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The differences of the fluid properties across a fluid interface in two-phase flow often 
bring difficulties into computational simulations, as the conservation of mass, momentum 
and energy requires careful consideration at the interfacial region. Velocity advection and 
unsynchronised variables lead to loss of conservation of momentum across the interface, 
which results in an unphysical interface deformation and spurious interfacial currents. 
In this study, we investigate the numerical errors and instabilities in the interfacial 
region, and propose a new algorithm with strong temporal coupling and momentum-
based velocity reconstruction, to enhance its conservation properties. The capability of 
the proposed algorithm is demonstrated with two idealised cases including a one-
dimensional convection case of a dense droplet and a standing wave case, and one 
laboratory dambreak case. Results are compared with theoretical results, experimental 
data or existing simulations, which demonstrate the advantages of the proposed algorithm 
on the conservation of mass, momentum and energy, and the mitigation of unphysical 
interfacial transport. Without modification of any numerical methods or discretization 
schemes, the algorithm keeps its simplicity and can work with the existing methods, and 
it is straightforward to implement.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Two-phase flow is a frequent phenomenon in the real world, involving the interaction of two fluids with different 
physical properties. It is of great importance in both industry and as a research area in its own right. The presence of two-
phase flow is observed over a variety of scales, e.g. molecular movement [1], lab-scale breaking waves [2], ocean and coastal 
waves [3], or even at the planetary scale [4]. With the development of computational methods, numerical simulation has 
become a widely used tool to study two-phase flow [5], as the field of Computational Fluid Dynamics (CFD), has flourished.

The numerical simulation of two-phase flow requires the proper treatment of the behaviours of the separate fluids and 
their interface. For grid-based CFD methods like the Finite Difference Method (FDM) and Finite Volume Method (FVM), there 
are two main approaches: Two Fluid Method (TFM) [6] and One Fluid Method (OFM) [7]. In TFM, the Baer–Nunziato model 
is proposed to describe the two-phase flow [8], with the known problem on conservation that the convective part in the 
model cannot be written in a conservative way [9]. Many methods have been developed to deal with the non-conservative 
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terms, like [10–12]. The Baer–Nunziato model often requires 4 or 7 governing equations, indicating a larger demand for 
computational resources. Navier-Stokes equations (NSE) are also used in TFM, in which both fluids are described explicitly, 
thus two sets of NSE are needed [13]. The velocity slip and properties transfer between fluids are allowed [14], however, the 
exchange of mass, momentum and energy across the interface often suffers from large uncertainties, and surface capturing 
methods is still needed [15]. Additionally, TFM is more applicable for simple cases rather than realistic scenarios [16].

OFM assumes the same fluid occupies in the whole domain, but its physical properties vary temporally and spatially, 
i.e. the fluids in the whole domain are treated as a mixture. Only one set of NSE is needed to perform the simulation, 
which significantly saves simulation time. The fluid interface in OFM is described implicitly [17], and an accurate interface 
definition is essential for the accuracy and stability of OFM. As the interaction between the two fluids dominates the shape 
of the interface and affects the behaviours of the two fluids, it is essential to accurately capture the fluid interfaces. Interface 
tracking methods (e.g., Front-tracking method [18] and Marker-And-Cell method [19]) and interface capturing methods (e.g., 
the Volume of Fluid (VOF) method [20] and the Level – Set (LS) method [21], or the combination of the two, as with 
the CLSVOF method [22]) have been developed and employed widely. To avoid errors in interface definition, these surface 
capturing methods need to be coupled appropriately with the NSE, to make sure the variables and surface location are 
updated in a proper manner, especially in high-order temporal schemes, as the variables are updated more frequently inside 
one single timestep.

However, conservation of momentum and mass may still be improved across the fluids interface. One origin of errors 
is the advection term of the incompressible NSE. Large density ratios may lead to a large momentum ratio across the 
interface, and increase the risk of unphysical interfacial momentum exchange. This error may lead to an unphysical velocity 
field across the surface, resulting in a deformed surface profile and interfacial spurious currents [23,17], or an inaccurate 
interface definition.

Another source of errors is the limitation of the surface capturing methods, e.g., the LS method is known to have the 
problem on volume and mass loss in under-resolved regions [24] while the VOF method often generates inaccurate curvature 
and lower smoothness at the interfacial region, which may lead to an inaccurate velocity field [25]. Numerous treatments 
or adjustments have been developed to deal with these foregoing problems. E.g., geometric operations [26–28] are imple-
mented into VOF to improve the accuracy of the interface shape; extra smoothing [29], variable density projection [30], 
additional diffusion equations [31,32], artificial compression and ‘viscosity’ have been introduced into the LS method; spe-
cial boundary conditions are applied on the fluid interface [33]; adaptive mesh refinement has also been used close to the 
interface to improve accuracy [34]; higher order surface capturing methods have been developed to reduce the numeri-
cal error [17,35,36]; interface tracking methods have also been coupled with interface capturing methods [37], as well as 
particle methods [33].

However, with these modifications, algorithms have become more and more complex and surface capturing methods 
tend to lose their own simplicity [38]. The balance among accuracy, stability, efficiency and simplicity has become a pressing 
problem. Meanwhile, the standard forms of these methods or algorithms are still widely used, like the classical LS method 
[39] or algorithms based on the classical LS method [40,41].

To address these limitations, the present study proposes an alternative approach. Rather than modifying the existing 
methods or discretization schemes, we are seeking a more appropriate computational procedure that can improve the 
accuracy and stability with least effort while reducing the need for modifications of the numerical methods. In this paper 
we propose a momentum-based velocity reconstruction step, coupled with the surface capturing process in a synchronised 
manner, which enhances the consistency and improves the interfacial smoothness, stability and conservation. As no change 
is made to the underlying scheme or method, our modification can work with many different schemes and improved 
surface-capturing methods, while maintaining simplicity and ease of implementation into existing CFD codes.

The paper is organized as follows: the basic theories are introduced in Section 2. The origination of the error is discussed 
in Section 3. The algorithm modifications are proposed in Section 4. The algorithm is then tested on an idealised case and 
a laboratory dambreak case to demonstrate its performance in Section 5. Conclusions are presented in Section 6.

2. Numerical methods

The FDM-based open-access CFD code REEF3D [42–44] is used as the underlying tool of the present study. The governing 
equations and key numerical schemes are introduced in the following [45].

2.1. The incompressible isothermal NSE with constant density and viscosity

The governing equations are the conservation laws of mass and momentum for incompressible flows, written in the 
nonconservative form as follows:

∂ui
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= 0 (1)
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where ui is the velocity, ρ the density, p the pressure, ν the kinematic viscosity, gi the gravitational acceleration. Turbulence 
is ignored in the present study.

A standard two-step projection method [46] is used to solve the incompressible NSE. In the prediction step, the pressure 
gradient term is ignored to solve for an intermediate velocity field uint as:

uint
i − un

i

�t
= −un

j

∂un
i

∂x j
+ ν

[
∂

∂x j
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∂x j
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j
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+ gi (3)

In the correction step, the fluid velocities are updated by considering the pressure gradient as:

un+1
i − uint

i

�t
= − 1

ρ

∂ pn+1

∂xi
(4)

Applying the incompressibility condition (i.e., Eq. (1)) to Eq. (4) to gives the Pressure Poisson Equation (PPE) as:

∂

∂xi

(
∂ pn+1

∂xi

)
= ρ

�t
· ∂uint

i

∂xi
(5)

Solving the PPE yields the fluid pressure at the current time step, which is then used to update the fluid velocities 
through Eq. (4).

2.2. Level Set method

The classical Level-Set (LS) method [21] is used to capture the water-air interface. An LS function ϕ(x, t) is defined that 
represents a signed distance, which satisfies |∇ϕ| = 1. According to the ϕ values of each computational node, the fluid 
condition of nodes can be determined as follows:

ϕ(x, y, z, t)

⎧⎨
⎩

> 0, if node (x,y, z) is in phase1
= 0, if node (x,y, z) is on the surface
< 0, if node (x,y, z) is in phase2

(6)

The update of the LS function ϕ is achieved by solving the following advection equation:

∂ϕ

∂t
+ u j

∂ϕ

∂x j
= 0 (7)

To ensure that ϕ remains a signed distance function, after the advection, the ϕ value at each node is re-initialized as 
follows [47]:

∂ϕ

∂t
+ S (ϕ)

(∣∣∣∣ ∂ϕ

∂x j

∣∣∣∣ − 1

)
= 0 (8)

In simulation, a Heaviside function is defined as follows according to the ϕ value:

H (ϕ) =
⎧⎨
⎩

0, i f ϕ < −ε�x
1
2

[
1 + ϕ

ε�x + 1
π sin

( πϕ
ε�x

)]
, i f |ϕ| ≤ ε

1, i f ϕ > ε�x
�x (9)

The density and viscosity of nodes are then calculated by considering the Heaviside function value, as shown in Eq. (10):{
ρi = ρ1 H (ϕi) + ρ2(1 − H (ϕi))

νi = ν1 H (ϕi) + ν2(1 − H (ϕi))
(10)

With Eqs. (9) and (10), the water-air interface is represented by an interfacial region with a distance of ε�x (�x is local 
grid spacing) towards both sides of the interface, which ensures the smooth variation of fluid properties across the interface.

2.3. Spatial and temporal discretization schemes

A staggered grid system is applied in the simulation. Scalar variables (e.g., density, viscosity and LS value ϕ) are defined 
at cell centres, while vector variables (e.g., velocity, momentum) are defined at the centre of cell edges, as shown in Fig. 1.

We have used three schemes to perform the spatial discretization for the advection term in Eqs. (3) and (7), and found 
the 5th order weighted essentially non-oscillatory (WENO5) produces the best result (based on the cases in the present 
study). The central difference scheme is applied for the spatial discretization of the viscous force term in Eq. (3), the 
pressure gradient in Eq. (4), and the pressure Laplacian and the velocity divergence in Eq. (5).

The time propagation of the advection term in Eq. (3) is achieved using the 3rd order Runge-Kutta Total Variation Dimin-
ishing (RK3-TVD) scheme, which has 3rd order accuracy and small storage requirements. For the viscous term in Eq. (3), we 
used the implicit backward time centred space scheme as it allows larger time steps and has good stability properties.
3
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Fig. 1. An 2D staggered grid system (points denote scalar variables and arrows denote vector variables).

3. Investigations on numerical errors near fluid interface

The numerical algorithms presented in Section 2 may lead to spurious interfacial kinematics and dynamics, as presented 
in Section 5 and previous studies [50,51]. These numerical errors are attributed to the unphysical transport of momentum 
across the interface, which are caused by two primary factors: non-conservation of momentum in the spatial discretization 
of the advection term [17] and inaccuracy in the definition of fluid interface [52]. Note that a higher interfacial density ratio 
would amplify this error. How the two factors erode the numerical accuracy are investigated below.

3.1. Non-conservation of momentum in advection term

One source of the non-conservation of momentum is the form of discretisation. Consider the conservative advection term 
∂(ρu)·u

∂x and its nonconservative form u ∂(ρu)
∂x + ρu ∂u

∂x , and their discretised forms as follows:(
∂ (ρu) ·u

∂x

)
i−0.5

= 1

�x
((ρu)i · ui − (ρu)i−1 · ui−1) (11a)

(
u

∂ (ρu)

∂x
+ ρu

∂u

∂x

)
i−0.5

= 1

�x
ui−0.5 · ((ρu)i − (ρu)i−1

) + 1

�x
(ρu)i−0.5 · (ui − ui−1) (11b)

In a steady state, a unique horizontal flux at each point is ensured by the conservative form rather than nonconservative 
form. Adding up all flux terms along a given direction, (the x-direction is presented here), the conservative form provides 
zero net flux, while extra source terms arise with the nonconservative form. Thus, a conservative spatial discretisation is 
preferred for the conservation of momentum [57].

Although a conservative form is adopted, non-conservation of momentum around the fluid interface may still develop 
from the advection of velocity which does not consider the density change. Taking the one-dimensional (1D) advection case 
in Fig. 2 as an example, consider two inviscid fluids with a density ratio of ρ1/ρ2 = 106 located either side of the interface 
	n, (and let ε = 1, see Eq. (9)). In the nth time step, fluid 1 has a constant velocity u0 while fluid 2 is at rest, and the 
velocity changes smoothly from u0 to zero. In the subsequent (i.e. n + 1th) time step, the interface moves to 	n+1. Following 
the strategy in Section 2, the velocity at point (i+0.5) is updated by velocity advection, which can be performed by different 
spatial schemes (e.g. WENO5, upwind or central difference).

Fig. 2. A 1D case to illustrate the errors of momentum and density.
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Table 1
Relative error of updated momentum at point (i+0.5) by velocity advection.

Spatial scheme for Velocity advection WENO5 Upwind Central difference

U0 > 0 2.5% 5% 7.5%
U0 < 0 4.3% 10% 7.5%

Regarding the density ratio, the case can be seen as a pure advection case and theoretically the velocity at n + 1th

timestep at point (i+0.5) should stay u0, with an updated momentum of u0ρ
n+1
i+0.5. Table 1 shows the relative error of the 

numerical results of the updated momentum at point (i+0.5) obtained by taking the production of the advected velocity 
and the updated density (obtained from 	n+1) (Let the CFL number be 0.1). It is noted although the numerical results of 
WENO5 show the smallest discrepancies (due to its higher-order accuracy), errors of velocity advection close to the fluids 
interface (i.e. point (i+0.5)) cause non-negligible momentum deviation and extra pressure. Thus, a velocity advection scheme 
that preserves the momentum is crucially necessary.

3.2. Temporal mismatch of fluid variables in time propagation

Time propagation schemes often consist of multi substages, which brings the consideration of temporal synchronization 
in the coupling of surface-capturing and NSE-solving steps. The present work adopts the RK3-TVD scheme [53] for the 
advection terms, which consists of three sub-stages as below:

⎧⎨
⎩

f (1) = f n + �tL( f n)

f (2) = 3
4 f n + 1

4 f (1) + 1
4 �tL( f (1))

f n+1 = 1
3 f n + 2

3 f (2) + 2
3 �tL( f (2))

(12)

where f n , f (1) , f (2) and f n+1 are the fluid quantities at time t , t + �t , t + 0.5�t , and t + �t , respectively, and L( f n) is 
the time derivative of fluid quantity at the corresponding time instant. Fig. 3 illustrates the updates of the LS and velocity 
values in a time step of the RK3-TVD scheme, which is widely used in CFD simulations [32,39] and some variants are also 
presented by [54,55].

Note that the weak coupling between LS and NSE at the 2nd and 3rd substages may lead to an inaccurate interface 
definition, which can result in non-conservation of momentum. The first concern is that the update of fluid quantities, 
(obtaining ρn+1 and νn+1 according to ϕn+1), is completed before solving the NSE, like [42], and no coupling is found 
between ϕ(1) and ustage1 (also ϕ(2) and ustage2). The second concern is the selection of ustage 1 and ustage 2, as using un for 
ustage 1 and ustage 2 may generate a temporal mismatch. Temporal extrapolation based on un and un−1 [17,57] fulfils the 
requirement of time matching, but the coupling between LS and NSE at these two substages is still not considered, as the 
temporal extrapolation solely relies on the velocity field. Alternatively, ustage 1 and ustage 2 can be obtained by solving the 
corresponding NSE at these two substages (t + �t , t + 0.5�t) [45], which requires the corresponding density and viscosity 
field (thus ϕ(1) and ϕ(2)). Thus, a proper coupling between LS and NSE is needed. Additionally, it is noted the above analysis 
is based on using the same time propagation scheme for both LS and NSE. Applying different time propagation schemes to 
them makes the synchronization more difficult [56].

Fig. 3. Updates of the LS (a) and velocity (b) values in a time step of the RK3-TVD scheme.
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Fig. 4. Revised calculation sequence for RK3-TVD schemes of LS and NSE.

3.3. Influences of interfacial thickness

To capture more flow details and achieve a higher accuracy, a thinner fluid interface is often needed, which requires a 
smaller grid spacing �x (grid refining) or a smaller interfacial thickness parameter ε (interface sharpening). However, these 
adjustments may increase the risk of non-conservation of momentum [23]. In the illustrative example of Fig. 2, points (i −1) 
and (i + 1) are both in the interfacial region and point (i) is on the interface. According to Eqs. (9) and (10), the density at 
the three points can be calculated as:⎧⎨

⎩
ρi−1 = 1

2

[
1 + 1

ε + 1
π sin

(
π
ε

)]
(ρ1 − ρ2) + ρ2

ρi = 1
2 (ρ1 + ρ2)

ρi+1 = 1
2

[
1 − 1

ε − 1
π sin

(
π
ε

)]
(ρ1 − ρ2) + ρ2

(13)

Note that a lower �x or ε increases the local density gradient across the fluid interface. As explained in [17], large 
density gradient close to the interface may aggravate the spurious momentum transfer and lead to the non-conservation of 
momentum.

Additionally, the error in the advected velocity (e.g., point (i+0.5) in Fig. 2) leads to an unphysical velocity gradient in the 
denser fluid, which may also increase the instability at a lower �x or ε . According to Fig. 2, reducing �x could increase this 
unphysical velocity gradient and results in a larger error on the local pressure field by solving the PPE (Eq. (5)). This error 
may be further amplified due to the increased local pressure gradient at a lower �x through Eq. (4). Meanwhile, reducing 
ε increases the updated density at point (i+0.5) (i.e., ρn+1

i+0.5), which leads to a higher error on the updated momentum 
and adversely affects the momentum conservation. In summary, as will be proved in Section 5, the interfacial instability 
develops faster with grid refining and interface sharpening with the strategy introduced in Section 2.

4. Enhanced momentum conservation (EMC) treatment

4.1. Strong time-coupling in high-order temporal scheme

For the problem of variable synchronization (Section 3.2), we suggest a stronger coupling order in Fig. 4. For each 
substage of RK3-TVD scheme, LS function is advected firstly according to Eq. (7), then the re-initialized LS values 
(ϕ(1), ϕ(2), ϕn+1) are used immediately to define ν and ρ for solving the corresponding NSE, and the updated veloc-
ity (u(1), u(2), un+1) is used immediately for the calculation of time derivatives of ϕ (L(ϕ(1)), L(ϕ(2)), L(ϕn+1)).

Compared with the original scheme in Fig. 3(a) which only requires one re-initialization in each timestep, the proposed 
manner performs three times of re-initialization, which may amplify the well-known volume-loss problem of the classical 
LS method [24], and the re-initialized LS value (ϕ(1), ϕ(2)) may also break the consistency of the RK3-TVD scheme of the 
2nd and 3rd substages. Thus, the un-reinitialized LS values (ϕ(1)∗, ϕ(2)∗) are accepted for the advection of the next substage, 
6
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instead of the re-initialized LS values (ϕ(1), ϕ(2)) which are solely used for updating fluid properties. Only the re-initialized 
LS value in the last substage (ϕn+1) is accepted for the advection of the next timestep, to avoid the potential error from 
multi re-initializations in one timestep.

4.2. Momentum-based velocity reconstruction

Regarding the issue of velocity advection (Section 3.1), we propose a velocity-reconstruction technique. Based on the 
conservative form of NSE (Eqs. (14) and (15)), we perform the conservative momentum advection, as shown in Eq. (16):

∂ρ

∂t
+ ∇ · (ρ · u) = 0 (14)

∂(ρ · u)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ ·τ + ρg (15)

∂M

∂t
+ ∇ · (M ⊗ u) = 0 (16)

in which M is the momentum calculated from ρ ·u. The advections of velocity and density are also tracked simultaneously 
for further use, as shown in Eqs. (17) and (18). Eq. (19) shows the explicit form of advections of M , u and ρ .

∂u

∂t
+ ∇ · (u ⊗ u) = 0 (17)

∂ρ

∂t
+ ∇ · (ρ ⊗ u) = 0 (18)

u∗
i = un

i − �t
∂un

j u
n
i

∂x j
(19a)

M∗
i = Mn

i − �t
∂un

j Mn
i

∂x j
(19b)

ρ∗
i = ρn

i − �t
∂un

jρ
n
i

∂x j
(19c)

The advected velocity field u∗,r is then restored based on the quotient of M∗ and ρ∗ , as shown in Eq. (20):

u∗,r
i = M∗

i

ρ∗
i

(20)

For the spatial matching of the density and momentum of Eq. (20) in a staggered grid system, the density advection 
(Eq. (19c)) is performed in a vectorised manner based on the interpolated face-centred density.

The velocity reconstruction process shares the same framework as [52,58,59] in which the velocity is restored in the 
same way, but differences appear on the convective density and momentum. The density flux often relies on the surface-
capturing method, e.g. the density flux in [52] comes from the VOF flux, and [52,58–60] trace the motion of the interface 
from the LS values and reconstruct the density flux by geometric arguments. Compared with the straightforward Eq. (19c), 
the geometric argument may have extra limitations, like [60] requires a sharp interface (ϕ = 0), as the convective density 
is hard to define if the density changes continuously across the interface. Additionally, more effort may be needed to 
reconstruct a complex interface shape, leading to an increasingly complex geometric argument, which makes it challenging 
to perform in 3D conditions [61]. It is noted the intermediate density (ρ∗

i ) from Eq. (19c) should be matched with the 
intermediate momentum (M∗

i ), rather than the density defined by LS method at the end of the timestep (ρn+1
i ).

The momentum flux is taken as the production of advected velocity and density flux in [52,60,61]. However, we still 
perform the momentum advection based on the advection equation (Eq. (19b)), to ensure the consideration of velocity 
gradient (recall that ∂M

∂x = u ∂ρ
∂x + ρ ∂u

∂x ). As the same advection equation, velocity field and numerical operation are applied 
on the update of the intermediate density and momentum, better spatial and temporal matching between them is ensured.

A simple 1D advection test is designed to demonstrate the conservation of momentum during interface moving. As 
shown in Fig. 5, an interface divides a 1D domain with 400 gridcells, (grid spacing �x=0.005 m), and the denser fluid 1 
is on the left and the less dense fluid 2 on the right, (the density ratio being 106). Fluid 1 is initialized with the velocity 
of ±1 m/s and the CFL number is 0.1. Open boundary conditions are applied on both sides, and gravity and viscosity are 
ignored. No interface deformation is supposed to appear in this case.

This case is simulated by both the proposed velocity reconstruction technique and the original velocity advection method. 
Compared with the analytical solution, the momentum discrepancies of both methods after 1 s (1000 loops) are shown in 
Fig. 6, in which it is observed the momentum conservation is improved by the velocity reconstruction technique, as the 
7
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Fig. 5. Grid settings for the 1D advection case.

Fig. 6. Comparison of momentum error after 1 s (momentum change is normalized by the initial momentum of the fluid 1 of one grid, dashed line – 
velocity advection; solid line – velocity reconstruction) (a): positive initial velocity; (b): negative initial velocity.

Fig. 7. Two idealized cases for the demonstration of applying the same spatial scheme.

momentum change is much more stable and is no more than 0.04% of the initial momentum of one cell of fluid 1 with 
WENO5 and upwind schemes.

After the velocity reconstruction, the viscous and gravitational terms in Eq. (3) are integrated into the restored velocity 
field, yielding the intermediate velocity field uint . Eq. (4) and (5) are then solved for pressure update and velocity correction. 
In contrast to the method proposed by [17] in which the intermediate density field ρ∗

i is used in Eq. (4) and (5) or similarly 
[61] who uses ρn+0.5

i , ρ∗
i is immediately discarded after the velocity restoration in our strategy. As the LS value at the next 

iteration is already known, ρn+1 is used in Eq. (4) and (5), which is defined by the corresponding ϕn+1.
Potential errors may rise in the velocity restoration, and we applied 2 treatments: 1) applying the same spatial schemes 

for variable advections (momentum M , velocity u, density ρ and LS value ϕ); 2) applying a ‘limiter’ treatment around the 
boundary between the interfacial region and less dense fluid. The details are described in the following sections.

4.3. Control the interaction between truncation errors

The truncation errors of M and ρ may interact with each other in Eq. (20) and reduce the accuracy of the restored veloc-
ity. To tackle this undesirable effect, we suggest that the advection of u, M and ρ follow the same spatial scheme. Consider 
two simple 1D convection cases as shown in Fig. 7, let the truncation error be proportional to the accurate advection term, 
the updated values of u, M and ρ , denoted by asterisks, are shown in Eq. (21). The coefficients a1, a2 and a3 denote the 
proportionate truncation errors of u, M and ρ .⎧⎪⎨

⎪⎩
u∗

x = un
x − (1 + a1)�t ∂un

x un
x

∂x

M∗
x = Mn

x − (1 + a2)�t ∂un
x Mn

x
∂x

ρ∗
x = ρn

x − (1 + a3)�t ∂un
xρ

n
x

∂x

(21)

In the case of an accelerating fluid of constant density, Fig. 7(a), density gradient is not accepted after the advection 
process. Hence, the restored velocity u∗,r

i (Eq. (20)) should be the same as the directly-advected velocity u∗
i (Eq. (19a)), as 

shown in Eq. (22), requiring the equivalence of a1 and a2. The constant density leads to the same term of ∂un
x un

x
∂x on both 

sides of Eq. (22), thus applying the same advection scheme on u and M meets the requirement.

u∗,r
i = u∗

x ⇒ un
x − (1 + a2)�t

∂un
xun

x

∂x
= un

x − (1 + a1)�t
∂un

xun
x

∂x
(22)

Now consider the case of uniform flow of a fluid with density gradients, Fig. 7(b). All the properties are transported 
by u0, and the restored velocity u∗,r

i should stay at u0, as shown in Eq. (23), requiring the equivalence of a2 and a3. The 
constant velocity leads to the same term of ∂ρn

x
∂x on both sides of Eq. (23), thus applying the same advection scheme on M

and ρ meets the requirement.
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Fig. 8. The initial settings of the advection case.

Fig. 9. ρn/ρ∗ at different initial k; (a) u0 > 0; (b) and (c) u0 < 0.

u∗,r
i = u0 ⇒ ρn

x u0 − (1 + a2) u0 ·u0�t ∂ρn
x

∂x

ρn
x − (1 + a3)u0�t ∂ρn

x
∂x

= u0 ⇒ ρn
x − (1 + a2) u0�t ∂ρn

x
∂x

ρn
x − (1 + a3)u0�t ∂ρn

x
∂x

= 1 (23)

Starting from these two simple cases, there are two basic requirements: a1 = a2 (same advection scheme on u and M) 
and a2 = a3 (same advection scheme on ρ and M). Ideally, we would seek an advection scheme for which a1 = a2 = a3. 
In general, this is not possible as this would impose an unphysical restraint on the gradients of the advected quantities. 
Nevertheless, applying the same scheme on the advection of u, M and ρ may still help to reduce the interaction between 
the truncation errors and its necessity is discussed in Section 5.1.

4.4. The ‘limiter’ treatment around the interfacial region

While density changes smoothly in the interfacial region, unbounded density may develop due to the numerical over-
shoot or undershoot in the density advection, which strongly influences the velocity restoration. This topic has been 
discussed by [52,61].

The following advection case in Fig. 8 gives a brief illustration. Fluid 1 with high density (ρ1/ρ2 = 106) is initialized by 
a velocity u0 and the light fluid 2 is at rest. Viscosity and gravity are ignored. Taking ε = 2.1 and CFL=0.1, the boundary of 
the interfacial region is set to be k�x away from point (i-0.5). Based on Eq. (19) and Eq. (20), the restored velocity at point 
(i-0.5) is shown in Eq. (24). Compared with Eq. (25), the ratio between the original and advected density (ρn/ρ∗) is the key 
contribution to the velocity reconstruction. Should ρ∗ become small, zero or even negative, this is likely to cause instability 
without further intervention.

u∗,r ≈
unρn

x − �t
(

un ∂(unρn
x )

∂x + ρn
x

∂(unun)
∂x

)
ρn

x − �t ∂un
xρ

n
x

∂x

= un − �t(
∂un · un

∂x
) · ρn

x

ρ∗
x

(24)

u∗ = un − �t(
∂un · un

∂x
) (25)

ρn/ρ∗ is lower than unity at a positive u0, reducing the influence of the velocity gradient in the interfacial region (see 
Eq. (24)), and reduces the unphysical effect of the velocity of fluid 2 on denser fluid 1. In contrast, a negative u0 may 
strengthen the effect of fluid 1 on the less dense fluid 2. Fig. 9 shows the results of ρn/ρ∗ at point (i-0.5) calculated by 3 
commonly used schemes (WENO5, central difference and upwind). As shown in Fig. 9(b), with large density gradient and 
low local density, the density advection of Eq. (19c) may lead to an unbounded density at a negative u0, as ρ∗ might be 
lower than the less dense fluid (or even negative, as observed in [57]), resulting in an unphysical value of ρn/ρ∗ , which 
is especially noticeable with the central difference scheme. This numerical overshoot or undershoot is also observed in the 
advection of the volume fraction in VOF method which relies on the same advection equation as the volume fraction may 
be lower than 0 or higher than unity [62,63].
9
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Fig. 10. The computational procedure of the proposed algorithm in one substage of RK3-TVD scheme.

As mentioned in [61], the density flux must meet the critical requirement of boundness. A limiter treatment is then 
applied on the nodes adjacent to the boundary with density close to the lighter fluid. Thus, the velocity restoration follows 
Eq. (26) instead of Eq. (20), as shown below:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u∗,r

i = M∗
i

ρ∗
i
,ρ∗

i ≥ ρthreshold

u∗,r
i = M∗

i

ρ
∗, f
i

∗ ρ
∗, f
i

ρthreshold
+ u∗

i ∗ ρthreshold−ρ
∗, f
i

ρthreshold
,ρair < ρ∗

i < ρthresholdandρ∗
i < ρn

i

u∗,r
i = u∗

i ,other

(26)

in which ρ∗, f
i is a filtered density value following Eq. (27):{

ρ
∗, f
i = ρair,ρ

∗
i < ρair

ρ
∗, f
i = ρ∗

i ,ρ∗
i > ρair

(27)

For numerical stability, the ‘threshold density’ in Eq. (26) is set to be 0.05ρ1 +ρ2, and a slightly larger threshold density 
is suggested when applying the central difference scheme due to the stronger numerical overshoot and undershoot.

4.5. The proposed algorithm

Combining the strong time-coupling (Section 4.1), velocity reconstruction (Section 4.2) and the limiter treatment (Sec-
tion 4.4), the flow chart of the proposed algorithm which enhances the momentum conservation is shown in Fig. 10. As 
the proposed algorithm focusses on momentum conservation, we have termed it the ‘Enhanced Momentum Conservation’ 
(EMC) treatment. For simplicity, the FDM code with the implementation of EMC treatment is termed ‘FDM-EMC’.

It is noted the proposed algorithm does not include any modification of existing schemes or methods. As explained in the 
Introduction, the aim of this study is to establish a proper computational procedure that improves the accuracy and stability 
with the least requirement for modification of numerical methods. The strong time coupling (Section 4.1) is a variation of 
the well-established RK3-TVD scheme, and the velocity reconstruction (Section 4.2) utilizes the existing spatial and temporal 
schemes to perform the advection of momentum, density and velocity instead of only velocity. The effectiveness of these 
two techniques is tested separately in Section 5.1.

Although not aiming to modify the surface-capturing method, the mass-loss problem of the classical LS method is still 
partly countered by the EMC treatment, which is shown in Section 5. As all the schemes and methods used (e.g., RK3-TVD, 
WENO5, classical LS and its re-initialization, projection method) remain the same, the EMC treatment retains the simplicity 
of these methods, and it can be implemented in a relatively straightforward manner. The EMC approach should also work 
with many existing variants, like the conservative LS method [48] or VOF method.

5. Numerical results

Two idealised numerical cases and one laboratory dambreak case are presented to investigate the performance of EMC 
treatment. In Section 5.1, a 2D pure advection case with large density ratio is chosen to detect the interfacial instability and 
study the conservation of mass, momentum and energy. In Section 5.2, an inviscid standing wave case is used to investigate 
the conservation in the absence of intensive interface deformation. In Section 5.3, an experimental dambreak case with a 
dry bed is chosen to demonstrate the advantage of EMC on realistic cases.
10
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Table 2
Grid settings in case 1.

Grid settings Grid resolution Grid size ε of LS Density ratio Rρ

G1 D=30 �x 0.01 m 2.1 Rρ = 106

G2 D=60 �x 0.005 m 2.1 Rρ = 106

G3 D=60 �x 0.005 m 1.05 Rρ = 106

G4 D=120 �x 0.0025 m 2.1 Rρ = 106

G5 D=240 �x 0.00125 m 2.1 Rρ = 106

Table 3
Code settings for the sensitivity studies 1 to 3.

Code settings Modification applied Advection scheme for ρ Advection scheme for M and u Density ratio Rρ

S0* N/A N/A WENO5 Rρ = 106

S1 EMC WENO5 WENO5 Rρ = 106

S2 VR* only WENO5 WENO5 Rρ = 106

S3 TC* only WENO5 WENO5 Rρ = 106

S4 EMC WENO5-HJ WENO5 Rρ = 103

S5 EMC WENO5 WENO5-HJ Rρ = 103

*VR – Velocity Reconstruction; TC – Temporal Coupling; S0 is the original FDM code (REEF3D) without modification.

Table 4
Code settings for sensitivity study 4.

Code settings Modification applied Convection scheme for ρ Convection scheme for M and u Density ratio Rρ

S0C1 N/A N/A Central difference Rρ = 103

S1C1 EMC Central difference Central difference Rρ = 103

S0C2 N/A N/A Upwind Rρ = 106

S1C2 EMC Upwind Upwind Rρ = 106

S0C3 N/A N/A QUICK Rρ = 103

S1C3 EMC QUICK QUICK Rρ = 103

S0C4 N/A N/A WENO5-HJ Rρ = 106

S1C4 EMC WENO5-HJ WENO5-HJ Rρ = 106

5.1. Advection of a dense inviscid droplet

The advection of a dense droplet has been investigated by various researchers [17,57,64], as a large density ratio makes 
it easier to detect unphysical momentum transport and spurious current across the interface. In this case, a droplet with 
diameter D=0.3 m is initialized with a horizontal speed u0 (D/u0=0.3 s) while the surrounding air is at rest. The density 
ratio (Rρ ) between the droplet and air is 106 (103 if the simulation crashes too early). Viscosity, surface tension and gravity 
are ignored and open boundary conditions are applied at each side of the domain. The CFL number is set to be 0.1. Due to 
the extreme density ratio, it is supposed that the influence of the air on the droplet is negligible, and the droplet travels 
with a constant speed (u0) without shape change.

As shown in Tables 2 to 4, 5 uniform grid systems (G1 to G5) and different code settings are used for these sensitivity 
studies: 1) grid convergence; 2) the individual contributions of the strong time-coupling (Section 4.1) and the velocity 
reconstruction (Section 4.2); 3) the necessity of applying the same spatial scheme on density and momentum (Section 4.3); 
4) the model performance under different advection schemes.

Fig. 11 shows the results of the grid convergence study of code settings S0 and S1 under grids G1 to G5. Due to the 
non-conservation of momentum in the velocity advection (Section 3.1) and the temporal mismatch (Section 3.2), no obvious 
grid convergence is observed in the results of S0, which also loses the smooth disk shape of the droplet. The stability and 
interface smoothness are downgraded under a thinner interface thickness (G3) or a finer grid (G4, G5), which agrees with 
the analysis in Section 3.3. However, lower �x or ε are allowed in the simulation with EMC treatment, as S1 achieves grid 
convergence and retains the smooth disk shape of the droplet, while its location also agrees with the reference one. It is 
noted the interface deformation is visible at a resolution close to G4 in [17], while S1 allows a resolution of 1 time finer 
(G5).

Fig. 12 shows the evolution of the volume, horizontal momentum and kinematic energy of the droplet, presenting a 
quantitative comparison between the results of S0 and S1. Suffering from the instability explained in Section 3 and the well-
known mass loss problem of LS method [49], the time series of mass, volume and momentum show obvious oscillations 
and a decreasing trend in the results for S0 in Fig. 12. Although there is no modification to the classical LS method, the 
implementation of EMC shows a significant improvement in its conservation properties, especially under the finer grids 
(G4, G5), as the loss of all 3 variables is significantly reduced, (compare the solid and dashed line with the same colour 
in Fig. 12(a) to (c)). As an approximate means of filtering out the influence of mass loss on energy loss and study the 
energy change from the interfacial transport, we compare the ratio between energy and volume in Fig. 12(d), from which 
11
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Fig. 11. Grid convergence study for S0 and S1 (time t is normalized by T=t*u0/D). Solutions are symmetric about the ‘equator’. Results from each grid are 
shown for a hemisphere. See text for further explanation.

Fig. 12. Comparison of the results of G1 to G5 on the evolution of (a) the total volume; (b) the total energy; (c) the total momentum of the droplet towards 
the x direction; (d) the energy per unit volume. (Dashed line – S0; Solid line – S1).

Fig. 13. (a) comparison of the contributions of the modifications (b) results of EMC treatment when applying different spatial scheme for ρ , M and u.

it is concluded the energy loss is mainly from the volume loss, as the ratio is always close to 100% with both S0 and S1. 
However, the superiority of S1 is still confirmed by its more stable and converged time series and the negligible energy 
change per unit volume.

To identify the individual contributions of the strong time-coupling (Section 4.1) and velocity reconstruction (Section 4.2), 
the results of S0 (original FDM code) S1 (EMC fully implemented), S2 (only strong time-coupling implemented) and S3 
(only velocity reconstruction implemented) under grid G4 are compared in Fig. 13(a) and Fig. 14. As shown in Fig. 13(a), 
the smooth disk shape only retains in the result of S1 while slight interface twisting is already observed at an early stage 
(T=1) in S0 (most obvious), S2 and S3. At T=2.33, the disk shape is distorted in S3 and S0 (slightly more intense) while 
S2 roughly keeps the disk shape despite the deformation at the rear side of the droplet. Runs S0 and S3 crash at T=2.50 
and T=3.03, respectively. At T=3, significant interface shape deformation is eventually observed in S2. Fig. 14 compares 
the time series of volume, momentum, energy and energy per unit volume of the four code settings, in which S0 is the 
most unstable. All S1, S2 and S3 show a decreasing trend on volume, momentum and energy, while S1 shows the best 
performance (reduction is less than 0.25% at T=3.3) and S2 outperforms S3. It is noted the reason of the rising trend in 
Fig. 14(d) is that the energy loss is slower than the volume loss. Compared with S0, both S2 and S3 show improvement 
on interface smoothness, numerical stability and property conservation, and the performance of S3 is significantly better, 
as the velocity reconstruction directly focuses on the momentum conservation and the aim of strong time coupling is 
the synchronization of variables. However, satisfactory disk shape is only observed in S1 in which the time coupling and 
velocity reconstruction are both implemented. Thus, it is concluded that the main contribution of EMC treatment is the 
velocity reconstruction, but the strong time-coupling is also essential.

To prove the necessity to use the same advection scheme for both density and momentum, the results of S4 and S5 are 
compared in Fig. 13(b). Although both WENO5 and the WENO5 for Hamilton-Jacobi equation (WENO5-HJ, which is more 
suitable for Hamilton-Jacobi equations [65] and frequently used for LS advection, but less conservative than normal WENO5) 
can achieve 5th order accuracy, S4 and S5 crash immediately under a density ratio of 106. As shown in Fig. 13(b), in the 
12
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Fig. 14. Comparison of the results of S0 to S3 on the evolution of (a) the total volume; (b) the total energy; (c) the total momentum of the droplet towards 
the x direction; (d) the energy per unit volume.

Fig. 15. Comparison between S0 and S1 under different spatial schemes (S0C1 and S1C1 both crashes before T=2).

simulation with density ratio of 103, both of them failed to keep the disk shape of the droplet even at T=1, indicating the 
virtue of using the same spatial scheme for the advection of ρ , M and u. The same conclusion is obtained from different 
codes, for example [64], in which the distorted interface and larger velocity errors are detected when dissimilar convection 
schemes for mass and momentum are applied.

To test the performance of the EMC treatment under different spatial schemes, simulations under grid G2 are performed 
with different convection schemes shown in Table 4, and the interface shapes are compared in Fig. 15. With lower order 
schemes, S0 quickly loses the disk shape, and instability can still be observed with a high order scheme like WENO5-HJ. In 
comparison, with all schemes tested, the EMC treatment significantly improves the stability and smoothness of the interface 
although the performance is much better with higher order schemes.

5.2. Standing wave case

A standing wave case is designed to test the effectiveness of EMC in a case with more gentle surface variation. As shown 
in Fig. 16(a), the computational area is 5.5 m long with still water level 0.5 m. A sinusoidal wave with wave height 0.01 m 
and 2 m wavelength (period 1.182 s) is generated by a relaxation area of 2 m length. The wave propagates towards right 
and hits a perfectly reflecting boundary, the superposition of the incident and reflected waves forms a standing wave in an 
area of 3.5 m length. The reflected wave propagates out of the active area and is absorbed by the relaxation area [66,67]. 
The densities of water and air are set to 1000 kg/m3 and 1 kg/m3 respectively, and g is set to 9.81 m/s2 and the fluids 
are considered inviscid. A wall boundary condition is applied to the top and bottom boundaries and a reflection boundary 
condition is applied at the right wall. WENO5 and RK3-TVD schemes are used for the advection of variables and the CFL 
number is 0.1. The interfacial thickness parameter of LS (ε) is set to 2.1. Three uniform grid systems are applied, namely 
a coarse grid (�x=0.02 m), a medium grid (�x=0.01 m) and a fine grid (�x=0.005 m). The simulation is performed for 
120 s with both the original FDM-based code and FDM-EMC. The simulated wave profiles of the standing wave between 
57.3 s and 57.9 s are shown in Fig. 16(b).

Fig. 17 and 18 compares the vertical momentum of water and air in the last 20 seconds. FDM-EMC shows a good grid 
convergence, and the momentum of water oscillates around zero with a stable amplitude, either water or air (Fig. 17(a) 
and 18(a)). However, FDM leads to a downgraded grid convergence, and a less stable momentum oscillation, especially with 
coarser grids, indicating the unphysical momentum change across the water-air interface (Fig. 17(b) and 18(b)), which is 
well suppressed by FDM-EMC.

The time series of the total energy of water in the last 20 seconds are compared in Fig. 19 and the average volume 
of water of the last 10 wave periods is shown in Table 5. Although there is no intensive water-air interaction and visible 
interface deformation under this low wave height (0.02 m in 0.5 m water depth), FDM-EMC still provides a more stable 
13
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Fig. 16. (a) the settings of the standing wave case (not in scale); (b) the profiles of the simulated incident wave and standing wave.

Fig. 17. The vertical momentum of the water in the active area (a) FDM - EMC (b) original FDM code. (blue – coarse grid, red – medium grid, black – fine 
grid).

Fig. 18. The vertical momentum of the air in the active area (a) FDM - EMC (b) original FDM code. (blue – coarse grid, red – medium grid, black – fine 
grid).

Fig. 19. The total energy of the water (a) FDM with EMC (b) original FDM code. (blue – coarse grid, red – medium grid, black – fine grid; energy is 
normalized by the initial potential energy of still water).

Table 5
The comparison of volume loss (unit: %).

Grid size 0.02 0.01 0.005

FDM-EMC 0.184 0.086 0.035
FDM 0.326 0.15 0.089

oscillation and a better convergence for the total energy. Both codes produce a minimum volume change (no more than 
0.33%) in this case, but FDM-EMC still slightly outperforms the original FDM because of the reduced volume loss.

5.3. Dambreak case with a dry bed

The third benchmark case is a lab-scale dambreak case with a dry bed with settings and parameters shown in Fig. 20
and more information can be found in [68]. Three uniform grid systems are applied to the simulation, namely coarse 
14
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Fig. 20. Settings of the dambreak case with a dry bed.

Fig. 21. Grid convergence study (First row: FDM; Second row: FDM-EMC).

(�x = 0.01m), medium (�x = 0.0075m) and fine grid (�x = 0.005m), and the interfacial region parameter ε is set to be 2.1
[45]. A wall boundary condition is applied on the left, right and bottom sides while an open boundary condition is applied 
to the top boundary.

The grid convergence studies of the FDM and FDM-EMC (S0 and S1 in Table 3) are compared in Fig. 21. It is seen FDM-
EMC better keeps the smoothness of the water-air interface and produces a sharper overturning tongue than FDM. A better 
grid convergence is also found in the results of FDM-EMC as the water-air interfaces of different grid resolutions overlap 
together while larger differences are found in the results of FDM.

Fig. 22 compares the surface profile simulated by FDM-EMC and several existing simulations [70,69,71] with the experi-
mental snapshots [68]. As shown in the top row of Fig. 22, the simulation results all agree well with the experiment before 
the collision between wavefront and left wall. The intense water-air interaction leads to the twisted water-air interface since 
t=573.3 ms in VOF simulation [69] while other codes still agree well with the experiment, as seen in the middle row of 
Fig. 22. For the fully developed breaker (t=1023.3 ms), FDM-EMC generates a much sharper tongue and lower splash than 
VOF [71] and SPH [70]. At 1166.6 ms, FDM-EMC and compressive interface tracking method [71] generates a highly similar 
entrapped air pocket, while the secondary jet from FDM-EMC is closer to the experiment.

The pressure distributions, water-air interface shapes and velocity vector maps reproduced by FDM-EMC and FDM are 
compared in Fig. 23. A twisted air-water interface is already observed in FDM from t=0.30 s as negative pressure areas 
and vortices develop at the front border which propagate in a retrograde manner along the interface. Numerical instability 
is visible on the interface shape at t=1.0 s which is characterised by unphysical negative pressure and water ‘branching’ 
around the breaking tongue. The instability at t=1.16 s causes the simulation to terminate, as the local vortex and negative 
pressure (as low as -2000 Pa) dominates the flow field around the secondary jet. However, FDM-EMC effectively suppresses 
the negative pressure and vortex around the water-air interface, as the water movement is less influenced by the air due to 
its improved momentum conservation.

The collision between the overturning breaker and underlying water body proves the necessity of the limiter, as shown 
in Fig. 24. At t=1.06 s, high gradients of density and velocity develop between the two separate waterbodies and the 
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Fig. 22. The comparison of the simulation results of FDM-EMC and several different methods and the experiment snapshot from [68] (time = 373.3, 449.9, 
573.3, 862.3, 1023.3, 1166.6 ms; Red – FDM-EMC; Blue – a stable SPH method in [70]; Green – VOF simulation of [69]; Pink – a compressive interface 
capturing method in [71]).

Fig. 23. Comparison of the pressure distribution, interface shape and velocity vector around the leading front (white line is the water-air interface).

surrounding air. According to Eq. (24), the unphysical density ratio leads to an incorrect velocity field and pressure field, 
culminating in the termination of the simulation without the limiter before the water-air interfaces merge.

5.4. CPU performance

As described in Section 4, the EMC treatment uses the strong time-coupling and momentum-based velocity reconstruc-
tion to enhance the conservation. Compared with the original code, additional advection of momentum and density are 
performed, leading to the reduction of numerical efficiency. The CPU time per loop of FDM and FDM-EMC are compared in 
Table 6. It is seen the CPU time rises about 50% at a lower grid resolution and 100% at a higher resolution. Future work 
would be conducted to improve the computational efficiency.
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Fig. 24. The interface shapes and pressure contours of FDM-EMC with and without limiter at t=1.06s.

Table 6
The comparison of CPU time of the code with and without EMC treatment (All simulations are based on 8 threads).

Droplet G5 Droplet G4 Droplet G2 Droplet G1 Dambreak coarse grid Dambreak medium grid Dambreak fine grid

Cell amount 640000 160000 40000 10000 9660 17200 38640
Time per loop - S0 1.903 0.503 0.155 0.053 0.027 0.050 0.110
Time per loop - S1 3.784 0.862 0.212 0.053 0.046 0.091 0.176

6. Conclusion

Simulation of two-phase flow suffers from spurious interfacial currents and instability. The associated lack of conservation 
of momentum arises chiefly from inaccuracies in velocity advection and synchronization of the variables. Grid refinement 
and interface sharpening may also amplify the interfacial instability. To deal with these problems, the EMC treatment is pro-
posed, which consists of the strong time-coupling between LS and NSE, the momentum-based velocity reconstruction and 
the limiter treatment around the interfacial region. The EMC treatment has been implemented into an existing FDM code 
and significantly improves its performance. The simulation of the convection of a dense inviscid droplet demonstrates the 
improvement on the accuracy, stability and the conservation of mass, momentum and energy, and the capability of dealing 
with two phase flows with an extreme density ratio. Through the comparison study, it is concluded that the momentum-
based velocity reconstruction contributes most to the EMC treatment, but strong time-coupling is also essential. A standing 
wave case confirms that the EMC treatment can provide improvements even under milder conditions without large interface 
deformation. In the dambreak case, the shape of the breaking wave is well reproduced, and the interfacial smoothness is 
also improved considerably. The distribution of pressure and velocity around the water-air interface has been analysed in 
detail, confirming the advantages of the EMC approach.

The EMC treatment requires neither modifications to the underlying numerical scheme or method, nor special treat-
ments or additional boundary conditions applied to the interface. It therefore provides an additional way to improve the 
conservation of mass, momentum and energy as well as the smoothness of the fluid interface. Furthermore, the EMC treat-
ment can work with existing algorithms and surface tracking methods, and it is straightforward to implement because of 
its simplicity.
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