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Abstract—Text-based person search (TBPS) is of significant
importance in intelligent surveillance, which aims to retrieve
pedestrian images with high semantic relevance to a given text
description. This retrieval task is characterized with both modal
heterogeneity and fine-grained matching. To implement this task,
one needs to extract multi-scale features from both image and
text domains, and then perform the cross-modal alignment.
However, most existing approaches only consider the alignment
confined at their individual scales, e.g., an image-sentence or
a region-phrase scale. Such a strategy adopts the presumable
alignment in feature extraction, while overlooking the cross-
scale alignment, e.g., image-phrase. In this paper, we present a
transformer-based model to extract multi-scale representations,
and perform Asymmetric Cross-Scale Alignment (ACSA) to
precisely align the two modalities. Specifically, ACSA consists
of a global-level alignment module and an asymmetric cross-
attention module, where the former aligns an image and texts on a
global scale, and the latter applies the cross-attention mechanism
to dynamically align the cross-modal entities in region/image-
phrase scales. Extensive experiments on two benchmark datasets
CUHK-PEDES and RSTPReid demonstrate the effectiveness of
our approach. Codes are available at https://github.com/mul-
hjh/ACSA.

Index Terms—Text-based person search, Transformer, Cross-
modal matching.

I. INTRODUCTION

TEXT-Based Person Search (TBPS) aims to retrieve the
shots of a target person with high semantic relevance to

a given text description. It has attracted increasing attention
due to the wide applications in modern cities wherein a large
number of monitoring devices are deployed. Compared to
image query based approaches [1]–[3], TBPS only requires
a verbal description to query a target person. This setting is
more practical in certain situations where the image query may
not be accessible. Moreover, natural language can describe the
target person more faithfully than alternative representations,
such as attributes [4]–[6]. Therefore, TBPS extends high
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Fig. 1. The cross-modal fine-grained nature of Text-Based Person Search
(TBPS). Given a text query, TBPS retrieves the correct person images by
matching the textual and image representations at both global and local scales
with fine-grained details. See texts for details.

practical value in real-world applications, such as multiple
people tracking and person re-identification [7]–[9].

However, the task of TBPS has two open challenges. First,
as a cross-modal retrieval task, TBPS inherently encounters the
modal heterogeneity problem, that is, the data distributions of
different modalities are inconsistent [10], [11], and such modal
heterogeneity makes it difficult to directly measure the corre-
lation between visual and text representations. Second, TPBS
is essentially a fine-grained visual search task, which requires
the model to be effective in matching pedestrian images with
high variations. In this case, a global-scale sentence may not be
reliable cues to retrieve all correct images of the same identity.
As shown in Fig. 1, given a text query, the retrieved pedestrian
images only matching the global sentence could be a different
identity, while fine-grained matching with appearance details
such as “long hair” is more distinct to facilitate the matching.

To address the modal heterogeneity problem, some stud-
ies have investigated the alignment between visual and text
modalities. Early approaches only consider the global-level
alignment [12]–[14], which aligns the global visual with
overall textual information, see relation I in Fig. 2 (a). Recall
Fig. 1 that different pedestrians may look very similar in their
overall appearance, and it is difficult to correctly distinguish
them only from the global scale alignment. In this respect,
local features are highly discriminative to facilitate the fine-
grained matching. In this line, many attempts have been made
to exploit the multi-granularity alignment [15]–[19], which
can include both global and local visual-textual alignments,
see relations I and II in Fig. 2 (a). In practice, local features
are usually extracted by resorting to the auxiliary information,
such as human poses [16] and visual attributes [20], [21].
For example, Zheng et al. [18] employed the hard-attention



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 2. (a) Four cross-modal alignments between an image and texts.
Here, I and II indicate the global (image-sentence) and local (region-phrase)
alignments. III and IV represent the cross-scale alignments, i.e., image-phrase
and region-sentence. (b) Natural language may use both overall description
(e.g., tall, thin young man) and detailed phrases to describe the target person
(e.g., short black hair, black pants).

mechanism to select semantically relevant image regions and
words/phrases, and performed the multi-granularity alignment
on multiple levels, i.e., word-level, phrase-level and sentence-
level. Recently, Gao et al. [22] suggested that it is necessary to
consider the additional cross-scale alignment, that is, adaptive
alignment between different scales. For example, a word may
correspond to a patch or the entire image, such as “woman”,
“dress” and “slim” are the overall description with regard to a
person. Nevertheless, the words “glasses”, “bag”, and “shoes”
can only describe some regions of an image. Thereby, they pro-
posed the Non-local Alignment over Full-Scale representations
(NAFS) [22], which considers full-scale adaptive alignment. In
other words, four alignment relations I, II, III, and IV are fully
employed in NAFS [22] (see Fig. 2 (a)).

However, such full-scale representation learning is based on
the hypothesis that the cross-modal instances are symmetric in
their information level, that is, each instance, e.g., the sentence
can be associated with an entire image or a region, and vice
versa. This may not hold true in TBPS. For instance, one
may use a phrase to describe a whole image as outline but
unlikely to use a long sentence to describe a region. As shown
in Fig. 2 (b), a witness is likely to outline a person’s body
and gender, such as “tall”, “thin”, “man”. Then, he tends
to describe the details, such as “short black hair”, “black,
white and brown plaid shirt”, “black pants”. These information
constitute the final complete text description. In fact, this
process essentially includes three relations: overall description
corresponds to a whole image, detailed texts correspond to a
few regions of an image, and the complete texts correspond
to the whole image again. Thus, it requires to extract multi-
scale visual and textual representations, that is, global/local vi-
sual representations, global textual representations and phrase
representations. Global visual features can be easily extracted
using a pre-trained off-the-shelf model [12], while extracting
local visual features is inexplicable, due to the presence of
occlusion, background clutters in natural pedestrian images.
To extract local features, some methods [16], [22] applied
object detection or additional branch networks to detect salient
regions and then extract features. However, these methods
yield high computational cost because of the external net-
works. Other methods [17], [23] directly sliced the global

visual representations horizontally into non-overlapping slices
as local visual representations. This fashion is simple but may
inadvertently divide the same part into different slices.

In this paper, we propose an Asymmetric Cross-Scale
Alignment (ACSA) approach for TBPS. Specifically, we em-
ploy the Swin Transformer [24] to extract the global visual
representations, and then divide the global representation into
four regions as local visual representations, namely head,
upper body, lower body and feet. This partition strategy does
not involve extra computational cost but can better preserve
the salient body parts for fine-grained matching. In the text
domain, we employ BERT [25] to extract the global textual
representations and local phrase representations. Both Swin
Transformer [24] and BERT [25] are based on the self-
attention mechanism, which can fully leverage the information
within each modality.

We further propose an asymmetric cross-scale alignment
module (ACSA) that performs three alignments, i.e., relations
I, II, III in Fig. 2. The proposed ACSA module consists of
a global-level alignment and an asymmetric cross attention.
The former is to perform the global image-text alignment, i.e.,
relation I, and the latter is to adaptively align the image/regions
with phrases, i.e., relation II and relation III. Compared to
the multi-granularity alignment based methods [15]–[19], the
proposed ACSA performs cross-scale image-phrase alignment,
and the phrase is adaptively aligned with an entire image
or regions. In other words, a phrase may correspond to
either a region or the whole image. This alignment can be
automatically learned through the cross-attention mechanism
in the network, rather than restricting the alignment at a certain
scale, e.g., a global or local scale. Compared to a recent
adaptive full-scale alignment method [22], the proposed ACSA
does not perform the region-text alignment, i.e., relation IV
in Fig. 2. This alignment is empirically demonstrated to be
unnecessary for the task of TBPS. In other words, a full-scale
alignment can cause the over-matching, while not contribute
to the matching performance. Please refer to our experimental
results in Table V.

The main contributions of this paper are summarized below.
• We propose an Asymmetric Cross-Scale Alignment ap-

proach, which exploits three effective alignments, namely
image-text, region-phrase, and image-phrase alignments,
to improve the performance of TBPS.

• We develop a transformer-based framework to extract
multi-scale feature representations, including the global
and local representations for both image and text do-
mains. With such multi-scale features, the cross-modal
matching is performed with the proposed asymmetric
cross-attention mechanism.

• Our approach achieves state-of-the-art performance on
two public datasets. Extensive ablation studies and visu-
alization demonstrate the effectiveness of our approach.

II. RELATED WORKS

A. Text-Based Person Search

Since Li et al. [12] first established the task of TBPS and re-
leased a large-scale dataset called CUHK-PEDES. Since then,
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TBPS has became a popular topic in intelligent surveillance.
It can search relevant person images using natural language
as the query instead of using images or attributes [2], [3],
[5], [26], [27], and thus has shown high practical value in
real-world applications [28]. Most existing studies employ
the following steps: (1) Applying CNNs or RNNs to extract
the respective visual and textual features from images and
texts; (2) Projecting these cross-modal features into a common
latent feature space, followed by alignment; (3) Calculating the
similarity of the image-text pair. Roughly, existing methods,
based on their different focuses, can be categorized into three
streams: feature representation approaches, cross-modal align-
ment approaches and approaches focusing on loss functions
of similarities.

The first group focuses on the feature representations. For
the visual modality, CNNs are the most popular backbones,
such as VGG-Net [12], [13], MobileNet [14], [29], and ResNet
[30], [31]. As for the textual modality, early studies usually
employed RNNs [12], [14], while some methods employed
CNNs [15], [32]. For example, Zhang et al. [14] tokenized
the sentence and split it into words, and then sequentially
processed them with a bi-directional LSTM, which is a variant
of RNNs. Zheng et al. [32] proposed a dual-path CNN
to learn the image and text representations. Since TBPS is
a fine-grained search task, local discriminative features are
imperative. Therefore, attention mechanism can be leveraged,
which seeks to boost local information or mitigate the noisy
interference residing in global features. Li et al. [12] proposed
a GNA-RNN model with the gated neural attention mecha-
nism, taking into account that different words have different
importance. Ji et al. [15] applied attention mechanism to
learn discriminative representations, and offered an accurate
guidance to a common space. Different from the existing
works, we employ Swin Transformer [24] and BERT [25] to
extract visual and textual representations, respectively. They
both are based on self-attention mechanism.

The second group investigates the alignment of visual and
textual modalities. For example, Zhang et al. [14] learned
the global representations of images and texts, and then
aligned the images with sentences, without involving local
alignment. Afterwards, multi-scale alignment received great
attention, in which the local-level alignment is employed as
an important supplement to the global-level alignment. Jing
et al. [16] utilized pose information to guide visual feature
extraction, thereby learning latent semantic alignment between
visual part and textual noun phrase. Niu et al. [17] proposed
a multi-granularity image-text alignment model. Particularly,
they first extracted the features of image parts and noun
phrases as local representations, and then performed multi-
granularity alignment, i.e., global-global alignment, global-
local alignment, and local-local alignment. Zheng et al. [18]
proposed a hierarchical Gumbel attention network, which
adaptively selected the semantically relevant image regions
and words/phrases for precise alignment. Their matching
strategy includes three granularities, i.e., word-level, phrase-
level, and sentence-level. Recently, cross-scale alignment was
developed to indicate that the alignments between different
scales are also beneficial. Gao et al. [22] proposed non-local

alignment over full-scale representations. They designed a
novel staircase CNN network and a locality-constrained BERT
model to extract multi-scale visual and textual representations,
and applied a contextual non-local attention mechanism to
align the learned representations across different scales adap-
tively. Different from them, as discussed above, we extract
multi-scale representations for performing asymmetric cross-
scale alignment. We also propose a partition strategy to obtain
local visual representations without computational cost.

The third group aims to develop different loss functions
for similarities. For instance, Zheng et al. [32] proposed
the instance loss that explicitly considers the intra-modal
data distribution, and each image/text group is viewed as a
class. Zhang et al. [14] proposed a cross-modal projection
matching (CMPM) loss and a cross-modal projection classi-
fication (CMPC) loss for learning a discriminative image-text
embedding. Both CMPM and CMPC losses are effective in
global-level alignment. Besides, in this paper we design an
asymmetric cross-scale alignment loss based on KL divergence
for cross-scale alignment.

B. Transformer

Transformer was first proposed in [33] for addressing ma-
chine translation tasks. Instead of using recurrent formula-
tion, it only employs the self-attention mechanism, and thus
Transformer has a better parallel ability and yet alleviates
the problem of long-distance dependence of texts. Based on
Transformer, Devlin et al. [25] proposed a pre-training BERT
model, which has good generalization ability and achieve
promising progress on multiple NLP tasks.

With the resurgence a series of Transformer models in
NLP [34]–[36], their applications in computer vision have also
attracted increasing attention. Dosovitskiy et al. [37] proposed
a seminal Vision Transformer model (ViT), which interprets
an image as a sequence of patches and processes them with a
standard Transformer encoder as that in NLP. However, there
are two drawbacks in ViT. First, too many patches in high-
resolution images will cause high computational complexity.
Second, the fixed split patch mode is difficult to adapt to the
problem of variable scale in computer vision. To address the
above challenges, Liu et al. [24] proposed Swin Transformer,
a hierarchical Transformer whose representation is calculated
with shift windows. This way of grouping patches significantly
reduces the computational complexity. In addition, by gradu-
ally merging patches, its view of field is gradually increased.
This renders it more suitable for computer vision tasks.

Recently, Transformer has achieved state-of-the-art perfor-
mance on multiple computer vision tasks [38]–[40]. Chen
et al. [41] applied it to low-level computer vision task, and
achieved state-of-the-art performance on several tasks like
super-resolution, denoising, and de-raining. He et al. applied
ViT to the Re-ID task [42], in which they employed a sliding
window to generate overlapping patches as the input of ViT
to maintain the local neighbor structure information of the
patch. Liang et al. [43] employed Swin Transformer in image
restoration task, where multiple Residual Swin Transformer
Blocks (RSTB) is developed to extract deep features, and each
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Fig. 3. The framework of our approach consists of three parts: multi-scale visual and textual representation extraction and the proposed Asymmetric Cross-
Scale Alignment module (ACSA). ACSA includes a global-level alignment module for image-text alignment, and an asymmetric cross-attention module for
adaptive region-phrase and image-phrase alignments.

RSTB is composed of multiple Swin Transformer layers and
residual connection. The shift window mechanism in RSTB
can perform long-distance dependency modeling.

III. OUR APPROACH

Text-Based Person Search (TBPS) can be regarded as a fine-
grained cross-modal retrieval task which simultaneously deals
with multi-granularity alignment and modal heterogeneity. The
major challenge is to extract finer features from texts and
images at multiple levels, and appropriately align these in-
stances across modalities. To this end, we design a framework
on the basis of Swin Transformer [24] and BERT [25] to
extract multi-scale representations from images and texts, and
perform the Asymmetric Cross-Scale Alignment (ACSA), i.e.,
global-level image-text, local-level region-phrase, and cross-
scale image-phrase alignments. As shown in Fig. 3, we use
the output of Swin Transformer [24] as the global image
representation, and then divide this representation into head,
upper body, lower body, and foot regions, which form the
local image representations. BERT [25] is employed as an
encoder to extract the multi-scale representations of a given
text, i.e., a global text representation and a set of noun
phrase representations. In the following, we first detail the
feature extraction from images and texts (section III-A and
III-B). Then, we present the proposed Asymmetric Cross-Scale
Alignment (section III-C).

A. Visual Representations

We extract the representations from images in both global
and local levels. The global representation integrates all the

information of a person. The local features provide fine-
grained details with respect to body parts and patterns, etc. We
argue that both global and local features should be leveraged
to faithfully describe the identities in images.

Global Representations. Given an image I, we aim to
encode it into a vector Ig ∈ R1∗d, where d is the dimen-
sionality of the feature vector. We adopt Swin Transformer
[24] as the backbone feature extractor due to its capability
of extracting hierarchical features at both global and local
levels. Specifically, we first resize the image I to 224x224,
then we divide it into patches to fit the Swin Transformer [24].
We apply the pre-trained Swin Transformer model [24], and
fine-tune it on our training data. Since Swin Transformer [24]
gradually increases its field of view as the network deepens,
we use the feature output of Stage 4 (after the global pooling)
as the global visual representation, i.e., Ig .

Local Representations. We divide the pedestrian image
into several regions according to its characteristics, i.e., the
head (e.g., cap, hairstyle, glasses), the upper body (e.g., jacket,
backpack), the lower body (e.g., pants, handbag), and the foot
regions (e.g., shoes), we extract visual features from these
four regions to form the local representations. Specifically,
we divide the global visual representation into six parts
horizontally, then employ the first and the second parts as
the head representation, the second and third parts as the
upper body representation, the fourth and fifth parts as the
lower body representation, and the sixth part as the foot
region representation. The head and upper body regions are
partially overlapping, because some components may cross
the two regions, such as long hair, scarf, etc. We additionally
apply a fully connected layer to adjust all representations into
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the same dimension. Finally, we concatenate the four region
embeddings to be the local image embeddings, denoted as
Ir = [Ihead, Iupper, Ilower, Ifoot] ∈ Rk∗d, where k = 4 and d
is the dimensionality of the embedding.

B. Textual Representations

We employ the Bidirectional Encoder Representation from
Transformers (BERT) [25] to extract textual features. The self-
attention mechanism in BERT [25] can fully make use of the
contextual relationship between words, allowing each word to
establish a connection with any other word.

Global Representations. To fit the input requirement of
BERT [25], we split the texts into words and tokenize each
word to be a token, then we insert [CLS] and [SEP] tokens
at the beginning and end, respectively. We set the maximum
number of tokens to L, if there are less than L, we fill them
with zeros, and if there are more than L tokens, we take the
first L tokens. Then we input the processed texts into the
pre-trained BERT [25], we take the [CLS] as the global text
representation, denoted as Tg ∈ R1∗d.

Local Representations. Li et.al [12] suggest that nouns
have more discriminant information. Thus, we extract noun
phrases from texts as local text representations. Specifically,
we use the TextBlob tool [44] to extract M noun phrases from
every text, and encode them into feature vectors in a similar
way to the above textual encoding. The final local text repre-
sentations are represented as Tp = [t1, t2, . . . , tM ] ∈ RM∗d.

C. Asymmetric Cross-Scale Alignment

Our observation is that the region-text alignment does not
hold true in TBPS, while other forms of alignment in terms
of image-text, region-phrase and image-phrase are beneficial
to the task. Therefore, we propose an Asymmetric Cross-
Scale Alignment (ACSA) approach. The proposed ACSA
consists of two major components: a global-level image-text
alignment, and region-phrase/image-phrase alignments based
on an asymmetric cross-scale attention module.

Global Alignment. We employ the Cross-Modal Projection
Matching (CMPM) loss [14] and the Cross-Modal Projection
Classification (CMPC) loss [14] for the global-level matching,
which are demonstrated to be effective in learning cross-modal
visual and textual representations. The CMPM loss associates
the representations of different modalities by integrating the
cross-modal projections into the KL divergence. Moreover, the
CMPC loss applies identity-level annotations for cross-modal
projection classification, so as to increase the differences of
features for inter-class samples and enhance the compactness
of features for intra-class samples. More details about the two
losses can be found in [14].

Asymmetric Cross-Attention Module. Inspired by Lee et
al. [45], we propose an Asymmetric Cross-Attention Mod-
ule (ACAM) to perform the region-phrase alignment and
the image-phrase alignment. As shown in Fig. 3, ACAM
takes two inputs: a set of multi-scale visual embeddings
Im = [v0, v1, . . . , vk] ∈ R(k+1)∗d, which are obtained by
concatenating the global image embedding Ig and the re-
gion embeddings Ir, and a set of noun phrase embeddings

Fig. 4. Illustration of the image-text cross-attention module. We first calculate
the similarity between vi (i = 0, . . . , k) and each phrase tj (j = 1, . . . ,M ),
and thus obtain the corresponding weighted text representation Tvi . Herein,
k does not have to equal to M . Then we calculate the similarity between vi
and Tvi as S(vi, Tvi ). The final similarity of the image-text pair S(I, T ) is
computed by averaging the values of

∑k
i=0 S(vi, Tvi ).

Tp = [t1, t2, . . . , tM ] ∈ RM∗d. The output of ACAM is a
similarity score, which measures the similarity of an image-
text pair by using Im and Tp.

Intuitively, ACAM attempts to align image-phrase and
region-phrase instances in the sense that a noun phrase may
correspond to the whole image or the image partially. How-
ever, we do not perform the region-text alignment because it
is unlikely that all textual descriptions are trying to describe a
specific part of an image. Therefore, the alignment relationship
between texts and images is asymmetric. More specifically, in
ACAM, we use visual entities and noun phrases as contexts
for each other, while paying different attention to them to
obtain the weighted visual and textual representations, and
then calculate the similarity for the image-text pair. In the
following, we detail the two directional cross-attention based
alignment nested in ACAM.

Image-Text Cross-Attention. For a specific visual entity
i (the entity may be a region or an image), we calculate the
similarity between its embedding vi and every noun phrase
embedding tj as follows:

sij =
vTi tj

∥vi∥ ∥tj∥
, i ∈ [0, k], j ∈ [1,M ]. (1)

Here, sij represents the similarity between the i-th visual entity
and the j-th phrase. We normalize sij as

s̃ij =
[sij ]+√∑k
i=0 [sij ]

2
+

, (2)

where [sij ]+ = max (sij , 0). We further employ the attention
mechanism to obtain the weighted text representations with
respect to the visual entity i:

Tvi =

M∑
j=1

αijtj , (3)
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where αij is the attention weight that can be calculated as

αij =
exp (λ1s̃ij)∑M
j=1 exp (λ1s̃ij)

. (4)

In Eq. (4), the parameter λ1 is the inversed temperature
of the softmax function. Then, the similarity between the
visual representation vi and the corresponding weighted text
representation Tvi is computed as:

S (vi, Tvi) =
vTi Tvi

∥vi∥ ∥Tvi∥
. (5)

By averaging all S (vi, Tvi), we obtain the final similarity for
an image-text pair:

S(I, T ) =

∑k
i=0 S (vi, Tvi)

k + 1
. (6)

Fig. 4 shows the intuition of the above image-text cross
attention mechanism. If the visual entity i is not described
in the text, the similarity value between vi and Tvi will be
small. This is because when we calculate Tvi , the visual
vector vi and each phrase embedding tj is assumed to have a
uniform similarity distribution, which results in an unweighted
attention to a specific phrase (For example, αi1 = αi2 =
. . . = αiM = 1/M). If a phrase tj is important to describe a
subject, paying no attention to tj will cause a small similarity
between vi and Tvi in Eq. (5). We particularly reflect the
importance of each phrase associated with the image, and
formulate this rationale into the embedding based similarity
function. Therefore, we measure the importance of the visual
entity i with respect to the texts by calculating the similarity
between vi and Tvi .

Text-Image Cross-Attention. Similarly, for the noun
phrase j, we calculate the similarity between its embedding
tj and all visual entities as follows:

s′ij =
vTi tj

∥vi∥ ∥tj∥
, i ∈ [0, k], j ∈ [1,M ]. (7)

Here, s′ij represents the similarity between the i-th visual entity
and the j-th phrase. We normalize it as

s̃′ij =

[
s′ij

]
+√∑M

j=1

[
s′ij

]2
+

, (8)

where
[
s′ij

]
+
= max

(
s′ij , 0

)
. With these similarity values, we

employ the attention mechanism to obtain a weighted visual
representation related to the phrase i:

Vtj =

M∑
j=1

α′
ijtj , (9)

where α′
ij =

exp(λ′
1s̃

′
ij)∑M

j=1 exp(λ′
1s̃

′
ij)

and λ′
1 is the inversed tempera-

ture of the SoftMax function. Then we calculate the similarity
between the phrase embedding tj and the corresponding
weighted visual representation Vtj as follows:

S
(
tj , Vtj

)
=

tTj Vtj

∥tj∥
∥∥Vtj

∥∥ . (10)

By averaging all S
(
tj , Vtj

)
, we obtain the similarity of a text-

image pair:

S′(I, T ) =

∑M
j=1 S

(
tj , Vtj

)
M

. (11)

Asymmetric Cross-Scale Alignment Loss. We apply KL
divergence to associate the representations across different
modalities for cross-scale matching. Given a mini-batch with
N image-text pairs, for each image xa the image-text pair is
constructed as {(xa, zb) , ya,b}Na=1, where ya,b = 1 means that
(xa, zb) is a positive pair, while ya,b = 0 indicates (xa, zb) is a
negative pair. The probability of matching xa to zb is defined
as

pa,b =
S (xa, zb)∑N
a=1 S (xa, zb)

, (12)

where S (xa, zb) is the similarity between xa and zb.
Since each identity can be associated with multiple images

and multiple texts, this may incur a multi-matching z for xa in
a mini-batch, so we normalize the true matching probability
as

qa,b =
ya,b∑N

m=1 ya,m
. (13)

Then we apply KL divergence to measure the distance between
the actual distribution pa,b and the true distribution qa,b:

La =

N∑
b=1

pa,b log
pa,b

qa,b + ε
, (14)

where ε is a non-negligible value to avoid numerical problems.
We compute the matching loss from images to texts in a mini-
batch as follows:

Li2t =
1

N

N∑
a=1

La. (15)

Similarly, we compute the matching loss from texts to images
in the mini-batch as follows:

Lt2i =
1

N

N∑
b=1

Lb. (16)

The matching loss is calculated as LACSA = Li2t + Lt2i.
Objective Function. The final objective function is formu-

lated as

Ltotal = Lcmpm + µLcmpc + γLACSA, (17)

where µ and γ are hyperparameters to control the importance
of different loss functions. We conduct a study on hyperpa-
rameters, and we set µ = 4 and γ = 0.1 as default.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocol

CUHK-PEDES. CUHK-PEDES dataset [12] is the first
large public dataset for TBPS, which contains 40,206 images
of 13,003 pedestrians, and each image has two text descrip-
tions. The average length of text descriptions is 23.5 words.
Following [12], we divided the dataset as follows. The training
set has 11,003 pedestrians, 34,054 images and 68,126 captions.
The validation set has 1,000 pedestrians, 3,078 images and
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TABLE I
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON CUHK-PEDES DATASET. RR STANDS FOR RE-RANKING ALGORITHM. BEST RESULTS ARE IN

BOLDFACE.

Method Scale Top-1 Top-5 Top-10 Total
GNA-RNN (CVPR’17) [12]

Global-Scale

19.05 - 53.64 -
PWM-ATH (WACV’18) [13] 27.14 49.45 61.02 137.61

Dual-Path (TOMCCAP’20) [32] 44.40 66.26 75.07 185.73
CMPM+CMPC (ECCV’18) [14] 49.37 - 79.27 -

TIMAM (ICCV’19) [30] 54.41 77.56 84.78 216.75
PMA (AAAI’18) [16]

Multi-Scale

53.81 73.54 81.23 208.58
MIA (TIP’19) [17] 53.10 75.00 82.90 211.00

ViTAA (ECCV’20) [20] 55.97 75.84 83.52 215.33
HGAN (MM’20) [18] 59.00 79.49 86.62 225.11

T-MRS(TCSVT’21) [48] 57.67 78.25 84.93 220.85
MGEL (IJCAI’21) [49] 60.27 80.01 86.74 227.02
SSAN (arXiv’21) [50] 61.37 80.15 86.73 228.25

AXM-Net (arXiv’21) [23] 61.90 79.41 85.75 227.06
DSSL (MM’21) [46] 59.98 80.41 87.56 227.95

DSSL (MM’21) [46]+RR 62.33 82.11 88.01 232.45
TIPCB (Neurocomputing’22) [51] 63.63 82.82 89.01 235.46

NAFS (arXiv’21) [22] Adaptive Full-Scale 59.94 79.86 86.70 226.50
NAFS (arXiv’21) [22]+RR 61.50 81.19 87.51 230.20

ACSA (Ours) Asymmetric Cross-Scale 63.56 81.40 87.70 232.66
ACSA+RR 68.67 85.61 90.66 244.94

6,158 captions. The test set has 1,000 pedestrians, 3,074
images and 6,156 captions.

RSTPReid. RSTPReid dataset is a new dataset constructed
by Zhu et al. [46] based on the MSMT17 dataset. This dataset
is more challenging than CUHK-PEDES dataset. RSTPReid
contains 20,505 images of 4,101 pedestrians. Each pedestrian
has five images with each image corresponding to two text
descriptions. Following DSSL [46], we divided the dataset into
the training set (3,701 images), validation set (200 images) and
test set (200 images).

Evaluation Protocol. We adopted the widely used top-k
accuracy as the retrieval criterion [12], which ranks all gallery
images according to their similarity with respect to the text
query. If the correct pedestrian image is found in the first k
ranked images, the retrieval is considered to be successful.

B. Implementation Details

All images are resized to 224x224. We employed the pre-
trained Swin Transformer Tiny [24] as the visual backbone to
extract features from images. The BERT [25] pre-trained on
the CUHK-PEDES dataset is used as the text backbone. The
maximum number of tokens is set to 100. The embedding
dimension is set to 768. The inverse temperature of softmax
is set to 20.0. We employed the AdamW optimizer [47] for
30 epochs with the Cosine decay learning rate scheduler and
5 epochs of linear warm-up. The batch size is set to 16. The
initial learning rate is 0.0001, and the minimum learning rate
is 0.000005. The number of noun phrases M is set to 10.

C. Comparison with State-of-the-Arts (SOTAs)

We evaluated the proposed method by comparing to SOTA
methods on both CUHK-PEDES and RSTPReid datasets. Ex-
perimental results are shown in Table I and II, respectively. The
state-of-the-art methods can be classified into three categories:
1) global-scale approaches (GNA-RNN [12], PWM+ATH [13],
DCMP [14], Dual-Path [32], and TIMAM [30]); 2) multi-scale

approaches (PMA [16], MIA [17], ViTAA [20], HGAN [18],
T-MRS [48], MGEL [49], SSAN [50], AXM-Net [23], DSSL
[46], and TIPCB [51]) using both global and local scales; and
3) a full-scale approach (NAFS [22]), which uses global/local
scales, and a cross scale.

From Table I, we make the following observations. First, the
multi-scale approaches generally outperform the global-scale
approaches. For instance, TIPCB [51] achieves 63.63 at top-1
v.s. TIMAM [30] with 54.41 at top-1. This proves the necessity
of employing finer scale alignment. The full-scale approach,
i.e., NAFS [22] also shows competitive results, suggesting
that the alignment between different scales is beneficial to
the task of TBPS. Comparing to these methods, our approach
achieves similar performance to TIPCB [51] in all evaluation
indicators without re-ranking (e.g., ACSA→63.56 vs TIPCB
[51]→63.63 on top-1). It is noteworthy that TIPCB [51] uses
multiple branches on top of different layers of the neural
network to extract multi-scale visual features. This leads to
high computational cost. In contrast, our approach achieves
competitive performance using a simple network architecture.

To further improve the retrieval performance, we empirically
employed a re-ranking algorithm [22] only in the testing phase.
Obtained results show that re-ranking can noticeably improve
the top-1 accuracy of our method by 5.11%. As indicated
by [22], the re-ranking process requires both text-image and
image-image retrieval. As such, the model not only needs to
align the data of different modality, but also needs to fully
leverage the information in each modality, especially in the
image modality. In this experiment, we employed the self-
attention mechanism to fully discover the informative priors in
the image modality, and applied the cross-attention mechanism
to effectively reduce the modal gap.

Experimental results on RSTPReid dataset are reported in
Table II. RSTPReid is a newly introduced dataset for TBPS.
As such, only DSSL [46] is validated on this dataset. Table
II shows that comparing to DSSL [46] our algorithm achieves
performance gain by 15.97%, 16.77% and 18.26% in terms of
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TABLE II
COMPARISON TO THE STATE-OF-THE-ART METHOD ON RSTPREID

DATASET. BEST RESULTS ARE IN BOLDFACE.

Method Top-1 Top-5 Top-10 Total
DSSL (ACM MM’21) [46] 32.43 55.08 63.19 150.70
ACSA (Ours) 48.40 71.85 81.45 201.70

TABLE III
IMPACT OF DIFFERENT BACKBONES. BEST RESULTS ARE IN BOLDFACE.

Image Model Text Model Top-1 Top-5 Top-10 Total
ResNet50 [52] Bi-LSTM [53] 43.65 67.00 76.37 187.02
ResNet50 [52] BERT [25] 52.11 73.63 82.35 208.09

ViT [37] Bi-LSTM [53] 44.36 67.99 77.80 190.15
ViT [37] BERT [25] 59.61 79.19 85.56 224.36

Swin Transformer [24] Bi-LSTM [53] 45.89 69.60 78.66 194.15
Swin Transformer [24] BERT [25] 60.77 80.02 86.63 227.42

top-1, top-5 and top-10 respectively.

D. Ablation Studies

To thoroughly study the effectiveness of each module
in our method, we conducted a series of experiments on
CUHK-PEDES dataset, including different backbones for vi-
sual/textual representations, image partitioning and the effect
of the proposed ACSA.

1) Impact of Different Backbones: In this experiment, we
studied the impact of applying different backbones for the
visual and textual domains. Specifically, we considered three
image backbones, i.e., ResNet50 [52], ViT [37] and Swin
Transformer [24], and two text backbones, i.e., Bi-LSTM [53]
and BERT [25]. After extracting image and textual features
using respective backbones, we simply performed a multi-
scale alignment, and the cross-modal matching was performed
by using two losses: CMPM [14] and CMPC [14].

Experimental results are reported in Table III. When Bi-
LSTM [53] is applied as the text backbone, we could observe
that Swin Transformer [24] brings 2.24% performance gain
on top-1 accuracy. When replacing Bi-LSTM [53] with BERT
[25], the top-1 accuracy gain increases to 8.66%. Similar
results can be seen on top-5 and top-10. These results demon-
strate the effectiveness of employing the Swin Transformer
[24] as the image backbone. Similarly, BERT [25] outperforms
Bi-LSTM [53] as the text backbone. This demonstrates that
the self-attention based network is effective in discovering the
intra-modal information for feature representations. When we
combine Swin Transformer [24] and BERT [25], a notable
improvement of 17.12% is achieved on top-1 accuracy versus
the combination of ResNet50 [52] and Bi-LSTM [53]. This
empirically confirms the adoption of transformer-based net-
works in both domains.

2) Different Image Partitioning Strategies: We employed a
partitioning strategy to obtain the embedding of head, upper
body, lower body and foot regions as local visual embeddings.
Unlike the simple slicing strategy of directly dividing the
global image embedding into six slices [17], our partitioning
strategy brings no extra computational cost and ensures the
consistency of local regions in higher layers of the network.
We compared our partitioning strategy with the simple slicing

TABLE IV
STUDY ON DIFFERENT LOCAL IMAGE FEATURE EXTRACTION METHODS.

BEST RESULTS ARE IN BOLDFACE.

Strategy Top-1 Top-5 Top-10 Total
Six Slices [17] 62.39 80.64 87.05 230.08

Partition 63.56 81.40 87.70 232.66

TABLE V
IMPACT OF DIFFERENT ALIGNMENT RELATIONS. BEST RESULTS ARE IN

BOLDFACE.

Relation Image Region Text Phrase Top-1 Top-5 Top-10 Total
I × × × × 60.77 80.02 86.63 227.42

I ,II × ✓ × ✓ 62.13 80.91 87.04 230.08
I ,II,III,IV ✓ ✓ ✓ ✓ 62.95 81.06 87.31 231.32

I,II,III ✓ ✓ × ✓ 63.56 81.40 87.70 232.66

method, and report the results in Table IV. The results show
that our partitioning strategy achieves better performance and
effectively avoids splitting the same region into different slices.

3) Impact of Asymmetric Cross-Scale Alignment: To in-
vestigate the effectiveness of the proposed asymmetric cross-
scale alignment, we implemented different scales of feature
embedding in the cross-attention module, as shown in Table V.
It should be noted that these experiments are based on global-
level alignment, that is, the alignment in the cross-attention
module is a supplement to global-level alignment.

Multi-Scale Alignment. We only employed local embed-
dings for visual and text in the cross-attention module, i.e.,
region embeddings and noun phrase embeddings. It can be
regarded as a multi-scale alignment approach that includes
global-level and local-level alignments, i.e., the relations I and
II in Fig. 2. Table V shows that it improves the top-1 accuracy
by 1.36% in comparing to the global-level alignment. This
proves the effectiveness of using finer-scale alignment.

Adaptive Full-Scale Alignment. Based on the above multi-
scale alignment, we further considered the cross-scale align-
ment, i.e., region-text alignment and image-phrase alignment.
That is, it includes relations I∼IV. Specifically, we concate-
nated the region embeddings and global image embedding as
the final visual embeddings. We also concatenated noun phrase
embeddings and global text embedding as the final textual
embeddings. Compared with the multi-scale alignment, e.g.,
relations I∼IV , our method achieves better results by applying
the cross-scale alignment.

Asymmetric Cross-Scale Alignment. Intuitively, we argue
that region-text alignment in adaptive full-scale alignment is
unnecessary. Thus, in the cross-attention module, we con-
catenated region embeddings and global image embedding
as the final visual embeddings but only utilized the noun
phrase embeddings as the final textual embeddings. That is, we
considered the relations I∼III. It can be seen from Table V that
this combination shows inferior performance, which indicates
that region-text alignment is unnecessary. In fact, the entire
texts rarely correspond to a specific region of a person image.
Therefore, employing this alignment offers no benefits to the
task of TBPS.

4) Evaluation on Different Language Models: In this ex-
periment, we evaluated the proposed method using different
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TABLE VI
EVALUATION ON DIFFERENT LANGUAGE MODELS ON CUHK-PEDES DATASET. BEST RESULTS ARE IN BOLDFACE.

Method Visual Model Language Model Top-1 Top-5 Top-10 Total

TIPCB [51] ResNet50 [52] BERT [25] 63.22 82.79 89.92 234.93
ResNet50 [52] XLNet [34] 58.41 79.78 86.47 224.66

ACSA (Ours) Swin Transformer [24] BERT [25] 63.56 81.40 87.70 232.66
Swin Transformer [24] XLNet [34] 59.22 79.64 86.35 225.21

Fig. 5. Instance examples with saliency through the attention maps. For each group, the leftmost image is the raw pedestrian image, followed by the heat
map of attention in the middle, and the highlighted areas in the right one represent the attentive saliency information.

language models, i.e., BERT [25] and XLNet [34]. We con-
sidered the variations of our method and TIPCB [51] by using
the two language models. Specifically, we replaced the BERT
[25] in both the proposed method and TIPCB [51] by using a
recent language model XLNet [34]. Experimental results are
reported in Table VI. We have the following observations. Both
our approach and TIPCB [51] show better results than the
variants of using XLNet [34]. This affirms the effectiveness of
using BERT [25] as the textual backbone. One possible reason
is BERT [25] adopts the random sampling, which produces
more robust textual representations.

E. Visualization

In Fig. 5, we show the saliency information in pedestrian
images which can be learnt through the attention maps. In
each group, we arrayed three images: the leftmost is the
raw pedestrian images, the middle is the corresponding heat
map based on the attention, and the right is the attentive
saliency. We can see that the right image clearly shows the
area where the saliency is located. In specific, our model
can effectively ignore the background while focusing on its
saliency on pedestrian images. In fact, the saliency information
is mainly concentrated in four regions, i.e., head, upper body,
lower body and the feet region, which verifies the rationale
of our proposed partition strategy. Although there are some
exceptions that some images may not meet this criterion, our
partition strategy suits to human cognitive perception. Finally,
it is noted that our model reveals a good correspondence
between noun phrases and the saliency in the image. This

demonstrates that our model is effective in aligning the cross-
modal data. In Fig. 6, we further show retrieval results with
pedestrian images captured under various conditions, such as
illuminations and nighttime. The results show that most of
the correct images appear in the first few ranked positions of
the retrieval list. This proves that our model is robust against
nuisance factors, and can be applied into various real-world
conditions.

V. CONCLUSION

In this paper, we propose a transformer-based model for
text-based person search by employing the Swin Transformer
[24] and BERT [25] to extract multi-scale features from
images and texts. To allow for fine-grained visual-text match-
ing, we propose an Asymmetric Cross-Scale Alignment for
adaptive cross-modal match, which consists of a global visual-
text alignment, and an asymmetric cross-attention module
for region/image-phrase alignments. Extensive experiments
on CUHK-PEDES and RSTPReid datasets demonstrated the
effectiveness and superiority of our approach.

REFERENCES

[1] X. Gong, Z. Yao, X. Li, Y. Fan, B. Luo, J. Fan, and B. Lao, “Lag-net:
Multi-granularity network for person re-identification via local attention
system,” IEEE Trans. Multim., vol. 24, pp. 217–229, 2022.

[2] L. Wu, R. Hong, Y. Wang, and M. Wang, “Cross-entropy adversarial
view adaptation for person re-identification,” IEEE Trans. Circuits Syst.
Video Technol., vol. 30, no. 7, pp. 2081–2092, 2020.

[3] L. Wu, Y. Wang, X. Li, and J. Gao, “What-and-where to match: Deep
spatially multiplicative integration networks for person re-identification,”
Pattern Recognit., vol. 76, pp. 727–738, 2018.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 6. Examples of top-10 retrieved images under various conditions (such as
illuminations and night time) on the CUHK-PEDES dataset. Correct/incorrect
images are marked by green/red rectangles.

[4] Y. Shi, Z. Wei, H. Ling, Z. Wang, J. Shen, and P. Li, “Person retrieval
in surveillance videos via deep attribute mining and reasoning,” IEEE
Trans. Multim., vol. 23, pp. 4376–4387, 2021.

[5] Z. Ji, Z. Hu, E. He, J. Han, and Y. Pang, “Pedestrian attribute recognition
based on multiple time steps attention,” Pattern Recognit. Lett., vol. 138,
pp. 170–176, 2020.

[6] H. Fan, H. Hu, S. Liu, W. Lu, and S. Pu, “Correlation graph con-
volutional network for pedestrian attribute recognition,” IEEE Trans.
Multim., vol. 24, pp. 49–60, 2022.

[7] L. Wu, D. Liu, W. Zhang, D. Chen, Z. Ge, F. Boussaid, M. Bennamoun,
and Jialie, “Pseudo-pair based self-similarity learning for unsuper-
vised person re-identification,” IEEE Transactions on Image Processing,
vol. 31, pp. 4803–4816, 2022.

[8] L. Wu, D. Liu, X. Guo, R. Hong, and R. Zhang, “Multi-scale spatial
representation learning via recursive polynomial networks,” in IJCAI,
pp. –, 2022.

[9] D. Liu, L. Y. Wu, Z. Ge, J. Shen, F. Boussaid, and M. Bennamoun,
“Generative metric learning for adversarially robust open-world person
re-identification,” ACM Transactions on on Multimedia Computing Com-
munications and Applications, pp. –, 2022.

[10] D. Liu, L. Wu, F. Zheng, L. Liu, and M. Wang, “Verbal-person nets:
Pose-guided multi-granularity language-to-person generation,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–13, 2022.

[11] D. Chen, M. Wang, H. Chen, L. Wu, J. Qin, and W. Peng, “Cross-modal
retrieval with heterogenous graph embedding,” in ACM Multimedia,
pp. –, 2022.

[12] S. Li, T. Xiao, H. Li, B. Zhou, D. Yue, and X. Wang, “Person search
with natural language description,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pp. 5187–5196, 2017.

[13] T. Chen, C. Xu, and J. Luo, “Improving text-based person search by
spatial matching and adaptive threshold,” in Proc. IEEE Winter Conf.
Appl. Comput. Vis., pp. 1879–1887, 2018.

[14] Y. Zhang and H. Lu, “Deep cross-modal projection learning for image-
text matching,” in Proc. Eur. Conf. Comput. Vis., pp. 686–701, 2018.

[15] Z. Ji and S. Li, “Multimodal alignment and attention-based person search
via natural language description,” IEEE Internet Things J., vol. 7, no. 11,
pp. 11147–11156, 2020.

[16] Y. Jing, C. Si, J. Wang, W. Wang, L. Wang, and T. Tan, “Pose-guided
multi-granularity attention network for text-based person search,” in
Proc. AAAI Conf. Artif. Intell., pp. 11189–11196, 2018.

[17] K. Niu, Y. Huang, W. Ouyang, and L. Wang, “Improving description-
based person re-identification by multi-granularity image-text align-
ments,” IEEE Trans. Image Process., vol. 29, pp. 5542–5556, 2020.

[18] K. Zheng, W. Liu, J. Liu, Z. Zha, and T. Mei, “Hierarchical gumbel
attention network for text-based person search,” in Proc. ACM MM,
pp. 3441–3449, 2020.

[19] X. Wei, C. Zhang, L. Liu, C. Shen, and J. Wu, “Coarse-to-fine: A rnn-
based hierarchical attention model for vehicle re-identification,” in Proc.
Asi. Conf. Comput. Vis., vol. 11362, pp. 575–591, 2018.

[20] Z. Wang, Z. Fang, J. Wang, and Y. Yang, “Vitaa: Visual-textual attributes
alignment in person search by natural language,” in Proc. Eur. Conf.
Comput. Vis., pp. 402–420, 2020.

[21] S. Aggarwal, R. V. Babu, and A. Chakraborty, “Text-based person search
via attribute-aided matching,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis., pp. 2606–2614, 2020.

[22] C. Gao, G. Cai, X. Jiang, F. Zheng, J. Zhang, Y. Gong, P. Peng,
X. Guo, and X. Sun, “Contextual non-local alignment over full-scale
representation for text-based person search,” arXiv:2101.03036, 2021.

[23] A. Farooq, M. Awais, J. Kittler, and S. S. Khalid, “Axm-net: Cross-
modal context sharing attention network for person re-id,” arXiv, 2021.

[24] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proc. IEEE Int. Conf. Comput. Vis., pp. 9992–10002, 2021.

[25] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, pp. 4171–4186, 2019.

[26] L. Wu, Y. Wang, J. Gao, M. Wang, Z.-J. Zha, and D. Tao, “Deep co-
attention based comparators for relative representation learning in person
re-identification,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, pp. 722–735, 2021.

[27] L. Wu, Y. Wang, H. Yin, M. Wang, and L. Shao, “Few-shot deep
adversarial learning for video-based person re-identification,” IEEE
Trans. Image Process., vol. 29, pp. 1233–1245, 2020.

[28] Y. Wang, “Survey on deep multi-modal data analytics: Collaboration,
rivalry and fusion,” arXiv, 2020.

[29] Y. Wang, C. Bo, D. Wang, S. Wang, Y. Qi, and H. Lu, “Language person
search with mutually connected classification loss,” in Proc. ICASSP,
pp. 2057–2061, 2019.

[30] N. Sarafianos, X. Xu, and I. A. Kakadiaris, “Adversarial representation
learning for text-to-image matching,” in Proc. IEEE Int. Conf. Comput.
Vis., pp. 5813–5823, 2019.

[31] D. Chen, H. Li, X. Liu, Y. Shen, Z. Yuan, and X. Wang, “Improving
deep visual representation for person re-identification by global and local
image-language association,” in Proc. Eur. Conf. Comput. Vis., pp. 56–
73, 2018.

[32] Z. Zheng, L. Zheng, M. Garrett, Y. Yang, M. Xu, and Y. Shen, “Dual-
path convolutional image-text embeddings with instance loss,” ACM
Trans. Multim. Comput. Commun. Appl., vol. 16, no. 2, pp. 1–23, 2020.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., pp. 5998–6008, 2017.

[34] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Proc. Adv. Neural Inf. Process. Syst., pp. 5754–5764,
2019.

[35] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” arXiv, 2019.

[36] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Syst., pp. 1–25, 2020.

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Transformers for image recognition at scale,” in Proc. Int. Conf. Learn.
Representations, pp. 1–21, 2021.

[38] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
Eur. Conf. Comput. Vis., pp. 213–229, 2020.

[39] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. S. Torr, and L. Zhang, “Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with transformers,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6881–6890, 2021.

[40] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao, “Focal
self-attention for local-global interactions in vision transformers,” arXiv,
2021.

[41] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu,
and W. Gao, “Pre-trained image processing transformer,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., pp. 12299–12310, 2021.

[42] S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Transreid:
Transformer-based object re-identification,” in Proc. IEEE Int. Conf.
Comput. Vis., pp. 14993–15002, 2021.

[43] J. Liang, J. Cao, G. Sun, K. Zhang, L. V. Gool, and R. Timofte, “Swinir:
Image restoration using swin transformer,” in Proc. IEEE Int. Conf.
Comput. Vis., pp. 1833–1844, 2021.

[44] S. Bird and E. Loper, “NLTK: the natural language toolkit,” in Proc.
Assoc. Comput. Linguis., pp. 1–4, 2004.

[45] K. H. Lee, C. Xi, H. Gang, H. Hu, and X. He, “Stacked cross attention
for image-text matching,” in Proc. Eur. Conf. Comput. Vis., pp. 212–228,
2018.

[46] A. Zhu, Z. Wang, Y. Li, X. Wan, J. Jin, T. Wang, F. Hu, and G. Hua,
“DSSL: deep surroundings-person separation learning for text-based
person retrieval,” in Proc. ACM MM, pp. 209–217, 2021.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, pp. 1–15, 2015.

[48] H. Li, J. Xiao, M. Sun, E. G. Lim, and Y. Zhao, “Transformer-
based language-person search with multiple region slicing,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 3, pp. 1624–1633, 2022.

[49] C. Wang, Z. Luo, Y. Lin, and S. Li, “Text-based person search via
multi-granularity embedding learning,” in Proc. IJCAI, pp. 1068–1074,
2021.

[50] Z. Ding, C. Ding, Z. Shao, and D. Tao, “Semantically self-aligned
network for text-to-image part-aware person re-identification,” arXiv,
2021.

[51] Y. Chen, G. Zhang, Y. Lu, Z. Wang, and Y. Zheng, “TIPCB: A simple but
effective part-based convolutional baseline for text-based person search,”
Neurocomputing, vol. 494, pp. 171–181, 2022.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 770–778, 2016.

[53] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in arxiv, pp. –, 2013.

Zhong Ji received the Ph.D. degree in signal and in-
formation processing from Tianjin University, Tian-
jin, China, in 2008. He is currently a Professor
with the School of Electrical and Information En-
gineering, Tianjin University. He has authored over
100 technical articles in refereed journals and pro-
ceedings, including IEEE TIP, IEEE TNNLS, IEEE
TCYB, IEEE TCSVT, PR, CVPR, ICCV, ECCV,
NeurIPS, AAAI, and IJCAI. His current research
interests include zero/few-shot leanring, and cross-
modal analysis.

Junhua Hu received his B.S. degree in Electronic
Information Engineering from Hebei University of
Technology, Tianjin, China, in 2019. He is currently
pursuing his M.S. degree in School of Electrical
and Information Engineering, Tianjin University. His
research interests include text-based person search
and self-supervised learning.

Deyin Liu received his B.E. and Ph.D degree from
Zhengzhou University, China, in 2010 and 2021, re-
spectively. He is currently working as a lecturer with
School of Artificial Intelligence, Anhui University,
China. His main research interests include optimiza-
tion in computer vision, unsupervised learning and
sparse representation learning.

Lin Yuanbo Wu received a Ph.D. from The Uni-
versity of New South Wales, Australia in 2014. She
is currently working as a senior lecturer (associate
professor) with Department of Computer Science,
Swansea University, UK. She was previously work-
ing in the University of Western Australia, Hefei
University of Technology (China), the University of
Queensland, and the University of Adelaide, Aus-
tralia. Her research outcome are expounded with 60+
academic papers (including two book chapters) in
premier journals and proceedings. She served as an

Area Chair with ACM Multimedia 2022.

Ye Zhao received the M.S. degree in communication
and information system from Harbin Engineering
University, Harbin, China, in 2005 and the Ph.D. de-
gree in signal and information processing from Hefei
University of Technology, Hefei, China, in 2014. She
is an associate professor in School of Computer and
Information, Hefei University of Technology. From
2016 to 2017, she was a visiting scholar in Computer
Science department, University of Central Florida,
USA. Her research interest includes Multimedia
Analysis and Pattern Recognition.


	Introduction
	Related works
	Text-Based Person Search
	Transformer

	Our Approach
	Visual Representations
	Textual Representations
	Asymmetric Cross-Scale Alignment

	Experiments
	Datasets and Evaluation Protocol
	Implementation Details
	Comparison with State-of-the-Arts (SOTAs)
	Ablation Studies
	Impact of Different Backbones
	Different Image Partitioning Strategies
	Impact of Asymmetric Cross-Scale Alignment
	Evaluation on Different Language Models

	Visualization

	Conclusion
	References
	Biographies
	Zhong Ji
	Junhua Hu
	Deyin Liu
	Lin Yuanbo Wu
	Ye Zhao


