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1 Introduction and preliminaries

The concept of a probabilistic metric space (PM-space) was first raised by Menger and
revisited by Schweizer and Sklar [1,2]. The fundamental theory of PM-spaces has been
established and developed during the second half of the 20th century [3,4]. Specifi-
cally, fixed point theory and nonlinear operator theory in PM-spaces has attracted much
attention and a large number of papers are focused on such field [5-13].

It was Turinici who first suggested imposing a partial order on the structure of a
metric space and discussed fixed point problems in this framework [14], which inspired
many consequent work in this regard [15-18]. It is a natural idea to consider fixed point
problems in a partially ordered Menger PM-space, and many results were also obtained
in such spaces in recent years [19-22]. On the other hand, the notion of o admissible
mapping has been defined in [23], and the fixed point results for a-t) contractive map-
pings, generalized a-1 contractive mappings and a-1-Meir-Keeler contractive mappings
have been obtained in [23-25]. In particular, it has been shown in [24] that the fixed
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point results in standard metric spaces, metric spaces endowed with a partial order and
metric spaces where mappings are cyclic can be obtained by proper choice of « from the
main results of [24].

Let (X,.#,A) be a Menger PM-space and X be endowed with two partial orders
<7 and <9, and T, A, B,C,D : X — X be five self-mappings. Consider the following
problem: Find x € X, such that

z="Tz,
Ax =1 BJ}, (1.1)
Cz jQ Dzx.

Jleli and Samet discussed in [26] the existence of solutions to (1.1) in metric spaces
by introducing the concepts of d-regularity and (A, B,C, D, <1, <9)-stability. In [27],
Ansari et al. revisited the results in [26] and proved the uniqueness of the solution to
(1.1) by assuming that only A and B are continuous (or only C' and D are continuous).
The main results of [26] and [27] were generalized to the setting of Menger PM-spaces
in [28]. In [29], the authors investigated the existence of solution to problem (1.1) by
replacing the completeness of the metric space by introducing the so-called comparable

completeness and considering a more general contractive condition.

In this paper, we will revisit problem (1.1) in partially ordered Menger PM-spaces
and discuss its solution by introducing .7-completeness of partially ordered Menger PM-
spaces and a more general contractive condition. Our results are the generalizations of
the results in [29] and many other literatures.

We now recall some basic definitions in the theory of Menger PM-spaces.

A mapping F : R — RT is called a distribution function if it is nondecreasing

left-continuous with sup F'(t) = 1 and inf F(¢) = 0.
teR teR

We will denote by Z the set of all distribution functions while H will always denote
the specific distribution function defined by

0, t<0
Ht)y=4q .~
1, t>0.

Let Fy, F> € 9. The algebraic sum F; @ Fj is defined by [30]

(F1 @ Fy)(t) = sup min{Fi(t1), Fa(t2)} for all t € R.
t1Hto=t
Definition 1.1 [6] A mapping A : [0,1] x [0,1] — [0, 1] is called a triangular norm
(for short, a t-norm) if the following conditions are satisfied: A(a,1) = a; A(a,b) =
A(b,a); A(a,c) > A(b,d) for a > b,c > d;A(a, A(b,c)) = A(A(a,b),c).
A typical example of a t-norm is A,,;, which is defined by A,in(a,b) = min{a, b}
for all a,b € [0,1].



Definition 1.2 [6] A triplet (X,.%#, A) is called a Menger probabilistic metric space
(for short, a Menger PM-space) if X is a nonempty set, A is a t-norm and .% is a mapping
from X x X into Z satisfying the following conditions (we denote .7 (z,y) by Fy):

(MPM-1) F,,(t) = H(t) for all t € R if and only if z = y;

(MPM-2) Fy,(t) = Fy,(t) for all t € R;

(MPM-3) Fpy(t+s) > A(Fy2(t), Fry(s)) for all z,y,z € X and t,s > 0.

Remark 1.1 [6] If sup A(¢,t) =1, then (X,.%,A) is a Hausdorff topological space
in the (e, A)-topology ﬂ(z<it.<e.1, the family of sets {Uy(e,\) : € > 0,A € (0,1]}(x € X) is a
basis of neighborhoods of a point = for .7, where U,(e,\) = {y € X : F 4(¢) > 1 —\)}.

By virtue of the topology 7, a sequence {z,,} is said to be .7-convergent to x € X (we
write zy, Z xz(n — o0)) if for any given € > 0 and A € (0,1], there exists a positive
integer N = N(e, \) such that Fj, ,(¢) > 1 — A whenever n > N, which is equivalent
to ILm F,,2(t) = 1 for all t > 0; {z,} is called a .7-Cauchy sequence in (X,.#,A)
if fgr ;Ony given € > 0 and A € (0, 1], there exists a positive integer N = N (e, A) such
that Fy, ., (€) > 1— X whenever n,m > N; (X,.#,A) is said to be 7-complete if each
J-Cauchy sequence in X is 7-convergent in X. It is worth noting that in a Menger
PM-space, nh_)rrolo Ty, = x implies that z, Z x(n — 00).

Remark 1.2 [6] Let (X, d) be a metric space and .% : X x X — Z be defined by
F(x,y)(t) = Fpy(t) = H(t —d(x,y)),Vz,y € X and t > 0. (1.2)

Then (X,.%, Apmin) is a 7 -complete Menger PM-space induced by (X, d).
We next recall the definition of F-regularity and (A, B, C, D, <1, <s)-stability.

Definition 1.3 [28] Let (X,.#,A) be a Menger PM-space and < be partial order
on X. < is called F-regular, if for any sequences {ay}, {b,} C X, we have

lim Fj, o(t) = lim Fy, 4(t) =1 and a, < b, foralln € Nand t > 0= a <,

n—oo
where (a,b) € X x X.

Definition 1.4 [26] Let X be a nonempty set endowed with two partial orders <;
and <9. Let TA, B,C,D : X — X be five self-mappings. The mapping T is called
(A, B,C, D, =<1, =<9)-stable, if the following condition is satisfied:

r € X, Ax X1 Bx = CTx =<9 DT'x.

The concept of an a-admissible mapping with respect to n on a Menger PM-space
has been proposed in [8] as follows.

Definition 1.5 [8] Let 7" be a self-mapping on a Menger PM-space (X,.%#,A) and
a,n: X xX x(0,+00) — (0,+00) be two functions. 7' is called an a-admissible mapping
with respect to n, if for all ¢ > 0, we have

a(z,y,t) <n(z,y,t) = o(Tx, Ty, t) < n(Tzx,Ty,t),z,y € X.



Remark 1.3 [8] T is called an a-admissible mapping, if n(z,y,t) = 1. In this
case, it coincides with Definition 3.2 in [31]. T is called an n-subadmissible mapping, if
a(x,y,t) = 1. In this case, it coincides with Definition 2.2 in [31].

We can further give the notion of a triangular a-admissible mapping with respect
to n on a Menger PM-space in the following way.

Definition 1.6 Let T be a self-mapping on a Menger PM-space (X,.#,A) and
a,m: X x X x(0,400) — (0,400) be two functions. T is called a triangular c-admissible
mapping with respect to n, if it is an a-admissible mapping with respect to n, and

a(z,y,t) < n(x,y,t) and a(y, z,t) < n(y,z,t) = alz, z,t) < n(z, z,t),z,y,z € X.

Now, we introduce some new definitions that will be used in the next section. These
concepts are generalized from a metric space to the setting of a Menger PM-space.

Definition 1.7 Let (X,.#, A) be a Menger PM-space and a, n : X x X x (0, 4+00) —
(0,4+00) be two functions. A sequence {zy} is called a-regular with respect to n if the
following conditions is satisfied: if {x,} satisfies that a(x,, zp41,t) < n(@n, Tpt1,t) for
all n € Nand ¢t > 0 with z, Zre X (n — o0), there exists a subsequence {zy, } of {zy}
such that a(xy,, ,z,t) < n(zy,,z,t) for all k € N and ¢ > 0.

Definition 1.8 A partially ordered Menger PM-space (X,.%#, A, <) is called regular
if for every nondecreasing sequence {x,} C X such that x, ZreX (n — o0), there
exists a subsequence {z, } of {z,} such that z,, < x for all k.

Definition 1.9 [29] Let (X, <) be an ordered space. A sequence {z,} is called a

comparable sequence, if

(n, 2 Ty for all n, k) or (x4 <X zp, for all n, k).

Definition 1.10 A partially ordered Menger PM-space (X,.%#, A, <) is said to be
comparable T -complete if every 7-Cauchy comparable sequence is 7 -convergent in X.

It is claimed that every complete metric space is comparable complete and that
the converse is not true by giving an example [29]. It is also easy to see that every
T -complete Menger PM-space is comparable 7 -complete but the converse is not true.

Definition 1.11 Let (X,.#,A, <) be a partially ordered Menger PM-space. A
mapping f : X — X is said to be comparable 7 -continuous in a € X, if for each
comparable sequence {a,} in X with a, Z a(n — o), we have f(ay) Z f(a)(n — o0).
f is comparable 7 -continuous on X if f is comparable .7 -continuous in each a € X.

Definition 1.12 [29] Let (X, <) be a partially ordered space and T': X — X be a
mapping. xg € X is said to be T-comparable if for all n € N, xy and T™xq are comparable.
We denote

Tr={zo € X : (xg X T"xp for all n € N) or (T"z < 0 for all n € N)}.

Definition 1.13 [29] Let (X, <) be a partially ordered space. A mapping T : X —
X is said to be =-preserving, if x < y implies Tx < Ty.



Proposition 1.1 [29] Let (X, <) be a partially ordered space and T': X — X be
=<-preserving. Let {z,} be a Picard iterative sequence with initial point zg € T, i.e.,
xp = T"(xg). Then {z,} is a comparable sequence.

Denote by ® the set of functions ¢ : (0,1] — [0, 400) satisfying the following condi-

tions:
(®1) ¢ is continuous and nonincreasing;
(P2) p(z) =0 if and only if z = 1.
Denote by H(X) the class of mappings h : X x X x (0,+00) — [0,1) satisfying the

following condition:

lim A(xy,yn,t) =1forallt >0= lim F, , (t)=1forallt >0,

n—od

for all sequences {x,},{yn} in X such that the sequence {Fj, ,,.(t)} is increasing and

nsYn

convergent for each ¢t > 0.

2 Main results

We are now ready to prove our main result.

Theorem 2.1 Let (X, .%, Ayin, =) be a comparable 7 -complete Menger PM-space
and <1 and =<5 be two partial orders on X. Also, let T, A, B,C,D : X — X be self-
mappings and «,n : X x X x (0,400) — (0,400) be two functions. Suppose that the

following conditions are satisfied:
(i) =; is F-regular (i = 1,2), and T is =-preserving and a-admissible with respect
to n;

(ii) A, B and T are comparable .7-continuous or C', D and T are comparable .7 -
continuous;

(iii) there exists xg € T, such that Azxg <1 Bxg, Cxg <2 Dz and a(zg, Tz, t) <
n(zo, Txo,t) for all t > 0;

(iv) T is (A, B,C, D, =<1, =<9)-stable and (C, D, A, B, <9, <1)-stable;
(v) there exists h € H(X) and ¢ € ® such that for z,y € X,

Az jl BCL‘, Cy 52 Dy — 77(35, yvt)(p(FTw,Ty(t)) < O‘(x’yvt)h(xvyat)w(Ml“,y(t)) for all ¢ > 0,

where My () = min{ Fy (1), [Fo,r2 © Fyry](20), [Fory © Fyre](20)}-
Then the sequence {T"xo} converges to some z* € X, which is a solution to (1.1).

Proof. Without loss of generality, we can assume that A, B and T are comparable

 -continuous for assumption (ii).

Step 1. By assumption (iii), there exists xy € T such that

Azxy <1 Bzo and a(xg, Txo,t) < n(xo, Tzg,t) for all £ > 0.



Define the sequence {z,} by x, = Tx,_1 for all n € N. It follows from Proposition 1.1
that {x,} is a comparable sequence. If z,,, = zp,4+1 for some ny € N, then z,, is a fixed
point of T'. Now, suppose that x,, # z,4+1 for n € NU{0}. By assumption (iv), we have
CTzxy <9 DTz, that is, Cxy <9 Dx;. By assumption (iv), we have ATz =<1 BTz,
that is, Axzg <; Bxs. Again, by assumption (iv), we obtain CTzy <o DTxs, that is,
Cz3 =9 Dx3. Continuing this process, we obtain

Axon 21 Bra, and Cront1 22 Dropy1,n=0,1,2,---.
From Cxzy =<1 Dz( and condition (iv), we can similarly obtain
Cxon =1 Dxop and Axoni1 22 Bropy1,n=0,1,2,---.

Thus we have
Az, =1 Bxy and Cxy 22 Dwp,n=0,1,2,--- . (21)

Since T is a-admissible with respect to 7, by (iii), we have
a(zo, z1,t) < n(xg,x1,t),Yt > 0 = a(Txo,Tx1,t) < n(Txo, Tx1,1) for all t > 0.
Inductively, we obtain
a(Tp—1,Tn,t) < n(xp—1,xn,t) for all n € N and t > 0. (2.2)
By (2.1), (2.2) and (v), it holds for all n € N and ¢ > 0 that

‘P(Fxn,xn+1(t)) < h(@n—1, Tn, ) (M, 2, (1) < P(Ma, 4 ,2,(1)), (2.3)

where

Mxnflyzn (t) = min{anflazn (t)7 [F$n71,T$n71 @ anvan](2t)7 [F:anl,T(IJn @ F$naT$nfl](2t)}
= min{Fan,mn (t), [Fa:nﬂ,acn D Fxn,mn+1](2t)v [Fxnﬂwnﬂ D Fwn,xn]<2t)}-

Note that for all n € N and ¢ > 0, for any § € (0,2t), we have

[Fxn—lyivrkl—l @ Fwnyl’n] (2t) 2 min{Ffﬂ.—lyxn+1 (Qt - 5)7 Fxnyxn (6)}
= min{Fxn71,1n+l (2t - 5)7 1}

Letting § — 0, by the left-continuity of the distribution function, we obtain
(Fap_1ani1 @ Frpza)(2t) > Fpp ) 2,0, (2t) for all n € N and ¢ > 0.
For all n € N and ¢ > 0, for each t1,to € (0,2t) with ¢; + t2 = 2¢, we have

F$n717$n+1 (2t) > Amin(Fwnq,zn (t1)7 an,znﬂ (t2>) = min{Fwnq,wn <t1)7 Fxn,wn+1 (t2)}v



and thus we obtain
Fo 1 wni(28) 2 [Frp )20 @ Frp 2,0, )(2t) for all n € N and ¢ > 0.
Therefore, it holds for all n € N and ¢ > 0 that

My, 2, (t) = min{Fy, ., (), [Fxn—LTﬂcn—l D Fxn,T:cn](2t)}
Z min{Fxn—lyxn (t)’ an’mn-!—l (t)}
If min{Fl‘n—hl‘n (t)v Fxn,$n+1 (t)} = Fxn,ﬂcn+1 (t)v then
SO(Fxn,:vnH(t)) < (Mg, 2, (1) < (P(Fxn,xnﬂ (t)) for allm € Nand t > 0

which is a contradiction. Thus, we conclude that min{F,,,_, »..(t), Fr, 20y (1)} = Frp_y 2
and thus by (2.3), we obtain

O(Fapznir (1) < @(Fr,_y2,(t)) for all n € N and ¢t > 0.
By the monotonicity of ¢, we have
Fepani(t) > Fp | 2,(t) for allm € N and ¢ > 0.

Thus, {F;,., 2, (t)} is an increasing sequence of positive numbers for each ¢t > 0. There-
fore, there exists some r(t) € [0, 1], such that

ns,an (t) = 7(t) for all t > 0.

Suppose that there exists tg > 0 such that r(tp) < 1. Then by (2.3), we have

O(Fr,y a1 (t0))
O(Frp 1,2, (t0))

Z h(xn—l y Tny tO))

which implies that
lim h(xp—1,Zn,to) = 1.

n—oo

Noting that h € H(X), we thus obtain
lim F, ., 2, (to) =7(to) =1,
n—oo
which is a contradiction. Therefore, we have r(t) = 1 for all ¢t > 0, that is,

(t) =1 for all t > 0. (2.4)

Step 2. We now show that {z,,} is a .7-Cauchy comparable sequence in (X, .7, A, <).
Suppose that this is not true. Then there exists ¢g > 0 and A\g € (0, 1], for which we can
find two sequences of positive integers {my} and {nx}, such that for all positive integers

k, we have

ng >mg >k, F, (e0) <1—XNo, Fy (e0) > 1—Np. (2.5)

mk7xnk mkyxnk—l



For any ¢ € (0, ¢p), we have
mek Ty, (60) Z A(Fxmkyxnk—l (EO - 6)’ Fxnk—lyxnk (6))
Letting k — oo, by (2.4), we have

lim inf F,
k—oo

(€0) > A(liminf F;

ko0 Tmy Tny—1

my, Tny, (60 - 5)a 1) = likrgiogf mek ,mnk71(€0 - 5)

Letting 6 — 0, by the left-continuity of the distribution function and (2.5), we obtain

lim inf F,

ko0 Tmy s Tng

(€0) > liminf F,

k—o0

mk,iﬂnk—l(eo) Z 1- )\0'

On the other hand, it can be seen easily from (2.5) that

limsup Fy,,, o, (€0) < 1= Xo.

k—oo
So we obtain
khﬂrgo mek Ty (60) =1- )\0. (26)
Similar arguments show that
klinc}o Fﬂcnk+17xmk (60) = kli»nolo Fxnk7xmk—1 (60) = k:h—{go Fl‘nk+1,xmk+1 (60) =1- o (27)

Note that for all £ € N, there exists a positive integer ix € {0,1} such that
ng — mg + i = 1(2).
By (2.1), for all k£ > 1, we have
Azy, =21 Bzy, and Cxpyy i, =2 Dy, i,

or
Ay, —i, =1 Brp,—i,, and Cxy,, =<2 Dzy, .

By (vi), for k € N, we have

@(Fxnk+lymmk—ik+1 (60)) < h(l'nk s Ty —ip» 60)90(M1nk,$mk7ik (60))7 (2'8)
where
Mznk71mk—ik (60) = min{ank@mk—ik (60)7 Fﬂcnk T'Tny, (60)7 F$mk—ik7Tika—ik (60)7
[FxnkyTxmkfik @ Fxmkfzk:Tmnk](2€0)}
= min{Fxnk@mk%k (€0), Fwnk»mnk+1 (€0), Fxmkfik,zmkfik+l (€0),
[Fwnkafmk—ik-}—l & Fxmk—ikvxnk+1]<260)}'
Note that
[Fxnk Ty, —ip+1 ® Fxmkfik7xnk+1](260) > min{Fxnk@mkﬂ‘kH (€0), Fxmkfik7xnk+1 (c0)}- (2.9)
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For any ¢ € (0, ¢p), we have

Fxnk,xmkﬂ‘kﬂ (€0) = A(Fxnk,xmkﬂk (0 — 9), Fxmkfik,xmkfikﬂ (6))-

It follows from (2.4) that

liminf F,

ko0 -Tnk ’xmkfilfkl

(€p) > liminf F;

k—oo

€0 —5)

n azmkfik (

Letting § — 0, by the left-continuity of the distribution function, we obtain

Similarly, we can prove that
Combining (2.9), (2.10) and (2.11), we obtain
hgr_l)icgf[Fxnk@mkfikH @ Fxmkfikvxnk-kl](QEO) > h]?_l)iogf Fm’ﬂk7xmk7ik (60)' (2'12)
And thus
likrrig.}f Mg, o, i, (€0) = likrgiréf By i, (€0)- (2.13)

It follows from (2.8) and (2.13) that

<p(likn_1)i£f Eo 1 @my i1 (€0)) < liminf h(xy, , Tm,—i,, €0)p(lim inf Frr g i (€0)),

k—o0 k—oo

which by (2.7) and the continuity of ¢ implies that

lim inf h(l’nk, Ty, —ip 60) 2 L.
k—oo

Noting that limsup h(zy, , Tm,—i,,€0) < 1 holds, we obtain

k—oo

im 7z, Tm,—iy, €0) = 1,
k—o0

which yields that
lim F,

b—o0 Tng Tmy —ip (60) =L
This is in contradiction to (2.6) or (2.7). Therefore, {z,} is a .7-Cauchy comparable
sequence in (X, .7, A, X).
Step 3. Since (X,.7,A, <) is comparable .7-complete, from Step 2, we know that

there exists z* € X such that x, T g (n — o0). Since T' is comparable .7 -continuous,
we get xpi1 = Ty, CA Txz*(n — 00). So we obtain

Tz* = z*. (2.14)



Since A and B are comparable .7 -continuous and {z2,} is a comparable sequence,
we have
lim Fag,, Az (t) = lim Fpe,, Bao* (t) =1 for all t > 0. (2.15)
n—oo n—oo

Noting that <y is F-regular, it follows from (2.1) and (2.15) that
Az* <1 Bz™. (2.16)
By assumption (iv) and (2.16), we obtain
CTz* <o DTx",

which implies that
Cz* <9 Dz*. (2.17)

Combining (2.14), (2.16) and (2.17), we conclude that z* is a solution to problem (1.1).
We can similarly prove the theorem by alternatively assuming that C'; D and T are
comparable .7 -continuous. This completes the proof.

The next result removes the 7 -continuity assumption of the mapping T" in Theorem
2.1 by utilizing a-regularity with respect to 1 assumption of a sequence.

Theorem 2.2 Let (X, .%, Ayin, =) be a comparable 7 -complete Menger PM-space
and <1 and =<5 be two partial orders on X. Also, let T, A, B,C, D : X — X be self-
mappings and a,n : X x X x (0,400) — (0,400) be two functions. Suppose that the
following conditions are satisfied:

(i) =; is F-regular (i = 1,2), and T is =-preserving and a-admissible with respect
to n;

(ii) A and B are comparable .7 -continuous or C' and D are comparable .7 -continuous;

(iii) there exists xg € T, such that Azxg <1 Bxg, Cxg <2 Dz and a(zg, Tz, t) <
n(zo, Txo,t) for all t > 0;

(iv) the sequence {T?"z} is a-regular with respect to n;
(v) T'is (A, B,C, D, =1, =9)-stable and (C, D, A, B, <9, <1)-stable;
(vi) there exists h € H(X) and ¢ € ® such that for z,y € X,

Az =1 Bz, Cy =23 Dy = n(z,y,t)p(Fra,y(t)) < oz, y, )h(z,y, t)p(Mey(t)), vt > 0,

where My (t) = min{ Fy y(t), [Fo,r2 © Fyry](20), [Frory © Fy1e](20)}.
Then the sequence {T"xo} converges to some z* € X, which is a solution to (1.1).

Proof. Without loss of generality, we assume that A, B are comparable .7-
continuous. The proof for the case that C, D are comparable .7-continuous is similar.

By assumption (iii), there exists z9p € Tr such that

Azxy <1 Bz and a(xg, Txo,t) < n(xo, Tzg,t) for all £ > 0.
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Define the sequence {z,} by z, = Tz, for all n € N. Following the same arguments
in Theorem 2.1, we can prove that

Azo, =1 Bxo, and Cxany1 <2 Dxopi1,n=0,1,2,--- . (2.18)

and
a(Tp—1,Tn,t) < n(Tp-1,%n,t) for all m € N and ¢ > 0. (2.19)

Also, we can prove that there exists z* € X such that x, 7, x*(n — o0) and
Ax* <1 Bz™. (2.20)

Now, we prove that Tx* = x*. Suppose this is not true, that is, Tx* # x*. Then we
claim that there exists tg > 0, such that

Fx*,Ta:* (2t0) > Fa:*,Tac* (t0>- (221)
In fact, if (2.21) is not true, then for all ¢ > 0, we have
Fx*,Tx* (t) = Fx’ﬂTx* (2t) = = Lgpx Tpr (2nt) - 1(n - OO)

This implies that Fy« 7,+(t) = 1,V¢ > 0, which is in contradiction to T'z* # z*, and thus
(2.21) holds.

Without loss of generality, we can assume that ¢y is a continuous point of Fy« 7z« (-).
In fact, since the distribution function is left-continuous, by (2.21), there exists 6 > 0,
such that
Faz*,Tm* (2t) > Fz*,T;B* (t) vt e (tO - 0) tO]'

Since the distribution function is nondecreasing, the discontinuous points are at most
a countable set. Thus, when ¢y is not a continuous point of Fy« 1,+(-), we can always

choose a point ¢; in (t9 — d, tg] to replace tg.

Since {x9,} is a-regular with respect to 7, by (2.19), there exists a subsequence
{z2p,, } such that

a(xon,, ", t) < n(zon,,z",t) for all k € N and ¢ > 0. (2.22)

By (2.18), (2.20), (2.21) and (vi), it holds for all k € N that

P (Frany 11,727 (00)) = ¢ (Fras,, 1o (00)) < M@0y, 27, 8)p( Moy, 2+ (t0)), (2.23)
where
Mfmnk,r* (to) = min{Fl‘znk,w* (to), [ank Twop, D For 12+](2t0), [Frznk.,Tﬂl* ® Fm*,sznk](QtO)}

= min{ank,x* (o), [Fmgnk Tany+1 D Fyr o] (2t0), [sznk,Tw* ® Fx*7x2nk+1](2t0>}-
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Note that for any § € (0, 2tp), we have

[Fign, Tt ® For gy, 11](2t0) > min{Fy,, 1o+ (2t — 0), Fior g, 41 (6)} for all k € N.
. T .
Since x,, = x*(n — 00), we get

lim inf[F$2nk,T$* D F$*7$2nk+1](2t0) > Fa:*,Tz* (2t0).

k—oo

Similarly, we have

lim inf[ank,MnkH &) FJE*,TJ}*](2tO) Z FZ‘*,TJ,‘* (Qto)

k—o0
Therefore, we obtain

Hminf My, o (to) > Fye o= (2t0). (2.24)
k—o0 'k’ ’

It follows from (2.23) that

@(FIEan-Q-l,Tx* (to)) < QO(MIan z* (to)) for all k € N,

which by the monotonicity of ¢ implies that

Fgny 1,727 (t0)) = Ma,,, a+(to) for all k € N. (2.25)

Since xy, Z xz*(n — 00), and ¢y is a continuous point of Fy« 7,+(-), combining (2.24)
and (2.25) yields that Fy« 74+ (to) > Fyp= 14+ (2t), which is in contradiction with (2.21).
Therefore, we proved that

Tx* = ™. (2.26)

Since T is (A, B,C, D, =1, X2)-stable, by (2.20), we obtain
CT@'* jg DTCL'*,

which implies that
Cx™ =9 Dzx*. (2.27)
Combining (2.20), (2.26) and (2.27), we thus conclude that z* is a solution to (1.1).
Next, we discuss the uniqueness of the solution to problem (1.1). Denote by Fix(T)

the set of all fixed points of the mapping 7. Consider the following assumptions.

(Hy) For all z,y € Fix(T), there exists z € X, such that Az =<1 Bz, Cz <3 Dz,
alz, z,t) < n(z,z,t) and a(y, z,t) < n(y, z,t) for all t > 0.

(Hz2) For all z,y € Fix(T'), there exists z € X, such that a(x, z,t) < n(z, z,t) and
az,y,t) <n(z,y,t) for all t > 0.

Theorem 2.3 Suppose that the hypotheses of Theorem 2.1 (resp. Theorem 2.2)
remain true. Suppose further that one of the following conditions is satisfied:

12



(i) assumption (H;) holds;
(ii) assumption (Hg) holds, and T is triangular a-admissible with respect to 7.

Then problem (1.1) has a unique solution z*.

Proof. Suppose that y* is another solution to (1.1), that is,

Ty =y*, Ay* =1 By", Cy" 22 Dy". (2.28)

We next show that x* = y*. First, we assume that condition (i) holds. By assump-

tion (Hy), there exists z € X such that

Az 21 Bz,Cz =9 Dz, a(z*, z,t) < n(z*, z,t) and a(y*, z,t) < n(y*, z,t) for all t > 0.
(2.29)

Since T is a-admissible with respect to 7, from (2.28), we have

alx*, Tz, t) < n(z*,T"z,t) and a(y*,T"z,t) < n(y*,T"zt) for all n € N and ¢ > 0.
(2.30)

Define the sequence {z,} by 2,41 = Tz, for n € NU {0} with zp = 2. It follows from
Az =1 Bz, Cz =3 Dz and condition (iv) of Theorem 2.1 (or (v) of Theorem 2.2) that
Czp, <2 Dz, for all n € NU {0}. Noting that Az* <; Bz*, from (2.30), it holds for all
n € N and ¢ > 0 that

(p(FI*7Zn+1 (t)) < h({L'*, Znat)QO(Mac*,zn (t)) < W(Mm*,zn (t))a (2'31)

where

My 2, (t) = min{Fx*,zn (t), [Fx*,Tx* D an,Tzn](Qt)7 [Fx*,Tzn D FzmToc*](%)}
= min{FfE*,Zn (t)’ [FI*,ZL“* D FZmZn-H](Qt)? [Fm*7zn+1 @ anyﬂc*](Qt)}'

Note that for any ¢ € (0,2t), we have

[Fx*,:r* ® an,zn+1](2t) 2 min{Fw*,x* (6), Fenznia (2t —0)}
= min{l,F,, ., ., (2t =9),}, foralln € Nand ¢t > 0.

Letting 6 — 0, by the left-continuity of the distribution function, we obtain
[Forox ® Fo, 200 1(28) > F 50 (2t), ), foralln € N and ¢ > 0.
For all n € N and ¢t > 0, for each t1,ts € (0,2t) with ¢; + to = 2¢, we have
Fiopoonin (28) > Dppin(Fayy 2v (1), Fie 2y (t2)) = min{ FL, o+ (t1), For 200 (E2) 15
and thus we obtain

Fop i (2) > [Fy o0 @ Fpx 2, 1](2t), for all n € Nand ¢t > 0.
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Therefore, it holds for all n € N and ¢ > 0 that

My 5, (1)

min{Fx*,zn (t), [Fx*,znﬂ D an,z*](%)}
> min{Fr*,zn (t), For s ()}

If min{Fl‘*,Zn (t)a FI*»Zn-s-l (t)} = FI*,Zn-s-l (t)’ then

@(Fw*,znﬂ (1) < p(Myx 1, (1)) < ‘P(Fz*,znﬂ (),

which is a contradiction. Thus, we conclude that min{Fy« . (1), Fpx 2, (1)} = Fpr 2, (1),
for all n € N and ¢ > 0, and thus by (2.31), we obtain

O(Fyr 2,1 (1) < @(Fyx 2, (t)), for all n € N and t > 0.
By the monotonicity of ¢, we have
Fpeonii(t) > Fps 2, (t), for alln € Nand ¢ > 0.

Thus, {Fy= ., (t)} is an increasing sequence of positive numbers for each ¢ > 0. Imitating
the proof of Theorem 2.1, we can prove that

lm Fye () =1, Vt > 0.

n—oo

Similarly, it can be deduced that

lim Fy- . (t) =1, Vt > 0.

n—oo

Therefore, we get x* = y*, which implies the solution to (1.1) is unique.
g Y

Now assume that condition (ii) holds. Suppose z* # y*. By assumption (Hsg), there
exists z € X such that

a(z®, z,t) < n(x*, z,t) and a(z,y*,t) < n(z,y*,t),for all t > 0.

Since T is triangular a-admissible with respect to 1, we have a(x*,y*,t) < n(z*,y*,t)
for all ¢ > 0. Noting that Az* <; Bz* and Cy* =<9 Dy*, by (v) of Theorem 2.1 (resp.
(vi) of Theorem 2.2), we obtain

O(Fur y= (1)) = (P 1y (t)) < h(2™, y*, £)p( My 4= (1)), (2.32)

where My« (1) = min{Fys y= (), [For 1o @ Fys 1y=](28), [For 1y O Fy 102 ](28) } = Foe y= (¢).
This implies that h(x*,y*,t) > 1, which is a contradiction. Therefore, we have z* = y*.
This completes the proof.

Example 2.1 Let X = [—4,6) and define the partial order “ <" on X as follows:

rRy<=[zr]=[y] and z > y.
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Define &% : X x X — @ by

0, t <0,
F(z,y)(t) = Fw,y(t) = _d(=z,y)
et , t>0.

Then (X, . #, Apin) is not a J-complete Menger PM-space, but it is a comparable 7-
complete Menger PM-space. Take <;==<9=<. Then “ =; 7 is F-regular for ¢ = 1, 2.
Define the mapping T': X — X by

1
Tz = g(az— [z]) for all x € X
and A,B,C,;D: X — X by

%x—i—l, 0<z<6,
Ax = 1
—5x+2, —4<x<0,

BF{
cx_{

1 3

—lz4+3 0<az<s,
Dz = 2:6;4 ;j

r—3i A<z <o.

, 1<x<6,
, —4<x<1,

NS NEN

x+2, 1<x<6,
, —4 <z <1,

D[ = Lol =

It is easy to verify that T is <-preserving, and A, B and T' are comparable .7 -continuous.
Moreover, routine calculations show that T"is (A, B, C, D, <1, <9)-stable and (C, D, A, B, <;
, X9)-stable. Define a,n: X x X x (0,400) — [0, +00) by

5 .

2 if [x] = [y],
a(fU»%t) = X [ ] [y] t> Oa

2, otherwise.

3 .

= if [x] = [y,
wag= {0 T

3 .

5, otherwise.

and h: X x X x (0,400) — [0,1) by h(z,y,t) = 2 for all z,y € X and ¢t > 0. We can
easily check that T is triangular a-admissible with respect to 7. Also, note that there
exists g = 0.4 € Tp, such that Azxg < Bzg and a(xg, Txo,t) < n(xo, T'zo,t) for all t > 0.
If Az < Bz, Cy < Dy, we have z,y € [0, ]. Take (z) = —Inz. Thus

3 _le—yl 3 lz—yl 5 2
n(x,y,t)e(Frery(t)) = Z(—lne 3 ) = 1 3% 35 3¢

lz—yl

= az,y,t)h(z,y,t)(—lne” ¢ )
a(:c,y,t)h(x,y,t)go(F%y(t))
oz, y, t)h(z, y, t)p(Mzy(t)).

IN
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The conditions of Theorem 2.1 are all satisfied. Therefore there exists at least one solution
o (1.1). Also, we can verify that (Hy) or (Hz) holds, and so the solution is unique. In
fact, x* = 0 is the unique solution to (1.1).

3 Some consequences

In this section, we will derive some corollaries of our main results in Section 2.
3.1 Standard fixed point results under constraint inequalities

Taking a(z,y,t) = n(x,y,t) =1 for all x,y € X and ¢ > 0 in Theorem 2.3, we have
the following result.

Corollary 3.1 Let (X, %, Apin, <) be a comparable .7 -complete Menger PM-space
and <1 and =5 be two partial orders on X. Also, let T,A,B,C,D : X — X be self-
mappings. Suppose that the following conditions are satisfied:

(i) =; is F-regular, i = 1,2, and T is <-preserving;

(ii) A and B are comparable .7 -continuous or C' and D are comparable .7 -continuous;
(iii) there exists xg € T, such that Azy <1 By and Czy <9 Dxy;

(iv) T is (A, B,C, D, <1, <9)-stable and (C, D, A, B, <9, =<1)-stable;

(v) there exists h € H(X) and ¢ € ® such that for z,y € X,

Ax =1 Bx,Cy =9 Dy = @(Framy(t)) < h(z,y,t)p(Mg,y(t)) for all t > 0,

where My (t) = min{ Fy (t), [Fe, 10 @ Fyry|(20), [Fory @ Fyra](20)}.

Then the sequence {T™z(} converges to some z* € X, which is a unique solution to (1.1).

3.2 Fixed point results under constraint inequalities in comparable .7 -complete
Menger PM-spaces endowed with a partial order

We can obtain the following two results.

Corollary 3.2 Let (X,.%, Apin, <) be a comparable .7 -complete Menger PM-space
and =1 and <o be two partial orders on X. Also, let T, A, B,C,D : X — X be self-
mappings. Suppose that the following conditions are satisfied:

(i) =; is F-regular, i = 1,2, and T is <-preserving;
(ii) A, B and T are comparable .7-continuous or C, D and T are comparable .7-

continuous;
(iii) there exists zp € X, such that xy < Txo, Az <1 Bxo and Cxg <9 Dxo;
(iv) T'is (A, B,C, D, =<1, =9)-stable and (C, D, A, B, <9, <1)-stable;
(v) there exists h € H(X) and ¢ € ® such that for z,y € X,

Ax =1 Bx,Cy =2 Dy,x 2y = @(Frery(t)) < h(x,y,t)p(Myy(t)) for all t > 0,

16



where M, ,(t) = min{Fy, (t), [Fp1e ® Fy1y)(2t), [Fory ® Fy 1) (2t)}.
Then the sequence {T™zo} converges to some z* € X, which is a solution to (1.1).
Moreover, if one of the following conditions holds:

(a) for all z,y € Fix(T), there exists z € X such that Az <1 Bz, Cz <3 Dz and
TIY 2

(b) for all z,y € Fix(T'), there exists z € X such that x < z and z < y.
Then the solution to (1.1) is unique.

Proof. Define the mappings a,n: X x X x (0,400) — [0, +00) by

1, ifz =<y,
a(z,y,t) = Y t>0
3, otherwise,
and
1, ifz =<y,
n(z,y,t) = BREL
2, otherwise.
It follows from condition (v) of Corollary 3.2 that (v) of Theorem 2.1 holds. Since
xo = T'zg, we have oz, Txo,t) < n(xo, Txo,t) for all t > 0, and it is easy to check that
{xy,} which is defined by x,, = T"x¢ is a comparable sequence. Moreover, for all z,y € X
and ¢t > 0, since T is <-preserving, we have

a(z,y,t) <n(z,y,t) =z <y = Tae 2Ty = o(Tz,Ty,t) <n(Tz,Ty,t).

So T' is a-admissible with respect to 1. The existence of a solution to (1.1) follows from
Theorem 2.1.

Now, we prove the uniqueness of the solution to (1.1). First, assume that (a) holds.
Let z,y € Fix(T). Then there exists z € X such that Az <1 Bz, Cz <; Dz, and
x <y =< z. From the definition of a and 7, it is easy to see that a(z, z,t) < n(zx, z,t) and
a(y, z,t) < n(y, z,t) for all ¢ > 0. This implies that assumption (H;) holds.

Next assume that (b) holds. Let z,y € Fix(T). Then there exists z € X such that
x <X zand z < y. From the definition of a and 7, it is easy to see that a(z, z,t) < n(x, z,t)
and a(z,y,t) < n(z,y,t) for all ¢ > 0. This implies that assumption (Hz) holds. Also,
for all z,y,z € X and ¢ > 0, it holds that

olz,y,t) <nlx,y,t) — x <
(z,y,t) <n(x,y,t) =y <2 a(z.at) < o, zt),
<n

aly,z,t) <ny,zt) =y =z
which implies that 7' is triangular a-admissible with respect to 7.
In either case, the uniqueness of the solution can thus be derived from Theorem 2.3.

Corollary 3.3 Let (X, %, Apin, <) be a comparable .7 -complete Menger PM-space

and <1 and <5 be two partial orders on X. Also, let T, A, B,C,D : X — X be self-
mappings. Suppose that the following conditions are satisfied:
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i) <; is F-regular, i = 1,2, and T is <-preserving;

ii) A and B are comparable .7 -continuous or C' and D are comparable .7 -continuous;
iii) there exists xyp € X, such that xy < Txo, Azg <1 By and Czy <9 Dxy;

iv) (X,.#,A, =) is regular;

v) T'is (A, B,C, D, <1, <9)-stable and (C, D, A, B, <3, <1)-stable;

vi) there exists h € H(X) and ¢ € ® such that for xz,y € X,

~ o~ N N

Ax =1 Bx,Cy =9 Dy = @(Framy(t)) < h(z,y,t)p(Mg,y(t)) for all t > 0,
where My, (t) = min{F, ,(t), [Fzrz © Fyryl(20), [Fory ® Fyra)(26)}.

Then the sequence {T™zp} converges to some z* € X, which is a solution to (1.1).

Moreover, if one of the following conditions holds:

(a) for all z,y € Fix(T), there exists z € X such that Az <; Bz, Cz <3 Dz and
T2Y =z

(b) for all z,y € Fix(T"), there exists z € X such that x < z and z < y.
Then the solution to (1.1) is unique.

Proof. Define the mappings «,n : X x X x (0,400) — [0,+00) as the ones in
Corollary 3.2. It follows from condition (vi) of Corollary 3.4 that (vi) of Theorem 2.2
holds. By the proof of Corollary 3.3, it is shown that a(zg,Tzo,t) < n(xg, Txo,t) for
all t > 0, {z, = T"x0} is a comparable sequence, and T is triangular a-admissible with
respect to 7.

From condition (iv), (X,.#,A, =) is regular. Suppose that {z2,} satisfies that
a(Ton, Tan+1,t) < n(Ton, Tant1,t) for all n € N and ¢ > 0 with zgy, LA € X(n — o0).
Then it follows from the regularity of (X,.%#, A, <) that there exists a subsequence {z2,, }
of {x9n} such that xge,, < z for all k. Thus, from the definition of o and 7, we have
a(Tan,, 7,t) < 1(wn,,z,t) for all k € N and t > 0. Therefore, the sequence {T?"zo} is
a-regular with respect to n. So the conclusion follows from Theorem 2.2. The proof of
the uniqueness is the same as the deductions in Corollary 3.2.

3.3 Fixed point results under constraint inequalities in comparable .7 -complete
Menger PM-spaces for cyclic contractive mappings

Corollary 3.4 Let A; and Ay be two nonempty 7 -closed subsets of a comparable
7 -complete Menger PM-space (X, #, Apin, =) and =1 and <9 be two partial orders on

X. Also,let A,B,C,D: X — X and T :Y — Y be self-mappings, where Y = A; U A,.
Suppose that the following conditions are satisfied:

(i) =; is F-regular, i = 1,2, T is <-preserving, and T (A1) C As,T(A2) C Ay;

(ii) A, B and T are comparable .7-continuous or C, D and T are comparable .7 -

continuous;

(iii) there exists xg € T, such that Azy <1 Bzy and Czy <9 Dxy;
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(iv) T'is (A, B,C, D, =1, =9)-stable and T is (C, D, A, B, <9, =<1)-stable;
(v) there exists h € H(X) and ¢ € ® such that for (z,y) € A; x Ag,

Ax =21 Bx,Cy =9 Dy = ¢@(Framy(t)) < h(z,y,t)(Mgy(t)) for all t > 0,

where My () = min{Fy (t), [Fe,re ® Fy1y)(2t), [Fory ® Fy 12| (2t)}.

Suppose further that there exists z € X, such that Az <y Bz and C'z <9 Dz. Then the

sequence {T"zg} converges to some z* € A; N Ay, which is a unique solution to (1.1).
Proof. Since A; and Ay be two nonempty .7 -closed subsets of a comparable .7 -

complete Menger PM-space (X, .7, Anin, =), we have (Y, %, Apin, =) is comparable .7 -

complete. Define the mappings a,n : X x X x (0, +00) — [0, +00) by

1, if (z,y) € (A1 x As) U (Ag x Ay),
alz,y.1) = if (z,y) € (A1 x A2) U (A2 x A1) t=0
3, otherwise,

and
1, if (x,y) € (A1 X A2) U (As x Aq),
(@, y,t) = (@y) € (ArxA)Uldax Ay,

2, otherwise.

From (v) of Corollary 3.4 and the definition of o and 7, we obtain that (v) of Theorem
2.1 holds.

Let (z,y) € Y x Y such that a(x,y,t) < n(x,y,t) for all ¢t > 0. Then (z,y) €
(A1 x A2) U (A x Ay). If (z,y) € A1 X Ag, from (i) of Corollary 3.4, (T'z,Ty) € Az x A;.
If (z,y) € A2 x Ay, from (i) of Corollary 3.4, (Tz,Ty) € A; x Ay. Thus, (Tz,Ty) €
(A1 x Ag) U (Ag x Ay), which implies that o(Tx, Ty, t) < n(Tz,Ty,t) for all t > 0, and
so T is a-admissible with respect to 7.

Also, from (i) of Corollary 3.4, for any a € Ay, we have (a,Ta) € A; x Ag, and thus
ala,Ta,t) <n(a,Ta,t) for all t > 0.

Finally, let x,y € Fix(T). It follows from condition (i) that z,y € A; N Ag, and
thus for any z € Y, we have a(zx, z,t) < n(z, z,t) and a(y, z,t) < n(y, z,t) for all t > 0.
Also, note that there exists z € X, such that Az <1 Bz, Cz =<9 Dz. This implies that
assumption (Hj) holds. The conclusion follows from Theorem 2.3.

Corollary 3.5 Let A; and Ay be two nonempty .7 -closed subsets of a comparable
J-complete Menger PM-space (X, %, Apin, =) and <; and <2 be two partial orders on
X. Also,let A,B,C,D: X — X and T : Y — Y be self-mappings, where Y = A; U As.
Suppose that the following conditions are satisfied:

(i) =; is F-regular, i = 1,2, T is <-preserving, and T'(A;) C Ag,T(A2) C Ay;

ii) A and B or C' and D are comparable .7-continuous;

(
(iii) there exists g € T, such that Azg <1 Bxy and Cxy <2 Dzxyo;
(iv) T'is (A, B,C, D, =<1, =<9)-stable and T is (C, D, A, B, <9, <1)-stable;
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(v) there exists h € H(X) and ¢ € ® such that for z,y € X,
Ax =1 Bx,Cy =9 Dy = @(Framy(t)) < h(z,y,t)p(Mg,y(t)) for all t > 0,

where My, (t) = min{Fy, (). [Foizs ® Fym,) (20, [Fary © Fyri(20)).
Suppose further that there exists z € X, such that Az <1 Bz and C'z <9 Dz. Then the
sequence {T"zg} converges to some z* € A; N Ay, which is a unique solution to (1.1).

Proof. Define the mappings a,n : X x X x (0,400) — [0,+00) as the ones in
Corollary 3.4. It follows from condition (v) of Corollary 3.5 that (vi) of Theorem 2.2
holds. By the proof of Corollary 3.4, it is shown that a(a,Ta,t) < n(a,Ta,t) for all
a € Ay and t > 0, and T is a-admissible with respect to 7.

Suppose that {x2,} satisfies that a(x2p, ont1,t) < n(x2m, Tont1,t) for all n € N and
t > 0 with x), Zre X (n — o00). By the definition of «, we have

(l‘gn,xgn_H) € (Al X Ag) U (A2 X Al) for all n € N.
Since (A1 x Ag) U (Ag x Ap) is T -closed, we obtain
(a:,a:) S (A1 X AQ) U (A2 X Al),

which implies that € A1 N Az. From the definition of a, we get a(zay, z,t) < n(x2,, z,t)
for all n € N and ¢ > 0. Therefore, the sequence {T?"x¢} is a-regular with respect to
n. It can be similarly shown that assumption (Hp) holds. So the conclusion follows from
Theorem 2.3.

Remark 3.1 Setting <;==9, C' = Band D = A in Theorem 2.1 (resp. Theorem 2.2,
Theorem 2.3), we can obtain some other corollaries. Furthermore, by setting <;==>,
C =B and D = A = Ix, where Ix denotes the identity mapping on X, we get the
existence and uniqueness results for common fixed points of the mappings B and T. For
the sake of brevity, we omit them here.

4 Conclusions

Inspired by [29], we have introduced the concept of comparable 7 -completeness of an
ordered Menger PM-space, and utilized some functions to give a more generalized con-
tractive condition under constraints for the mapping 7. Based on these, we have revisited
problem (1.1) proposed in [26], and have obtained some new results which guarantee the
existence of the solution to problem (1.1) under certain conditions.

Recently, many authors devoted themselves to studying problem (1.1) and other
related ones, such as best proximity point problems under constraint inequalities and
so on. It would be interesting to further consider relaxing assumptions to obtain more

general results concerning these problems in different types of spaces.
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