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A B S T R A C T

A variety of constitutive models have been developed for soft tissue mechanics. However, there is no
established criterion to select a suitable model for a specific application. Although the model that best fits
the experimental data can be deemed the most suitable model, this practice often can be insufficient given the
inter-sample variability of experimental observations. Herein, we present a Bayesian approach to calculate the
relative probabilities of constitutive models based on biaxial mechanical testing of tissue samples. Forty-six
samples of porcine aortic valve tissue were tested using a biaxial stretching setup. For each sample, seven
ratios of stresses along and perpendicular to the fiber direction were applied. The probabilities of eight
invariant-based constitutive models were calculated based on the experimental data using the proposed model
selection framework. The calculated probabilities showed that, out of the considered models and based on
the information available through the utilized experimental dataset, the May–Newman model was the most
probable model for the porcine aortic valve data. When the samples were further grouped into different cusp
types, the May–Newman model remained the most probable for the left- and right-coronary cusps, whereas for
non-coronary cusps two models were found to be equally probable: the Lee–Sacks model and the May–Newman
model. This difference between cusp types was found to be associated with the first principal component
analysis (PCA) mode, where this mode’s amplitudes of the non-coronary and right-coronary cusps were found to
be significantly different. Our results show that a PCA-based statistical model can capture significant variations
in the mechanical properties of soft tissues. The presented framework is applicable to other tissue types, and
has the potential to provide a structured and rational way of making simulations population-based.
1. Introduction

Soft tissues exhibit a complex stress–strain behavior, including non-
linearity and anisotropy, that varies not only across tissue types, but
also from sample to sample. Decades of research into the mechanics
of soft tissues has shed important light on their behavior and role in
many physiological systems, such as vascular, lungs and ligaments.
However, there are still open challenges that need further investiga-
tions. One of these challenges is modeling the biomechanical behavior
of soft tissues reliably and with high fidelity. This challenge remains
an active area of research. Numerous constitutive models have been
developed to describe the stress–strain behavior of soft tissues (Maurel
et al., 1998). These models range from purely phenomenological to
multi-scale ones that incorporate detailed microstructural information.
Some of the more commonly adopted models can be categorized into
Fung-type (Fung et al., 1972), invariant-based (Gasser et al., 2006),
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and structural models (Lanir, 1983; Billiar and Sacks, 2000). These
model categories have individual pros and cons. For example, the
Fung-type models, without additional treatment, do not satisfy frame
invariance (Ateshian and Costa, 2009; Sun and Sacks, 2005), while the
structural models are computationally too expensive to be employed in
finite element simulations of realistic biological systems.

Even within each category, there are a large number of available
models that can be challenging to differentiate. It is often unclear which
model is most suitable for a given problem or situation, thus making
selection of a particular model challenging. While the model that best
fits a tissue’s ex-vivo response may be considered an ‘‘optimal’’ choice,
different definitions of ‘‘best fit’’ can lead to different results. For
example, how one prescribes relative weights to different experimental
protocols performed on a tissue sample can have an effect on the fit.
This becomes a unique challenge when none of the models fit all the
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experiments simultaneously, leading to a trade-off when performing
the fitting. Moreover, considering the inter-sample variability in many
biological systems, there is no guarantee that a model that fits the data
for one sample will also be representative of the data for another sample
of the same tissue type. Nevertheless, it is reasonable to expect that a
chosen model should be able to represent several (ideally, all) samples,
not just one.

The focus of the present study is on the problem of choosing a
model for soft tissues, which is termed as ‘‘model selection’’. In general,
model selection is a non-trivial problem, and several approaches have
been proposed in the literature (Mills and Prasad, 1992), such as a
Bayesian framework (Farrell et al., 2015), techniques based on cross-
validation (Arlot and Celisse, 2010) and those based on information
criteria (Konishi and Kitagawa, 1996). However, these techniques are
only starting to be used in the field of soft tissue biomechanics (Paun
et al., 2020; Oden et al., 2013; Madireddy et al., 2015). This is partly
because model selection becomes all the more challenging due to
the nonlinearities of constitutive models, the high dimension of the
measurement space, and the subtle variations in how experiments are
conducted.

An effective and widely used experimental method for biomechan-
ical characterization of soft tissues is biaxial testing, which has been
applied to various types of thin tissues (Sacks, 1999; Billiar and Sacks,
2000; Zhang et al., 2015; Humphrey et al., 1987; Vito, 1980; Nielsen
et al., 1991; Yin et al., 1987). With established testing setups and fast
acquisition commercial systems, it is now possible to collect biaxial test
data on a large number of samples and employ advanced techniques
from data science (e.g., machine learning) for solving unresolved issues.
Thus, the goal of this study is to formulate a Bayesian framework
for model selection that can be applied to data from planar biaxial
mechanical testing. Herein, model selection is posed as a problem of se-
lecting a model that has the highest probability given the experimental data.
Importantly, the framework is designed to account for the inter-sample
variability and experimental noise within a Bayesian setting.

To demonstrate the proposed model selection framework, we apply
it to aortic valve (AV) tissue, which is clinically important for healthy
functioning of the heart. The AV is made up of three semilunar cusps:
left coronary cusp (LCC), non-coronary cusp (NCC), and right coronary
cusp (RCC). While biomechanics of the AV tissue has been studied
extensively in the literature (Billiar and Sacks, 2000; Wu et al., 2018;
Martin and Sun, 2012; Stradins et al., 2004; Eckert et al., 2013; Balguid
et al., 2007; Hasan et al., 2014; Sauren et al., 1983; Balachandran et al.,
2011; Anssari-Benam et al., 2011), there is no consensus yet regarding
its most appropriate constitutive model (May-Newman et al., 2009;
Driessen et al., 2004; Auricchio et al., 2012; Sun and Sacks, 2005).
Further, the three cusp types also pose an interesting question: can the
same model be used to represent all three AV cusps or is a different
model required for each cusp type?

The proposed framework aims to be general and applicable to all tis-
sue types, while also providing a unique insight into the biomechanics
of AV tissue. The remainder of this article is organized as follows. The
experimental, theoretical, and computational methods are described in
Section 2. Then, the results using the proposed framework for AV tissue
are presented in Section 3. Finally, the implications and potential uses
of the proposed framework are discussed in Section 4.

2. Methods

2.1. Data generation and pre-processing

A pre-requisite for the proposed framework is the availability of
data from a sufficient number of samples to generate a statistical
model. In this subsection, the details of the experimental setup used
to generate the data and the techniques used for pre-processing of the
data are presented. The experimental data used in this study is the
same as that reported in a previous study (Hudson et al., 2022), and
its experimental procedure is summarized next, followed by the details
2

of data pre-processing required for the proposed framework.
2.1.1. Tissue preparation
Eighteen porcine hearts (80–140 kg of weight, 1–1.5 years of age)

were obtained from a USDA-approved abattoir (Chickasha Meat Com-
pany, Chickasha, OK). Each heart was dissected, and the three AV
cusps (LCC, NCC, and RCC) were extracted from the aortas. The cusps
were then briefly stored at −20 ◦C prior to mechanics testing within
6–12 hours. Prior to biaxial testing, the excised AV specimens were
thawed in an in-house phosphate-buffered saline (PBS) solution at
room temperature. Once thawed, the belly region of the tissue was
dissected from the cusp, and thickness measurements were made using
a non-contact laser displacement sensor (Keyence IL-030, Itaska, IL, res-
olution: 0.001 mm) at three different locations of each cusp specimen
to determine the average tissue thickness.

2.1.2. Biaxial mechanical testing protocols
For biaxial testing, the tissue specimens were mounted to a com-

mercial biaxial testing system (BioTester, CellScale, Canada, 1.5 N
load cells) via BioRake tines, resulting in an effective testing region of
6.5 × 6.5 mm. During mounting, the tissue’s circumferential and radial
directions were aligned with the 𝑥- and 𝑦-axes of the biaxial testing
system, respectively. Four glass beads (with a diameter of 300−500 μm)
were placed on the center region of each specimen to serve as fiducial
markers for quantifying the in-plane strains.

For testing, the specimen were submerged in a 32 ◦C PBS bath
during the testing. The force readings from the load cells and CCD
camera images were recorded at 15 Hz throughout the test. The biaxial
loading rates were restricted to < 3.32%/sec to be within the quasi-
static loading range (< 12%/sec) to minimize any potential effects of
strain rate on the results. At any point, if 𝑓𝑥 and 𝑓𝑦 were the forces
applied in the 𝑥- and 𝑦-directions, respectively, the measured normal
stresses were calculated as 𝑃𝑥𝑥 = 𝑓𝑥∕𝑡𝐿𝑦 and 𝑃𝑦𝑦 = 𝑓𝑦∕𝑡𝐿𝑥, where 𝐿𝑥
and 𝐿𝑦 are the effective dimensions of the sample and 𝑡 is the average
measured tissue thickness in the unloaded configuration (Fig. 1a). The
deformation gradient 𝐅 was quantified using bi-linear interpolation of
the bead positions (Hudson et al., 2022), and the right Cauchy–Green
deformation tensor was calculated as 𝐂 = 𝐅⊤𝐅 (here (⋅)⊤ denotes
the matrix transpose). Since the tissue’s fiber orientation was aligned
with the biaxial testing direction in the experimental setting, the off-
diagonal terms in the deformation tensor were assumed to be small,
effectively neglecting any shear deformation. The stretches along the
two axes were calculated as 𝜆𝑥 =

√

𝐶𝑥𝑥 and 𝜆𝑦 =
√

𝐶𝑦𝑦, where 𝐶𝑥𝑥
and 𝐶𝑦𝑦 are the two diagonal components of 𝐂. The stretch in the
issue’s thickness direction was calculated using the incompressibility
onstraint, i.e., 𝜆𝑧 = 1∕𝜆𝑥𝜆𝑦.

A preconditioning protocol, consisting of six loading/unloading cy-
cles at a target first Piola–Kirchhoff (PK) peak stress of 𝑃 = 240 kPa, was
first applied to restore the tissue to its equivalent in-vivo biomechanical
configuration. The preconditioning protocols were followed by the
actual testing protocols. Each testing protocol was defined as recording
stresses and stretches along a loading path in the 𝑃𝑥𝑥 − 𝑃𝑦𝑦 space
starting at zero-stress state and ending at a target maximum stress
[𝑃 𝑟,max

𝑥𝑥 , 𝑃 𝑟,max
𝑦𝑦 ]. The target maximum stress state for a protocol 𝑟 had

an associated ratio, 𝜙𝑟 = 𝑃 𝑟,max
𝑥𝑥 ∕𝑃 𝑟,max

𝑦𝑦 and target stress magnitude

𝑃max =
√

(

𝑃 𝑟,max
𝑥𝑥

)2 +
(

𝑃 𝑟,max
𝑦𝑦

)2 (Fig. 1b), with 𝑟 = 1,… , 𝑅. Target
stress magnitude was kept approximately constant across all samples
and protocols, while the target ratio was varied between protocols,
so that [𝑃 𝑟,max

𝑥𝑥 , 𝑃 𝑟,max
𝑦𝑦 ] = 𝑃max

√

1+𝜙2𝑟
[𝜙𝑟, 1]. The corresponding maximum

stretch for each protocol was pre-determined and then stretches were
increased linearly from the reference state (𝜆𝑥 = 𝜆𝑦 = 1) to reach
the maximum stretch (and therefore the maximum stress) state. For
protocol 𝑟, 𝑚𝑟 points were recorded, and, therefore, for each sample,
∑𝑅 2𝑚 stresses and ∑𝑅 2𝑚 stretches were recorded.
𝑟=1 𝑟 𝑟=1 𝑟



Journal of the Mechanical Behavior of Biomedical Materials 138 (2023) 105657A. Aggarwal et al.

w

2

a
w
f
f
m
t
c
d
o
m

2

r
a
w
c
f
(

𝜀

a
f

Fig. 1. (a) A schematic of the biaxial testing with the circumferential (fiber) direction of the tissue was aligned with the 𝑥 axis and the radial (cross-fiber) direction of the tissue
as aligned with the 𝑦 axis. (b) The different loading paths in the stress space with seven different loading ratios 𝜙𝑟 ∈ {0.25, 0.5, 0.75, 1, 1.333, 2, 4}.
H

.1.3. Data collection
𝑁 = 46 samples of aortic valve tissue were tested (15 LCC, 15 RCC,

nd 16 NCC). 𝑅 = 7 target ratios were used for each tissue sample,
ith 𝜙𝑟 ∈ {0.25, 0.5, 0.75, 1, 1.333, 2, 4}. Each protocol was repeated

or three loading/unloading cycles, and the measurements from the
inal loading cycle were used. In practice, the actual maximum stress
agnitude 𝑃max and the actual stress ratios 𝜙𝑟 varied slightly from

he target values. More importantly, the number of points along the
urve 𝑚𝑟 varied from sample to sample. As a result each sample had
ifferent number of measurements. In order to create a uniform number
f measurements across samples, an interpolation of the experimentally
easured stretch–stress curves was required, which is described next.

.1.4. Interpolation and smoothing
To standardize the measurements for all samples with the same

ange of applied stresses and the same number of measurement points,
n interpolation was necessary. An appropriate interpolation function
as required that provided a good fit to the full range of stress–stretch

urves. After testing various options, the following one-dimensional
unction based on implicit elasticity proposed by Freed and Rajagopal
Freed and Rajagopal, 2016) was used

= 𝜀𝐶 + 𝜀𝐸 = 𝜎
𝐸𝐶 + 1

𝛽

(

1 − 1
(

1 + (𝛽 − 1)𝜎∕𝐸𝐸
)𝛽∕(𝛽−1)

)

, (1)

where 𝜀 ∶= 𝜆𝑥 − 1 and 𝜎 ∶= 𝑃𝑥𝑥 for curves along the fiber direction,
nd 𝜀 ∶= 𝜆𝑦 − 1 and 𝜎 ∶= 𝑃𝑦𝑦 for the cross-fiber direction. The above
unction has three parameters,

{

𝛽, 𝐸𝐸 , 𝐸𝐶}, which were determined
by fitting Eq. (1) to each experimental stress–stretch curve. Since the
one-dimensional function is based on implicit elasticity theory, it also
helped avoid any non-physical oscillations in the interpolated data.

After fitting the above function to each experimental stress–stretch
curve, an interpolated (or extrapolated) and smoothed version of the
dataset was produced, with each curve having 𝑚̄ = 100 points and
reaching a maximum stress magnitude of ⟨𝑃max

⟩ (here ⟨⋅⟩ denotes the
mean operator over all tissue samples). Thus, after this step, each
sample 𝐼 had the same input

𝒙 =
𝑅
⋃

𝑟=1

{

𝑃 𝑟,max
𝑥𝑥 , 𝑃 𝑟,max

𝑦𝑦

}

. (2)

The outputs included measured stresses, denoted as a vector 𝝈(𝐼) ∈
R2𝑅𝑚̄, and the same number of stretches, denoted as a vector 𝝀(𝐼) ∈
R2𝑅𝑚̄. Since the stretches varied linearly for each protocol, the stretch
vector could be represented simply in terms of the maximum stretches
for each protocol, 𝝀max,(𝐼) ∈ R2𝑅. The combination of normalized
stresses and maximum stretches for each sample was represented with
a combined output vector

𝒚(𝐼) ∶= 𝝈(𝐼)

⟨𝑃max
⟩

∪ 𝝀max,(𝐼), (3)

and this combined output vector 𝒚(𝐼) ∈ R2𝑅(𝑚̄+1).
3

2.1.5. Principal component analysis
After interpolation, we had the same number of measurements for

all 𝑁 samples, 𝒚(𝐼), 𝐼 = 1,… , 𝑁 . From these measurements, a statis-
tical distribution of the measured output was sought. A fundamental
statistical distribution is the multivariate Gaussian distribution, which
requires estimation of the mean vector and covariance matrix. How-
ever, because of the high-dimensionality of the output space, directly
estimating its covariance matrix would have required a prohibitively
large number of samples. Therefore, a reduction in dimensionality was
first achieved via principal component analysis (PCA) as follows.

First, the mean output was calculated as

𝒚̄ = 1
𝑁

𝑁
∑

𝐼=1
𝒚(𝐼), (4)

and a zero-mean output vector for each sample was calculated as

𝜟𝒚(𝐼) = 𝒚(𝐼) − 𝒚̄. (5)

All the zero-mean output vectors were written in a matrix form 𝐙,
where the 𝐼 th row is 𝜟𝒚(𝐼).1 Next, a singular value decomposition of
𝐙 was performed as

𝐙 = 𝐔𝐒𝐕𝖧, (6)

where (⋅)𝖧 denotes the conjugate transpose of a matrix, 𝐒 is a diag-
onal matrix with singular values 𝑠𝛼 (equal to the square root of the
eigenvalues of 𝐙𝖧𝐙), and rows of 𝐕𝖧, 𝒗𝛼 , are the corresponding unitary
eigenvectors (also called principal modes) of 𝐙𝖧𝐙. The singular values
and vectors pairs were written as (𝑠𝛼 , 𝒗𝛼), with 𝛼 = 1,… , 𝑁 . The PCA
mode amplitudes of each data set were calculated as

𝑎(𝐼)𝛼 = 𝜟𝒚(𝐼) ⋅ 𝒗𝛼 . (7)

Therefore, the reconstructed measurements from first 𝑀 principal
modes were

𝒚̃(𝐼) =
𝑀
∑

𝛼=1
𝑎(𝐼)𝛼 𝒗𝛼 + 𝒚̄. (8)

Using the unitary property of 𝐔, it is easy to see that the singular values
𝑠𝛼 also represent the standard deviation of the modal amplitudes 𝑎(𝐼)𝛼 .
Thus, keeping the first 𝑀 principal modes, the experimental data was
represented as a statistical model2

𝒀 = 𝒚̄ +
𝑀
∑

𝛼=1
 (0, 𝑠2𝛼)𝒗𝛼 +

(

𝐈 −
𝑀
∑

𝛼=1
𝒗𝛼 ⊗ 𝒗𝛼

)

𝝐, (9)

1 Remark: A direct estimation of the covariance matrix would be Σ = 𝐙⊤𝐙.
owever, since 𝑁 ≪ 2𝑅(𝑚̄ + 1), this estimate of the covariance matrix would

be extremely ill-conditioned and not usable for building a statistical model.
Thus, a PCA was required to resolve this issue.

2 Remark: Choosing a statistical model here can also be considered as
a problem of model selection. Since the mode amplitudes are scalars and

independent (because of PCA), this is an easier problem. For simplicity, a
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Table 1
List of models considered with their strain energy density functions and the associated parameters. For the LS model,
𝑘∗ ∶= 𝜅𝑘2 + (1 − 𝜅)𝑘3 is used for brevity.
Model Strain energy density function Parameters

GOH 𝛹 = 𝜇
2
(𝐼1 − 3) + 𝑘1

2𝑘2

[

exp(𝑘2(𝜅𝐼1 + (1 − 3𝜅)𝐼4 − 1)2) − 1
]

𝜃 =
{

𝜇, 𝑘1 , 𝑘2 , 𝜅
}

HGO 𝛹 = 𝜇
2
(𝐼1 − 3) + 𝑘1

2𝑘2

[

exp(𝑘2(𝐼4 − 1)2) − 1
]

𝜃 =
{

𝜇, 𝑘1 , 𝑘2
}

HGO2 𝛹 = 𝑘1
𝑘2

[

exp(𝑘2(𝐼1 − 3)) − 1
]

+ 𝑘3
2𝑘4

[

exp(𝑘4(𝐼4 − 1)2) − 1
]

𝜃 =
{

𝑘1 , 𝑘2 , 𝑘3 , 𝑘4
}

Holzapfel 𝛹 = 𝜇
2
(𝐼1 − 3) + 𝑘1

2𝑘2

[

exp(𝑘2(𝜅(𝐼1 − 3)2 + (1 − 𝜅)(𝐼4 − 1)2)) − 1
]

𝜃 =
{

𝜇, 𝑘1 , 𝑘2 , 𝜅
}

HY 𝛹 = 𝑘1
𝑘2

[

exp(𝑘2(𝐼1 − 3)) − 1
]

+ 𝑘3
𝑘4

[

exp(𝑘4(
√

𝐼4 − 1)2) − 1
]

𝜃 =
{

𝑘1 , 𝑘2 , 𝑘3 , 𝑘4
}

LS 𝛹 = 𝜇
2
(𝐼1 − 3) + 𝑘1

2𝑘∗
[

𝜅 exp(𝑘2(𝐼1 − 3)2) + (1 − 𝜅) exp(𝑘3(𝐼4 − 1)2) − 1
]

𝜃 =
{

𝜇, 𝑘1 , 𝑘2 , 𝑘3 , 𝜅
}

MN 𝛹 = 𝜇
2
(𝐼1 − 3) + 𝑘1

𝑘2+𝑘3

[

exp(𝑘2(𝐼1 − 3)2 + 𝑘3(
√

𝐼4 − 1)4) − 1
]

𝜃 =
{

𝑘1 , 𝑘2 , 𝑘3 , 𝜇
}

Yeoh 𝛹 =
∑3

𝑖=1 𝑐𝑖(𝐼1 − 3)𝑖 𝜃 =
{

𝑐1 , 𝑐2 , 𝑐3
}

w
t
s
a
v

a
t
n
c
a

2

I
r
t
E
p

𝑝

where 𝝐 is a random vector with norm ‖𝝐‖ ∼  (0, 𝜎2+𝜎2𝑛 ). The variance
of this random vector was related to the fact that 𝛼 > 𝑀 modes were
truncated:

𝜎2 = 1
𝑁

𝑁
∑

𝐼=1
‖𝒚(𝐼) − 𝒚̃(𝐼)‖2, (10)

hereas the measurement noise variance 𝜎2𝑛 was calculated from the
nterpolation error.

.2. Hyperelastic constitutive models

The main question this study aims to address is, ‘‘which model
hould be selected given the data from 𝑁 samples described above?’’. In
rder to proceed, eight hyperelastic constitutive models that have been
eveloped for soft tissues were pre-selected. The choice, although not
n exhaustive list, covers several invariant-based models that can be
ifficult to differentiate. The following models were considered in this
tudy: (i) an isotropic model by Yeoh for rubber elasticity (Yeoh, 1993);
ii) the Lee–Sacks (LS) model for the mitral valve leaflet tissue (Lee
t al., 2014); (iii) the May–Newman (MN) model with another form
roposed for the mitral valve tissue (May-Newman and Yin, 1998);
iv and v) two variants of a model proposed by Holzapfel, Gasser,
nd Ogden for arterial tissue with an additive split of isotropic and
nisotropic components (Holzapfel et al., 2000) (HGO with linear
sotropic term and HGO2 with an exponential isotropic term); (vi)
olzapfel model proposed for coronary arteries (Holzapfel et al., 2005);

vii) another model proposed by Gasser, Ogden and Holzapfel (GOH)
or coronary arteries (Gasser et al., 2006), and (viii) Humphrey–Yin
HY) model developed for myocardium (Humphrey and Yin, 1987).
ome theoretical limitations have been reported for these models in
he literature, however, the shortlist was made based on their common
se in practice.

Hyperelastic models define a strain energy density function (SEDF)
. The SEDFs and corresponding parameters 𝜃 of all the eight models

n alphabetical order are summarized in Table 1. From the SEDF, the
irst PK stress is derived as (Holzapfel, 2000)

= 𝜕𝛹
𝜕𝐅

− 𝑝𝐅−⊤, (11)

where 𝑝 is the hydrostatic pressure to enforce incompressibility. Based
on the applied deformation in the biaxial setup, we can determine the
deformation gradient 𝐅 = diag[𝜆𝑥, 𝜆𝑦, 1∕𝜆𝑥𝜆𝑦]. The models considered
re functions of the first invariant 𝐼1 = tr(𝐂) and the fourth invariant
4 = 𝐍 ⋅ 𝐂𝐍, where 𝐍 is the fiber direction and approximated to be
long the 𝑥-axis. Thus, 𝜕𝛹

𝜕𝐂
= 𝜕𝛹

𝜕𝐼1
𝐈 + 𝜕𝛹

𝜕𝐼4
𝐍 ⊗ 𝐍, and the hydrostatic

ressure 𝑝 is analytically derived by equating the normal stress along
issue’s thickness, 𝑃𝑧𝑧 = 0 (Fan and Sacks, 2014; Kiendl et al., 2015).

normal distribution was chosen for the modal amplitudes. However, if enough
samples are available, it is possible to select more appropriate distributions for
each PCA mode.
4

c

Thus, given a model for SEDF 𝛹 , the resulting stresses 𝑃𝑥𝑥 and
𝑃𝑦𝑦 can be obtained from stretches 𝜆𝑥 and 𝜆𝑦. However, since the ex-
periments were performed to target stresses [𝑃 𝑟,max

𝑥𝑥 , 𝑃 𝑟,max
𝑦𝑦 ], the inputs

to the model were the stresses instead. From these maximum target
stresses, the maximum target stretches were computed iteratively using
a modified Powell method implementation in SciPy (Powell, 1964).
Once the target stretches were found, 𝑚̄ equi-spaced stretch increments

ere applied to find the resulting stresses. The resulting stresses were
hen normalized by ⟨𝑃max

⟩ and combined with the maximum target
tretches (as per Eq. (3)) to obtain the model output vector, denoted
s 𝒛 which is a function of the chosen model and associated parameter
alues.

Note that, for some models, their parameterization was slightly
ltered from the original versions to make the parameters comparable
o other models. Moreover, all the considered models have similar
umbers (3 to 5) of parameters. For any additional models to be
onsidered, the framework can simply be applied to the new model
nd the results compared with those presented here.

.3. Proposed framework: Bayesian model selection

In this subsection, the framework for model selection is described.
f  models are considered with output 𝒛 =  (𝒙, 𝜃), where 
epresents the th model with associated parameters 𝜃 and  = 1,… ,,
hese were compared to the statistical model of the measurements 𝒀 in
q. (9) as follows. From the Bayes’ theorem (see Appendix A for the
reliminaries), we have:

(𝜃 ∣ 𝒛 = 𝒚̄, ) =
𝑝(𝒛 = 𝒚̄ ∣ 𝜃, )𝑝(𝜃 ∣  )

𝑝(𝒛 = 𝒚̄ ∣  )
, (12)

where the denominator on the right-hand side is an integral of the
numerator, i.e.,

𝑝(𝒛 = 𝒚̄ ∣  ) = ∫𝜃
𝑝(𝒛 = 𝒚̄ ∣ 𝜃, )𝑝(𝜃 ∣  ) d𝜃. (13)

The above integral balances model complexity and quality of fit by
rewarding the goodness of fit while penalizing models with parameters
that do not contribute to the goodness of fit. Applying the Bayes’
theorem once again, we arrived at the probability of model  given
the measurements

𝑝( ∣ 𝒛 = 𝒚̄) =
𝑝(𝒛 = 𝒚̄ ∣  )𝑝( )

𝑝(𝒛 = 𝒚̄)
, (14)

where the denominator is the summation over the numerator, i.e.,

𝑝(𝒛 = 𝒚̄) =

∑

=1
𝑝(𝒛 = 𝒚̄ ∣  )𝑝( ). (15)

This approach, also known as the Bayes factor, has been proposed
to compare any two models (Kass and Raftery, 1995) and is being
recently used in mechanics (Girolami et al., 2021; Fitt et al., 2019;
Madireddy et al., 2015). Thus, to evaluate the model probabilities
𝑝( ∣ 𝒛 = 𝒚̄), Eq. (13) has to be evaluated with specified or
assumed prior probabilities of models 𝑝( ). In the absence of any
prior knowledge or preference, equal prior probabilities of the models
were used, i.e., 𝑝( ) = 1∕ for all . The integral in Eq. (13) was

omputed using Monte Carlo integration, as described next.
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Table 2
Model parameters values 𝜃̄𝑖 corresponding to the best classical fit to the mean response.
Model 𝜃̄1 (in kPa) 𝜃̄2 (in kPa) 𝜃̄3 𝜃̄4 𝜃̄5
GOH 𝜇 = 3.68 𝑘1 = 30.00 𝑘2 = 8.93 𝜅 = 0.30 –
HGO 𝜇 = 28.48 𝑘1 = 1.86 𝑘2 = 5.68 – –
HGO2 𝑘1 = 0.25 𝑘3 = 0.64 𝑘2 = 3.55 𝑘4 = 0.25 –
Holzapfel 𝜇 = 4.14 𝑘1 = 4.89 𝑘2 = 1∕86 𝜅 = 0.51 –
HY 𝑘1 = 0.25 𝑘3 = 0.92 𝑘2 = 3.54 𝑘4 = 44.92 –
LS 𝜇 = 5.3 𝑘1 = 2.65 𝑘2 = 1.21 𝑘3 = 7.14 𝜅 = 0.96
MN 𝜇 = 4.21 𝑘1 = 57.45 𝑘2 = 0.93 𝑘3 = 36.08 –
Yeoh 𝑐1 = 0 𝑐2 = 0 𝑐3 = 6.8 kPa – –
Table 3
Prior distributions of the model parameters were assumed to be uniform in the following ranges (around the best classical fit from Table 2).
Model 𝜃1 prior (in kPa) 𝜃2 prior (in kPa) 𝜃3 prior 𝜃4 prior 𝜃5 prior

GOH 𝜇 ∈ [0.37, 46.83] 𝑘1 ∈ [3.00, 310.00] 𝑘2 ∈ [0.89, 99.30] 𝑘3 ∈ [0, 1∕3]
HGO 𝜇 ∈ [2.85, 294.85] 𝑘1 ∈ [0.19, 28.57] 𝑘2 ∈ [0.57, 66.83] – –
HGO2 𝑘1 ∈ [0.02, 12.47] 𝑘3 ∈ [0.06, 16.36] 𝑘2 ∈ [0.36, 45.54] 𝑘4 ∈ [0.70, 79.60] –
Holzapfel 𝜇 ∈ [0.41, 51.43] 𝑘1 ∈ [0.49, 58.94] 𝑘2 ∈ [0.19, 28.62] 𝜅 ∈ [0, 1] –
HY 𝑘1 ∈ [0.03, 12.51] 𝑘3 ∈ [0.09, 19.17] 𝑘4 ∈ [4.49, 459.20] 𝑘2 ∈ [0.35, 45.43] –
LS 𝜇 ∈ [0.53, 63.00] 𝑘1 ∈ [0.26, 36.47] 𝑘2 ∈ [0.12, 22.10] 𝑘3 ∈ [0.71, 81.45] 𝜅 ∈ [0, 1]
MN 𝜇 ∈ [0.42, 52.08] 𝑘1 ∈ [5.75, 584.50] 𝑘2 ∈ [0.09, 19.31] 𝑘3 ∈ [3.61, 370.77] –
Yeoh 𝑐1 ∈ [0.00, 10.00] 𝑐2 ∈ [0.00, 10.00] 𝑐3 ∈ [0.68, 78.01] kPa – –
r
a
f
r

e

2.3.1. Monte Carlo integration
The integral in Eq. (13) can be high-dimensional with a large or,

possibly, infinite domain. Thus, Monte Carlo integration was used to
approximate this integral (Morokoff and Caflisch, 1995), i.e.,

𝑝(𝒛 = 𝒚̄ ∣  ) ≈
1
𝑆

𝑆
∑

𝑠=1
𝑝(𝒛 = 𝒚̄ ∣ 𝜃𝑠, ), (16)

where 𝜃𝑠, 𝑠 = 1,… , 𝑆, are samples from the prior distribution of model
parameters 𝑝(𝜃 ∣  ). The useful property of Monte Carlo integration
is that the approximation error converges ∼ 1

√

𝑆
independently of the

imension of the parameter space. Moreover, it is trivial to implement
nd parallelize. Lastly, the prior distribution can be sampled randomly
r quasi-randomly, with the latter giving faster convergence in prac-
ice (Morokoff and Caflisch, 1995). Therefore, a Sobol sequence (Joe
nd Kuo, 2003, 2008) was used to generate 𝑆 = 215 samples from the
rior distributions of parameters of each model, 𝑝(𝜃 ∣  ).

2.3.2. Calculating the likelihood
In Eq. (16), it is required to calculate the likelihood function in the

RHS. This is computed from the statistical model presented in Eq. (9).
That is, for a given model  and parameter value 𝜃𝑠, the model
output 𝒛 =  (𝒙, 𝜃𝑠) was first calculated. Then its mode amplitudes
with respect to the PCA were calculated as

𝑎𝑠𝛼 = (𝒛 − 𝒚̄) ⋅ 𝒗𝛼 . (17)

Lastly, the error term was calculated by adopting the 𝐿2 norm as

𝑒2 = ‖(𝒛 − 𝒚̄) −
𝑀
∑

𝛼=1
𝑎𝑠𝛼𝒗𝛼‖

2. (18)

Thus, the likelihood was calculated as

𝑝(𝒛 = 𝒚̄ ∣ 𝜃𝑠, ) =

[ 𝑀
∏

𝛼=1

1
√

2𝜋𝑠𝛼
exp

(

−
(𝑎𝑠𝛼)

2

2𝑠2𝛼

)]

× 1
√

2𝜋(𝜎2 + 𝜎2𝑛 )
exp

(

− 𝑒2

2(𝜎2 + 𝜎2𝑛 )

)

. (19)

.3.3. Choice of parameter prior distributions
Choosing the prior probability distribution of parameters for each

odel, 𝑝(𝜃 ∣  ), is an important step in the proposed framework.
n the absence of any prior information about the parameters, an
ninformed prior – specifying a uniform distribution in a range – can be
5

ssumed. However, there is no obvious way to choose an appropriate
ange for each parameter. To make this choice of range consistent
cross models, the following approach was used. A classical curve-
itting technique was used to fit the model output 𝒛 to the mean
esponse 𝒚̄ resulting in best-fit parameter values 𝜃̄ ( Table 2). Details

of the classical fitting procedure and a remark on its relation to the
likelihood function are provided in Appendix B. Subsequently, a range
of 𝜃𝑖 ∈

[

𝜃̄𝑖∕10, 10(𝜃̄𝑖 + 1)
]

for each parameter 𝜃𝑖 was used ( Table 3),
thus spanning two orders of magnitude around the best-fit values of the
parameters. A different procedure was used for the structural parameter
𝜅: its distribution was assumed to be uniform in the entire admissible
range (usually [0, 1] or [0, 1/3]). The ranges of the parameters used
for each model are listed in Table 3.

2.4. Post-processing and statistical tests

The simulations performed for computing the Monte Carlo integral
in Eq. (16) can also be used to obtain further insights. For example, the
posterior distributions of the parameters, Eq. (12), for each model can
be computed. From the posterior distributions, point estimates of the
expected parameter values can be defined as

E(𝜃) = ∫𝜃
𝜃 𝑝(𝜃 ∣ 𝒛 = 𝒚̄, ) d𝜃 (20)

and subsequently approximated via Monte Carlo approximation. An-
other point estimate, the maximum a posteriori (MAP) estimate 𝜃MAP,
was also approximated from the Monte Carlo samples as

𝜃MAP ≈ argmax
𝑠∈{1,…,𝑆}

𝑝(𝜃𝑠 ∣ 𝒛 = 𝒚̄, ). (21)

Equivalently, the expected model output and its variance,

E(𝒛) = ∫𝜃
𝒛 𝑝(𝜃 ∣ 𝒛 = 𝒚̄, ) d𝜃 and (22)

V(𝒛) = ∫𝜃
[𝒛 − E(𝒛)]⊗ [𝒛 − E(𝒛)] 𝑝(𝜃 ∣ 𝒛 = 𝒚̄, ) d𝜃, (23)

were approximated using the Monte Carlo integration. Lastly, to obtain
a histogram of the posterior probability distributions of each of the
model parameters 𝜃𝑖, the range of each parameter was divided into 20
qual-sized bins, 𝐵𝐽

𝑖 ∶=
[

𝜃𝐽𝑖 , 𝜃
𝐽+1
𝑖

]

, 𝐽 = 1,… , 20. Then, the posterior
probability distribution 𝑝(𝜃 ∣ 𝒛 = 𝒚̄, ) was marginalized with respect
to the other parameter 𝜃𝑗≠𝑖 to obtain the following discrete probability:

𝑝
(

𝜃𝑖 ∈ 𝐵𝐽 ) ∝ 𝐻
(

𝜃𝑖, 𝐵
𝐽 ) 𝑝(𝜃 ∣ 𝒛 = 𝒚̄, ) d𝜃, (24)
𝑖 ∫𝜃 𝑖
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Fig. 2. The applied stresses (dots) deviated slightly from the target ratio (faint dashed
colored lines), where the mean achieved ratio is shown in solid colored lines. The mean
magnitude of the maximum applied stress 𝑃max is plotted as a black dashed circular
arc. The target stresses for each protocol are the intersection of the circular arc and
solid lines, and are denoted with black ∗.

here

(𝑥, 𝐵) =

{

1 if 𝑥 ∈ 𝐵
0 otherwise.

(25)

he above integral was also approximated using Monte Carlo.
For finding differences between cusp types, independent samples

-test was used to compare the modal amplitudes. For finding cor-
elations between modal amplitudes and tissue thicknesses, Pearson’s
orrelation coefficient was used.

. Results

.1. Data pre-processing

The considered ratio 𝜙 varied slightly from the target values (Fig. 2).
he mean values of the applied ratios were 𝜙𝑟 ∈ {0.29, 0.58, 0.87, 1.13,
1.42, 2.02, 3.87}, and the mean magnitude of the maximum applied
stress was 𝑃max = 307.4 kPa. These mean values of stress ratios 𝜙 and
maximum stress magnitude 𝑃max were used for evaluating the common
input vector 𝒙 (representing the target applied stresses, Eq. (2)) and
thereafter compute the model outputs 𝒚 (representing the resulting
stresses and stretches, Eq. (3)).

The stress–stretch curves at all ratios for all 46 samples are plotted
as points in Fig. 3. The 1D model (Eq. (1)) fit all the stress–stretch
curves well (solid lines in Fig. 3), without causing any issues of overfit-
ting, oscillations, or ill-conditioning. The coefficient of determination of
the fit was 𝑅2 > 0.927 for all curves, with the mean value being

⟨

𝑅2⟩ =
0.996. The fitted values of parameters and coefficients of determination
are provided as Supplementary Information (SI). Thus, the function also
allowed reliable interpolation/extrapolation. The interpolated stress–
stretch curves for the common input vector 𝒙 are shown in Fig. 4.
These curves were used as the input to the proposed model selection
framework, starting with the principal component analysis.

3.2. Principal component analysis

The mean stress–stretch response is shown in Fig. 5, with the varia-
tion of one standard deviation depicted as shaded area. The amplitudes
of all the normal modes calculated using PCA are shown in Fig. 6 (see
SI for an animation of the first five PCA modes). The main boxplot
shows the variation in the modal amplitudes of the experimental data,
which is only dominant for the first five modes. The inset in Fig. 6
6

shows the singular values of each mode on a log-scale, which decrease
exponentially. The first five dominant PCA modes are plotted in Fig. 7.

Based on the PCA, a statistical model (Eq. (9)) was constructed.
The framework allows generation of synthetic dataset based on this
statistical model. Ten random samples are shown in Fig. 8, which
demonstrates that the statistical model captures the variation in the
actual dataset.

3.3. Model probabilities

Using the proposed framework, the convergence of Monte Carlo in-
tegration was confirmed by plotting the model probabilities for 𝑀 = 11
versus number of iterations (Fig. 9). Clearly, all the computations were
converged. The most probable model comes out to be the May–Newman
model, followed by the Lee–Sacks model. If the number of modes 𝑀
retained in the statistical model are varied, the model probabilities
vary, as shown in Fig. 10a. Interestingly, if no principal modes are
considered (𝑀 = 0), i.e., the comparison of classical fitting to the mean
s used, five out of the eight models have roughly similar probabilities,
ith May–Newman model being the most probable. This means that

he five of the models are able to describe the mean response well.
owever, as variations along the principal modes are included in the

tatistical model, it becomes possible to differentiate the models. For
≥ 11, the May–Newman model performs significantly better that

he other models.
If we categorize the samples by cusp types (LCC, RCC, and NCC),

he relative probabilities of the eight models for each cusp type show
arying behavior (Fig. 10b–d). For both LCC and RCC tissues, the
ay–Newman model still has the largest probability, and there is a

lear convergence of model probabilities as modes are increased. In
ontrast, for NCC tissues, the probabilities oscillate as we increase the
umber of modes considered. At 𝑀 ≥ 11 the probabilities of Lee–Sacks

and May–Newman models are comparable. This indicates that both
May–Newman and Lee–Sacks models are equally good at describing
the data of NCC tissues, and one cannot be ruled out in favor of the
other. Moreover, some of the other models, e.g., Humphrey–Yin model,
perform well for certain values of 𝑀 and should not be discarded.
Generally, the NCC tissues show a unique behavior at mode 𝑀 = 7 that
ffects all model probabilities and will require further investigation in
he future.

.4. Expected and MAP parameter values

Since the MN model clearly outperforms other models based on
he proposed Bayesian framework, we analyze its properties further.
sing the Monte Carlo integration, for MN model, the expected values
f its parameters (Eq. (20)) were calculated to be 𝜇 = 11.26 kPa,

𝑘1 = 305.66 kPa, 𝑘2 = 1.74, and 𝑘3 = 299.73. For comparison, the MAP
estimates of its parameters (Eq. (21)) were found to be 𝜇 = 13.74 kPa,
𝑘1 = 253.77 kPa, 𝑘2 = 1.1, and 𝑘3 = 335.72. When compared with the pa-
rameter values using classical fit ( Table 2), a large difference is noticed.
This is due to a fundamental difference in the two approaches. While,
the classical fit tries to match the model response to the mean response,
the presented approach prefers to match the shape (i.e. principal modes
of variation from the mean) of stress–stretch curves from a model to
those observed in the experiments.

The resulting stress–stretch curves and their variations were com-
puted for the MN model and are shown in Fig. 11. While the MN
model captures the cross-fiber response well, its response along the
fibers deviates from the data, especially for low 𝜙. This issue is also
present in all other models considered (results not shown for brevity),
and it is related to the complex coupling of fiber and matrix. This
mismatch between the data and the considered models indicates that
none of the considered models are perfectly suited for aortic valve
tissues and signifies the need for continued developments in the field of
constitutive modeling. The difficulty in selecting a model in the absence
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Fig. 3. The experimental data for 𝑁 = 46 samples (dots) and the fitted interpolating function (line) in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and
ertical axes are stresses in [kPa]. Each color represents a different tissue sample of total 𝑁 = 46 specimens.
Fig. 4. The interpolated data in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and vertical axes are stresses in [kPa]. Each color represents a different
issue sample of total 𝑁 = 46 specimens.
Fig. 5. The mean stress–stretch response (blue lines) in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and vertical axes are stresses in [kPa]. The shaded
gray area denotes one standard deviation.
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of a clear, perfect fit highlights the need for a systematic framework
that allows an objective and easy-to-interpret comparison of models.
Lastly, the posterior distributions of the MN model parameters are
shown in Fig. 12, which could be used for population-based studies in
the future.

4. Discussion

The coupling between fiber and cross-fiber directions in soft tissues
produces a complex behavior, which is only captured when multiple bi-
axial loading ratios are used in a biaxial mechanical testing setup. Many
constitutive models have been developed to describe this observed be-
havior and provide better predictive capabilities. However, commonly
these models are fit only to the mean response, effectively regarding the
variability observed in biological samples as being random. In contrast,
7

w

the PCA results highlight that the observed variation is not random and
should be considered when matching with a model’s response.

4.1. Efficacy of the proposed framework

In the present study, we proposed a novel framework that accounts
for the inter-sample variability and allows for the computation of
the probabilities of chosen constitutive models. Notably, instead of
finding the best fit as is commonly done in the literature, the proposed
framework aims to find the model that can capture the variation seen in
he experimental dataset. This approach depends on having data from
large number of tissue samples. The large and, potentially variable,

umber of data points for each sample pose a critical challenge in the
pplication of statistical tools. Herein, one-dimensional interpolation
nd PCA-based techniques were used to tackle these challenges, and
ere found to be effective.
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Fig. 6. A boxplot of the amplitudes of PCA modes in the experimental data, from
which a normal distribution is constructed with mean zero and variance equal to 𝑠2𝛼
(inset).

For the interpolation, it was not trivial to establish a function that
can fit all the observed stress–stretch curves. The one-dimensional
stress–strain function proposed by Freed and Rajagopal (Freed and
Rajagopal, 2016) worked extremely well (Fig. 3). Since the function
is based on elasticity theory, by construction, it excluded non-physical
responses, such as oscillations that are commonly observed in the low-
stress regime of the biaxial stretching data. Moreover, even with just
three parameters, it was able to fit all of the 2𝑁×𝑅 = 644 stress–stretch
urves (𝑅2 > 0.927 and mean

⟨

𝑅2⟩ = 0.996).
In addition, PCA was used to reduce the dimensions of the dataset

nd thereby establishing a computationally useful statistical model.
ince the PCA modes are orthogonal, the amplitudes of the PCA modes
re independent, by construction. Thus, PCA reduces the problem to
onstructing distributions of several scalar variables. In this work, each
odal amplitude was assumed to have a normal distribution. However,

his assumption can be relaxed if the hypothesis of normality can be
ejected with sufficient number of samples.

Once the statistical model is established, the proposed framework is
traightforward to implement, and the Monte Carlo integration scheme
s trivial to parallelize. The results converged for all Monte Carlo
imulations, with typical computational times of 30 min with a 16-core
PU. Thus, the framework is computationally feasible while providing
escriptive statistical insight. The fact that the framework was able to
istinguish between similar models (all of them dependent on 𝐼1 and
4 with exponential terms) and pick up the differences between leaflet
ypes, also observed in the PCA, is remarkable and substantiates its
eliability.

Lastly, the Bayesian framework offers some practical advantages
ompared to the classical parameter-fitting approach. While in-general
aving a higher number of parameters gives a model an advantage in
itting the data better, this advantage is naturally taken into account
n the Bayesian setting wherein models with more parameters are
enalized (Oden et al., 2013). Moreover, finding a unique global min-
ma in parameter-fitting can be challenging for problems with either
nsufficient data to differentiate the parameters or with highly (or
erfectly) correlated parameters (Aggarwal, 2017, 2019). The proposed
ramework circumvents these issues by integrating over the parameter
pace (see SI for a simple demonstration of these features). Neverthe-
ess, finding a suitable model is a multi-faceted problem, and if the
niqueness of parameters is of interest, that aspect could be accounted
8

or in choosing a model.
Table 4
Pearson’s correlation coefficient between tissue thickness and amplitudes
of the first five PCA modes and corresponding 𝑝-values.
Mode Correlation coefficient 𝑟 𝑝-value

0 −0.25 0.09
1 +0.36 0.02
2 −0.33 0.03
3 +0.12 0.44
4 −0.22 0.14

4.2. Insights into tissue mechanics

Our results highlight several important characteristics of soft tissues,
in general, and for aortic valve cusps, in particular. The observed
variation in the stress–stretch response of tissues was larger in the fiber
direction compared to the cross-fiber direction (Fig. 5). Moreover, it is
clear that even the most probable model (i.e., the May–Newman model)
does not capture the stress–stretch curves at all of the biaxial loading
ratios (Fig. 11). This means that there is a trade-off while matching
the models to the measurements. Nonetheless, the proposed framework
naturally accounts for this trade-off by integrating over the parameter
space, weighted appropriately.

From the considered eight hyperelastic models and based on the
information available through the utilized experimental dataset, the
most probable model for AV tissues was the one proposed by May–
Newman (May-Newman and Yin, 1998). Although this model was
originally proposed for mitral valve tissues, the same model form has
been adopted for the aortic valve tissue as well (May-Newman et al.,
2009). The second most probable model was the one by Lee and
Sacks (Lee et al., 2014), which has been used for mitral valve, tricuspid
valve and bioprosthetic valve.

A key finding from this study is that different models are suitable for
different AV cusp types. Specifically, the Lee–Sacks model (Lee et al.,
2014) and the May–Newman model (May-Newman and Yin, 1998)
were equally probable for the NCC, while the May–Newman model
was the most probable model for the LCC and RCC. In order to further
investigate these differences, the amplitudes of the PCA modes for
the three cusp types were compared, and noticeable differences were
found in the first mode amplitudes (Fig. 13). Specifically, there was a
statistically significant difference between the NCC and RCC samples
(𝑝 < 0.05). Although the difference between the NCC and LCC samples
was not established to be statistically significant (𝑝 = 0.07), it could be
due to the limited sample size in this study. The different stress–stretch
behavior of the NCC might also be related to its different physiology (no
coronary flow) and the observed differences in its geometry relative to
the other two cusp types (Sim et al., 2003).

Furthermore, when processing the data from biaxial mechanical
testing, it is common to work with stresses, essentially factoring out
tissue thickness. However, for heart valves, their thickness is an impor-
tant design feature. To investigate the relation between the thickness
and stress–strain response of tissues, the classical Pearson’s correlation
coefficient was calculated between the modal amplitudes and tissue
thicknesses. The second and third modes showed a statistically sig-
nificant correlation (Table 4). This indicates a correlation between
the tissue thickness and its stress–strain behavior, which should be
accounted for while constructing population-level models. One way of
achieving this is by working with membrane tension rather than stress,
thereby incorporating the tissue thickness into the model parameters.

4.3. Limitations

While the proposed framework allows for an objective comparison
between constitutive models, the objectivity should be interpreted
within the scope of the problem – i.e. within the scope of the ex-

perimental data used and the models considered in the study – and
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Fig. 7. First five principal modes of stress–stretch response in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and vertical axes are stresses in [kPa]. For
n animation of the modes, see SI.
Fig. 8. Ten synthetic samples’ stress–stretch response using Eq. (9) in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and vertical axes are stresses in
[kPa]. Each color represents one synthetic sample.
Fig. 9. Relative probabilities of the eight hyperelastic models calculated using the proposed framework with 𝑀 = 11 versus number of Monte Carlo iterations.
w
t
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rom a Bayesian perspective. This means that the results are only
alid for the data used and subject to the prior probabilities used.
aving more experimental data (e.g., shear deformations have been

hown to be important for constitutive modeling (Holzapfel and Ogden,
009)) would make the results more reliable. Similarly, microstructural
nformation on the tissues, if available, could be used to either fix or
ore tightly constrain the fiber dispersion parameters (such as 𝜅) in

he models.
The list of models considered is also limited by practical limitations.

hile, ideally, one would include all the models available in the
iterature, this process is practically infeasible. Therefore, only the most
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idely used constitutive models for soft tissues were considered in
his study. However, there could be other models in the literature that
ight be more suitable, such as those with nonlinear contributions from

he isotropic matrix (Anssari-Benam and Bucchi, 2017), those with 𝐼2
and 𝐼5 invariants (Anssari-Benam et al., 2021; Destrade et al., 2013;
Murphy, 2013), those with logarithmic functions in the strain energy
density (Horgan and Saccomandi, 2003, 2002), or meso-scale or multi-
scale models. Thus, the framework only compares the chosen models,
and any model not included in this framework cannot be excluded or
disregarded.
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Fig. 10. The probabilities of the eight hyperelastic models versus number of PCA modes retained 𝑀 for (a) all, (b) LCC, (c) RCC, and (d) NCC types.
Fig. 11. Posterior response using May–Newman model with mean (solid line) and variation (shaded region) in blue color compared to the data in red color, in the (a) fiber and
b) cross-fiber direction. For comparison, the classic fit of the MN model is plotted with dashed blue lines. Horizontal axes are stretches and vertical axes are stresses in [kPa].
Fig. 12. Histogram of the posterior distribution of parameters of the May–Newman model.
Results from the proposed framework depend on the choice of prior
arameter distributions. Practically, choosing the parameters’ prior
istributions in a manner that is consistent across models is not trivial.
oo wide of a distribution indicates uncertainty, which may lower the
inal model probability. Equivalently, a narrow distribution may limit
he model’s capability to cover the observed spread in the data. One
10

pproach for choosing consistent parameter ranges was used in this
study, however other approaches should be tested in the future. To
confirm the results in this study, a uniform prior in the range obtained
by fitting a model to each of the individual samples was also tested. The
resulting model probabilities were largely the same (results presented
in SI), further adding confidence to our results.

Another limitation of the proposed framework is its reliance on

having a large enough sample size. Thus, more data would allow
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Fig. 13. Independent samples 𝑡-tests between the modal amplitudes of different cusp
types showed a significant difference in the second principal mode between the NCC
(𝑛 = 16) and the other two cusp types (𝑛 = 15 each), which is consistent with the
finding that the probability of models is different for the NCC.

construction of better statistical models and higher confidence in the
results. These limitations will be addressed in the future work in this
direction, which is outlined next.

4.4. Future work and conclusion

In the future, the proposed framework will be applied to other
tissue types from animals and humans. Additional models that are
known to satisfy continuum and thermodynamic requirements will be
included in the investigation, allowing a comparison of wider range of
models. Specifically, models based on other invariants (Anssari-Benam
et al., 2021; Destrade et al., 2013; Murphy, 2013) and other functional
forms (Horgan and Saccomandi, 2003, 2002) will be studied, as well
as structural and multi-layer models that are specifically developed
to describe the coupling. While an equal prior probability was as-
signed to all the models considered here, any concerns regarding the
stability/convexity/thermodynamic requirements could be reflected in
a reduced prior probability. This study focused on elastic behavior
under quasi-static loading, but a similar framework could be developed
to compare models that describe the viscoelastic behavior at varying
loading rates observed in valve tissues (Anssari-Benam et al., 2017).

In this study, only the biomechanical parameters were considered
to be random, while the stress-free state of the tissues were assumed
to be known. However, the stress-free (i.e., reference) state of tissues
is well-known to be difficult to assess (Aggarwal et al., 2016; Laurence
et al., 2022). In valve tissues, this is due to the existing pre-stresses
at different scales (Stella and Sacks, 2007) and long toe regions in the
stress–strain response. A novel feature of the proposed framework is
that it can account for uncertainty in the reference state by considering
prestresses to be random variables. This extension will be undertaken
in the future.

In conclusion, the framework will facilitate an objective comparison
of constitutive models against experimental data for different tissues.
In conjunction with optimal design of biaxial experiments (Aggarwal
et al., 2021) and improved parameter estimation techniques (Aggarwal,
2017, 2019), work in the proposed direction will lead to the develop-
ment of more predictive biomechanical models that are representative
of population, not just individual patients.
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Appendix A. Bayes’ theorem

For two continuous random variables 𝐴 and 𝐵, let the joint prior
robability density function be denoted by 𝑝(𝐴,𝐵). Further, the prior
arginal probability densities of 𝐴 and 𝐵 are denoted as 𝑝(𝐴) and 𝑝(𝐵),

espectively. The posterior probability density of 𝐴 given 𝐵 (known as
he conditional probability) is denoted as 𝑝(𝐴 ∣ 𝐵) and is given by the
ayes’ theorem:

(𝐴 ∣ 𝐵) =
𝑝(𝐵 ∣ 𝐴)𝑝(𝐴)

𝑝(𝐵)
,

where 𝑝(𝐵 ∣ 𝐴) is the likelihood term. The denominator on the right
hand side is also the normalization term as shown below:

𝑝(𝐵) = ∫ 𝑝(𝐴,𝐵) d𝐴 = ∫ 𝑝(𝐵 ∣ 𝐴)𝑝(𝐴) d𝐴.

Appendix B. Classical fitting

Given the mean output 𝒚̄, the classical way of fitting a model is to
find the model parameters such that the model output 𝒛(𝜃) =  (𝒙, 𝜃)
is closest to the mean output 𝒚̄ in some norm. A commonly used 𝐿2
norm is adopted in the present study, i.e., the sum of squares of each
component difference. Mathematically, we write:

𝜃̄ ∶= argmin
𝜃

‖𝒛(𝜃) − 𝒚̄‖2.

The above minimization was performed using the trust-region reflective
algorithm implemented in SciPy.

When we do not consider any of the PCA modes (i.e., 𝑀 = 0) and
ascribe all variation in the data as error, the likelihood function (19)
becomes

𝑝(𝒛 = 𝒚̄ ∣ 𝜃𝑠, ) =
1

√

2𝜋(𝜎2 + 𝜎2𝑛 )
exp

(

− 𝑒2

2(𝜎2 + 𝜎2𝑛 )

)

,

where the error term also simplifies to 𝑒2 = ‖𝒛 − 𝒚̄‖2. It is easy to
see that the maximum likelihood happens when 𝑒2 is minimized. In
ther words, the fitted parameters 𝜃̄ also correspond to the maximum
ikelihood with 𝑀 = 0. In contrast, as the PCA modes are included, the
ikelihood depends not only on the error term (i.e., random variations),
ut also on the specific variations along the included PCA modes.

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jmbbm.2023.105657.
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