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Abstract

In this paper, we present a model for a serial robotic system with flexible
joints (RFJ) using Euler-Lagrange equations, which integrates the oscilla-
tory dynamics generated by the flexible joints at specific operating points,
using a pseudo-Ornstein-Uhlembeck process with reversion to the mean. We
also propose a Stochastic Flexible - Adaptive Neural Integrated System (SF-
ANFIS) to identify and control the RFJ with two degrees of freedom. For
the configuration of the model, we use two adaptive strategies. One strat-
egy is based on the Generalised Delta Rule (GDR). In contrast, a second
strategy is based on the EDA-MAGO algorithm (Estimation Distribution
Algorithms - Multi-dynamics Algorithm for Global Optimisation), improv-
ing online learning. We considered three stages for analysing and validating
the proposed SF-ANFIS model: a first identification stage, a second stage
defined by the adaptive control process, and a final stage or cancellation of
oscillations. Results show that, for the identification stage, the SF-ANFIS
model showed better statistical indices than the MADALINE model in con-
trol for the second joint, which presents the greatest oscillations; among those
that stand out, the IOA (0.9955), VG (1.0012) and UAPC2 (-0.0003). For
the control stage, The SF-ANFIS model showed, in a general way, the best
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behaviour in the system’s control for both joints, thanks to the capacity to
identify and cancel oscillations based on the advanced sampling that defines
the EDA algorithm. For the cancellation of the oscillations stage, the SF-
ANFIS achieved the best behaviour, followed by the MADALINE model,
where it is highlighted the UAPC2 (0.9525) value.

Keywords: Adaptive Neural Fuzzy Integrated Systems (ANFIS),
Stochastic Model, System Control, Robotics, Ornstein—Uhlenbeck (OU)

1. Introduction

Robots and humans have increased their interaction more than ever in
the last few decades. It is indeed common to have shared spaces where this
interaction takes place for multiple purposes and goals, these being, e.g.,
the use of robotic tools in precision surgery [1, 2|, intelligent transportation
[3, 4], cognitive sciences [5, 6], ambient assisted living [7, 8], etc., and for this
reason precaution measures must be taken to minimise the risk of physical
contacts [9, 10]. A great deal of research is currently undertaken to facilitate
human-robot interaction, and communication [11, 12] to avoid the risk of
misinterpreting a command and involuntarily causing damage. However,
even more attention is being paid to the hardware side, and specific materials
are employed to produce the so-called Robots with Flexible Joints (RFJ),
often integrating also passive protections in their links to minimise collision
damages [10].

The classic approach of using mathematical, phenomenological or semi-
physical models based on forces, inertias, and energies [13, 14] is successful
when the kinematics of the robots are simple but are currently being over-
come by more modern approaches that can be efficiently used to describe
complex systems without having the burden of checking applicability hy-
potheses of existing mathematical models of designing new ones. Several
examples of this can be found in the scientific literature. In [15] an optimi-
sation algorithm is used to train a neural system to approximate the kine-
matic model of robotic arms, while a recurrent fuzzy wavelet neural network
is employed in [16] for controlling industrial robot manipulators. However,
RFJs are often characterised by multiple disturbs jeopardising their stability
and operational accuracy [17, 18]. These cannot be easily eliminated with
off-the-shelf methods and require combining multiple Computational Intelli-
gence (CI) tools to remove and provide robust control.



The remainder of the paper is organised as follows: in Section 2 and 3, we
review the literature that discusses the theoretical foundations for modelling
complex systems. In Section 4, we explain the experimental results achieved
by the proposed model. We analyse the results in Section 5. Finally, in
Section 6, we present a series of conclusions and recommendations to continue
developing this research.

2. Literature review

The presence of oscillatory disturbs in RFJs makes it challenging to sta-
bilise these robotic systems, mainly due to the stochastic nature of these
undesired inputs. For this reason, apart from specific cases, e.g. [19], clas-
sic deterministic approaches often fail at minimising their disruptive effects,
and self-adaptive heuristic models are therefore being investigated. Given the
success obtained by employing CI paradigms to fine-tune [20], optimization
models [21], minimise disturbances [22] and control the dynamics of robotic
structures [23, 24], in the last decade researchers have explored various CI-
based methods also for dealing with RFJs. That is the case of [25], where
the authors use two Neural Networks (NN) to identify the dynamic system,
one each for the "fast” (active response) and one for the "slow” (passive
response) phenomena.

In this sense, some approaches attempt to improve the learning process in
neural models used to identify and control complex systems with stochastic
behaviours [26, 27].

Three works, in particular, show the different adaptive processes to im-
prove models’ learning with fuzzy neural structures. The first one is an ap-
proach that includes Estimation Distribution Algorithms (EDA) as a main
stochastic algorithm to optimise the learning in the identification of stochas-
tic systems [28, 29], an Adaptive Neural Fuzzy Integrated Systems model,
that use a Particle Swarm Optimisation (PSO-ANFIS) to design dynamical
Adaptive Neural Fuzzy Integrated System (ANFIS) structures for identi-
fication and modelling complex systems [30, 31], and to identify complex
stochastic systems using large ordered linear neural networks, maintaining
the balance between accuracy and low computational cost [32]. The second
approach is an algorithm that allows optimising the membership functions
and fuzzy rules in a canonical ANFIS model as presented in [33]. The last
method, shown in [34], established a novel methodology to model random
perturbations in wind power plants using an Orstein Ouhnlembeck stochas-



tic model. These works focused on modelling the stochastic process using
ANFIS structures supported by different learning methods and techniques,
improving the stability in controlling dynamic systems with stochastic be-
haviours.

Other approaches look at the stability and control of complex stochas-
tic systems, both with NN and with Fuzzy Systems as in [35, 36] respec-
tively. Accordingly, [37] presents an adaptive neural controller for complex
systems with unknown stochastic disturbances, where the system’s stability
was achieved using a state-feedback controller based on a Lyapunov func-
tion. Dynamic Fuzzy Stochastic Neural Network models for non-parametric
identification using vibration data can overcome the limitations imposed by
the imprecision in the sensed data using fuzzy concepts as in [38, 39]. In
[40] the authors aim to tackle the neural robust tracking control problem for
a class of nonlinear systems using an adaptive critic technique. The main
contribution is an NN-based tracking control scheme integrating matched
uncertainties. Another study developed a Self-Evolving Function-Link Inter-
val Type-2 Fuzzy Neural Network (SEFT2FNN), where the rules and mem-
bership functions were obtained autonomously following the behaviour of a
complex system [41].

Following on the fuzzy sets in a SEFT2FNN model, [42] presents a robust
adaptive control for nonlinear systems using non-triangular fuzzy sets, where
the behaviour of the system and their stochastic disturbances are unknown.
The results show the convergence of the model towards minor probability
errors. Relating the stability of Stochastic Fuzzy Neural Networks with pa-
rameter uncertainties, [43] proposes a new mean square exponential stability
condition in a control process. Looking at these recent publications, the
use of different Adaptive Fuzzy Neural models to improve the stability in
complex systems with stochastic behaviour becomes apparent. The common
element includes fuzzy systems enabling the use of linguistic variables in the
control of complex processes.

Regarding this research, we propose a Stochastic Flexible Neural Fuzzy
Integrated System (SF-ANFIS) to identify and control an experimental serial
RFJ with two degrees of freedom with brand Quanser as shown in Figure 1.
We model the serial RFJ system using Euler Lagrange equations, integrating
the oscillatory dynamics generated by the flexible joints in particular oper-
ational points (e.g. where a change of direction occurs or at the stopping
points [44]). The effect of the oscillatory dynamics was modelled using a si-
nusoidal signal, configuring a novel methodology to model complex coupled
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systems with stochastic behaviours. To identify the serial RFJ, we use two
flexible versions of an ANFIS model, integrating an Ornstein Ouhlembeck
(OU) stochastic process with mean reversion to cancel the disturbances or
the oscillatory dynamics setting the SF-ANFIS model.

One SF-ANFIS version is created using Generalized Delta Rule (GDR)
learning. In this stage, the model was evaluated using two neural models:
a Multi Adaptive Linear (MADALINE) model [45] and a Fuzzy Stochastic
Neural model [39)].

We evaluated our proposal using the SF-ANFIS model mentioned above,
including a controller based on a Self Tuning PID structure as proposed by
[46]. The SF-ANFIS model achieved the best results in the identification and
control stages. It resulted in a lower persistence of the disturbances around
the SetPoint in specific operational points in the control process. In this
way, the stability in the control process was achieved by the ability of the
model to cancel disturbances using an integrated OU process, configuring an
integrated novel model to control complex coupled systems with stochastic
behaviour, as inherent in Serial REJ systems.

3. Framework for Identification and Control of RFJs

Control of RFJs has gotten attention due to their complexity and real-
world application. In general, the RFJs include harmonic drivers to reduce
velocity, but it induces torsional elasticity with complex oscillations on the
robot joints [47]. For this reason, this paper covers two significant areas of
knowledge: one topic focused on typical identification procedures for complex
systems and a second focused on the control of stochastic systems that defines
the dynamics of RFJs.

3.1. Typical Identification Procedures

In this field of knowledge, two strategies, in general, are used to perform
the identification of dynamic systems.

A first strategy, or offline estimation, is based on controlled tests where
the system is excited with specific signals, and the outputs are measured.
In [48], for example, these offline strategies are used to perform the identifi-
cation of dynamic systems based on grey-box models and phenomenological
principles, which makes them ideal for the design of controllers with fixed
structures due to the low variation of the parameters in terms of the time.



The second strategy, or online identification, is where the parameters of
the mathematical models are adjusted so that the behaviours become more
accurate in representing a real system, which is usually used to perform adap-
tive control tasks as well by estimating parameters. In the literature, different
studies support this strategy; for example, in [49] the authors propose the
design and testing of disturbance observers to identify online constants of the
springs in a coupled-masses system for applications in flexible joint manipula-
tors. The main complexity in the dynamics of these manipulators’ topology
is the passive behaviours and the accumulation of energy as a function of
joint position variation.

Therefore, it is necessary to identify closed-loop dynamics to ensure that
the robot has an optimal reference input to execute the identification pro-
cedure correctly. A second paper shows the use of Weighted Least Squares
(WLS) and Maximum-Likelihood (ML) techniques to estimate the values for
the parameters that define robot dynamics; as well as the noise variance es-
timation to obtain a suitable weight matrix for the WLS estimator [50]. A
final paper shows the identification of parameters online for robots using PID
decentralised controllers to generate the control inputs, which further rein-
forces the importance of online identification methods for complex systems
[51].

3.2. Control Strategies for Flexible Joint Manipulators

Conventional control methods are generally insufficient to adapt to time
variations of the parameters in RFJs [52]. However, it must also be clear
that the adaptive control structures depend on the identification process,
which carries a high computational load. In this way, [9] presented a histor-
ical comparison of control systems used in RFJs since the 80’s. This paper
shows that one of the significant challenges in controlling flexible joints is the
variability of the functions for different trajectories and payloads of the end
effector. Control structures that fix function parameters have been proposed
to tackle this problem. One of the control techniques commonly used is feed-
back linearisation based on Linear-Quadratic Regulator (LQR) controllers.
It is even implemented into educational platforms, as in the case of the two
Degrees of Freedom (DoF') serial flexible joint robot manipulators developed
by Quanser [53] (Figure 1). Among the fixed control structures, we can con-
sider works such as the one developed by [54], which focuses on experimental
offline identification to apply computed torque techniques and minimisation
of the effects of Friction Compensating Torque (FCT).
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Figure 1: Quanser Robot with two Degrees of Freedom (DoT)

The problem of fixed control structures lies precisely in considering the
potential variations of flexible robot dynamics regarding load variations or
trajectories, specifically in systems with non-linear behaviours. [55] shows
the use of adaptive controllers based on decoupled structures for optimal
control, among which the LQR controllers also stand out, where the main
goal is to tune the gains of the controller to adapt it in terms of different pay-
loads attached to the manipulator. This study attempt to solve the problem
of direct adaptive control for endpoint trajectory tracking for a lightweight
robot under various loads with minimum computational effort. As in the
previous section, the development of controllers that adapt to the behaviour
of systems based on the inertia of dynamic systems is an important problem
for RFJs control, which reinforces the concept of online identification and
control

4. Methodology

One of the most important issues in identifying and controlling complex
systems, such as RFJs, is the coexistence of coupled dynamics with stochastic
responses and configuring these systems as Stochastic Robots with Flexible
Joints (SRFJs). These systems require general adaptive models with flexible
structures to better understand their behaviour. For this reason, we present
an SF-ANFIS model for online identification and control of SRFJs (Figure
1), for which the following methodology is proposed.



4.1. Ezxperimental Setup

For the development and evaluation of the proposed SF-ANFIS model, an
RFJs from the Quanser series was selected as a case study (Figure 1). In the
first stage of the experimental study design, we proceed with the modelling of
the system using the Euler-Lagrange equations and the Simulink® platform
(Figure 2), considering two integrated dynamics: a first dynamic (active
dynamic) which describes the general behaviour of the joints that make up
an RFJs (1 — joint, 2 — joint); and a second dynamic, which represents
the behaviour of the joints in Operating Point where the system Changes of
Direction (OPCDs).

In a second stage of the experimental study design, we identified the
SRFJs system using the proposed SF-ANFIS model. For the configuration
of the model, we use two adaptive strategies. One strategy is based on
the Generalised Delta Rule (GDR), while a second strategy is based on the
EDA-MAGO algorithm [28]. Two adaptive identification models were used
to evaluate the SF-ANFIS model against the identification: a MADALINE
model as a generalised multilinear reference model [45], and a Fuzzy Stochas-
tic Neural Network as a reference to model oscillatory dynamics [39]. At
this same stage, aiming to evaluate the performance of the proposed model
against the SRFJs online control, we implemented an additional Self-Tuned
PID Control as an advanced model for controlling complex systems [46].

The performance of the SE-ANFIS model at both the identification and
the control stages was made using a fuzzy model proposed by [56]. This model
integrates seven statistical metrics to evaluate the behaviour of models by
adaptation against error about the SetPoint (SP). In the final stage, a subset
of these statistical metrics was used to evaluate the cancellation of oscillations
in OPCDs.

4.2. Dynamic Modelling of the System

Based on the RFJs’ structure (Figure 2), one dynamic is defined by the
movements of the joints in a wide range of operations (main dynamic), while
the flexible joints generate the second dynamic in OPCDs, points at which
the system becomes oscillatory. This makes RFJs into stochastic robots
with flexible joints (SRFJs). The main dynamic is modelled by the Lagrange
equation as defined in Annex 1 (7) [57]

Eq.(1) and (2) describe the behaviour of the main dynamics



Figure 2: Serial robot with two articulations (main dynamic - main subsystem).

T = (mllfl + mal? + mglf2 + 2molyle, cos (q2) + I + 12) g1+
+ (m2l§2 + malyle, cos (q2) + [2) G2 —
— 2malil,, sin () 4o — malile, sin (q2) ¢5 +
+ (mule, +moli) gsin (q1) + magle, sin (1 + g2) + fipdr, (1)

To = (m2l32 =+ mglllw COs (QQ) + IQ) (jl +
T (mglzz + ]2) C.jg + mQIllCQq'% sin (QQ) +
+ magle, sin (g1 + q2) + f25Ge, (2)
where §¢; and ¢y are the second derivatives of ¢; and ¢, respectively; g is
the gravitational constant; mj,ms are the mass of the joints (kg); I, (e,
are the centre of mass for each joint (m); l1,ly are the length for each joint

(m); q1,q2 € [—g, ﬂ are the angles for each joint (rad); g1, ¢e their angular
velocities; Iy, Iy are the momentum for each of the bars (kg.m?); 71,7 are
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the torque for each joint (N.m); and fiy, for are the viscosity coefficient for
each Joint (N.m — seg). These signals are defined in the Table 1. Signal 1:7,
and Signal 2:175 determine the active dynamics of the SFRJs system, while
Signal 3 and Signal 4 represent two delayed sinusoidal signals to activate
the OPCDs’ dynamics or passive dynamics. The constants, parameters, and
variables are defined in Annex 2 (8) at the end of this document.

Table 1: Identification Signals - System Identification

Signal | Amplitude (4) | Frequency (rad/s) | Time Delay (ms)

1 /4 0.01-2-7 0
> /4 0.015-2 -7 0
3 /4 0.01-2-7 12.500
4 /4 0.015-2 -7 8.333

According to Euler-Lagrange equations, the oscillatory dynamics are de-
fined by the compression of the springs in OPCDs, stopping points, or by
the effect of the whole system’s inertia or collisions. These dynamics can be
expressed assuming independence between oscillations in each joint. In this
way, the oscillatory dynamics can be described as in Annex 1 (7).

Figure 3 shows the overall response of the SRFJs system. Here, it can
be seen that the cross-point between Signal 1 and Signal 3 (1 — joint),
and Signal 2 and Signal 4 activate the passive dynamics in OPCDs (system
disruption). Integrating the aforementioned dynamics (e.g. main dynamic
- OPCDs) allows the creation of a novel modelling methodology for oscilla-
tory dynamics, tackling the stochastic complex systems using Euler Lagrange
equations in modelling SRFJs [44, 58]. The identification and control process
was defined for 400 seconds, while the sampling was defined by the hardware
that supports the Quanser robot (2ms).
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Figure 3: Oscillatory Dynamics - 1-joint - 2-joint. The green line, ysi_ou, represents the
overall system response for /;. The blue line, ysi_DA, represents the delayed sinusoidal
signal that activates the passive oscillatory dynamics at the OPCDs. The crossover point
between the signals that determine the start of oscillatory dynamics is represented by the
red line - OUP

Figure 4 shows the overall system response for [;. As can be seen, and
according to Eq. (45), a higher amplitude of the delayed signal after the
crossover point generates a greater magnitude and persistence of the oscilla-
tions due to the effect of higher torsional inertia in OPCDs.
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Oscillatory Dynamics - Joint 1
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Figure 4: General response of 1-joint for sinusoidal signals - activation of the passive
dynamics. The green line, ysl_ou, represents the overall system response for /. The blue
line, ys1_D A, represents the delayed sinusoidal signal that activates the passive oscillatory
dynamics at the OPCDs. The crossover point between the signals that determine the start
of oscillatory dynamics is represented by the red line - OU P

4.8. SF-ANFIS Model
The structure of the proposed SF-ANFIS model is described in the fol-
lowing sections.

4.3.1. General Structure of the Identification Model - Main Dynamics

According to the subsystems that make up an SRFJs model, the structure
of the proposed SF-ANFIS model without oscillatory dynamic is denoted and
defined by Eq. (3) [59]

Mo Ny
Yrige = Z Z by j (crjizin), (3)
j=1 i=1
where yr;; is the output value for the [ — joint, I is the number of joints
(I = 1,2), j is the number of membership functions (j = 1,2,3,...,n,),
i is the is input value (i = 1,2,3,...,n;), ¢;; is the output combination
supports, k are the time instants (ms), x;; the input array that describes
the system dynamics (Eq. (7)), and hng; is the normalised j-membership
value, as in Eq. (4)

(4)



with S;,, the consolidated sum of the j-membership values for i-joint (Eq.
(7)), and hy; the j-membership value given by Eq. (5)

e S
5J

where X ;; is the j-membership function, 7 is the input variable for the
l-joint, and D, ; the size of a j-membership function.

T = [$11k7$2,k,...$i7k7...] (6)
= [9117 q12, - - -, Q1,np1, €115 €125 - - -, €1 npas Uk, G215, 422, - - -
-5 42np3; €21,€22, - - 5, €2 npy, ul,k]a

with ¢; ., the angle for the I-joint taking as reference np delays; np;, np, the
numbers of delays for ¢1,p,; G2.nps; €1.nps,€2.np, describe the error regarding
the SP for the [-joint; npy, nps the number of delays for error; & is the discrete-
time variable; and u; is the signal of the control of [-joint.

The number of delays can be obtained from the auto-correlated, and par-
tial auto-correlated analysis for each angle using the Box and Jenkins method-
ology [60].

Finally, S;,, the consolidated sum of the j-membership values for [-joint
could be found by Eq.(7)

Sin =Y hu;. (7)
j=1

For the particular case of this coupled system (SRFJs), the SF-ANFIS
model will take the structure of a coupled auto-regressive media average

process
C' — ARM A (np1,npa, nps, nps) -

4.8.2. General Structure of the Identification and Control Model
The SF-ANFIS model for the identification and control of complex stochas-
tic systems can be expressed as in Eq. (8)

Yrig = Z (Z ]ml,le,j> + Lowy;, (8)

j=1 \i=1
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with L;; is the internal structure that represents the active dynamics of the
system (Eq. (9)), and Low; ; the set of [-stochastic processes for cancellation
of oscillations due to the effect of passive dynamics (Eq. (10)).

Lij = i, (9)

Louy; = f (gqs1) qouy, (10)

where f(gs;) is a bi-valued function to activate the passive dynamics (Eq.
(12)), and gou j , represents the discretized OU process with mean reversion.
Formally, an Ornstein-Uhlembeck process describes the velocity of a cloud
of Brownian Particles under the influence of friction over time. This process
tends to drift towards its long-term mean, i.e. mean-reversion. In general, the
OU process can be considered a modification of random walk in continuous
time, a Weiner process, and a continuous version of the discrete-time AR(1).
The oscillatory dynamics are denoted and defined as in Eq. (11) [61]

qouy i = qouyjk—1 + 60 (SP — qou j k1) .Ak + 01.4/ Ak.randn, (11)

with 6; the rate of reversion to the mean or SP for [-joint, SP, the SetPoint
for I-joint, o; the amplitude of oscillations for I-joint, and v/Ak.randn the
persistence of the oscillations in OPCDs based in a slow Wiener process. The
random values are defined by the distribution A/ (0,1). Finally, the function
f (gs1) is defined by Eq. (12)

1 sl >= SP,
Flasy={ L lasl >=SP (12)
0 g <SP

where ¢s; represents the crossing point between sinusoidal input signals (Sec-
tion 4.2).

4.8.8. Identification Process - Active Dynamics

The configuration of the proposed SF-ANFIS model in the stage of Active
Dynamic (f (¢s;) = 0) is defined by the GDR, which is represented by the
Eq.(13), (14), and (15) [45]

2
. a6171971 1
CLjik = Cljik-1— Uz — (13)
8cl,j,i,k71
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2
861,k-1

XCijip = XCrjip = m5m™—— (14)
Grisk—1
ae%kq
Dijp = Dijp1 — g tbl 15
ik = Drjk-1 = ogm = (15)

where a; is the learning factor and ef, is the mean square error for each
l-joint given by Eq. (16)

1

ey = 5( dig — ysie)” (16)

with yd;, the SP or reference angle for [-joint and yr;; the response of the
[-joint subsystem identification model.

According to the structure that defines the SF-ANFIS model, Eq. (17),
(18) and (19) allow for the updating of the model structure

Cljik = Cljik—1 T Cu€ ki Tk, (17)
h‘k ”L"k—XCl“k
J» i, Jyik—1
XCujik = XCljik-1 + e o= > Ly, (18)
Sl,n Uj,k
hiw (5 (XChiin — in)
sk Ljsik — Tik
Dyje = Dijr—1+ qierpg— | = Ly;. (19)
S 2
In 05k

Importantly, the passive structure of the model, Lo, ;, only intervenes
in the cancellation of oscillations in OPCDs as an independent term within
the control process.

4.8.4. Adaptive Stochastic Control

According to the structure of the SF-ANFIS model (Eq. (8)), the model
integrates into a single structure two algorithms, one based on the GDR for
the control of active dynamics, while for control and stabilisation in OPCDs,
the model integrates an EDA based on Multi-dynamics Algorithm for Global
Optimisation (MAGO) [28].

In general, the adaptive stochastic control for the active dynamics is de-
fined by the GDR (L;;, f(¢s:) = 0), and is denoted and defined by Eq.
(20)

15



U = Upp—1 — Pl —, (20)

where v, is the signal of control for the I-joint, and p; is the stability factor.
Eq. (20) can be rewritten as Eq. (21)

h; Tyt — XCi s
3,k u,k L,g,u,k
ug = g1+ peeo— | ——— | Lij + peiphng Loy, x + Loy,

Sl,n 035wy k

(21)
with @, ; the component of signal control, X ;,, » the j-membership value
for u; control signal. It is important to emphasise that the term passive Lou ;
only intervenes for the cancellation of the oscillations (f(¢S;)) =1). Lux
is the control component related to SF-ANFIS output that can be defined
according to Eq. (22)

8a:k
Ly = Cl,j,i,k%- (22)
The active part of the control can be expressed as in Eq. (23)
hi [ @y — XCpiy
Loty = SL’}C (M) Lij+hn;Ly, . (23)
In O_j,ul,k:

4.83.5. Passive Control Stage - Oscillatory Dynamics

The passive dynamics is defined by oscillatory dynamics, which is acti-
vated by a crossing point between two sinusoidal delayed signals as shown
in Figure 4 and defined by the Eq. (45). The amplitude of the sinusoidal
delayed signal (Signal 3, Signal 4 ) represents the magnitude and persistence
of the oscillations in the OPCDs (f (¢s;) = 1). In this stage, the control has
the structure defined by Eq. (24), according to the SF-ANFIS structure.

gk = U k—1 + preig- (Laets) + Loy j. (24)

The parameters that define a j-stochastic process (Eq.(11)) will be config-
ured dynamically using an EDA inspired in a MAGO model [28]. According
to the general structure of the Low ;, the structure of individual is denoted
and defined by Eq.(25)
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xIl:[Pu, P21, 91,17 01,1, 02,l> 02,1}7 (25)

where xp are the components or gens that defines the whole j-stochastic
process ((xr; ~ N (0,1)), and p; represents the strength in the cancellation
of the oscillations for [-joint. For the stabilisation of the system in this stage,
the evolutionary model starts with a uniform random distribution population
with n; individuals or solutions. The fitness function (f) that defines the
quality for each individual is defined as in Eq. (26)

f kou
- nd 9
k=1l

(26)

with kou the scaling constant to avoid the explosion of decimals, and nd
the number of data that make up the window for modeling the oscillatory
dynamics.

The evolutionary model that transforms the possible solutions or individ-
uals is performed by creating new individuals from three operators: Emergent
Dynamics, Crowd Dynamics, and Accidental Dynamics. For this control, the
two first dynamics were used to stabilise the model in real-time. The first
operator is responsible for creating and selecting an elite or the best individ-
uals in agreement with the f. The creation of a new individual using this
operator is defined as in Eq. (27) [28]

o9 = b D (o0 _ g0, o)
where x(lkl) is a new ¢ individual for the A-window, xg,:l) is the best individ-
ual), and xglz;l) is the average individual. Regarding F*~1), represents the

current relations between the individuals (e.g., Index of Agreement). The
F®=1) relationship is defined by Eq. (28)

ey _ S
S FC =
where S*~1) is the sample covariance matrix of the individual’s population
in the £ — 1 instant and ||, || is the norm operator.
The second operator used to stabilise the system is defined by Crowd Dy-
namics. This operator has the role of exploring the space of solution around
the population’s mean, avoiding the dispersion of solutions and compressing
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the eik ~ 0. The creation of new individuals in the Crowd Dynamics is de-
fined by sampling from a uniform distribution in the hyper-rectangle given
by Eq. (29)

LB uBM], (29)

with LB = 2®) —\/DS® for the m-th individual; UB" = a{¥) +1/DS";
and DSZ.(k) is the dispersion vector for each i gen in the population of n
individuals, given by Eq.(30)

Ds® — [ps{” psi ... DS (30)

The evolutionary stabilisation process in the passive learning stage is
defined by the Algorithm 1.

Algorithm 1 Multi-dynamics algorithm - Oscillatory dynamics

1: Initiation of the passive learning - operational point with the change of
direction

2: Initial population - random sampling

3: Evaluate each individual in agreement with the fitness function

4: repeat

5. k1=0

6: repeat

7 Select the best individual in agreement with the fitness function
8: Calculate the sample co-variance matrix S*v)

9 Modify the best individual in agree with the Eq.(29)

10: Create a new individual from a distribution [LBi(k), U Bfk)} .

11: Select the best individual, and eliminate the worst individual from
the population.

12 kl=k1+1

13: until k1 <= 10

14: until ending the oscillatory dynamics.

4.8.6. Study Case - SF-ANFIS Adaptive Control
According to the general structure of the SF-ANFIS model, and in agree-
ment with the Box and Jenkins methodology [60], the proposed model can be
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represented in a basic form as a coupled ARMA model or C—ARM A(npy, nps,
p3,npy) model, where the np;, nps values represent the auto-regressive be-
haviour of the system (auto-regressive degree). In contrast, the nps,nps
values represent the number of times to cancel the oscillatory dynamics de-
fined for each I-joint (error degree). For this specific study case, the structure
of the model is defined as a C — ARM A(1,1,1, 1), where the structure of the
input vector can be expressed as Eq. (31)

T =gk €k Uk Qo €2k Uk f(gs1)qourk f(gs2) qousy], (31)

where the vector xj represents the input values for the angles (¢1 x, ¢2x), the
errors with regard to the SP or reference operation (e x, €2), and the oscil-
latory dynamics (qouy k, gous ) for each l-joint. Table 2 shows the fuzzy sets
that make up the linguistic variables for the angles (X, x, 01;), and the
fuzzy sets that make up the linguistic variables for control signals (X, k,
Ojuik)- In general, the linguistic variables are defined by the operating angles
of the system ([—2m, 27]).

Table 2: Fuzzy sets that define the input variables for each j-joint

‘ Min ‘ Very Low l Low ‘ Medium ‘ High ‘ Very High ‘ Max

XCpj:k | -0.78 -0.31749 -0.14064 | -0.02799 | 0.13933 0.36400 0.78
01,4,k 0.31968 0.14475 0.13998 | 0.19599 0.32033

XCy gk | -1.2 -0.48928 -0.22295 | -0.02691 | 0.15265 0.38341 1.2
Oy ik 0.48852 0.23118 0.18779 | 0.20516 0.52367

Figure 5 and Table 3 shows the whole behaviour after 13 secs. of oper-
ation. Table 3 also shows that the oscillatory dynamics is active for 2-joint
(f(gs1) = 1, gous, = 0.0116), due to the oscillations that presents with regard
the SPQJC.
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Figure 5: System status after 13 secs of operation for 1-joint and 2-joint

Table 3: System behaviour

Input Variables - System Behaviour

q1,k U1,k €1,k f(%l) qou k
0.52230 | 0.53830 | -0.03583 0 0.02346
g2,k Uk €2k f((Jsz) qous
0.89430 | 0.12670 | -0.01363 1 0.0116

In the first stage of control implementation, we proceeded to gener-
ate a total of 5-membership functions taking as a reference the number
of input variables according to Table 3, the structure of vector x and
C—ARMA(1,1,1,1). These j-memberships were randomly generated based
on the values shown in Table 2.

The output values associated with each of the j-membership functions

(hjx) and their subsequent normalisation (hn;j) can be expressed as in Eq.
(32) and (33)
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1 (XCjik—mig\”
hjs = exp (—2 (Fu=m) ) (32)
J5t

0.89640 0.23021
0.76228 0.19577

hig= | 0.92067 |  hn;, = | 0.23644 | . (33)
0.77806 0.19982
0.53629 0.13773

The output value estimated for each joint according to the structure of
the model can be expressed as in Eq. (34)

Li; = crjikTik, (34)

where ¢; 5, is an array of uniform random numbers generated in the interval
[—1,1]. The final parameters used for the first stage are shown in Eq. (35)

0.56180 0.57251 0.01071
Lo = { 0.58943 } 5P = [ 0.73958 ] ) Elk = [ 0.15015 ] ' (85)

For the cancellation of oscillations in the second stage, we proceeded
with the creation of possible solutions or individuals according to MAGO
algorithm (Eq.(27)). Table 4 shows, as an example, two individuals created,
individual 1 (I;) and individual 2 (I5). According to the emergent dynamics,
we can create a new individual, I 2, from these two individuals. This exact
procedure applies to all the individuals created at this stage.

Table 4: New individual - Emerging dynamics (F*~1) = —0.78488)

Ind[ [ P [ 6 2 02 | oo | f
I —0.04572 | —0.05135 | —0.08105 | 0.00709 | —0.00120 | 0.09885 0.39155
Iy 0.03784 0.04906 0.03211 0.02320 | —0.09113 | —0.09955 | 3.47947
I | —0.02775 | —0.02875 | —0.05671 | 0.01055 | —0.02054 | 0.05617 | 2.78956

In the third stage, we proceeded with updating the control signals. For
1-joint (f (gs1) = 0) the update was carried out taking as reference the Eq.
(26), resulting in Eq. (36)
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Uy = Ul,k—1+ﬂ1€1,k% (Iul’k QXCL““’k> Ly + prerghngLy, , + Louy jk,
N Uj,ul,k
0.0007 1" [ 0.5466
0.0106 —0.0068
0.5383 = 0.5383 — | 0.0277-0.0107 - 3.8937 - | —0.0022 | - | —0.8418 | | —
0.0015 —0.3976
0.0293 0.8093
02302 1" [ 0.3568
0.1958 0.1319
—10.0277-0.0107- | 0.2364 | - | —0.6809 | | +o0. (36)
0.1998 0.3993
0.1377 —0.7630

For 2-joint (f (gs2) = 1), the signal control update was made taking into
account the cancellation of oscillations based on the parameters provided by
the Emergent Operator (Eq.(29)) defined by the MAGO algorithm (Table 4).
The results are shown in Eq. (37)

h; Tugkk — XCo s k
Uz = Ugk—1 ‘l',02€2,kLlc ( 7 ) 20 'k> Loy + paea hnjLy,, + Loug jk
Sny, T ok '
0.0077 17 [ 0.0743
0.0291 0.2933
0.13887 = 0.12670 4 | 0.0297 - 0.0136 - 3.8937 - | 0.0058 | - | —0.5077 | | +
0.0157 —0.4325
—0.0058 | 0.6899
02302 7" T —0.5999
0.1958 0.9234
+100297-00136- | 02364 | - | 0.6978 +(0.1160 — 0.0205) -
0.1998 0.7542
0.1377 —0.5783
+(0.7396 — 0.0116) - 0.002 + 0.0100 - 0.0447 - 1.1152. (37)

22



In general, the operators grouped by the MAGO Algorithm 1 were used
randomly to update the control signals during the entire operation of SRF Js.

4.4. Experimental Evaluation

We considered three stages for the analysis and evaluation of the SF-
ANFIS model. The first stage focuses on the identification process, where
the proposed model was set up using two learning strategies: a first learn-
ing strategy based on a GDR algorithm (yr;3) [62], and a second learning
strategy based on EDA algorithm (yr;4) for modelling the oscillatory dy-
namics. In this stage, we evaluated the proposed model against MADALINE
(yri,1) and a Fuzzy Stochastic Neural Network as an adaptive reference model
for the identification of stochastic systems (yr;2) [39]. The structure of the
input array () was defined by the auto-correlation (DAC) and partial auto-
correlation diagrams (DACP) [63]. The second stage focuses on the control
process, where the SF-ANFIS model was set up using the two learning strate-
gies defined in the first stage (GDR - EDA). The SF-ANFIS proposed model
was evaluated against three different controllers, the two adaptive models
used in the identification stage (yr; 1, yri2), and an additional model based
on a self-tuning PID control (yr; prp) [46]. In the third stage, we evalu-
ated the SF-ANFIS model against the persistence and cancellation of the
oscillations in OPCDs.

4.4.1. Puzzy Statistics Model

For the analysis and general evaluation of the SF-ANFIS model in the
different stages, the fuzzy model proposed by [56] was used. This fuzzy model
integrates seven statistical metrics to evaluate the performance of adaptive
models against the error (ek;). The statistical indices are the following:
fractional bias (FB), normalised mean square error (NMSE), geometric bias
mean (MG), geometric bias-variance (VG), within a factor of two (FAC2),
index of agreement (IOA), unpaired accuracy of peak (UAPC2) and mean
relative error. This model also proposes a series of values that are additive
according to the qualities which define the statistical indices as linguistic
variables: Good 7-10 (average 8.5), Fair 4-7 (average 5.5), Over Fair (average
6), Under Fair (average 5) and Poor 1-4 (average 2.5) as shown the Eq. (38)

nmt

Score = Zq(FSi), (38)

i=1
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where i € {1,2, ..., 8} refers to the eight metrics {FB,NMSE, GBM, GBV,
FAC2, UAPC, MRE, IOA}, nmt = 8 is the number of metrics, F'S; is the
scale value for the i-metric {Good, Fair, Over Fair, Under Fair, Poor}, and
q is the value associated to each quality {8.5, 5.5, 6,5, 2.5}.

According to this fuzzy statistical model, FB shows the over and sub esti-
mation concerning an SP (SF,), and NMSE determines the normalised error.
MG shows the discrepancies of the means between the model and the SP,
VG shows the oscillations of the model around the SP, UPAC?2 shows the dif-
ference between maximum values of reference, FAC2 determines the system
variation between 80% and the 120% of the SP, IOA shows the relationships
between forms of the curves that represent the response of the system and
the SP. In contrast, MRE shows the relative error to reach the SP (SPB).

To evaluate the behaviour of the model in the cancellation of oscillations
in OPCDs, we use four statistical indices of the fuzzy proposed model: NMSE
(Normalised Magnitude of the Error), MG (Mean of Oscillations), VG (Max-
imum Magnitude of Oscillations in a similar way of NMSE), and the UAPC2,
which shows the persistence of oscillations along the time.

5. Results

We considered three stages for the analysis and validation of the proposed
SF-ANFIS model: a first identification stage or setting SF-ANFIS model, a
second stage defined by the adaptive control process, and a final stage or
cancellation of oscillations.

5.1. Identification Stage

Table 5 and Figure 6 show that the MADALINE model achieved the
best statistical indices in the stage of identification for 1-joint (yri1), among
which it highlighted the IOA (0.9975), UAPC2 (0.0006) and VG(1.0091),
followed by the SF-ANFIS model with an IOA (0.8785), UAPC2 (-0.0084)
and VG(1.0188). The SF-ANFIS response tends to be located below the
SP as corroborated by the FB (0.0400). This behaviour clearly shows that
the structure of the SF-ANFIS model ((yr14)) has to round the response by
the effect of the structure of the membership functions, which makes it ideal
for the control of complex systems with oscillatory behaviours or unstable
systems.

24



Table 5: Statistical indices to evaluate the model - Identification stage

Joint 1
yrll yrl2 yrl3 yrl4
FB 0.0217 | G | 0.0466 | G | 0.0996 | G | 0.0400 | G
NMSE | 0.0047 | G | 0.0182 | G | 0.0302 | G | 0.0131 | G
MG 1.0253 | G | 1.0569 | G | 1.1059 | G | 1.0469 | G
VG 1.0091 | G | 1.0318 | G | 1.0324 | G | 1.0188 | G
FAC2 0.9975 | G | 0.9825 | G | 1.0000 | G | 0.9900 | G
I0A 0.9511 | G | 0.8339 | G | 0.7640 | G | 0.8785 | G
UAPC2 | 0.0006 | G | -0.0003 | G | 0.0186 | G | -0.0084 | G
MRE 0.0212 | G | 0.0433 | G | 0.0863 | G | 0.0380 | G
Score 68 68 68 68
Joint 2
yr2l yr22 yr23 yr24

FB 0.0080 | G | 0.0082 | G | -0.0018 | G | 0.0067 | G
NMSE | 0.0017 | G | 0.0023 | G | 0.0025 | G | 0.0016 | G
MG 1.0065 | G | 1.0062 | G | 0.9970 | G | 1.0045 | G
VG 1.0011 | G | 1.0015 | G | 1.0037 | G | 1.0012 | G
FAC2 1.0000 | G | 1.0000 | G | 1.0000 | G | 1.0000 | G
I0A 0.9953 | G | 0.9934 | G | 0.9927 | G | 0.9955 | G
UAPC2 | 0.0001 | G | -0.0004 | G | -0.0005 | G | -0.0003 | G
MRE 0.0059 | G | 0.0055 | G | -0.0049 | G | 0.0039 | G
Score 68 68 68 68

Figure 6 shows the behaviour of oscillations in the stage of online identi-
fication. These oscillations were disappearing as the learning became more
specialised. The other statistical indices show the good behaviour of the mod-
els in this stage in agreement with the score established by [56]. Regarding
the control for 2-joint, which presents the greatest oscillations, the SF-ANFIS
(yra4) model showed better statistical indices than the MADALINE model,
among those that stand out, the IOA (0.9955), VG (1.0012) and UAPC2
(-0.0003), that show equally the tendency of the model to soften the oscilla-
tions about 2-joint. The VG index reached by the proposed SF-ANFIS model
shows the EDA algorithm’s appropriate behaviour in identifying the oscilla-
tions by the random sampling that develops the EDA algorithm. Regarding
the 2-joint, the models generally reached the maximum score according to
the statistical indices established to evaluate the behaviour of the identifi-
cation models; however, the SF-ANFIS model obtained the best statistical
index concerning two joints.
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Figure 6: System identification stage

5.2. Control Stage

Table 6 and Figure 7 show the behaviour of the models against the online
control process for 1-joint. Here, the Fuzzy Stochastic Model (FSM- yr; o)
shows the best results with an IOA (0.9898), MG (1.0027) and VG (1.0012),
followed by the SF-ANFIS (yr; 4) model with an IOA (0.9801), VG (1.0021)
and MG (-0.0031). The value promoted by this good behaviour had been
taken by the IOA, MG and VG, which were closed to unity. In general, these
control models show the tendency to be located above the SP (¢;), as they
show the sign taken by the FB (-0.0004,-0.0013) index, respectively.

Figure 8 shows the behaviour of Low; (Eq.(24)) model to cancel oscilla-
tions around the SP; with minimum persistence. The models used to eval-
uate the SF-ANFIS model in the control stage for 1-joint showed relevant
results. However, the MADALINE model presented a delay concerning the
S Py, as shows the low value achieved by IOA (0.4487), delays that affect the
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Table 6: Statistical indices - Control stage

Joint 1
yrll yrl2 yrl3 yrl4 yrl PID
FB -0.0157 | G | -0.0004 | G | -0.0094 | G | -0.0013 | G -0.0348 G
NMSE | 0.0362 G 0.0001 | G | 0.0048 | G | 0.0019 | G 0.0048 G
MG 0.9835 G 1.0027 | G | 09946 | G | 1.0031 | G 0.9590 G
VG 1.0402 G 1.0012 | G | 1.0052 | G | 1.0021 | G 1.0061 G
FAC2 1.0000 G 1.0000 | G | 1.0000 | G | 1.0000 | G 1.0000 G
I0A 0.4487 F 0.9898 | G | 0.9424 | G | 0.9801 | G 0.9518 G
UAPC2 | -0.0210 G | -0.0280 | G | -0.0830 | G | -0.0670 | G -0.0460 G
MRE -0.0366 G 0.0021 | G | -0.0080 | G | 0.0020 | G -0.0450 G
Score 65.5 68 68 68 68
Joint 2
yr2l yr22 yr23 yr24 yr2_PID
FB -0.0348 G | -0.0034 | G | 0.0015 | G | -0.0003 | G 0.0015 G
NMSE | 0.0048 G 0.0029 | G | 0.0034 | G | 0.0016 | G 0.0007 G
MG 0.9590 G 0.9963 | G | 1.0041 | G | 1.0008 | G 1.0019 G
VG 1.0061 G 1.0033 | G | 1.0037 | G | 1.0019 | G 1.0007 G
FAC2 1.0000 G 1.0000 | G | 1.0000 | G | 1.0000 | G 1.0000 G
I0A 0.9518 G 0.9547 | G | 09534 | G | 0.9766 | G 0.9892 G
UAPC2 | -0.0460 G | -0.0430 | G | -0.1410 | G | -0.0460 | G -0.0580 G
MRE -0.0450 G | -0.0053 | G | 0.0022 | G | -0.0001 | G 0.0015 G
Score 68 68 68 68 68
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Figure 7: Control stage
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control accuracy in OPCDs.

Regarding the 2-joint, the models had different behaviours, where the SF-
ANFIS (yr24) achieved the best values with an IOA (0.9766), VG (1.0019) and
FB (-0.0003), followed by the ST-PID (yrs prp) control with an IOA (0.9892),
VG (1.0007) and MG (1.0019). However, against this joint, the ST-PID failed
to reach extreme angles according to FB (0.0015), located below (SP) by
the directional friction that presents this joint. For its part, the MADALINE
model (yr2) shows significant disturbances in the control process concerning
this joint, it was reflected in the value that takes the UAPC2 (-0.0430) and as
shown in the value taken by the MRE (-0.0450) and FB(-0.0348) indices, in
spite the good values reached by this model for both joints (1-joint,2-joint)
with regard MG (0.9835,0.9590) and VG (1.0402,1.0061). This behaviour
reflects the MADALINE model’s instability to cancel RFJ oscillations for
REFJs.

The SF-ANFIS model generally showed the best behaviour in the sys-
tem’s control for both joints, thanks to the capacity to identify and cancel
oscillations based on the advanced sampling that defines an EDA algorithm.
This behaviour significantly differs from the Fuzzy Stochastic Model (FSM).
The sampling process does not have a defined structure in agreement with
the behaviour that exhibits the joints. However, the FSM and SF-ANFIS
models reached the maximum angles for both joints when the signal control
was limited to interval [—1.2A4,1.2A], overcoming the limitations imposed by
the directional friction and torsional effects presented in the joints. This lim-
itation was also reflected in the behaviour of the ST-PID control, where the
response of the system tends to be located below SP; (FB > 0) and above
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SP, (FB < 0) for maximum values of the control signal.

5.8. Cancellation of Oscillations

Eq. (20), (21), (22), and (24) show how the active and passive learning for
the control process carried out the cancellation of oscillations Lou; in OPCDs.
Eq. (39), (40), and (41), show how the global stability is guaranteed by the
GAS theorem, and by the behaviour of the error when the stability factor
for each joint is defined py,; > 0.

deg e Oyri Ouye  OCouyjy

— = . . . 39
dt 8y7”k auhk 8Coul,j,k 8t ( )
9Cou i _ s de: .8@/7“19' ouy ? (40)
ot ’ ({9ka 8ul’;€ GC'OUZJ’]C
de? ayri > || 0
@k _ — oy €} Ik |- Uik (41)
dt aulyk 3C’oul,j,k

where C'ou are the weights at the output of the neural network for the OU
model.

Figure 8 shows the stability of the SF-ANFIS (yri4,yr24) in OPCDs by
operating angles {—g, g} Figure 9 shows the little persistence of oscillations
achieved by the SF-ANIFS model near to this angles (Ycou1,4,YCou2,4), unlike
the persistence of the oscillations and the delay in the response that presents
the MADALINE model, thanks to few capacity to cancel the disturbances

Four statistical indices were used to evaluate the behaviour of the models
against the cancellation of oscillations in the third stage. Table 7 shows that
the SF-ANFIS achieved the best behaviour followed by the MADALINE
model, where it is highlighted the UAPC2 (0.9525) value, which indicates
that the proposed model reaches a 95.25% of the time the SP; established by
the 1-joint with minimum persistence. According to the 2-joint, the model
achieved the best values regarding the UAPC2 (Joint 1: 0.9450, Joint 2:
0.8825), which corroborates the proper behaviour of the proposed model in
the cancellation of oscillations in agreeing to the Lyapunov’s global stabil-
ity. Finally, Figure 10 presents an area indicator, where the coverage or
importance of the indices is in relationship with the suitable solution to the
problem. Table 7 also shows that the SF-ANFIS model achieves the ma-
jor area in general, despite the fair behaviour related to the stability of the
2-joint, which once again confirms the proper behaviour of the model.
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Table 7: Statistical indices to evaluate the behaviour of the model in the passive learning
stage

Joint 1
ycoull | ycoul2 | ycoul3 | ycould | ycoul PID
NMSE 0.9780 0.9889 0.9891 0.9848 0.9981
MG 1.0142 1.0064 1.0063 1.0048 1.0048
VG 0.5743 0.5878 0.5879 0.5812 0.5973
UAPC2 | 0.2075 0.6700 0.6975 0.9525 0.9100
Joint 2
ycou2l | ycou22 | ycou23 | ycou24 | ycou2 PID
NMSE 0.9841 0.9920 0.9992 0.9950 0.9948
MG 1.0238 1.0070 1.0030 1.0014 1.0160
VG 0.5684 0.5960 0.5991 0.5921 0.5925
UAPC2 | 0.8375 0.6200 0.9450 0.8825 0.8725
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6. Conclusions and Future Work

This paper presents a novel adaptive, flexible stochastic model SF-ANFIS
for online control of coupled systems with stochastic behaviours, as shown
in RFJs. The appropriate behaviour was promoted by the effect of the SF-
ANFIS in the identification and control stages, thanks to the structure of the
fuzzy sets that have the trend to round the oscillatory response of the systems
in OPCDs. This behaviour was extended to the control stage, making the
model ideal for controlling systems with stochastic and oscillatory behaviours
in different operational points or trajectories.

We achieved the theoretical modelling of the RFJs by integrating the Eu-
ler Lagrange of two sinusoidal delay signals to model the persistence of the
disturbances in OPCDs, setting a novel methodology to model stochastic be-
haviours in dynamic systems. We did the OPCDs oscillations by integrating
a pseudo-Ornstein-Uhlembeck process with mean reversion (p —OU). In this
way, the integration of an p — OU in an ANFIS model for the identification
allows for a set of a Stochastic Flexible ANFIS structure (SF-ANFIS), en-
dowing the model with the ability to identify online stochastic behaviours
or disturbances in dynamic systems, which make it ideal for the control of
systems that present oscillatory behaviours. The lower persistence of distur-
bances shows the stability of the SF-ANFIS model in controlling the RFJs
in OPCDs with oscillatory behaviours. This stability was promoted by the
mean reversion that exhibits the p — OU and the integration of the EDA
algorithm, which improves the online learning process. In this way, the con-
vergence of the EDA algorithm was conducted by the p — OU, which tends
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to bring the systems to the average close to the set point in a better way,
unlike the models used to assess the proposed model, which reached the
set point for each joint, but a more remarkable persistence of disturbances
near to OPCDs. This fact confirms the system’s global stability agrees with
Lyapunov’s theorem for an SF-ANFIS model with a p — OU structure.

According to the fuzzy model proposed by [56], the statistical metrics
show that models used to assess the proposed model exhibited in general
good behaviours; however, these models reached the set point differently
due to the purely linear structure of the MADALINE model that does not
allow to identify stochastic behaviours, or the fuzzy neural model proposed
by [39], where the sampling method does not have a specific structure to be
synchronised with the disturbances or the stochastic behaviour with mean
reversion that presents the flexible joints.

In general, the SF-ANFIS- EDA model achieved to overcome the limi-
tations imposed by the directional friction near-maximum negative angles
when the signal control takes the maximum values, which makes the model
ideal for improving the operational accuracy in this type of RFJs system
when it requires stability in the manipulation of highs and dynamical loads.

As future work, we propose using different stochastic models to drive the
sampling process in EDA algorithms, according to other complex stochastic
behaviours as presented in RF Js, to drive toward a stochastic optimisation to
reduce the persistence of persistence disturbances in terms of their behaviour.

7. Annex 1

The Lagrangian equations modeling the main dynamics are shown in Eq.
(42)

1 o 1 L
L = 5 [mllzl -+ mglﬂ q% + 57””2[32 {ql —+ q2}2 =+

+ molile, cos (ga) [C]f + (.?1(1'2} + [male, +maly] gcos (¢1) +
1 5, 1 .. .
+ magle, cos (g1 + g2) + 511(]% + 5-’2 [d1 + o), (42)
where L is the Lagrangian; g is the gravitational constant; m;, ms are the
mass of the joints (kg); l.,, ., are the centre of mass for each joint (m); Iy, l»

are the length for each joint (m); ¢1,q2 € [—Z, ﬂ are the angles for each
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joint (rad), and ¢y, ¢2 their angular velocities; and I, I are the momentum
for each of the bars (kg.m?).

The oscillatory dynamics can be described according to Euler Lagrange
equations as in Eq. (43), (44) and (45)

1 o 1, 2 .

. 1 . 1 )
U=mgll; — ;sin (q)]+ §k1,z 2R sin (q))]* + §k2,l [Ry — 2Ry sin ()], (44)

.3 3Rk . 3 . .
G = Sgcos (q) — =L sin (q;) cos (@) + = [Ry — 2Ry sin ()] cos (@) + f1sdi,
4 oml, 2
(45)

where T is the kinetic energy; U is the potential energy; ki;, ko, are the
spring constants; 1, [y represent the joints; ¢, ¢o: represent the angles of
oscillation in OPCDs; and R;, R, represent the radius of the springs in each
joint.

8. Annex 2

The parameters, variables and values that define the dynamics of the
systems are shown in Table 8.
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Table 8: Parameters of the system dynamics

Parameter ‘ Notation ‘ Value Units
joint length 1 Iy 0.45 m
joint length 2 lo 0.45 m
link mass 1 my 23.902 Kg
link mass 2 mao 3.880 Kg
link mass center 1 leq 0.091 m
link mass center 2 leo 0.048 m
moment of inertia 1 I 1.266 Kg.m?
moment of inertia 2 I 0.093 Kg.m?
viscosity coefficient 1 by 2.288 Nm — seg
viscosity coefficient 2 by 0.175 Nm — seg
. if (q1-0;7..17
Coulomb coefficient 1 fa if (((11 <0 8.045))) Nm
Coulomb coefficient 2 fea 1.734 Nm
Gravity g 9.81 o
Torque joint 1 i5l 150 Nm
Torque joint 2 Ty 15 Nm
Radius joint 1 Ry 0.15 m
Radius joint 2 Ry 0.15 m
Spring constants - Joint 1 k11 ko1 1 %
Spring constants - Joint 2 k12 koo 2 %
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