L

E

)]√
E

Er
g1 ⊗ g1

+

[
1 + Z

(
κ2 −

N

G

)]√
G

Gr

g2 ⊗ g2 + n⊗ n,

(45)

which is just the growth tensor that can result in the shape change of the

base surface of the shell from Sr to St in the special case (i.e., the coordinate

curves of {θα} generate a net of curvature lines on S).

The growth functions λ
(0)
1 and λ

(0)
2 given in (42) have the same expres-

sions as those obtained from the plate model (where the incompressible Neo-

Hookean material is taken into account) (Wang et al., 2022). In fact, λ
(0)
1
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and λ
(0)
2 just represent the extension or shrinkage of the material along the

coordinate curves of {θα} on Sr. The growth functions λ
(1)
1 and λ

(1)
2 given in

(44) involve the principal curvatures κ1 and κ2 of Sr, which are different from

the results of the plate model (Wang et al., 2022). It should be noted that the

growth functions given in (42) and (44) are independent of the strain-energy

function φ0, which should be valid for different kinds of hyperelastic shells.

If the shell is made of incompressible neo-Hookean material, the results (42)

and (44) can be derived through another approach, which is introduced in

Appendix A.

It should be noted that the growth tensor G considered in this section has

a diagonal form (cf. Eqs. (33) and (45)). Compared with the growth tensor

with a general form, the diagonal growth tensor is easier to be generated

in the shell sample. For examples, one can put two sets of fibres along the

curvature lines of surface Sr. Then, the growth tensor with the diagonal form

can be realized through the elongation or shortening of the fibres according

to the growth functions given in (42) and (43) (the growth functions change

linearly along the thickness direction of the shell).

3.2. Growth tensor in general cases

The formulas (42) and (44) are derived based on the assumption that the

coordinate curves of variables {θα} constitute an orthogonal net of curvature

lines in the current configuration of the base surface S. Generally, this as-

sumption cannot be satisfied by the parametric equation x(0)(θα). To tackle

the problem in general cases, some further manipulations are required.
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3.2.1. Change of the parametric variables

First, to generate a net of curvature lines on the surface S, we consider

the following change of variables

θ1 = θ1
(
η1, η2

)
, θ2 = θ2

(
η1, η2

)
, (46)

where θ1 (η1, η2) and θ2 (η1, η2) are supposed to be sufficient smooth and the

Jacobi determinant ∂(θ1, θ2)/∂(η1, η2) > 0. The transformation (46) defines

a bijection between the planar parametric region Ωr in the θ1θ2-plane and

the planar parametric region Ω∗r in the η1η2-plane (cf. Fig. 3).
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Figure 3: Bijection between the region Ωr and Ω∗
r , and the decomposition of the growth

process: (a) the original region Ωr on the parametric plane θ1θ2; (b) the new region Ω∗
r

on the parametric plane η1η2; (c) the base surface Sr in the referential configuration Kr;

(d) the base surface Si in the intermediate configuration Ki; (e) the target base surface S

in the current configuration Kt.
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Through the change of variables, the surface S has a new parametric

equation x∗(η1, η2) = x(0) (θ1 (η1, η2) , θ2 (η1, η2)). The first-order derivatives

of x∗(η1, η2) are given by

x∗,η1 = x∗,θ1
∂θ1

∂η1
+ x∗,θ2

∂θ2

∂η1
= A1

(
x∗,θ1 cos ξ1 + x∗,θ2 sin ξ1

)
,

x∗,η2 = x∗,θ1
∂θ1

∂η2
+ x∗,θ2

∂θ2

∂η2
= A2

(
x∗,θ1 cos ξ2 + x∗,θ2 sin ξ2

)
,

(47)

where

A1 =

√(
∂θ1

∂η1

)2

+

(
∂θ2

∂η1

)2

, cos ξ1 =
1

A1

∂θ1

∂η1
, sin ξ1 =

1

A1

∂θ2

∂η1
,

A2 =

√(
∂θ1

∂η2

)2

+

(
∂θ2

∂η2

)2

, cos ξ2 =
1

A2

∂θ1

∂η2
, sin ξ2 =

1

A2

∂θ2

∂η2
.

(48)

To ensure that the new coordinate curves (i.e., the η1- and η2-curves on

S) constitute an orthogonal net of curvature lines, x∗,η1 and x∗,η2 should be

aligned with the principal directions at any point on S, which requires that

the following equation is satisfied (Toponogov, 2006; Chen, 2017)

(LF −ME) cos2 ξ + (LG−NE) cos ξ sin ξ + (MG−NF ) sin2 ξ = 0, (49)

where {E,F,G} and {L,M,N} are the first and second fundamental quanti-

ties of the surface S calculated from the original parametric equation x(0)(θα).

On the other hand, as the Jacobi determinant ∂(θ1, θ2)/∂(η1, η2) > 0, we have

the inverse Jacobi matrix ∂η1

∂θ1
∂η2

∂θ1

∂η1

∂θ2
∂η2

∂θ2

 =

 ∂θ1

∂η1
∂θ1

∂η2

∂θ2

∂η1
∂θ2

∂η2

−1 . (50)

By virtue of (50), the differential forms dη1 and dη2 can be written into

dη1 =
∂η1

∂θ1
dθ1 +

∂η1

∂θ2
dθ2 = A∗1

(
sin ξ2dθ

1 − cos ξ2dθ
2
)
,

dη2 =
∂η2

∂θ1
dθ1 +

∂η2

∂θ2
dθ2 = A∗2

(
cos ξ1dθ

2 − sin ξ1dθ
1
)
,

(51)
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where

A∗1 =
1

A1 (cos ξ1 sin ξ2 − sin ξ1 cos ξ2)
, A∗2 =

1

A2 (cos ξ1 sin ξ2 − sin ξ1 cos ξ2)
.

(52)

To make the differential forms dη1 and dη2 given in (51) to be integrable,

it necessary to derive the explicit expressions of the transformation between

{θ1, θ2} and {η1, η2}. To our knowledge, there are still no universal formulas

that can be used to determine the integrating factors for any differential forms

(Chen, 2017). In some particular situations, the integrating factors can be

obtained by adopting appropriate methods. Once the integrating factors are

found, the explicit expressions of η1(θ1, θ2) and η2(θ1, θ2) can be obtained by

the first integrals of the differential forms (51). Accordingly, the expressions

of θ1(η1, η2) and θ2(η1, η2) are also obtained.

On the parametric variable region Ω∗r in the η1η2-plane, we define a new

surface Si in R3, which has the following parametric equation

Si : s(ηα) =
{
X1(ηα), X2(ηα), X3(ηα)

}
, (ηα) ∈ Ω∗r. (53)

Notice that Si and Sr have the same parametric equation, but they are

defined on the different parametric variable regions. In fact, Si and Sr should

be the different subregions contained in a larger surface. According to the

assumption on the parametric equation s(ηα), the coordinate curves of {ηα}

constitute a net of curvature lines on Si. By virtue of the variable change

η1(θ1, θ2) and η2(θ1, θ2), another parametric equation of surface Si can be

obtained as follow

Si : s∗(θα) = s(η1(θ1, θ2), η2(θ1, θ2)), (θα) ∈ Ωr, (54)
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which is defined on the parametric variable region Ωr in the θ1θ2-plane. We

choose Si as the shape of the base surface of the shell in an intermediate

configuration Ki. The position vector X∗ of a material point in Ki is set to

be (cf. Eq. (4))

X∗ =s∗(θα) + Zn∗(θα),

=s(η1(θα), η2(θα)) + Zn(η1(θα), η2(θα)), (θα) ∈ Ωr, 0 ≤ Z ≤ 2h.
(55)

3.2.2. The two-step deformation process

Based on the above results, we can write out the growth tensor that

produces the shape change of the base surface of the shell from Sr to S. As

shown in Fig. 3, the whole deformation process is divided into two steps.

In the first step, we consider the deformation of the shell from the reference

configuration Kr to the intermediate configuration Ki (i.e., the shape change

of the base surface from Sr to Si ). Based on (54) and (55), it is known that

the corresponding deformation gradient tensor should be given by

F0 =(∇X∗)U−1 +
∂X∗

∂Z
⊗ n

=
∂η1

∂θ1
g1(η

α)⊗ g1(θα) +
1− κ1Z
1− κ2Z

∂η1

∂θ2
g1(η

α)⊗ g2(θα)

+
1− κ2Z
1− κ1Z

∂η2

∂θ1
g2(η

α)⊗ g1(θα) +
∂η2

∂θ2
g2(η

α)⊗ g2(θα) + n(ηα)⊗ n(θα),

(56)

In Eq. (56), the covariant base {g1,g2,n} is evaluated at the position s(ηα)

on Si and the contravariant base {g1,g2,n} is evaluated at the position s(θα)

on Sr. In the second step, we consider the deformation of the shell from the

intermediate configuration Ki to the current configuration Kt (i.e., the shape

change of the base surface from Si to St). As shown in Fig. 3, Si and St
possess the same parametric variable region Ω∗r in the η1η2-plane. Besides
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that, the coordinate curves of {ηα} constitute the net of curvature lines on

these two surfaces. Thus, the formulas (42) and (44) obtained in section 3.1

should be applicable in this case. The growth tensor that can induce the

shape change from Si to St is then given by

G1 =

[
1 + Z

(
κ∗1 −

L

E

)]√
E

E∗
g1(η

α)⊗ g1(ηα)

+

[
1 + Z

(
κ∗2 −

N

G

)]√
G

G∗
g2(η

α)⊗ g2(ηα) + n(ηα)⊗ n(ηα).

(57)

In Eq. (57), {E,G,L,N} are the fundamental quantities of surface S cal-

culated with the parametric equation x∗(ηα). {E∗, G∗} and {κ∗1, κ∗2} are the

fundamental quantities and principal curvatures of surface Si calculated with

the parametric equation s(ηα). It can be directly verified that

G1F0 = QG, (58)

where Q is the rotation tensor

Q = g1(η
α)⊗ g1(θα) + g2(η

α)⊗ g2(θα) + n(ηα)⊗ n(θα), (59)

and

G =

[
1 + Z

(
κ∗1 −

L

E

)]√
E

E∗
∂η1

∂θ1
g1(θ

α)⊗ g1(θα)

+

[
1 + Z

(
κ∗1 −

L

E

)]√
E

E∗

(
1− κ1Z
1− κ2Z

)
∂η1

∂θ2
g1(θ

α)⊗ g2(θα)

+

[
1 + Z

(
κ∗2 −

N

G

)]√
G

G∗

(
1− κ2Z
1− κ1Z

)
∂η2

∂θ1
g2(θ

α)⊗ g1(θα)

+

[
1 + Z

(
κ∗2 −

N

G

)]√
G

G∗
∂η2

∂θ2
g2(θ

α)⊗ g2(θα) + n(θα)⊗ n(θα).

(60)

Tensor G given in (60) is just the growth tensor that can result in the shape

change of the base surface of the shell from Sr to S in the general case, which

is consistent with the growth tensor obtained in (45) for the special case.
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We provide some further analyses on the deformation gradient (or growth)

tensors obtained in the two-step deformation process. In the first step, the

deformation gradient tensor F0 corresponding to the shape change of the

shell from Kr to Ki (i.e., the base surface changes from Sr to Si) is given in

Eq. (56), which has a general form and is difficult to be realized in reality.

However, as mentioned before, Sr and Si can be viewed as the different

subregions in a large surface (cf. Figs. 7c and 8c). In the second step, the

growth tensor G1 corresponding to the shape change of the shell from Ki to

Kt (i.e., the base surface changes from Si to St) is given in Eq. (57), which

has a diagonal form and is easier to be realized. In practical conditions, to

generate the target configuration Kt of the shell, one may first cut a shell

sample with the base surface Si from a large shell (cf. the surfaces Si shown

in Figs. 7c and 8c), and then generate the shape change of the shell sample

from Si to St according to the growth tensor G1 (e.g., arrange fibres along

the curvature lines of surface Si).

3.3. A theoretical scheme for shape-programming

Based on the above preparations, we propose a theoretical scheme for

shape-programming of a thin hyperelastic shell through differential growth.

The flowchart of this scheme is shown in Fig. 4, which contains the following

steps:

• With the given reference configuration Kr of the shell, we need to iden-

tify the parametric equation s(θα) for the initial shape of the base

surface Sr, which is defined on the region Ωr of the θ1θ2-plane. By us-

ing s(θα), the fundamental quantities {Er, Gr, Lr, Nr} and the principal

curvatures {κ1, κ2} of surface Sr can be calculated.
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Figure 4: Flowchart of the theoretical scheme for shape-programming of a thin hyperelastic

shell through differential growth.
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• We choose the target shape of the base surface S, which has the para-

metric equation x(0)(θα) defined on Ωr.

• The fundamental quantities {E,F,G} and {L,M,N} of surface S are

calculated by using the parametric equation x(0)(θα). In the case F = 0

andM = 0, it is known that the parametric curves net of {θα} is already

an orthogonal net of curvature lines (Chen, 2017). Then, the growth

tensor G can be obtained from Eq. (45).

• If F and M are not both equal to zero, we need to conduct the vari-

able change from {θα} to {ηα}, which yields a bijection from Ωr to a

new region Ω∗r in the η1η2-plane. The explicit expressions of the vari-

able change should be calculated from the differential forms given in

(51), where the integrating factors A∗1 and A∗2 need to be determined

in advance.

• After the variable change, the surface S has a new parametric equation

x∗(ηα) defined on Ω∗r. The coordinate curves of {ηα} constitute an

orthogonal net of curvature lines on S.

• By virtue of the variable change, an intermediate shape of the base

surface Si can be constructed, which has the parametric equation s(θα)

defined on Ωr and the parametric equation s∗(ηα) defined on Ω∗r. The

associated geometrical quantities of Si are also calculated.

• Based on the above results, the growth tensor G is calculated from Eq.

(60), which results in the shape change of the base surface of the shell

from Sr to S.
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• Finally, to check the correctness and accuracy of this scheme, the ob-

tained growth tensor (or growth functions) is incorporated in a finite

element analysis (we use Abaqus), and the growth-induced deformation

of the shell is simulated.

Remarks:

• In the above proposed theoretical scheme, we focus on the determina-

tion of the growth tensor that can induce the shape change of the shell

from Sr to S. In reality, there is another problem. That is, how to

generate the growth field in the shell sample corresponding to the ob-

tained growth tensor (some simple discussions on this issue have been

given in subsections 3.1 and 3.2). For different mechanisms of growth

of soft materials, one needs to find different ways to solve this problem.

• To verify the correctness of the obtained growth tensor, we will conduct

numerical simulations (cf. the numerical simulation results in section

4). In the numerical simulations, the growth tensor will be used as

the control quantity, which changes from the identity tensor I to the

target tensor through some prescribed paths. It should be noted that

corresponding to the same growth tensor, the shell sample may have

different equilibrium state (i.e., the shell equation system have multiple

solutions). Therefore, during the numerical calculations, one may meet

the problem of instability of the growth-induced deformation of the

shell (which is also a problem in manufacturing intelligent soft devices

through differential growth). The problem of instability is an important

issue that needs to be investigated systematically in the future work. To
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overcome the problem of instability, one possible approach is to divide

the whole growing process into several stages. During each stage, the

target shape of the shell or the change of the growth tensor will be

prescribed properly, such that the deformation of the shell is not very

large. In this case, the possibility to trigger the instability phenomena

of the shell sample will be reduced.

4. Examples

In this section, some typical examples will be studied to demonstrate the

feasibility and efficiency of the analytical framework proposed in section 3 for

shape-programming of thin hyperelastic shells through differential growth.

For the purpose of illustration, the reference configuration Kr of the shell

is selected to be a cylindrical shell, which occupies the region [R0, R0 + 2h]×

[0,Θ0]× [0, l] within a cylindrical coordinate system in R3. The base surface

Sr of the shell has the following parametric equation

s(θ1, θ2) = {R0 cos(θ1), R0 sin(θ1), θ2}, 0 ≤ θ1 ≤ Θ0, 0 ≤ θ2 ≤ l, (61)

where θ1 and θ2 are the parametric variables. It is clear that the coordinate

curves of θ1 and θ2 constitute a net of curvature lines on Sr. Besides that,

we denote Z = R − R0 (R0 ≤ R ≤ R0 + 2h) as the thickness variable of the

shell. From the parametric equation (61), we obtain the following covariant

and contravariant base vectors on Sr

g1 = R0

[
− sin(θ1)e1 + cos(θ1)e2

]
, g1 =

g1

R2
0

,

g2 = g2 = e3, g3 = g3 = n = cos(θ1)e1 + sin(θ1)e2.

(62)
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The geometrical quantities of surface Sr are given by

Er = R2
0, Gr = 1, Lr = −R0,

Nr = 0, κ1 = −1/R0, κ2 = 0.
(63)

4.1. Examples without change of variables

First, the target shape of the base surface S is selected to be a surface of

revolution, which has the following parametric equation

x(0)(θ1, θ2) = {u(θ2) cos(θ1), u(θ2) sin(θ1), v(θ2)}, 0 ≤ θ1 ≤ Θ0, 0 ≤ θ2 ≤ l,

(64)

where u(θ2) and v(θ2) are arbitrarily smooth functions. Notice that both Sr
and S have the parametric variable region Ωr = [0,Θ0]×[0, l]. Corresponding

to the parametric equation (64), the following first and second fundamental

quantities of surface S are obtained

E = u2, F = 0, G = u′2 + v′2,

L = − u2v′√
u2 (u′2 + v′2)

, M = 0, N =
u (v′u′′ − u′v′′)√
u2 (u′2 + v′2)

.
(65)

Since F = 0 and M = 0, it is known that the θ1- and θ2-coordinate curves

have already constituted an orthogonal net of curvature lines on S. There-

fore, the growth tensor in the shell should be set according to (45), which

contains the growth functions

λ
(0)
1 = |u|, λ

(0)
2 =

√
u′2 + v′2,

λ
(1)
1 = −|u|

R0

+
v′√

u′2 + v′2
, λ

(1)
2 =

u (u′v′′ − v′u′′)
|u|(u′2 + v′2)

.
(66)

For concreteness, we consider four kinds of revolution surfaces inspired by

biological tissues, i.e., the sweet melon, the morning glory, the trachea and
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the apple. The parametric equations and the corresponding growth functions

of these surfaces are listed in (67)-(70).

• Sweet melon (0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 4) :

x(0) = 4 cos(2θ1) cos

(
9

40
π(θ2 − 2)

)
,

y(0) = 4 sin(2θ1) cos

(
9

40
π(θ2 − 2)

)
,

z(0) = −4 cos

(
1

40
π(9θ2 + 2)

)
,

λ1 = 8 cos

(
9

40
π(θ2 − 2)

)
, λ2 =

9

40
π(Z + 4).

(67)

• Morning glory (0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 4)

x(0) = −(1 + θ2) cos(2θ1),

y(0) = −(1 + θ2) sin(2θ1),

z(0) = 6− 1

8

(
7− 2θ2

)2
,

λ1 =
1

2
(θ2 + 1)

[
4− 4(2θ2 − 7)Z

(θ2 + 1)
√

4θ2 (θ2 − 7) + 53
− Z

]
,

λ2 =

√
θ2(θ2 − 7) +

53

4
− 4Z

4θ2 (θ2 − 7) + 53
.

(68)

• Trachea (0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 4)

37





x(0) =
1

5
cos θ1

[
20 + sin(2πθ2)

]
,

y(0) =
1

5
sin θ1

[
20 + sin(2πθ2)

]
,

z(0) = 2(2 + θ2),

λ1 = − 1

20
(Z − 4) sin(2πθ2) + 4 + Z

(
5
√

2√
π2 cos(4πθ2) + π2 + 50

− 1

)
,

λ2 =
1

5

√
2
√
π2 cos(4πθ2) + π2 + 50 +

20π2Z sin(2πθ2)

π2 cos(4πθ2) + π2 + 50
.

(69)

• Apple (0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 4)

x(0) = 8 cos θ1 cos2
(
πθ2

4

)
,

y(0) = 8 sin θ1 cos2
(
πθ2

4

)
,

z(0) = −6 sin

(
πθ2

2

)
,

λ1 =
−3
√

2Z cos
(
πθ2

2

)
√

5 cos(πθ2) + 13
− 2(Z − 4) cos2

(
πθ2

4

)
,

λ2 = π

[√
5 cos(πθ2) + 13√

2
− 6Z

5 cos(πθ2) + 13

]
.

(70)

To verify the accuracy of the obtained growth functions, we also conduct

numerical simulations by using the UMAT subroutine in ABAQUS, where the

constitutive relation of a compressible neo-Hookean material is adopted. The

Poisson’s ratio of the material is chosen to ν = 0.4995 to capture the effect of

elastic incompressibility. The initial cylindrical shell has the dimensions R0 =

4, h = 0.01 and l = 4. The value of Θ0 is set to be π or 2π depending upon

the cases, which corresponds to a semi-cylindrical shell or a whole cylindrical

shell, respectively. The shell sample is meshed into 15800 elements when
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Θ0 = π and 20160 elements when Θ0 = 2π. The element type is selected to be

C3D8IH (8-node linear brick, hybrid, linear pressure, incompatible modes).

As the surfaces of the shell sample are supposed to be traction-free, there

is no further manipulations needs to be conducted. Only except that the

displacement components of three selected points are restricted to eliminate

the possibility of rigid body motion (cf. Fig. 5). In the numerical simulations

with ABAQUS, the model type is standard and the analysis type is static,

general. The growth functions λ1 = λ
(0)
1 + Zλ

(1)
1 and λ2 = λ

(0)
2 + Zλ

(1)
2 are

incorporated as the state variables in the UMAT subroutine, which change

gradually from 1 to the target values as those given in (67)-(70) during the

time regime t ∈ [0, 1]. The time increment size of the load steps is set to be

automatic change between 10−6 to 0.5. By properly choosing the evolution

paths of the growth functions (cf. Appendix B for some further discussions),

the growth-induced deformations of the shell sample can be simulated. For

convenience of the readers, the UMAT files and the ABAQUS input files for

the examples studied in this subsection are provided in the supplementary

materials.

In Fig. 6, we show the numerical simulation results. It can be seen that

the grown states of the shells are in good agreement with the target shapes.

Thus, the correctness of the obtained growth functions can be verified. It

should be pointed out that here we only try to mimic the outer surface shapes

of the different biological tissues, but do not aim to reveal the underlying

mechanisms responsible for the growth of the biological tissues. In fact, the

shape changes of some biological tissues (e.g., apple, sweet melon) during the

growing processes should be attributed to the inherently volumetric growth.
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(a) (b)

Figure 5: Illustration of removing the rigid body motion by restricting the displacement

components of three selected points: (a) the semi cylindrical shell; (b) the whole cylindrical

shell.

4.2. Examples with change of variables

To further demonstrate the efficiency of the proposed theoretical scheme,

we study two more examples, in which the target shapes are chosen to be

the Cereus Forbesii Spiralis and the tendril of pumpkin.

For the case of Cereus Forbesii Spiralis, the parametric equation of the

target surface S is

x(0)(θ1, θ2) =

{
2θ1

π
sin(πθ2),

2θ1

π
cos(πθ2), θ2

}
, (71)

where the region of the parametric variable is chosen to be Ωr = [0, π] ×

[0, 4]. Corresponding to this parametric equation, one can obtain the first

and second fundamental quantities as follows

E = 4/π2, F = 0, G = 1 + 4θ1
2
,

L = 0, M = 2/
√

1 + 4θ12, N = 0.
(72)
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(a)

(d)

(b)

(c)

Figure 6: Numerical simulation results on the growing processes of the shells with the

target surfaces and growth functions listed in (67)-(70): (a) the sweet melon; (b) the

morning glory; (c) the trachea; (d) the apple.
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Figure 7: Change of variables between {θ1, θ2} and {η1, η2}, and the decomposition of

the growth process for generating Cereus Forbesii Spiralis: (a) the original region Ωr on

the parametric plane θ1θ2; (b) the new region Ω∗
r on the parametric plane η1η2; (c) the

base surface Sr in the referential configuration Kr, the base surface Si in the intermediate

configuration Ki, and the target base surface S in the current configuration Kt; (d) the

simulated growing process for generating the Cereus Forbesii Spiralis configuration of the

shell.
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As the quantity M 6= 0, we need to conduct the change of variables from

(θ1, θ2) to (η1, η2). According to the procedure of variable change introduced

in section 3.2, we have

η1
(
θ1, θ2

)
=

arcsinh(2θ1)

π
+ θ2, η2

(
θ1, θ2

)
= −arcsinh(2θ1)

π
+ θ2. (73)

After the variable transformation, the original region Ωr in the θ1θ2- plane is

mapped into a new region Ω∗r in the η1η2-plane, which is shown in Fig. 7(b).

On the region Ω∗r, a new surface Si is defined as follows

Si : s∗ = {R0 cos η1, R0 sin η1, η2}, ηα ∈ Ω∗r. (74)

Notice that the cylindrical shell Sr defined by (61) and the surface Si defined

by (74) have the same parametric equation, but their parametric variable

regions are different. As shown in Fig. 7c, both Sr and Si can be viewed

as a subregion cutting from a large cylindrical surface with radius R0 = 4.

Also, the coordinate curves of {ηα} (i.e., the black and red curves in Fig.

7) constitute the orthogonal nets of curvature lines on both Si and S. By

choosing Si as the base surface, we define an intermediate configuration Ki
according to (55), then the whole growth process can be divided into two

steps: Kr → Ki and Ki → Kt. For the first step, according to (56) the

deformation gradient F0 is given by

F0 =
2

π
√

1 + 4θ12
g1(η

α)⊗ g1(θα) + (1 + Z/R0)g1(η
α)⊗ g2(θα)

− 2

π (Z/R0 + 1)
√

1 + 4θ12
g2(η

α)⊗ g1(θα) + g2(η
α)⊗ g2(θα)

+ n(ηα)⊗ n(θα).

(75)

For the second step, the following growth tensor G1 on domain (η1, η2) is
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obtained according to (57)

G1 =g1(η
α)⊗ g1(ηα)

[
1

8

√
cosh(π(η1 − η2)) + 1

−
Z
(

16π
√

cosh4
(
1
2
π(η1 − η2)

)
+ cosh2(π(η1 − η2)) + 2 cosh(π(η1 − η2)) + 1

)
32(cosh(π(η1 − η2)) + 1)3/2

]

+ g2(η
α)⊗ g2(ηα)

[1

2

√
cosh(π(η1 − η2)) + 1 +

2πZ
√

cosh4
(
1
2
π(η1 − η2)

)
(cosh(π(η1 − η2)) + 1)3/2

]
+ n(ηα)⊗ n(ηα).

(76)

Then the tensor G generating the shape change from Sr to S can be calcu-

lated from (60). To verify the correctness of these growth functions, we also

simulate the growth process of Cereus Forbesii Spiralis in ABAQUS. The

setting of the numerical simulations is same as that introduced in the section

4.1. The numerical results of this example are shown in Fig. 7d. It can be

found that the final shape of the shell can fit the target shape quite well.

For the case of pumpkin tendril, the parametric equation of the target

surface S is

x(0)(θ1, θ2) =

{
(cos θ1 + 2) cos

(
πθ2

2

)
, (cos θ1 + 2) sin

(
πθ2

2

)
, sin θ1 + θ2

}
,

(77)

where the region on the parametric plane is chosen to be Ωr = [0, 2π] ×

[0, 8]. Corresponding to this parametric equation, one can obtain the first

44



and second fundamental quantities as follow

E = 1, F = cos θ1, G =
1

8

(
π2(8 cos(θ1) + cos(2θ1)) + 9π2 + 8

)
,

L =

√
2π(cos(θ1) + 2)√

8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4
,

M = −
√

2π sin2(θ1)√
8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4

,

N =
π3 cos(θ1)(cos(θ1) + 2)2

2
√

2
√

8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4
.

(78)

Note that the quantities F 6= 0 and M 6= 0, thus the change of variables from

(θ1, θ2) to (η1, η2) is required. As shown in Fig.8(b), the original region Ωr

is mapped into a new region Ω∗r through the change of variables. Following

the same parametric equation, these two regions define surfaces Sr and Si
respectively, where Sr is a cylinder with radius R0 = 4 and length l = 8,

while Si is an irregular shaped subregion cut from a cylinder with radius

R0 = 4 as follow

Si : s∗ = {R0 cos η1, R0 sin η1, η2}, ηα ∈ Ω∗r. (79)

Also, the coordinate curves {ηα} (i.e., the black and red curves in Fig. 8)

constitute an orthogonal curvature net on both Si and S. By choosing Si
as the base surface, we define an intermediate configuration Ki. The whole

shape morphing process can be divided into two steps: from Kr to Ki de-

scribed by F0, and from Ki to Kt induced by G1. However, the analytical

explicit expressions for integrating factors and (η1, η2) are difficult to obtain.

Therefore the tensor F0 and G1 are calculated numerically in this case, and

then the growth values are passed to the relating integration points of the

elements in ABAQUS. According to the numerical results of this case shown
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in Fig.8(d), it is known that the final shape of the shell can also fit the target

shape quite well. The UMAT files and the ABAQUS input files for the two

examples studied in this subsection are also provided in the supplementary

materials.

5. Conclusions

In this paper, the problem of shape-programming of thin hyperelastic

shells through differential growth was studied. First, a consistent finite-strain

shell theory for modeling the growth-induced deformations of incompressible

hyperelastic shells was introduced. Then, the problem of shape-programming

was solved analytically under the stress-free condition, from which the ex-

plicit expressions of the growth functions in terms of the geometrical quanti-

ties (i.e., the first and second fundamental forms) of the target surfaces were

derived. Based on these analytical results, a general theoretical scheme for

shape-programming of thin hyperelastic shells through differential growth

was proposed. To verify the correctness and efficiency of the theoretical

scheme, some typical examples were studied, where the shape changes of soft

material samples were simulated with the obtained growth functions. It was

found that the simulated configurations of the soft material samples can fit

the target surfaces quite well.

Since the formulas derived in the current work have relatively simple forms

and are valid for general incompressible hyperelastic material, the presented

theoretical scheme for shape-programming would have wide potential appli-

cations for design and manufacturing of intelligent soft devices. Furthermore,

the analytical results can also shed light on understanding the mechanical be-
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Figure 8: Change of variables between {θ1, θ2} and {η1, η2}, and the decomposition of

the growth process for generating tendril of pumpkin: (a) the original region Ωr in the

parametric plane θ1θ2; (b) the new region Ω∗
r in the parametric plane η1η2; (c) the base

surface Sr in the referential configuration Kr, the base surface Si on the intermediate

configuration Ki, and the target base surface S in the current configuration Kt; (d) the

simulated growing process for generating the tendril of pumpkin configuration of the shell.
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haviors of some soft biological tissues in nature during the growth processes.

It should be pointed out that the current work still has some shortcomings

that need to be tackled in future. One shortcoming is that the explicit ex-

pressions of growth tensor is derived based on the stress-free assumption.

Therefore, they are not valid for shell samples subject to external loads or

boundary restrictions. Additionally, the theoretical scheme is not applicable

to complex 3D surfaces without explicit parametric equations. In that case,

an efficient numerical scheme for shape-programming of complicated surfaces

needs to be proposed. Besides that, the current work focus on the determi-

nation of the growth tensor corresponding to the target surface of the shell

sample. In reality, one also needs to consider how to generate the growth

field in the shell sample and how to tackle the problem of instability during

the numerical simulation or manufacturing processes.

Supplementary documents

Movie 1: Growth processes of the shape-programming examples. The

video of the growing processes of the six illustrative examples shown in Figs.

6, 7 and 8 is available at https://github.com/Jeff97/growth-deformation-of-shell.

ABAQUS input files and UMAT files: the ABAQUS input files for the

shape-programming examples and the related UMAT files are also available

at https://github.com/Jeff97/growth-deformation-of-shell.
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Appendix A. Some results for incompressible neo-Hookean mate-

rial

To obtain some concrete results on the unknowns (x(n) and p(n)), we

further assume that the shell is made of neo-Hookean material with the

following elastic strain-energy function

φ(F,G) = JGφ0(A) = JGC0

[
tr(AAT )− 3

]
, (A.1)

where C0 is a material constant. From the elastic strain-energy function

φ(F,G), the nominal stress tensor S is given by

S = JGG−1
(
2C0AT − p(R,Z)A−1

)
. (A.2)

For simplicity, we assume the shell is under traction-free condition. By

taking series expansion on Z = 0 and through some truncation manipula-

tion, a closed linear system for {x(1),x(2), p(0), p(1)} is formulated by (23) and

(24)1, combining with the boundary conditions (25)1. Then the following

expressions of {x(1),x(2), p(0), p(1)} in terms of x(0) are solved

x(1) = Λ
xN
∆
, p(0) = 2C0

Λ2

∆
, (A.3)
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x(2) =
1

∆5/2
xN

(
Λ2t9 +

∆2

Λ2
t8 −∆3/2t1

)
− 1

Λ2
a

+
1

∆3Λ3

[
x
(0)
,1

(
Λ4t5 −∆3λ

(0)
2 t7

)
+ x

(0)
,2

(
Λ4t4 −∆3λ

(0)
1 t6

)]
,

p(1) =2C0

(
1

Λ
√

∆
t8 −

2Λ

∆
t1 +

Λ3

∆5/2
t9

)
,

(A.4)

where

Λ = λ
(0)
1 λ

(0)
2 , xN = x

(0)
,1 × x

(0)
,2 , ∆ = xN · xN ,

Bαβ = gα · gβ,α, a =
(
λ
(0)
1

2
x
(0)
,2,2 + λ

(0)
2

2
x
(0)
,1,1

)
,

t1 = (κ1 + κ2) Λ− λ(1)1 λ
(0)
2 − λ

(0)
1 λ

(1)
2 ,

t2 = (B11 +B21) Λ, t3 = (B12 +B22) Λ,

t4 = Λ (∆,1F −∆,2E) + ∆ [E (2Λ,2 + t3)− F (2Λ,1 + t2)] ,

t5 = Λ (∆,2F −∆,1G) + ∆ [G (2Λ,1 + t2)− F (2Λ,2 + t3)] ,

t6 = λ
(0)
1,2Λ + λ

(0)
1

(
t3 − λ(0)2,2λ

(0)
1

)
, t7 = λ

(0)
2,1Λ + λ

(0)
2

(
t2 − λ(0)1,1λ

(0)
2

)
,

t8 =
(
λ
(0)2

1 N + λ
(0)2

2 L
)
, t9 = (EN − 2FM +GL) .

The expressions of S(0) in terms of x(0) are obtained by substituting x(1)

and p(0) into (22)1

S(0) =2C0g1 ⊗

[
Λ3

∆2
(Fx

(0)
,2 −Gx

(0)
,1 ) +

λ
(0)
2

λ
(0)
1

x
(0)
,1

]

+ 2C0g2 ⊗

[
−Λ3

∆2
(Fx

(0)
,1 − Ex

(0)
,2 ) +

λ
(0)
1

λ
(0)
2

x
(0)
,2

]
.

(A.5)

Accordingly, expression of S(1) is also obtained, where x(2) and p(1) are kept
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for brevity

S(1) =2C0g1 ⊗

[(−λ(1)1 λ
(0)
2 + λ

(0)
1 λ

(1)
2 + Λκ1

)
λ
(0)2

1

x
(0)
,1 −

Λ2

∆
x
(0)
,2 × x(2)

+
Λ4

∆5/2

(
Nx

(0)
,1 −Mx

(0)
,2

)
+
λ
(0)
2 (∆Λ,1 − Λ∆,1)

∆2λ
(0)
1

xN

−
Λ
(
κ2Λ

2 + p(1)∆/(2C0)
)

∆2

(
Gx

(0)
,1 − Fx

(0)
,2

)
+
λ
(0)2

2

∆
xN,1

]

+ 2C0g2 ⊗

[(
λ
(1)
1 λ

(0)
2 − λ

(0)
1 λ

(1)
2 + Λκ2

)
λ
(0)2

2

x
(0)
,2 +

Λ2

∆
x
(0)
,1 × x(2)

− Λ4

Q5/2

(
Mx

(0)
,1 − Lx

(0)
,2

)
+
λ
(0)
1 (∆Λ,2 − Λ∆,2)

∆2λ
(0)
2

xN

+
Λ
(
κ1Λ

2 + p(1)∆/(2C0)
)

∆2

(
Fx

(0)
,1 − Ex

(0)
,2

)
+
λ
(0)2

1

∆
xN,2

]

+ 2C0n⊗

[(
−Λt1

∆
− p(1)/(2C0)

)
xN + Λx(2)

+
Λ2

∆3

[
(∆Λ,1 − Λ∆,1)

(
Gx

(0)
,1 − Fx

(0)
,2

)
− (∆Λ,2 − Λ∆,2)

(
Fx

(0)
,1 − Ex

(0)
,2

)]
+

Λ3

∆2

(
xN,2 × x

(0)
,1 − xN,1 × x

(0)
,2

)]
.

(A.6)

Note that S(1) is also in terms of x(0) with the use of (A.4).

In order to fulfil the goal of shape-programming, the growth functions λ
(0)
1 ,

λ
(1)
1 , λ

(0)
2 and λ

(1)
2 of an arbitrary target shape x(0) need to be determined

from shell equation system. Generally, the growth functions of a certain

target shape may not be unique. To facilitate derivation, we assume all the

components S(0) and S(1) in current configuration Kt are zero. It is clear that,

under the stress-free assumption, the shell equation (28) and the boundary
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conditions (29) are satisfied automatically.

First, all components of S(0) in (A.5) are set to be zero
Λ3

∆2
(Fx

(0)
,2 −Gx

(0)
,1 ) +

λ
(0)
2

λ
(0)
1

x
(0)
,1 = 0,

−Λ3

∆2
(Fx

(0)
,1 − Ex

(0)
,2 ) +

λ
(0)
1

λ
(0)
2

x
(0)
,2 = 0.

(A.7)

For simplicity, we assume F = 0 in the current configuration, which means

that the moving frame {x(0)
,1 ,x

(0)
,2 ,xN} are perpendicular to each other. Then

the equations (A.7) are simplified into

(
−G Λ3

E2G2
+
λ
(0)
2

λ
(0)
1

)
x
(0)
,1 = 0,(

−E Λ3

E2G2
+
λ
(0)
1

λ
(0)
2

)
x
(0)
,2 = 0,

(A.8)

where the relation ∆ = EG is used. Subsequently, the growth functions λ
(0)
1

and λ
(0)
2 are solved as follow

λ
(0)
1 =

√
E, λ

(0)
2 =

√
G, (A.9)

where the growth functions λ
(0)
1 and λ

(0)
2 just represent extension or shrinkage

along the coordinate curves {θα} on Sr.
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Second, we consider all components of S(1) in (A.6) are zero

(
−λ(1)1 λ

(0)
2 + λ

(0)
1 λ

(1)
2 + Λκ1

)
λ
(0)2

1

x
(0)
,1 −

Λ2

∆
x
(0)
,2 × x(2)

+
Λ4

∆5/2

(
Nx

(0)
,1 −Mx

(0)
,2

)
+
λ
(0)
2 (∆Λ,1 − Λ∆,1)

∆2λ
(0)
1

xN

−
Λ
(
κ2Λ

2 + p(1)∆/(2C0)
)

∆2
Gx

(0)
,1 +

λ
(0)2

2

∆
xN,1 = 0,(

λ
(1)
1 λ

(0)
2 − λ

(0)
1 λ

(1)
2 + Λκ2

)
λ
(0)2

2

x
(0)
,2 +

Λ2

∆
x
(0)
,1 × x(2)

− Λ4

Q5/2

(
Mx

(0)
,1 − Lx

(0)
,2

)
+
λ
(0)
1 (∆Λ,2 − Λ∆,2)

∆2λ
(0)
2

xN

−
Λ
(
κ1Λ

2 + p(1)∆/(2C0)
)

∆2
Ex

(0)
,2 +

λ
(0)2

1

∆
xN,2 = 0,(

−Λt1
∆
− p(1)/(2C0)

)
xN + Λx(2)

+
Λ2

∆3

[
(∆Λ,1 − Λ∆,1)Gx

(0)
,1 + (∆Λ,2 − Λ∆,2)Ex

(0)
,2

]
+

Λ3

∆2

(
xN,2 × x

(0)
,1 − xN,1 × x

(0)
,2

)
= 0.

(A.10)

With (A.9) and ∆ = EG, (A.10)3 is automatically satisfied and (A.10)1 and

(A.10)2 have the following form
−
(
EN +G

(
2L− E (2κ1 + κ2) + 2

√
Eλ

(1)
1

)
+ E
√
Gλ

(1)
2

)
x
(0)
,1 = MEx

(0)
,2 ,

−
(

2EN +G
(
L− E (κ1 + 2κ2) +

√
Eλ

(1)
1

)
+ 2E

√
Gλ

(1)
2

)
x
(0)
,2 = MEx

(0)
,1 .

(A.11)

To ensure the holds of Eqs. (A.11), we need to set M = 0, which together

with F = 0 ensure that the coordinate curves {θα} formulate the orthogonal

net of curvature lines on the target surface St. Subsequently, the growth
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functions λ
(1)
1 and λ

(1)
2 are obtained as follow

λ
(1)
1 =

(
κ1 −

L

E

)√
E, λ

(1)
2 =

(
κ2 −

N

G

)√
G. (A.12)

It can be seen that the growth functions (A.9) and (A.12) are coincident with

the results obtained in section 3.1.

Appendix B. Discussion on the evolution paths of the growth

functions in numerical simulations

In the numerical simulations introduced in section 4, the growth func-

tions in the growth tensors are incorporated as the state variables in the

UMAT subroutine, which change gradually from 1 to the target values dur-

ing the growing processes. Accompanying the change of growth functions,

the growth-induced deformations of the shell samples are simulated. Intu-

itively, one may adopt the linear interpolations of the growth functions from

1 to the target value during the whole time regime t ∈ [0, 1]. However, this

default evolution path of the growth functions may cause excessive residual

stresses in the shell samples and lead to the instability phenomena. To solve

this problem, we can modify the loading path of growth field Gt such that

the residual stress can be suppressed in the growth process. To tackle the

problem of instability, one possible approach is to divide the whole growing

process into several stages. During each stage, the target shape of the shell

or the change of the growth tensor can be prescribed properly, such that the

desired deformation of the shell sample are realized. By selecting different

evolution paths of the growth functions, the final shapes of the shell sample

may be different.
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As an illustrative example, we reconsider the generation of the apple

surface through differential growth. The parametric equation (70) of the

apple surface is modified into

x(0) = 8 cos θ1 sin2

[
bπ(θ2 − 2)

4

]
,

y(0) = 8 sin θ1 sin2

[
bπ(θ2 − 2)

4

]
,

z(0) = 6 sin

[
bπ(θ2 − 2)

2

]
,

(B.1)

where b is a parameter to control the shape of the target surface. When b = 1,

the parametric equation (70) of the apple surface can be recovered from Eq.

(B.1). For the purpose of demonstration, we consider three evolution paths

of growth functions (cf. Fig. B.1). In path 1, the growth functions λ1 and

λ2 change linearly from 1 to those values given in Eq. (70). In paths 2 and

3, we select some intermediate points during the time regime 0 ≤ t ≤ 1, such

that the whole growing process into several stages (two stages in path 2 and

six stages in path 3). The values of the parameter b at these intermediate

points as specified as that shown in Fig. B.1. With the given value of b, the

target shape of the shell in each stage can be determined from Eq. (B.1),

then the change of growth tensor (or growth functions) in each stage can also

be determined. Corresponding to these three evolutions paths, the simulated

final shapes of the shell sample are also shown in Fig.B.1. It can be seen that

the growth-induced deformation of the shell sample depends on the evolution

paths. If the whole growing process is divided into more stages, the desired

shape of the shell sample can be generated.
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Path 1

Path 2

Path 3

Initial 

shape

Final 

shape

Figure B.1: The three evolution paths generated by setting the values of parameter b at

some time points, and the corresponding configurations of the shell sample at the end of

the growing processes.
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