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The Threshold of Stochastic Tumor-Immune Model with Regime

Switching

Xing Chen∗ Xiaoyue Li† Yuting Ma‡ Chenggui Yuan§

Abstract

In response to the pressing needs for comprehending the cancer biology, this paper focuses

on dynamical behaviors of a class of stochastic tumor-immune models in random environment

modulated by Markov chains. A sufficient and nearly necessary threshold-type criterion is

investigated, which shows the long-time behavior of the system can be classified by a real-

value parameter λ. Precisely, if λ < 0, tumor cells die out. If λ > 0, the system exists a

unique invariant probability measure, and the transition probability of the solution process

converges to this invariant measure. Moreover, we also estimate the expectations with respect

to the invariant measure under some conditions. Two numerical examples are provided to

illustrate our results.

Keywords. Markov chain; Stochastic tumor-immune systems; Invariant measure; Ergodic-

ity; Permanence; Extinction.

1 Introduction

Providing an analytical framework to gain insight into the evolution and interaction mecha-

nism of immunity and tumor, mathematical models of tumor-immune systems are theoretically

and practically important in cancer treatment. Thus to describe reality accurately, more and

more tumor-immune models have been studied, see, e.g., [2, 6, 10, 14, 16, 17, 25]. In particular,

Kuznetsov et al. [10] proposed a classic tumor-immune model dx(t) =

(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt,

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt,

(1.1)
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where x(t) and y(t) denote dimensionless local concentration of effector cells (ECs) and tumor

cells (TCs), respectively, σ represents the source rate of the baseline ECs, ρ and η are the

parameters of the rate at which ECs accumulate due to the presence of the tumor, µ describes

the elimination rates of ECs due to binding of ECs to TCs, δ denotes the elimination rates

of ECs due to destruction and migration, α is the intrinsic growth rate of TCs, and α/β is

the maximal carrying capacity of biological environment of TCs; see [10] for more details on

the system setup. This model simulates the interaction of the cytotoxic T lymphocyte with

immunogenic TCs, the inactivation of ECs as well as the penetration of ECs into TCs.

As a matter of fact, the tumor-immune reactions are often subject to environmental random

perturbations, such as the supply of nutrients, temperature, radiation, and so on. Since the

elimination rate of ECs and the intrinsic growth rate of TCs are essentially influenced by protein

which is sensitive to white noises, namely,

δdt→ δdt+ κ1dB1(t), αdt→ αdt+ κ2dB2(t),

model (1.1) becomes dx(t) =
(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ κ1x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2y(t)dB2(t),

(1.2)

where B1(·), B2(·) are two independent Brownian motions, κ1, κ2 are the intensity of noise.

The stochastic stability around the equilibrium points of (1.2) is investigated in [20]. Li et al.

[12] obtained the criteria to the asymptotic behavior of (1.2) including the stochastic ultimately

boundedness in moment, the limit distribution as well as the ergodicity. Recently, Tuong,

Nguyen and Yin [24] obtained the sufficient and nearly necessary threshold-type condition for

the extinction and permanence of TCs, which extends the result of [12] to a better version.

Additionally, due to the sudden change of temperature, virus and other physical factors

in biochemical reactions, the tumor-immune model may experience abrupt changes in their

parameters [1]. Continuous-time finite-state Markov chain is widely used to characterize this

kind of environmental noise in different mathematical models, for instance, [4, 11, 13, 22, 23,

29, 30] and references therein. Among them, Takeuchi et al. [22] revealed the complicated

dynamics of the stochastic predator-prey model modulated by Markov chain. Moreover, the

theory of stochastic differential equations with Markovian switching is systematically introduced

in [18, 26]. Therefore, to describe the interaction of ECs and TCs more precisely in random

environmental, it is reasonable to consider the stochastic tumor-immune system with Markovian

switching
dx(t) =

(
σ(r(t)) +

ρ(r(t))x(t)y(t)

η(r(t)) + y(t)
− µ(r(t))x(t)y(t)− δ(r(t))x(t)

)
dt

+κ1(r(t))x(t)dB1(t),

dy(t) =
(
α(r(t))y(t)− β(r(t))y2(t)− x(t)y(t)

)
dt+ κ2(r(t))y(t)dB2(t),

(1.3)
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with an initial value x(0) = x0 ≥ 0, y(0) = y0 > 0, r(0) = r0 ∈ S (S = (1, 2, · · ·m0)), where

r(t) is a Markov chain, all parameters σ(i), ρ(i), η(i), µ(i), δ(i), α(i), β(i), κ1(i), κ2(i) are

positive constants (i ∈ S), and B1(·), B2(·), r(·) are mutually independent, which is defined on

the probability space. To our best knowledge, there is no work on the dynamical behaviors of

(1.3).

In this paper, our aim is to investigate the extinction and permanence of (1.3) which are two

important properties in the study of tumor-immune systems. The main contributions of this

work are as follows.

• Inspired by [5, 24], by analyzing the dynamics of the first equation of (1.3) on the boundary,

we obtain a threshold λ =
∑m0

i=1 πi
(
αi − κ2

2(i)/2 − σi/δi
)
. Therefore we can characterize

the dynamical behavior of (1.3) by λ without other coefficient restrictions.

• Utilizing the stochastic Lyapunov analysis, the stochastic comparison theorem, the strong

ergodicity theorem and the occupation measure theory, we obtain a key criteria on the

threshold λ. Precisely, we prove that if λ < 0, y(t) will tend to 0 with exponential rate,

while if λ > 0, the system will have a unique invariant measure which has support on

{(x, y, i) ∈ R2×S : x, y > 0}. The moment estimate with respect to this invariant measure

is also obtained under some relaxed condition.

• Two numerical examples are given to illustrate the main result. The simulations exhibit

that as the subsystems have different dynamics, the long-time behaviors of (1.3) depends

on the stationary distribution of corresponding Markov chain.

The rest of the paper is arranged as follows. Section 2 obtains the threshold of extinction

and permanence λ. Section 3 discusses the extinction of (1.3). Section 4 investigates the

permanence of (1.3), and obtains the moment estimations with respect to the invariant measure

under some conditions. Section 5 presents two numerical examples to illustrate our results.

Section 6 concludes this paper.

2 Threshold of extinction and permanence

Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0,P) be a complete prob-

ability space with a filtration {Ft}t≥0 satisfying the usual condition (that is, it is right con-

tinuous and F0 contains all P-null sets). Let r(t), t ≥ 0, be a right continuous Markov chain

on the probability space taking values in a finite state space S = {1, 2, · · · ,m0} with generator

Γ = (γij)m0×m0 given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), i 6= j,

1 + γij∆ + o(∆), i = j,

where ∆ ↓ 0, o(∆) means lim∆→0 o(∆)/∆ = 0. Here γij ≥ 0 is the transition rate from i to j

if i 6= j while γii = −
∑

i6=j γij . Here we assume that the Markov chain is irreducible (i.e. the
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linear equation πΓ = 0 and
∑m0

i=1 πi = 1 has a unique solution π = (π1, π2, · · · , πm0) satisfying

πi ≥ 0 for each i ∈ S. Such a solution is termed as a stationary distribution). We also denote

R+ := {x ∈ R : x ≥ 0}, Ro+ := {x ∈ R : x > 0}, R2
+ := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},

R2,o
+ := {(x, y) ∈ R2 : x > 0, y > 0}, and R2,∗

+ := {(x, y) ∈ R2 : x ≥ 0, y > 0}. For any

constant sequence {ci}1≤i≤m0 , define ĉ = min1≤i≤m0 ci and č = max1≤i≤m0 ci. For any a, b ∈ R,

a ∨ b := max{a, b}, a ∧ b := min{a, b} and [a]+ = a ∨ 0. For simplicity, we let c(i) = ci. K is

a generic positive constant whose value changes at different appearances. We begin with the

nature of the solution of (1.3).

Theorem 2.1. The following assertions hold.

(i) For any initial value (x0, y0, r0) ∈ R2,∗
+ × S, model (1.3) has a unique global positive so-

lution (x(t), y(t), r(t)) for all t ≥ 0 with probability one. In addition, the solution process

(x(t), y(t), r(t)) is a strong Feller and Markov process with transition probability denoted

by P (t, x0, y0, r0, ·).

(ii) For any p > 0 sufficient small and c > 0 sufficient large, there exists a positive constant

K(p, c) such that

lim sup
t→∞

E[(1 + x(t) + cy(t))1+p] ≤ K(p, c). (2.1)

Proof. We can prove the first assertion in the similar way as [24, Theorem 2.1] and the second

assertion by the similar techniques as [12, Theorem 3.2]. Since the proof is standard, we omit it

to avoid duplications.

Now let us turn to find the threshold λ which is the key to characterize the long-time behavior

of (1.3). Consider the first equation of (1.3) on the boundary y(t) = 0, that is

dx̃(t) =
(
σ(r(t))− δ(r(t))x̃(t)

)
dt+ κ1(r(t))x̃(t)dB1(t). (2.2)

In [28], we obtain that the global positive solution (x̃(t), r(t)) of (2.2) has a unique invariant

measure ν on [0,∞)× S and ν((0,∞)× S) = 1. In the same way as (2.1) was proved, we obtain

lim supt→∞ E[(x̃(t))1+p̃] ≤ K for sufficient small p̃ > 0. This together with the continuity of

E[(x̃(t))1+p̃] implies

E[(x̃(t))1+p̃] ≤ K, ∀ t ≥ 0. (2.3)

Thus, by embedding [0,∞) × S into [0,∞) × {0} × S, ν × δ0 can be regarded as the invariant

measure of (x(t), y(t), r(t)) on the boundary of R2
+, where δ0 denotes the Dirac measure at 0 in

R+. We further obtain the property of the invariant measure ν.

Lemma 2.1. The invariant measure ν of the process (x̃(t), r(t)) has the property

m0∑
i=1

∫ ∞
0

xν(dx, i) =

m0∑
i=1

πiσi
δi

.
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Proof. For any initial value (x̃(0), r(0)) ∈ Ro+ × S, it follows from (2.2) that

x̃(t)− x̃(0) =

∫ t

0
σ(r(s))ds−

∫ t

0
δ(r(s))x̃(s)ds+

∫ t

0
κ1(r(t))x̃(s)dB1(s).

Taking expectation on both sides of the above equation yields

E[x̃(t)]− x̃(0) = E
∫ t

0

(
σ(r(s))− δ(r(s))x̃(s)

)
ds.

Utilizing the Hölder inequality, one observes from (2.3), that E[x̃(t)] ≤ K, ∀t ≥ 0. This together

with the positivity of x̃(t) implies that −K ≤ E
∫ t

0

(
σ(r(s))− δ(r(s))x̃(s)

)
ds ≤ K, t > 0. Since

δ̂ ≤ δ(i) ≤ δ̌ for i ∈ S and K represents different values at different appearances, we have that

for any t > 0,

−K ≤ E
∫ t

0

(σ(r(s))

δ(r(s))
− x̃(s)

)
ds ≤ K.

Thus dividing t on both sides of the above equation and taking the limit of t, we derive that

lim
t→∞

1

t
E
∫ t

0

(σ(r(s))

δ(r(s))
− x̃(s)

)
ds = 0. (2.4)

By the Hölder inequality, Fubini’s theorem and (2.3), we derive that for any t > 0,

E
[1

t

∫ t

0
x̃(s)ds

]1+p̃
≤ E

[1

t

∫ t

0
x̃1+p̃(s)ds

]
=

1

t

∫ t

0
E
(
x̃1+p̃(s)

)
ds <∞,

which implies that
∫ t

0 x̃(s)ds
/
t is uniformly integrable [21, p.190, Lemma 3]. Using [21, p.188,

Theorem 4] and the ergodicity of x̃(t) implies that

lim
t→∞

1

t
E
∫ t

0
x̃(s)ds = E

[
lim
t→∞

1

t

∫ t

0
x̃(s)ds

]
=

m0∑
i=1

∫ ∞
0

xν(dx, i). (2.5)

We notice that
∣∣∣ ∫ t0 (σ(r(s))/δ(r(s)))ds

/
t
∣∣∣ ≤ σ̌/δ̂, t > 0. Therefore using the dominated conver-

gence theorem and the ergodicity of Markov chain, we obtain that

lim
t→∞

1

t
E
∫ t

0

σ(r(s))

δ(r(s))
ds = E

[
lim
t→∞

1

t

∫ t

0

σ(r(s))

δ(r(s))
ds
]

=

m0∑
i=1

πiσi
δi

. (2.6)

Combining (2.4), (2.5) and (2.6), we obtain the desired assertion.

Inspired by [24], we estimate the Lyapunov exponent lim supt→∞ ln y(t)/t given that y(t) is

small. Utilizing the generalized Itô formula, we obtain that

ln y(t)

t
=

ln y0

t
+

1

t

∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))− β(r(s))y(s)− x(s)
)

ds

+
1

t

∫ t

0
κ2(r(s))dB2(s). (2.7)

From (1.3), we know that if y(t) is small, x(t) is close to x̃(t). Therefore, for sufficiently large t

we have
1

t

∫ t

0
(β(r(s))y(s) + x(s))ds ≈ 1

t

∫ t

0
x̃(s)ds.

5



Using the strong law of large numbers [18, Theorem 1.6], the ergodicity of x̃(t) and the Markov

chain, we obtain that the Lyapunov exponent of y(t) can be approximated by

λ :=

m0∑
i=1

[
πi

(
αi −

1

2
κ2

2(i)
)
−
∫ ∞

0
xν(dx, i)

]
.

In view of Lemma 2.1, we have λ =
∑m0

i=1 πi
(
αi−κ2

2(i)/2−σi/δi
)
. Intuitively, one can see that if

λ < 0, y(t) decays to zero exponentially, while y(t) does not tend to zero if λ > 0 which means

the disease will be permanent. In fact, we shall prove that the sign of the threshold λ determines

the extinction and permanence of (1.3) in the following sections.

3 Extinction: The case λ < 0

This section focuses on the case λ < 0. In this case, we obtain the extinction of TCs with

exponential rate.

Theorem 3.1. Assume λ < 0. Then for any (x0, y0, r0) ∈ R2,∗
+ × S, (x(t), y(t), r(t)) has a

unique invariant measure ν × δ0 on R2
+ × S, and TCs go extinct exponential fast almost surely,

i.e.,

Px0,y0,r0
{

lim
t→∞

ln y(t)

t
= λ

}
= 1.

In order to prove this theorem we prepare a lemma which shows that when λ < 0, there exists

a field such that TCs go extinct exponential fast in probability if the process (x(t), y(t), r(t))

starts from it.

Lemma 3.1. Assume λ < 0. Then for any ε > 0 and H > 0, there exists a positive constant γ1

such that

Px0,y0,r0
{

lim
t→∞

ln y(t)

t
= λ

}
≥ 1− ε, for all (x0, y0, r0) ∈ [0, H]× (0, γ1]× S. (3.1)

Proof. Since the proof is rather technical we divide it into two steps.

Step 1. The main aim of this step is to prove that y(t) is bounded for t ∈ [0,∞) with

the sufficiently large probability. Based on the priori estimate of y(·) we give one comparison

equation for the lower bound of x(t). We prove that y(t) is upper bounded in some finite interval

[0, T ], and then by using the comparison theorem and constructing an appropriate stopping time

we extend this result to the whole interval [0,+∞).

Due to λ < 0 and the positivity of all parameters, we choose a γ0 > 0 sufficiently small such

that

λ̄ :=

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− σi
γ0µi + δi

)
< 0, δ̂ − ρ̌γ0

η̂
> 0. (3.2)

Assume x̄(t) is the solution of equation

dx̄(t) =
(
σ(r(t))− (γ0µ(r(t)) + δ(r(t)))x̄(t)

)
dt+ κ1(r(t))x̄(t)dB1(t),
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where the initial value (x̄(0), r(0)) = (x0, r0) ∈ Ro+ × S. Since γ0µi + δi > 0 for all i ∈ S, by

the similar analysis as (x̃(t), r(t)), we know that (x̄(t), r(t)) has a unique invariant measure ν̄ on

R0
+ × S and

m0∑
i=1

∫∞
0 xdν̄(x, i) =

m0∑
i=1

πiσi/(γ0µi + δi). The strong ergodicity of (x̄(t), r(t)) derives

lim
t→∞

1

t

∫ t

0
x̄(s)ds =

m0∑
i=1

πiσi
γ0µi + δi

a.s.

This implies that for any ε > 0, there exists a T1 = T1(ε) > 0 such that P(Ω1) ≥ 1− ε/4, where

Ω1 =
{
ω ∈ Ω :

1

t

∫ t

0
x̄(s)ds ≥

m0∑
i=1

πiσi
γ0µi + δi

− |λ̄|
4
, for all t ≥ T1

}
. (3.3)

The strong ergodicity of Markov chain gives

lim
t→∞

1

t

∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))
)

ds =

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)
)

a.s.

As a consequence, there exists a T2 = T2(ε) > 0 such that P(Ω2) ≥ 1− ε/4, where

Ω2 =
{
ω∈Ω :

1

t

∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))
)

ds≤
m0∑
i=1

πi

(
αi−

1

2
κ2

2(i)
)

+
|λ̄|
4
, for all t≥T2

}
. (3.4)

Utilizing the strong law of large numbers [18, Theorem 1.6], we have

lim
t→∞

|
∫ t

0 κ2(r(s))dB2(s)|
t

= 0 a.s. (3.5)

Hence, there exists a T3(ε) > 0 such that P(Ω3) ≥ 1− ε/4, where

Ω3 =
{
ω ∈ Ω :

|
∫ t

0 κ2(r(s))dB2(s)|
t

≤ |λ̄|
4
, for all t ≥ T3

}
. (3.6)

Let T = max{T1, T2, T3}. We choose M > α̌T sufficiently large such that P(Ω4) ≥ 1 − ε/4,

where

Ω4 =
{
ω ∈ Ω :

∣∣∣ ∫ t

0
κ2(r(s))dB2(s)

∣∣∣ ≤M − α̌T, for all t ∈ [0, T ]
}
. (3.7)

Let γ1 ∈ (0, γ0 exp{−M}). From (2.7) and (3.7), we obtain that for any y0 ≤ γ1 and ω ∈ Ω4

y(t) ≤ y0 exp
{
α̌t+

∫ t

0
κ2(r(s))dB2(s)

}
≤ γ1e

M < γ0, for any t ∈ [0, T ]. (3.8)

Define the stopping time τ̃ := inf{t ≥ 0 : y(t) ≥ γ0}. Then for any ω ∈ Ω4, we have τ̃(ω) > T .

Rewriting the first equation of (1.3) yields

dx(t) =
[
σ(r(t)) +

( ρ(r(t))y(t)

η(r(t)) + y(t)
+ µ(r(t))(γ0 − y(t))

)
x(t)

− (δ(r(t)) + γ0µ(r(t)))x(t)
]
dt+ κ1(r(t))x(t)dB1(t).
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Applying the stochastic comparison theorem, one obtains x̄(t) ≤ x(t) a.s. for t ∈ (0, τ̃). Then

this together with the generalized Itô formula implies that for t ∈ (0, τ̃)

y(t) ≤ y0 exp
{∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))
)

ds−
∫ t

0
x̄(s)ds+

∫ t

0
κ2(r(s))dB2(s)

}
. (3.9)

Inserting (3.3)-(3.6) into (3.9) yields that for ω ∈ ∩4
j=1Ωj and y0 ≤ γ1

y(t) ≤ y0 exp
{ m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− πiσi
γ0µi + δi

)
t+

3|λ̄|
4
t
}

≤ y0 exp
{ λ̄t

4

}
≤ γ1 < γ0, t ∈ [T, τ̃). (3.10)

Then τ̃ = ∞ for any ω ∈ ∩4
j=1Ωj and y0 ≤ γ1. In fact, if it does not hold, there exists

a set Ω5 ⊂ ∩4
j=1Ωj with P(Ω5) > 0 such that for any ω ∈ Ω5, we have τ̃ < ∞. Noticing

T < τ̃ for ω ∈ ∩4
j=1Ωj and using the almost sure continuity of y(t) as well as (3.10), we

have lim
t→τ̃

y(t) = y(τ̃) < γ0, for ω ∈ Ω5. This is a contradiction with the definition of τ̃ . Thus we

have τ̃ =∞ for any ω ∈ ∩4
j=1Ωj and y0 ≤ γ1, which implies y(t) ≤ y0 exp{λ̄t/4}, for any t ≥ T.

Therefore, this together with (3.8) implies that for any ω ∈ ∩4
j=1Ωj and y0 ≤ γ1,

y(t) ≤ γ0 (t ≥ 0), and lim
t→∞

y(t) = 0. (3.11)

Step 2. The main aim of this step is to obtain the desired assertion. Based on the upper

boundedness of y(t) we give the comparison equation for the upper bound of x(t), which facili-

tates the tightness analysis of the occupation measures Π̃t(·) with respect to (x(·), y(·), r(·)). By

the weak convergence of Π̃t(·) we derive the unique invariant measure ν × δ0 of (x(·), y(·), r(·)).
Finally, the desired assertion follows from the properties of Π̃t(·) and ν.

Consider  dx̂(t) =
(
σ(r(t))−

(
δ̂ − ρ̌γ0

η̂

)
x̂(t)

)
dt+ κ1(r(t))x̂(t)dB1(t),

x̂(0) = x0 > 0, r(0) = r0 ∈ S.

For ω ∈ ∩4
j=1Ωj and y0 ≤ γ1, using the first inequality of (3.11) and the stochastic comparison

theorem, we obtain x(t) ≤ x̂(t) for t ≥ 0 a.s. Owing to (3.2), by the similar analysis as (x̃(t), r(t)),

we obtain that (x̂(t), r(t)) has a unique invariant measure ν̂ and satifies lim supt→∞ E[x̂1+p̂(t)] ≤
K, for a sufficiently small p̂ > 0. Therefore the ergodicity of (x̂(t), r(t)) gives that for almost all

ω ∈ ∩4
j=1Ωj

lim sup
t→∞

1

t

∫ t

0
x1+p̂(s)ds ≤ lim

t→∞

1

t

∫ t

0
x̂1+p̂(s)ds =

m0∑
i=1

∫ ∞
0

x1+p̂ν̂(dx, i) <∞. (3.12)

Now we define the family of random occupation measures

Π̃t(·) :=
1

t

∫ t

0
1{(x(s),y(s),r(s))∈·}ds, t > 0.
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In view of (3.11) and (3.12), one observes that {Π̃t(·;ω), t > 0, ω ∈ ∩4
j=1Ωj} is tight, see [23].

[5, Lemma 5.7] reveals that with probability 1, any weak limit of Π̃t is an invariant probability

measure of the process (x(t), y(t), r(t)), which has the support on [0,∞)× {0} × S. Obviously,

ν × δ0 is the unique invariant measure of (x(t), y(t), r(t)) supported on [0,∞)× {0} × S. Thus

Π̃t(·) weakly converges to ν × δ0, for almost all ω ∈ ∩4
j=1Ωj . Using the weak convergence, (3.5),

(3.12) and Lemma 2.1, we observe that for any ω ∈ ∩4
j=1Ωj , (x0, y0, r0) ∈ [0, H]× (0, γ1]× S,

lim
t→∞

ln y(t)

t
= lim
t→∞

1

t

∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))− β(r(s))y(s)− x(s)
)

ds

+ lim
t→∞

∫ t
0 κ2(r(s))dB2(s)

t

= lim
t→∞

∫
R2
+×S

(
α(r)− 1

2
κ2

2(r)− β(r)y − x
)

Π̃t(dx,dy,dr)

=

m0∑
i=1

∫
R2
+

(
αi −

1

2
κ2

2(i)− βiy − x
)
ν(dx, i)× δ0(dy)

=

m0∑
i=1

πi(αi −
1

2
κ2

2(i)− σi
δi

) = λ < 0.

Thus, the required assertion follows from P(∩4
j=1Ωj) > 1− ε.

Next we begin to prove Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.1 implies that (x(t), y(t), r(t)) is transient on R2,o
+ × S. Hence

by Theorem 2.1, (x(t), y(t), r(t)) has no invariant measure on R2,∗
+ ×S. Then ν×δ0 is the unique

invariant measure of (x(t), y(t), r(t)) on R2
+ × S. The second assertion of Theorem 2.1 implies

that the process (x(t), y(t), r(t)) is tight. Fix (x0, y0, r0) ∈ R2,∗
+ × S. Then the sequence of the

occupation measures

Πt
x0,y0,r0(·) =

1

t

∫ t

0
Px0,y0,r0{(x(s), y(s), r(s)) ∈ ·}ds

is tight on R2
+×S. Since any weak limit of Πt

x0,y0,r0(·) is an invariant measure of (x(t), y(t), r(t)),

ν × δ0 is the unique weak limit of Πt
x0,y0,r0(·). Owing to ν((0,∞) × S) = 1, for any ε > 0, one

may choose H sufficient large such that ν((0, H) × S) > 1 − ε/2. By virtue of Lemma 3.1, for

this ε and H, there is a γ1 > 0 such that (3.1) holds. The property of the weak convergence of

Πt
x0,y0,r0(·) implies that there exists a T̂ > 0 such that

ΠT̂
x0,y0,r0((0, H)× (0, γ1)× S) > 1− ε.

Recalling the definition of Πt
x0,y0,r0(·) we derive

1

T̂

∫ T̂

0
Px0,y0,r0{x(t) ≤ H, y(t) ≤ γ1}dt > 1− ε.

9



As a result, we yield Px0,y0,r0{τ̂ ≤ T̂} > 1− ε, where τ̂ := inf{t ≥ 0 : x(t) ≤ H, y(t) ≤ γ1} is a

stopping time. Applying the strong Markov property and Lemma 3.1, we have

Px0,y0,r0
{

lim
t→∞

ln y(t)

t
= λ

}
> 1− 2ε.

Since ε is arbitrary, the desired assertion is proved.

4 Permanence: The case λ > 0

Focusing on the case λ > 0, this section demonstartes the permanence of the process

(x(t), y(t), r(t)) in the sense of the existence of the invariant measure, and further obtains the

estimate of the expectation with respect to the invariant measure under some conditions.

Theorem 4.1. Assume λ > 0. Then (x(t), y(t), r(t)) has a unique invariant measure ν∗ on

R2,o
+ × S. Moreover, for any (x0, y0, i0) ∈ R2,∗

+ × S, the transition probability of the process

(x(t), y(t), r(t)) converges to the invariant measure ν∗ under total variation sense, namely,

lim
t→∞
‖P (t, x0, y0, i0, ·)− ν∗(·)‖TV = 0. (4.1)

Proof. We prove it by contradiction. Assume that there is no invariant measure of (x(t), y(t), r(t))

on R2,o
+ × S. Then by virtue of Theorem 2.1, (x(t), y(t), r(t)) also has no invariant measure on

R2,∗
+ × S. This implies that ν × δ0 is the unique invariant measure of (x(t), y(t), r(t)) on R2

+× S.

For every initial value (x0, y0, i0) ∈ R2,o
+ × S, t > 0, define the occupation measure

Πt
x0,y0,i0(·) :=

1

t
Ex0,y0,i0

∫ t

0
1{(x(s),y(s),r(s))∈·}ds.

Due to Theorem 2.1, {Πt
x0,y0,i0

, t ≥ 1} is a tight family of probability measures on R2
+ ×

S. By virtue of [3, Proposition 8.4], any weak limit of Πt
x0,y0,i0

is an invariant measure of

(x(t), y(t), r(t)). Therefore Πt
x0,y0,i0

converges weakly to ν × δ0 as t → ∞. By the stochastic

comparison theorem and Lemma 2.1, we have

lim
t→∞

Ex0,y0,i0
1

t

∫ t

0
y(s)ds =

m0∑
i=1

∫
R2
+

yν(dx, i)× δ0(dy) = 0,

lim
t→∞

Ex0,y0,i0
1

t

∫ t

0
x(s)ds =

m0∑
i=1

∫
R2
+

xν(dx, i)× δ0(dy) =

m0∑
i=1

πiσi
δi

.

On the other hand, taking expectations on both sides of (2.7) gives

Ex0,y0,i0
ln y(t)

t
=

ln y0

t
+

1

t
Ex0,y0,i0

∫ t

0

(
α(r(s))− 1

2
κ2

2(r(s))
)

ds

− 1

t
Ex0,y0,i0

∫ t

0
β(r(s))y(s)ds− 1

t
Ex0,y0,i0

∫ t

0
x(s)ds.

Since every term on the right side of the above equality converges as t→∞, we have

lim
t→∞

Ex0,y0,i0
ln y(t)

t
=

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− σi
δi

)
= λ > 0. (4.2)
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By Theorem 2.1 and the Hölder inequality we know that Ex0,y0,i0y(t) is unformly bounded for

t ≥ 0. This leads to limt→∞ Ex0,y0,i0y(t)/t = 0. Using (4.2) and the Jensen inequality, we obtains

that

0 < lim
t→∞

Ex0,y0,i0 ln y(t)

t
≤ lim

t→∞

Ex0,y0,i0y(t)

t
= 0.

As a consequence, this constraction reveals that there must exist an invariant measure ν∗ of

(x(t), y(t), r(t)) on R2,o
+ × S. One notices that the diffusion coefficient is nondegenerate in any

compact set of R2,o
+ ×S which implies that the skeleton process {(x(nt0), y(nt0), r(nt0)), n ∈ N}

is irreducible and aperiodic. Thus, by virtue of [19, Theorem 6.1], it follows that the transition

probability P (t, x0, y0, i0, ·) of the process (x(t), y(t), r(t)) converges to the invariant measure

ν∗(·) in total variation mean. The proof is completed.

We proceed to describe the bounds of expectation with respect to the invariant measure ν∗.

For each i ∈ S, by [12, p.2203, line 21], we have that

ρiy

ηi + y
− µiy ≤ h2

i =: h2(i), ∀ y > 0, (4.3)

where hi = (
√
ρi −

√
µiηi) ∨ 0. Then by the positivity of y(t) one observes from (1.3) that

dx(t) ≤
(
σ(r(t)) + h2(r(t))x(t)− δ(r(t))x(t)

)
dt+ κ1(r(t))x(t)dB1(t).

We introduce an auxiliary process ψ(t) with respect to x(t) described by{
dψ(t) =

(
σ(r(t))−

(
δ(r(t))− h2(r(t))

)
ψ(t)

)
dt+ κ1(r(t))ψ(t)dB1(t),

ψ(0) = x0 > 0, r(0) = r0 ∈ S.

Owing to the stochastic comparison theorem we can see that x(t) ≤ ψ(t) a.s. for all t ≥ 0. If

ai := δi − h2
i > 0, for all i ∈ S, by the similar analysis to (x̃(t), r(t)), we know that E[ψ1+q(t)] is

uniformly bounded for q > 0 sufficiently small and t ≥ 0. Furthermore, (ψ(t), r(t)) has a unique

invariant measure ν̌ with

m0∑
i=1

∫ ∞
0

xν̌(dx, i) =

m0∑
i=1

πiσi
ai

. (4.4)

To proceed, we further introduce an auxiliary process ϕ(t) with respect to y(t), that is{
dϕ(t) = ϕ(t)

(
α(r(t))− β(r(t))ϕ(t)

)
dt+ κ2(r(t))ϕ(t)dB2(t),

ϕ(0) = y0 > 0, r(0) = r0 ∈ S.

By the stochastic comparison theorem, we have y(t) ≤ ϕ(t) a.s. for all t ≥ 0. Due to the direction

of inequalities, it is difficult to obtain the lower bound of the expectation with respect to the

invariant measure ν∗ directly. Alternatively, to take advantage of the ergodicity we analyze the

upper bound of 1/x(t) in time average.
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Lemma 4.1. The solution of (1.3) has the property that

lim inf
t→∞

1

t

∫ t

0

1

x(s)
ds ≥ 1

σ̌

[ m0∑
i=1

πi

(
δi +

1

2
κ2

1(i)− h2
i

)]+
a.s., (4.5)

and if
∑m0

i=1 πi
(
αi − κ2

2(i)/2
)
> 0 then

lim sup
t→∞

1

t

∫ t

0

1

x(s)
ds ≤ 1

σ̂

m0∑
i=1

πi

[ µ̌
β̂

(
αi −

1

2
κ2

2(i)
)

+ δi +
1

2
κ2

1(i)
]

a.s. (4.6)

Proof. We begin with the proof of (4.5). For convenience, define ιi = δi + κ2
1(i)/2− h2

i , i ∈ S. If∑m0
i=1 πiιi ≤ 0, (4.5) follows directly from the positivity of x(t). Then we only consider the case∑m0
i=1 πiιi > 0. By the generalized Itô formula, we compute

lnx(t) = lnx0 +

∫ t

0

(σ(r(s))

x(s)
+

ρ(r(s))y(s)

η(r(s)) + y(s)
− µ(r(s))y(s)− δ(r(s))− 1

2
κ2

1(r(s))
)

ds

+

∫ t

0
κ1(r(s))dB1(s). (4.7)

This together with (4.3) implies

lnx(t) ≤F1(t) + σ̌

∫ t

0

1

x(s)
ds, (4.8)

where F1(t) = lnx0−
∫ t

0

(
δ(r(s))+κ2

1(r(s))/2−h2(r(s))
)
ds+

∫ t
0 κ1(r(s))dB1(s). Using the strong

law of large numbers [18, Theorem 1.6] and the ergodicity of Markov chain, we obtain

lim
t→∞

F1(t)

t
= lim
t→∞

lnx0−
∫ t

0

(
δ(r(s))+ 1

2κ
2
1(r(s))−h2(r(s))

)
ds+

∫ t
0 κ1(r(s))dB1(s)

t

=−
m0∑
i=1

πiιi a.s.

Thus, there exists a set Ω6 ∈ F with P(Ω6) = 1 such that for any fixed 0 < ε <
∑m0

i=1 πiιi
/

2 and

ω ∈ Ω6, there exists a constant T4 = T4(ε, ω) > 0 such that

F1(t)

t
≤ −

m0∑
i=1

πiιi + ε, t ≥ T4.

Inserting this into (4.8) implies that

lnx(t) ≤
(
−

m0∑
i=1

πiιi + ε
)
t+ σ̌

∫ t

0

1

x(s)
ds, t ≥ T4.

Let g1(t) :=
∫ t

0 1/x(s)ds. We compute

eσ̌g1(t) dg1(t)

dt
≥ e(

∑m0
i=1 πiιi−ε)t, t ≥ T4.

Integrating the above inequality from T4 to t derives

1

σ̌

(
eσ̌g1(t) − eσ̌g1(T4)

)
≥ e(

∑m0
i=1 πiιi−ε)t − e(

∑m0
i=1 πiιi−ε)T4∑m0

i=1 πiιi − ε
.
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Rearranging the above inequality, we obtain that

g1(t) ≥ 1

σ̌
ln

eσ̌g1(T4) +
σ̌
(
e(

∑m0
i=1 πiιi−ε)t − e(

∑m0
i=1 πiιi−ε)T4

)
∑m0

i=1 πiιi − ε

 , t ≥ T4.

By the definition of g1(t), dividing t on both sides and letting t→∞, we have

lim inf
t→∞

1

t

∫ t

0

1

x(s)
ds ≥ 1

σ̌
lim inf
t→∞

1

t
ln

eσ̌g1(T4) +
σ̌
(
e(

∑m0
i=1 πiιi−ε)t − e(

∑m0
i=1 πiιi−ε)T4

)
∑m0

i=1 πiιi − ε

 .

Using L’Hospital’s rule twice gives

lim inf
t→∞

1

t

∫ t

0

1

x(s)
ds ≥ 1

σ̌

m0∑
i=1

πiιi −
ε

σ̌
.

The desired assertion (4.5) follows from the arbitrariness of ε. On the other hand, utilizing the

fact y(t) ≤ ϕ(t) a.s. one derives from (4.7) that for all t ≥ 0,

lnx(t) ≥ F2(t) + σ̂

∫ t

0

1

x(s)
ds,

where F2(t) = lnx0 − µ̌
∫ t

0 ϕ(s)ds −
∫ t

0

(
δ(r(s)) + κ2

1(r(s))/2
)
ds +

∫ t
0 κ1(r(s))dB1(s). By virtue

of
∑m0

i=1 πi
(
αi − κ2

2(i)/2
)
> 0 and [11, Theorem 5.1] it follows that

lim inf
t→∞

F2(t)

t
≥−

m0∑
i=1

πi

( µ̌
β̂

(
αi −

1

2
κ2

2(i)
)

+ δi +
1

2
κ2

1(i)
)

a.s.

By the similar technique as (4.5), we obtain

lim sup
t→∞

1

t

∫ t

0

1

x(s)
ds ≤ 1

σ̂

m0∑
i=1

πi

[ µ̌
β̂

(
αi −

1

2
κ2

2(i)
)

+ δi +
1

2
κ2

1(i)
]

a.s.

Thus the desired assertion (4.6) holds.

Obviously, if λ > 0,
∑m0

i=1 πi
(
αi − κ2

2(i)/2
)
> 0 holds. Therefore combining Theorem 4.1

with Lemma 4.1, using the ergodicity of (x(t), y(t), r(t)), we yield the upper bound and lower

bound of the expectation of 1/x with respect to the invariant measure ν∗.

Theorem 4.2. Assume λ > 0. Then

1

σ̌

[ m0∑
i=1

πi

(
δi+

1

2
κ2

1(i)− h2
i

)]+
≤

m0∑
i=1

∫
R2
+

1

x
ν∗(dx, dy, i),

m0∑
i=1

∫
R2
+

1

x
ν∗(dx, dy, i) ≤ 1

σ̂

m0∑
i=1

πi

[ µ̌
β̂

(
αi −

1

2
κ2

2(i)
)

+ δi +
1

2
κ2

1(i)
]
.

To end this section we give the upper and lower bounds of the expectation of y with respect

to the invariant measure ν∗.
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Theorem 4.3. Assume λ > 0 and min
i∈S
{ai} > 0. Then

1

β̌

[ m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− σi
ai

)]+
≤

m0∑
i=1

∫
R2
+

yν∗(dx, dy, i) ≤ 1

β̂

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)
)
.

Proof. By (2.7), we obtain that

ln y(t) ≤ F3(t)− β̂
∫ t

0
y(s)ds,

where F3(t) = ln y0 +
∫ t

0

(
α(r(s))− κ2

2(r(s))/2
)
ds+

∫ t
0 κ2(r(s))dB2(s). Then in the similar way

as Lemma 4.1 was proved, we obtain that

lim sup
t→∞

1

t

∫ t

0
y(s)ds ≤ 1

β̂

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)
)

a.s. (4.9)

On the other hand, it follows from (2.7) and the fact that x(t) ≤ ψ(t) a.s. that for all t ≥ 0

ln y(t) ≥ F3(t)−
∫ t

0
ψ(s)ds− β̌

∫ t

0
y(s)ds a.s.

Since mini∈S ai > 0, it follows from the ergodicity of (ψ(t), r(t)) and (4.4) that

lim
t→∞

1

t

(
F3(t)−

∫ t

0
ψ(s)ds

)
=

m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− σi
ai

)
a.s.

Using the similar techniques as Lemma 4.1 was proved yields

lim inf
t→∞

1

t

∫ t

0
y(s)ds ≥ 1

β̌

[ m0∑
i=1

πi

(
αi −

1

2
κ2

2(i)− σi
ai

)]+
a.s. (4.10)

Since λ > 0, we obtain the desired assertion by (4.9), (4.10), Theorem 4.1 and the strong

ergodicity theorem.

5 Discussion and numerical simulations

To start this section, we compare our results with the existing results in literature. Compared

with those in [24], our results indicate that the dynamical behaviors of (1.3) are associated with

not only random perturbation as [24] but also the regime switching. To be precise, assuming

S = {1, 2}, we explain the impacts of regime switching by two possibility of all subsystems:

• Subsystems have the same dynamical behaviors. For instance, for subsystems αi−κ2
2(i)/2−

σi/δi < 0, ∀i ∈ S, then for model (1.3), λ < 0. This implies that for all subsystems,

TCs become extinct. Then TCs in (1.3) still become extinct, which implies that regime

switching do not change the dynamical behaviors.
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Table 1: The significance and value of the parameters
Parameter Real value/unit Biological significance

n 0.18 /day the intrinsic growth rate of TCs

b 2.0 × 10−9 /day the reciprocal of environmental capacity of TCs

s 1.3 × 104 cells/day the normal rate of inflow into the tumor site for ECs

d 0.0412 /day the elimination rate of ECs due to destruction and migration

g 2.019 × 107 cells the coefficient of response functional to TCs of ECs

q 0.06749 /day the coefficient of response functional to TCs of ECs

r1 2.422 × 10−10 /day×cells the elimination rate of ECs due to binding of ECs to TCs

r2 1.101 × 10−7 day×cells the elimination rate of TCs due to binding of ECs to TCs

E0 106 cells the order of magnitude scales for ECs

T0 106 cells the order of magnitude scales for TCs

• Subsystems have different dynamical behaviors. For example, α1 − κ2
2(1)/2 − σ1/δ1 > 0,

α2 − κ2
2(2)/2− σ2/δ2 < 0, in other words, TCs in (5.1) are permanent while TCs in (5.3)

become extinct. In this case, if λ < 0, then the TCs in (1.3) become extinct; if λ > 0, then

the TCs in (1.3) are permanent. Due to the representation of λ, the dynamical behaviors

of (1.3) in this case essentially depend on the stationary distribution of Markov chain.

In the following, two examples with S = {1, 2} and S = {1, 2, 3} are provided to illustrate the

above conclusions, where the data is mainly selected from [10] and [12].

Example 5.1. In this example, we firstly discuss the tumor-immune model in environment 1 dx(t) =
(
σ +

ρ1x(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ κ1(1)x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2(1)y(t)dB2(t),

(5.1)

where κ1(1) = 0.2, κ2(1) = 0.25, and x(0) = 5, y(0) = 50. Table 1 shows the parameters of the

dimensional system in [10]. Using the nondimensionalization method [10, p.304], we obtain the

nondimensional parameters for (5.1) from the data in Table 1

σ = s
r2E0T0

= 0.1181, ρ1 = q
r2T0

= 0.613, µ = r1
r2

= 0.00311,

δ = d
r2T0

= 0.3743, α = n
r2T0

= 1.636, η = g
T0

= 20.19,

and β = nb
r2

= 3.272× 10−3.

(5.2)

Then we compute α−κ2
2(1)/2−σ/δ = 1.2892 > 0. By [24], ECs and TCs in (5.1) are permanent

and have a unique invariant measure. Figure 1 plots the sample paths of x(t), y(t) for (5.1).

Figure 2 predicts the empirical density functions for (5.1) using 1000 sample points and time

t = 200.

We then discuss the tumor-immune model in environment 2 dx(t) =
(
σ +

ρ2x(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ κ1(2)x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2(2)y(t)dB2(t).

(5.3)
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Figure 1: Sample paths of (5.1).
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Figure 2: The empirical density of (5.1).
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Figure 4: The empirical density of ECs of (5.3).

The binding rate of EC to TC will be increased when the immune response of EC to TC is strong.

Let ρ2 = 0.712, κ1(2) = 0.4, κ2(2) = 2, and x(0) = 5, y(0) = 50. Compute α− κ2
2(2)/2− σ/δ =

−0.6795 < 0. By [24], TCs become extinct while the measures of ECs converge to the unique

invariant one corresponding to the inverse gamma distribution IG(5.67875, 1.47625). Figure 3

plots the sample paths of x(t), y(t) for (5.3). Figure 3 predicts the empirical density functions

of the ECs of (5.3) using 1000 sample points and time t = 200.

Due to the random environmental change, tumor-immune system switches between two habi-

tat (5.1) and (5.3). Thus we regard model (1.3) as the results of Markovian switching between

(5.1) and (5.3) with the initial data x0 = 5, y0 = 50, r0 = 1, where the Markov chain r(t) takes

values in S = {1, 2}. To proceed, we discuss model (1.3) by two cases.

Case 5.1.1. Let the generator of Markov chain r(t)

Γ =

(
−3 3

1 −1

)
.

Then its stationary distribution is π = (π1, π2) =
(

1
4 ,

3
4

)
. Compute λ =

∑2
i=1 πi

(
α − κ2

2(i)/2 −
σ/δ

)
= −0.1873 < 0. Theorem 3.1 reveals that TCs become extinct while the measures of ECs

x(t) converges to the unique invariant one. Moreover, Lemma 2.1 tells us that
∑2

i=1

∫∞
0 xν(dx, i) =∑2

i=1 πiσ/δ = 0.3155.

Figure 5 plots the sample paths of r(t), x(t) and y(t) for (1.3). Figure 6 predicts the empirical

density functions of the ECs of (1.3) using 1000 sample points and time t = 200.
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Figure 5: Case 5.1.1. For (1.3) figure (a), (b) and (c) plot a sample path of r(t), x(t) and y(t),

respectively; figure (d), (e) and (f) plot another sample path of r(t), x(t) and y(t), respectively.
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Figure 6: Case 5.1.1. The empirical density functions of ECs x(t): solid line for (1.3); dashed

line for (5.3).

Case 5.1.2. Consider the generator of Markov chain r(t)

Γ =

(
−1 1

2 −2

)
.

Then the unique stationary distribution is π = (π1, π2) =
(

2
3 ,

1
3

)
. Compute λ =

∑2
i=1 πi

(
α −

κ2
2(i)/2 − σ/δ

)
= 0.633 > 0. From Theorem 4.1, we know that (1.3) owns a unique invariant

measure ν∗ on R2,o
+ × S which implies TCs and ECs are permanent. Figure 7 plots the sample

paths of r(t), x(t) and y(t) for (1.3) which verifies the permanence of TCs and ECs. To further

describe the invariant probability measure ν∗, Figure 8 depicts the empirical marginal density

function for (1.3) using 1000 sample points and t = 200. Obviously, the invariant measure ν∗ of

(1.3) is different completely from that of (5.1).

We further compute

σ̌ = σ̂ = σ = 0.1181, β̌ = β̂ = β = 3.272× 10−3, µ̌ = µ = 0.00311,

h2
1 = [(

√
ρ1 −

√
µη) ∨ 0]2 = 0.2834, h2

2 = [(
√
ρ2 −

√
µη) ∨ 0]2 = 0.3519,

a1 = δ − h2
1 = 0.0909 > 0, a2 = δ − h2

2 = 0.0224 > 0,
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Figure 7: Case 5.1.2. For (1.3) solid lines in figure (a), (b) and (c) plot a sample path of r(t),

x(t) and y(t), respectively; solid lines in figure (d), (e) and (f) plot another sample path of r(t),

x(t) and y(t), respectively. Other lines are reference lines.
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Figure 8: Case 5.1.2. The empirical density of the stochastic tumor-immune model (1.3).
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Figure 9: Case 5.1.2. For (1.3) solid lines in figure (a) and figure (b) depicts the sample mean

of 1/x(t) and y(t), respectively; the other lines are reference lines.

1

σ̌

[ 2∑
i=1

πi

(
δ +

1

2
κ2

1(i)− h2
i

)]+
= 0.915,

1

σ̂

2∑
i=1

πi

[ µ̌
β̂

(
α− 1

2
κ2

2(i)
)

+ δ +
1

2
κ2

1(i)
]

= 11.1417,
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1

β̌

[ 2∑
i=1

πi

(
α− 1

2
κ2

2(i)− σ

ai

)]+
= 0,

1

β̂

2∑
i=1

πi

(
α− 1

2
κ2

2(i)
)

= 289.8839.

Using Theorem 4.2 and Theorem 4.3 yields the upper and lower bounds of the expectations of

TCs and ECs with respect to the invariant probability measures ν∗

0.915 ≤
∑
i∈S

∫ ∞
0

1

x
ν∗(dx, dy, i) ≤ 11.1417, 0 ≤

∑
i∈S

∫ ∞
0

yν∗(dx, dy, i) ≤ 289.8839.

Figure 9 predicts the expectation of 1/x(t) and y(t) with respect to the invariant measure ν∗ by

the sample mean of 1/x(t) and y(t) for 1000 sample points and t ∈ [0, 200]. The ergodic theorem

tells us that the paths of 1/x(t) and y(t) in (1.3) are almost surely between the corresponding

reference lines of Figure 9 in time average.

Example 5.2. Let r(t) take values in S = {1, 2, 3}. Model (1.3) is regarded as the result of

Markovian switching between (5.1), (5.3) and dx(t) =
(
σ +

ρ3x(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ κ1(3)x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2(3)y(t)dB2(t),

(5.4)

where ρ3 = 1.131, κ1(3) = 0.2, κ2(3) = 2, and x(0) = 5, y(0) = 50. Compute α−κ2
2(3)/2−σ/δ =

−0.6795 < 0. Then one observes that for (5.4), TCs become extinct while the measures of

ECs converge to the unique invariant one corresponding to the inverse gamma distribution

IG(19.715, 5.905).

Figure 10 plots the sample paths of x(t), y(t) for (5.4). Figure 11 predicts the empirical density
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Figure 10: Sample paths of (5.4).
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Figure 11: The empirical density of ECs of (5.4).

function of the ECs of (5.4) using 1000 sample points and time t = 200. Next, we discuss model

(1.3) by two cases.

Case 5.2.1. Let the generator of Markov chain r(t)

Γ =


−5 2 3

1 −1 0

3 0 −3

 .
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Then the unique stationary distribution is π = (π1, π2, π3) =
(

1
4 ,

1
2 ,

1
4

)
. Compute λ =

∑3
i=1 πi

(
α−

κ2
2(i)/2 − σ/δ

)
= −0.1873 < 0. Using Theorem 3.1 yields that TCs are exponentially decreas-

ing, see Figure 12 for the sample paths of r(t), x(t) and y(t). Meanwhile, Theorem 3.1 reveals

that the measures of ECs x(t) converge to the unique invariant measure ν. Figure 13 plots the

empirical density functions of the ECs of (5.3), (5.4) and (1.3), respectively, for 1000 sample

points and t = 200. Obviously, the invariant measure ν of ECs of (1.3) is different completely

from those of (5.3) and (5.4).
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Figure 12: Case 5.2.1. For (1.3) figure (a), (b) and (c) plot a sample path of r(t), x(t) and y(t),

respectively; figure (d), (e) and (f) plot another sample path of r(t), x(t) and y(t), respectively.
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Figure 13: Case 5.2.1. For (1.3) the empirical density function of ECs x(t): The dashed line for

(5.3); the dashed-dotted line for (5.4); the solid line for (1.3).

Case 5.2.2. Let the generator of Markov chain r(t)

Γ =


−2 1 1

3 −4 1

1 1 −2

 .

Then the unique stationary distribution is π = (π1, π2, π3) =
(

7
15 ,

1
5 ,

1
3

)
. Compute λ =

∑2
i=1 πi

(
α−

κ2
2(i)/2 − σ/δ

)
= 0.2392 > 0. From Theorem 4.1, we know that (1.3) owns a unique invariant
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respectively; figure (d), (e) and (f) plot another sample path of r(t), x(t) and y(t), respectively.
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Figure 15: Case 5.2.2. The empirical density of the stochastic tumor-immune model (1.3).

measure ν∗ on R2,o
+ ×S. Thus TCs and ECs in (1.3) are permanent, see Figure 14 for the sample

paths of r(t), x(t) and y(t). To describe the invariant measures of (1.3), Figure 15 plots the

empirical density function for (1.3) using 1000 sample points and time t = 200.

6 Conclusions

This paper studies the long-time dynamical behaviors of the tumor-immune system in a

stochastic environment. It is revealed how the interaction of different types of environmental

noise impact the dynamical behaviors of ECs and TCs. Firstly, by the analysis of the dynamic of

(1.3) on the boundary, the threshold λ is preestimated. Next, by constructing several appropriate

comparison equations, making use of the properties of the corresponding diffusion processes

and occupation measures, we obtain that if λ < 0, the TCs will die out, while if λ > 0, the

system (1.3) is permanent in the sense of the existence of the invariant probability measure

supported on R2,o
+ × S. Moreover, as (1.3) is permanent, the lower bound and the upper bound

of the expectation with respect to the invariant measure are obtained. Finally, our results are

illustrated by two numerical examples. Overall, the fact is revealed that both the intensity of the

white noise of TCs and the stationary distribution of Markov chain play the critical roles in the
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elimination of TCs. It is worth noting that the dynamical behaviors of the overall system may

be different completely from those of subsystems, which depends on the stationary distribution

of the Markov chain closely.

Remark 6.1. Through our study, the threshold λ is the key to determine the extinction or

permanence of TCs. Obviously, the value λ does not depend on the parameters ρi, ηi, µi and

βi. We notice that ρi and ηi are the parameters of the rate at which ECs accumulate due to

the presence of TCs, µi describes the elimination rates of ECs due to binding of ECs to TCs,

βi(i ∈ S) is the parameter of the maximal carrying capacity of biological environment of TCs. It

is reasonable that they do not affect the determination of the extinction of TCs. But when the

system (1.3) is permanent, as we proved in Theorem 4.2 and 4.3, they do affect the lower bound

and the upper bound of the expectation of 1/x and y with respect to the underlying invariant

measure ν∗.
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