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Abstract—Current network access control systems can con-
tain unpredictable interactions between multiple device models,
multiple network protocol layers (e.g. TCP, UDP and ICMP),
hardware, and clock-skew-specific influences, and cannot detect
or identify abnormal behaviours based on the type of device.
To complicate things further, the ‘bring your own device’
policy is increasing security threats, vulnerabilities, and risks
to enterprise network environments, making intrusion detection
and prevention systems unable to detect illegal and unauthorised
access to devices in the enterprise network. The consequences
can be disastrous. In this light, we propose a simple but effective
clustering approach capable of separating normal and abnormal
network traffic patterns to detect such challenges (anomalies). We
apply this approach to single devices and aggregations of data per
device type. Additionally, we propose plotting the notched box
for each cluster to acquire a better understanding of their data
distributions and measuring the clusters’ performance using the
Adjusted Rand Index. Our results show that the proposed method
is valid, can be used in several contexts, and features a 95%
confidence that most single device and device type distributions
overlap, which makes them equivalently usable for anomaly
detection purposes.

Index Terms—Data-driven research, Behaviour Profiling, De-
vice Fingerprinting, Network Access Control, K-Means Cluster-
ing, Anomaly Detection

I. INTRODUCTION

Data-driven research uses access to big data to extract and
discover new knowledge and solve specific problems in a
subject domain. This approach is widely investigated and used
by organisations, as it allows them to exploit data to model and
understand the behaviour of complex systems that could be too
challenging to study otherwise [1]. Such systems are usually
based on several interacting components with deep linkages
and interconnections; they may be designed and synthesised to
better understand how physical and natural systems work in the
real world. For example, the Internet of Things (IoT) connects
sensors and actuators to transport data over a network without
requiring human-to-human interaction [2]. Other interesting
examples from the computing fields are those described in

[3], where a statistical model is used to predict the location of
taxis (without prior knowledge of driver behaviour) to study
the convergence of road networks, and in [4] and [5], where
mobile network traffic data are analysed to determine 3G / LTE
mobile traffic patterns based on unpredictability, regularity,
backhaul flooding, and request satisfaction.

Due to the unpredictable nature of ‘Bring Your Own Device’
(BYOD) enterprise networks, the application of data-driven
approaches is becoming a complex but interesting research
field due to the influence that sensors and actuators have on the
collected data. In this light, Network Access Control (NAC)
systems are the key to the authentication and authorisation of
IoT devices [6]. The authentication and authorisation processes
are based on the IEEE 802.1x standard, which dictates the
authentication policies for devices connected to an enterprise
network. IEEE 802.1x improves the NAC authentication pro-
cedure across wired or wireless access points by using the
Extensible Authentication Protocol (EAP). To authenticate
devices accessing the network in 802.1x, the three components
of the supplicant, the RADIUS server, and the Authenticator is
used, where the supplicant is the user or client seeking network
access, the RADIUS server is the server authenticating the
client, and the Authenticator is the wireless access point
to which the device is attempting to connect. Despite the
complexity and NAC systems, they are susceptible to attacks
and intrusions. Therefore, being able to detect anomalies in
such systems is the key to preventing serious damage from
occurring.

In this article, we focus on anomaly detection and employ
a data-driven design approach based on the well-established
Knowledge Discovery (KD) and data mining process [7].
Note that the literature contains discordant variants for the
KD process, which have been a source of contention among
researchers. Some describe a 5, 6, or 9-step method, all
of which are similar in terms of processes, except for a
few variations at the data pre-processing stage. The latter is



considered a one-step process by many, while others describe it
as a four-step procedure; for a complete review, we refer to [8]
and [9]. For this study, we consider the most relevant aspects
of the available KD processes, consisting of 1) understanding
the domain problem; 2) understanding the data; 3) data pre-
processing, 4) data mining, and 5) evaluation of the discovered
knowledge.

The remaining part of this article is organised as follows:
1) Section II highlights previous related works; 2) Section
III provides an overview of the procedures involved in data
comprehension and identification; 3) Section IV presents the
data used and the corresponding pre-processing process for
this study; 4) section V describes the use of the k-mean
algorithm in the context of this study; 5) Section VI analyses
the results; 6) Sections VII and VIII show validation and
evaluation of the proposed data mining process; Section IX
draws the conjecture of our research.

II. RELATED WORKS

Anomaly detection is a technique for locating and identi-
fying data items that do not match the rest of the data in a
given data set [10]. It has been used in a variety of data-driven
research contexts, including network intrusion detection, bank
fraud detection and medical concerns [11], [12].

Numerous research projects in the field of anomaly detec-
tion seek to identify patterns that differ from the rest of the
data using well-known machine learning and statistical ap-
proaches [13]–[15] falling into three main categories, referred
to as statistics-based, classification-based
and clustering-based methods.
statistics-based anomaly detection approaches ap-

ply statistical models such as threshold-based methods, see
[16]–[19], and principal component analysis (PCA), see [20]–
[23] to perform the detection process. When threshold-based
methods are used, the features are initially selected, and a
suitable statistical model is applied to their distributions to
distinguish between normal and abnormal network traffic.
Here, the main drawback is that prior knowledge of abnormal
behaviours must be available to set the most appropriate
threshold. In contrast, systems based on Principle Component
Analysis (PCA), as the on in [21], separate network traffic into
two types to discover irregular patterns: traffic data associated
with the principal components are classified as anomalous,
while the remaining data as typical network behaviour. A
thorough discussion of the benefits and drawbacks of the
two methods for anomaly detection is presented in [22]. It is
interesting to note that although PCA-based anomaly detection
requires no prior knowledge, and is capable of reporting
dramatic changes after a lengthy period of monitoring, its
performance is highly dependent on the degree of coherence
of the traffic data.

There are various classification-based approaches,
including rule-based classification, decision trees, Bayesian
networks, neural networks, and support vector machines
(SVM) [23], to name a few. Regardless of the machine learning
techniques employed, they all consist of training a classifier,

mainly on labelled training data, to learn data patterns to
then validate the method before using it to detect abnormal
traffic. These classification-based anomaly detection
systems are popular due to their substantial flexibility and
high detection probability; nevertheless, they require labelled
training data, which must be obtained from network traffic and
are often difficult to obtain.

In this light, clustering algorithms are extensively em-
ployed in the identification of anomalies, neither requiring
pre-labelled data nor needing prior knowledge. A worthwhile
system is the one presented in [24], which uses hierarchical
clustering to categorise mobile call profiles to discover ab-
normal traffic behaviours. In this study, the authors compared
hierarchical clustering with k-means clustering and discovered
a lower temporal complexity in the latter algorithm. A limi-
tation of clustering algorithms is that they overlook regional
differences in traffic patterns, which sometimes makes some
anomalies difficult to identify.

Hybrid approaches represent the most modern investigation
lines in anomaly detection. For example, in [25], a hybrid
model using a Deep Auto-Encoder (DAE) in combination with
the ensemble K nearest neighbours (K-NN) is used to identify
outliers in high-dimensional data. In fact, this mechanism is
capable of reducing the dimensionality of the data before
applying the K-NN clustering algorithm. A different approach
is presented in [26], where different weights are assigned to
the data samples to mitigate the negative effect of the unbal-
anced log sample distribution on the accuracy of the K-NN
algorithm. Another research in [27] proposes a combination
of the K-NN and Local Outlier Factor (LOF) algorithms to
detect anomalous behaviour. The authors in [28] create an
anomaly detection model for identifying widespread DNS
abnormalities in unsupervised learning using multi-enterprise
network traffic data that do not include attack labels (NetFlow
data set). This approach calculates the model’s detection rate
using two clustering methods. The k-means clustering and
Gaussian Mixture Model (GMM) approaches are investigated
for their great sensitivity in detecting irregularities. In contrast
to previous studies, [15] provides an innovative strategy to
identify area-specific traffic in a city. By aggregating area units
with comparable traffic patterns, anomalous activities within
the grouped regions are detected.

In our work, we also propose a new technique where data
are divided by using k-means clustering to make it possible
to separate normal and anomalous network traffic patterns. In
addition, our approach plots the notched box for each cluster
to acquire a better understanding of their data distributions and
measures the clustering anomaly detection performance using
the Adjusted Rand Index.

III. UNDERSTANDING THE DATA

In this session, we consider and evaluate established repos-
itories, including the Community Resource for Archiving
Wireless Data at Dartmouth (CRAWDAD), the Centre for
Applied Internet Data Analysis (CAIDA), Outlier Detection
data sets (ODDS), DARPA, and MAWI.



We focus on attributes that allow us to characterise and
classify the behavioural patterns of the data. Hence, despite
being widely used within the research community, we observe
that the DARPA data set [29] would not add sufficient value
to our approach, as the devices used to generate it are no
longer up to date and therefore inadequate to create robust
behavioural models capable of dealing with modern attacks.
The ODDS data set repository [30] instead offers a larger
collection that can be used to address challenges related to
anomaly detection. Although this repository has a sufficient
number of data sets, they are too deemed unsuitable for this
investigation, since they were randomly created from network
devices, making it difficult to distinguish the data from smart-
phones, tablets, and laptops. In CAIDA [31], numerous packets
were lost, which can significantly affect the implementation of
this investigation. Similarly, the MIT reality data set [32], is
also not up to date as the devices used were 2004 models with
Symbian OS, which is no longer in use, and its main focus is
mobile device usage and movements.

In this light, we use the Crawdad repository [33], where
packet interarrival time measurements of 27 different mobile
devices (e.g., smartphones, tablets, and laptops) are available.

A. Gatech data set Description

The Gatech fingerprint data set is publicly available in [33]
and is provided by the Georgia Institute of Technology as
part of their device and device type fingerprint identification
research. The Gatech fingerprint data set contains packet Inter-
Arrival Time (IAT) values for 27 mobile devices measured
on active, passive, and isolated network monitors. The IAT
enables a statistical analysis of the reproducible pattern of
devices (signals) that measures the delays between successive
packets and thus characterises the rate of traffic flow. There are
three types of test bed measurements: passive, active, and iso-
lated. The former was formed in a real-world network context,
whereas the others were generated in a completely isolated
setting with no external influences. The data is organised in
different files in the .mat format, which is only suitable
for use in MATLAB. From these files, we select and extract
data from smartphones, tablets, and laptops and convert them
into the comma-separated value (CSV) format. The reason for
considering only these devices is that this piece of research
targets NAC systems. Thus, we are limited to selecting only
supported devices. Conversion to CSV is convenient, as most
data mining tools, such as RapidMiner Studio [34], do
not support the .mat file format. Finally, we use the following
format to organise our data: filename→Application
→Protocol→Case (e.g. iPerf-TCP-Case2) to make it easy
to recognise during our experiments.

B. Overview of the prepared data sets

The active data set contains the packet IAT data of 68
devices, namely 10 Acer netbooks, 10 Asus netbooks, 8
Gateway netbooks, 2 Google phones, 2 Lenovo laptops and
2 tablets. Network traffic is measured in an active network
environment, allowing devices to flow at their natural rate

without passing through an encrypted channel. This network
traffic is generated randomly from the mentioned devices with
a distribution rate in the range 0− 200 kbps repeatedly for 5
seconds. The isolated data set comprises packet IAT data from
94 mobile devices, including five Dell netbooks, three iPads,
two iPhone 4G models, two iPhone 3G models, and two Nokia
phones. Network traffic was measured in a completely isolated
network environment without radio frequency (RF) leakage or
interference.

The isolated data set comprises packet IAT data from
94 mobile devices, including 5 Dell netbooks, 3 iPads, 2
iPhone 4G models, 2 iPhone 3G models, and 2 Nokia phones.
The network traffic was measured in a completely isolated
network environment free of radio frequency (RF) leakage or
interference.

The passive data set contains the IAT data of 245 devices,
including 10 Acer netbooks, 10 Asus netbooks, 8 Gateway
netbooks, 2 Google phones, 2 Lenovo laptops, and 2 tablets.
The network traffic measure is similar to that of the active
network traffic, except that it is measured using passive
network monitors.

IV. DATA PRE-PROCESSING

We preprocessed the active, isolated, and passive data
sets in RapidMiner Studio [35] with the three-block
system graphically represented in Figure 1. Each block follows
the RapidMiner Studio implementation of the 1) load
data operator; k-means clustering operator; and 2) the
cluster model visualiser operator.

Fig. 1: From left to right, the load data, k-means and
visualiser operators forming thr data preprocessing sys-
tem built in RapidMiner Studio.

Each connected operator has its own configuration settings.
The load data operator accesses the data sets stored in the
repository and loads them into the process. The k-means
operator is set with the default parameters 10 and 100 for
the maximum number of runs and the maximum number of
optimisation steps and K = 2, respectively. The measure
type used for the clustering process is the mixed nominal,
numerical, and Bregman divergence, which works hand in
hand with the divergence option so that when the measure type
changes, the options in the divergence change. For example,
when a nominal value is selected, the divergence is set to
the nominal distance; when a Bregman divergence is selected,
many options can be used to calculate the cluster distance. The
well-known examples of the cluster distance measures are the
squared Euclidean distance, the Mahalanobis distance, and the
squared loss, among others, and these are available under the
divergence tab (all implemented in RapidMiner Studio).



Finally, the visualiser operator is added to display the
clustering results and calculate the essential metrics of each
cluster, such as the Davies-Bouldin performance index. With
a trial-and-error approach, we unwind the best configuration
of parameters.

V. DATA MINING USING K-MEANS CLUSTERING

k-means clustering is a frequently used technique for
spotting outliers. There are several advantages to this system,
including its speed, robustness, and relative efficiency [36].
It is very simple to use and may be combined with iterative
refining to provide better results when the data set is distinct
or the data are well segregated from one another [37]. When
the resultant group in the data is unknown, k-means is used
to locate a group of similar patterns that exist in the data to
generate cluster centroids. These are allocated to each data
point to create a new training data set for machine learning
classification [38].

A. The k-means Clustering Algorithm

The name of the k-means algorithm comes from its mode
of operation. The method divides the observations into groups
of K (K being an input parameter). It then assigns each
observation to a cluster based on the observations that are
closest to the cluster’s mean (any metric can be used, but
the Euclidean distance is the most common). The cluster
mean is then recalculated, and the procedure is repeated until
convergence is reached. The algorithm operates as follows:

1) Randomly select K points (the means) to centre the
clusters;

2) assign each data point to the cluster whose centre is
closest (in terms of Euclidean distance by default) to the
point;

3) recalculate the centres as the average of the cluster’s
points;

4) repeat steps 2 and 3 until all clusters have converged (i.e.,
either clusters stop changing or the centres do not move
significantly1).

Determining the optimal number of clusters K is a key but
challenging factor [36]. The correct choice is usually not clear
and depends on the scale and shape of the data points and the
desired clustering analysis. Increasing k can reduce clustering
errors to the extent that no error can be identified when each
data point becomes a single cluster (i.e., when k equals the
number of data points).

B. On K-means Parameter Settings

Numerous ways to determine K have been proposed [39],
such as the elbow method, the Davies-Bouldin (DB) index, the
Silhouette index, the Dunn index and the partition coefficient,
among others. The DB index is used in several studies [40]–
[42], and consists of calculating intracluster similarities and
intercluster differences to produce a set of indexed clusters

1A threshold must be pre-defined, but note that a maximum number of
allowed iteration must be set as well or practical reasons.

[43]. Setting k equal to the smallest index value is often an
effective approach [44].

For these reasons, in this study, we determine the values of
the DB indexes of the configurations described in Section IV,
and report them in Tables I, II and III. Clearly, in our case, k
= 2 seems to be the best option.

TABLE I: Davies-Bouldin index for sample devices in the
active network traffic data set

Device K=2 K=3 K=4 K=5
Acer 1 0.037 0.071 0.376 0.409
Acer 2 0.417 0.153 0.376 0.300
Acer 3 0.067 0.071 0.261 0.385
Acer 4 0.112 0.134 0.175 0.309
Acer 5 0.001 0.027 0.025 0.234
Acer 6 0.071 0.173 0.311 0.412
Acer 7 0.408 0.225 0.339 0.206
Acer 8 0.068 0.070 0.199 0.378
Acer 9 0.408 0.154 0.202 0.281
Acer 10 0.035 0.046 0.276 0.248
Acer 0.001 0.060 0.075 0.188

TABLE II: Davies-Bouldin index for sample devices in the
isolated network traffic data set

Device K=2 K=3 K=4 K=5
Dell 1 0.001 0.346 0.234 0.280
Dell 2 0.265 0.366 0.355 0.507
Dell 3 0.181 0.349 0.337 0.256
Dell 5 0.291 0.330 0.349 0.386
Dell 0.349 0.386 0.330 0.291
iPad 1 0.046 0.346 0.234 0.280
iPad 2 0.265 0.366 0.355 0.507
iPad 3 0.181 0.349 0.256 0.337
iPads 0.307 0.416 0.393 0.367
iPhone 3G 1 0.326 0.375 0.358 0.393
iPhone 3G 2 0.074 0.276 0.350 0.365
iPhone 3G 0.082 0.312 0.398 0.415
Nokia 1 0.194 0.354 0.180 0.313
Nokia 2 0.174 0.259 0.407 0.263
Nokia 0.169 0.228 0.236 0.333

Note that we used a maximum number of runs = 10, the
Bregman divergence condition with the squared Euclidean
distance metric, and a maximum number of optimisation steps
= 100.

The studies are performed on sample data sets from the
active, isolated and passive network traffic data sets. These
were measured using different network protocols, such as the
Transmission Control Protocol (TCP), User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP). This
helps identify the presence of differences from these protocols.



TABLE III: Davies-Bouldin index for sample devices in the
passive network traffic data set

Device K=2 K=3 K=4 K=5
Gateway 1 0.030 0.118 0.285 0.325
Gateway 2 0.077 0.383 0.442 0.375
Gateway 3 0.034 0.347 0.325 0.361
Gateway 4 0.135 0.351 0.430 0.370
Gateway 5 0.037 0.317 0.303 0.392
Gateway 6 0.030 0.156 0.321 0.379
Gateway 7 0.034 0.204 0.334 0.001
Gateway 8 0.032 0.385 0.340 0.390
Gateway 0.047 0.329 0.312 0.365

VI. ANALYSIS OF THE CLUSTERING RESULTS

This section reports the k-means clustering results for
the TCP, UDP and ICMP protocols, and their device types,
for each network traffic sample under study. The analysis is
based on their corresponding centroid points after applying the
clustering algorithm to the devices individually. Subsequently,
these results are also aggregated per device type. For example,
data from Acer devices 1 to 10 are concatenated into one data
file to see if different patterns emerge from the data sets; this
applies to all devices used throughout. Note that this centroid
point analysis helps in the creation of clusters that can be used
to identify and analyse the relationships between the inter-
arrival time (IAT) values for each sample device in the data
sets.

A. Active Network Traffic data set

The k-means results for Acer netbooks 1 to 10 in the
active network traffic data set active presented in Table IV
show that the centroid points in the first cluster C0 fall at
0.009s, which has IAT data points associated with it. It can
be detected that, for example, there are 395, 457 IAT points
associated with C0 for the Acer 1 device. for the other Acer
2−10, we observe inter-arrival points in the range 395, 847−
398, 019. These results show that all devices have a similar
pattern in C0 and the same analysis can be applied to the
other devices, such as Asus, Gateway and Lenovo, although
they present similar IAT values in C0.

Regarding the second cluster C1,we observe a small number
of IAT points, where the minimum and maximum values are 29
and 56, respectively. Furthermore, all devices under considera-
tion have different IAT values between 0.694−0.990s, except
Acer 5, which has 5.744s. The C1 results for Acer netbooks
1−4 and 6−10 show that they have smaller IAT points, with
the smallest being 29 for Acer 10, and the largest being 54
and 56 for Acer 2 and 9 respectively. The device type Acer
has 3, 968, 591 and 1 IAT points in C0 and C1, respectively.
The rest of the devices have 31 and 34 IAT points.

This analysis for C0 and C1 shows that there are clear mean
differences between the clusters for each device, which can
be used for outlier detection algorithms to detect abnormal

TABLE IV: Descriptive analysis of sample device types for
the Ping ICMP active network traffic data set

Device Cluster IAT Points Centroid

Acer 1 C0 395,457 0.009
C1 33 0.990

Acer 2 C0 396,464 0.009
C1 54 0.706

Acer 3 C0 395,847 0.009
C1 64 0.970

Acer 4 C0 397,180 0.009
C1 31 0.943

Acer 5 C0 396,442 0.009
C1 1 5.744

Acer 6 C0 396,316 0.009
C1 33 0.968

Acer 7 C0 397,669 0.009
C1 31 0.694

Acer 8 C0 397,266 0.009
C1 34 0.971

Acer 9 C0 398,019 0.009
C1 56 0.696

Acer 10 C0 397,566 0.009
C1 29 0.990

Acer C0 3,968,591 0.009
C1 1 5.744

patterns located within the data points in each cluster. For
example, Acer 5 has an inter-arrival time point value of 5.744s
in one of the data points, but there are still points in the data
that were not outliers because this largest value influenced
C1 for the second partition of the device type Acer, and the
algorithm is left with the option to partition that point.

B. Isolated Network Traffic data set

Similarly, we report the results for Dell devices 1 to 5, iPad
1 to 3, and Nokia phones 1 to 2 in the isolated network traffic
data sets presented in Table V. Here, the centroid points for
all devices in the first cluster C0 fall at 0.001s. Each device
has inter-arrival points associated with C0 and C1. Note that
the IAT points associated with C0 for Dell 1 are 840, 955 and
for C1 are 344. The remaining Dell 2−5 devices display IAT
points between 1, 327, 228 and 3, 059, 230. For iPads 1 − 3,
these are between 840, 955 and 1, 327, 118, while the Nokia
1 − 2 devices have IAT points distributed between 844, 462
and 1, 562, 924.

As previously done, the device types in boldface, i.e. Dell,
iPads and Nokia are the concatenation of the total inter-arrival
time points for Dell 1− 5, iPad 1− 3 and Nokia 1− 2. Note
that IAT in C0 and C1 for Dell is observed in 9, 099, 736
and 588, showing that there are some variations in their



IAT distributions. This means that with further investigation,
abnormalities must be found for the investigation.

In C1, devices have different IAT values. Dell 4 has the
smallest centroid value (i.e. 0.004s), while Dell 5 has the
maximum centroid value of 0.428s, while Dell 1 − 3 was
observed with 0.074 to 0.132s. As for iPads, the centroid point
values lie between 0.074 and 0.132s, in which iPad 2 and 1
have the minimum and maximum IAT values, respectively.
Moreover, the Nokia phone has the highest centroid values
compared to all other devices in the data sets - with Nokia
1 was having 1.593s and Nokia 2 2.863s. This shows that
there is a high tendency of anomalies in their inter-arrival
time distributions. The C1 centroid point values for the device
type Dell, iPads and Nokia have IATs of 0.428s, 0.111s and
2.863s, respectively. Furthermore, a similar analysis can be
applied to the remaining devices and their device types in the
isolated network traffic data sets.

TABLE V: Descriptive analysis of sample devices for the iPerf
TCP isolated network traffic data set

Device Cluster IAT Points Centroid

Dell 1 C0 840,955 0.001
C1 344 0.132

Dell 2 C0 1,327,118 0.001
C1 320 0.074

Dell 3 C0 1,288,629 0.001
C1 66 0.111

Dell 4 C0 2,557,115 0.001
C1 26,530 0.007

Dell 5 C0 3,059,230 0.001
C1 17 0.428

Dell C0 9,099,736 0.001
C1 588 0.428

iPad 1 C0 840,955 0.001
C1 344 0.132

iPad 2 C0 1,327,118 0.001
C1 320 0.074

iPad 3 C0 1,288,629 0.001
C1 66 0.111

iPads C0 4,575,663 0.001
C1 5,876 0.111

Nokia 1 C0 844,462 0.001
C1 69 1.593

Nokia 2 C0 718,428 0.001
C1 52 2.863

Nokia C0 1,562,927 0.001
C1 84 2.863

Based on the above results, it becomes clear that there are
mean differences between C0 and C1 for each device and
device type. Although no outliers emerged, this shows that
there are significant patterns that can be used to detect outliers

from the devices. If these devices are connected to the same
enterprise network, intrusion detection will automatically flag
Nokia 1 and 2 as abnormal devices because they have the
highest centroid values. We aim to build a profile based on
the mean differences identified from each of these devices
separately so that intrusions can be detected based on a device
or device type, depending on the research problem.

C. Passive Network Traffic data set

The results relative to Gateway netbooks 1−8 in the isolated
network traffic data sets are displayed in Table VI to show that
the centroid points in the first cluster C0 for all devices of this
type fall at 0.011s. In this case, devices appear to have almost
balanced IAT points in the range 320, 874− 320, 925.

Taking into account all the Gateway types, IATs are
2, 567, 066 and 2, 688 for C0 and C1, respectively. In the
second cluster C1, the minimum IAT point of 309 is registered
on the Gateway device 8, while the maximum value, i.e. 367,
is displayed by Gateway 4. The centroid point values for all
devices and their device types lie between 0.128 and 0.135s.

TABLE VI: Descriptive analysis of sample devices for the
iPerf UDP passive network traffic data set

Device Cluster IAT Points Centroid

Gateway 1 C0 320,880 0.011
C1 355 0.135

Gateway 2 C0 320,913 0.011
C1 334 0.131

Gateway 3 C0 320,929 0.011
C1 312 0.134

Gateway 4 C0 320,803 0.011
C1 367 0.128

Gateway 5 C0 320,886 0.011
C1 311 0.135

Gateway 6 C0 320,925 0.011
C1 353 0.135

Gateway 7 C0 320,848 0.011
C1 355 0.135

Gateway 8 C0 320,874 0.011
C1 309 0.135

Gateway C0 2,567,066 0.011
C1 2,688 0.135

These results show that devices have similar patterns in the
way they transmit packets within a network, and there are
few deviations in their patterns in both C0 and C1, since the
centroid point values lie between 0.128 − 0.135s. Also, the
same analysis can be applied to other devices in the passive
network traffic data set.

It should be noted that the above mean differences between
clusters can help to gain an in-depth understanding of the IAT
values associated with each cluster. Furthermore, they can help
detect outliers for devices measured in the passive network
traffic data set.



VII. VALIDATION OF K-MEANS CLUSTERING APPROACH

The above data mining approach is validated using descrip-
tive analysis, a technique used to describe data patterns. To
observe the data patterns of each cluster centroid points, we
use descriptive statistics on each cluster by generating their
corresponding notched box plots and show how the data values
for each device and device type are distributed.

A. Validation of the Active Network Traffic data set

Figures 2 and 3 present the notched box plots for C0 and
C1 for the Acer netbooks described in Section VI-A. Figures
show that the notched boxes for both the devices and their
device type overlap. This gives a 95% confidence that the
devices Acer 1 − 10 have the same IAT distribution of the
Acer device type. Hence, single device or device type can
be used further in another data mining approach (e.g. outlier
detection) based on devices or device types as appropriate and
depending on the problem or research focus.

Fig. 2: Notched box plots of C0 centroid points for the Acer
netbook devices 1 − 10 and their Acer device type on the
active network traffic data sets

Fig. 3: Notched box plots of C1 centroid points for the Acer
netbook devices 1 − 10 and their Acer device type on the
active network traffic data sets

B. Validation of the Isolated Network Traffic data set

The notched plots for Dell netbooks and iPads are similar to
those of Acer netbooks and lead to the same conclusions. On
the contrary, the boxed boxes for the Nokia phones illustrated
in Figures 4 and 5 show that the distribution of single devices

and their device type overlap in C0 and otherwise in C1.
These results mean that the device-type approach cannot be
applied to this data set as the IAT values relate to different
distributions.

Fig. 4: Notched box plots of C0 centroid points for Nokia
phones and their Nokia device type on the isolated network
traffic data sets

Fig. 5: Notched box plots of C1 centroid points for Nokia
phones and their Nokia device type on the isolated network
traffic data sets

C. Validation of the Passive Network Traffic data set

Also, for Gateway netbooks, the notched boxes presented in
Figures 6 and 7 show an overlap of devices and device type
distributions, showing 95% confidence that Gateway devices
1− 10 belong to the same IAT distributions of their Gateway
device type.

Here, we note outliers in both C0 and C1 that need further
investigation. We envisage applying an outlier detection ap-
proach to this data set to understand whether these outlying
points are significantly different from the rest of the data values
associated with each device and device type in our next study.

VIII. EVALUATION OF THE DISCOVERED KNOWLEDGE

To perform KD, we evaluate the performance of the
k-means clustering algorithm for all device types listed in
Tables IV, V and VI to select the best measure of similarities
between the clusters and the best performance index of the
clusters.

To achieve this, we run the k-means with Euclidean
distance over the entire data sets from each device type to



Fig. 6: Notched box plots of C0 centroid points for Gateway
netbooks 1− 8 and their Gateway device type on the passive
network traffic data set

Fig. 7: Notched box plots of C1 centroid points for Gateway
netbooks 1− 8 and their Gateway device type in the passive
network traffic data set

generate ‘pseudo-labels’. The stratified cross-validation k-fold
(which maintains the imbalance in the data ratio) [38] is
applied to pseudo-labels to be able to compute the mean
Adjusted Random Index (ARI) score of the IAT points of each
kth cluster and the corresponding standard deviation. As folds
are added, a portion of the data is used for training, and the
rest for testing. Then we fit 80% of the whole data, predict
20%, and report the inertia of the fitted model of the expected
randomised index value for each fold.

The ARI ranges from 0 to 1, with 0 indicating that the data
clustering is not agreeing on any pair of points and 1 showing
that the data clustering is precisely the same.

The results of this procedure, for the device types in the
active network traffic data set, are shown in table VII. Clearly,
the ARI for Acer, Asus and Gateway netbooks indicates
that there is a pair agreement between the clusters, with the
standard deviation being 0.00. Also, there is a pair agreement
between the clusters for Google phones, Lenovo laptops, and
tablets, with an ARI of 0.98 and 0.96, which is very close to
1.00, and standard deviations of 0.01 and 0.002, respectively.

Similar results are observed for device types in the isolated
and passive network traffic data set, as presented in Tables
VIII and IX, except for Dell netbook and tablet. In fact,
the latter have the highest standard deviations, of 0.03 and
0.04, respectively, although the deviation does not affect the

TABLE VII: The ARI score for device types in the active
network traffic data set

Device Type Mean ARI St. Dev.
Acer 1.00 0.00
Asus 1.00 0.00
Gateway 1.00 0.00
Google Phone 0.98 0.01
Lenovo 0.96 0.02
Tablet 0.96 0.02

performance of these device types.

TABLE VIII: The ARI score for the device types in the
isolated network traffic data set

Device Type Mean ARI St. Dev.
Dell Netbook 0.98 0.03
iPad 1.00 0.00
iPhone 3G 0.99 0.01
iPhone 4G 1.00 0.00
Nokia Phone 0.98 0.02

TABLE IX: The ARI score for the device types in the passive
network traffic data set

Device Type Mean ARI St. Dev.
Acer 1.00 0.00
Asus 1.00 0.00
Gateway 1.00 0.00
Google Phone 0.93 0.02
Lenovo 1.00 0.00
Tablet 0.90 0.04

IX. CONCLUSION

We demonstrate a data analysis technique for anomaly
detection that uses k-means clustering on existing data sets.
Instead of using the standard k-means technique (scatter-
plot), we employ a notched box plot to provide more insight
into the data values. We first analyse individual device data
to then concatenate all the data from the same device type
into one data file and compare the results. This allowed us to
understand the relationships between the individual devices
and their device types and to demonstrate that their data
distributions are similar. Our proposed device type profiling
method is a valid approach, featuring a 95% confidence that
all the distributions of devices and device types overlap. Our
cluster analysis helps identify the mean differences between
the clusters, which can be used to classify the data into normal
and abnormal profiles. This approach is promising and can be
applied to other data sets.

Moreover, the ARI assessment performed shows pair agree-
ment between normal and aberrant clusters. Given that the



cluster partitions have been proven to be correct, we envisage
a future study of device type profiling in which the output of
the clustering algorithm (mean of the clusters) is entered into
a clustering-based multivariate Gaussian outlier score
(CMGOS) algorithm to classify the device type profiles and
identify abnormal patterns in the data.
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