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A B S T R A C T

Time simulation has been widely used when investigating the nonlinear response of rotating machines, due to
its relative simplicity. However, this approach is computationally inefficient due to large transient decay times
and the need to repeat the analysis for multiple drive speeds and initial conditions, and is incomplete because
of its inability to give information about unstable responses. Alternatively, the numerical continuation method
can be used to explore the nonlinear behaviour of such systems in a more systematic and efficient way. In
rotating machinery, tighter tolerances are valued for efficiency, making the rotor–stator contact phenomenon
a priority for research. Various cases including rigid and very compliant contact stiffness models have been
investigated in the literature, in many cases showing responses similar to that of smooth nonlinearities such
as cubic stiffness. This knowledge has been used in the present study to transform the bifurcation diagram of
a simpler nonlinearity (cubic) to a more complex one (contact represented by bilinear stiffness approximated
using a tanh formulation) through a homotopy of the nonlinear restoring forces present in the system definition.
A 2-dof overhung rotor with gyroscopic effects is used in the investigation of quasiperiodic bouncing cycles that
appear periodic in the rotating frame. This work not only provides more insight into the behaviour of nonlinear
rotor–stator contact responses, but also demonstrates the numerical continuation method as a potential tool
to explore the nonlinear rotating system’s response in a more structured manner.
. Introduction

Nonlinear systems exhibit bifurcations in their response patterns
epending on the changes in the parameter space. The rub-impact
henomenon in rotordynamics has similarities to an impact oscillator
et with more complexity arising from the gyroscopic effects and the
nteraction of different FW and BW modes. The phenomenon has been
tudied in the fields of turbomachinery, drilling equipment [1], and tur-
omachinery. Understanding the sustained intermittent rotor-to-stator
ontact response in rotating machinery is important as it might be
angerous in operating conditions [2]. With the ever-stricter efficiency
oals on turbine engines [3], the amplitude of the lateral oscillation
as to be confined more effectively. This compels engineers to design
ighter clearances for the retainer rings, which in turn increases the
ossibility of a rotor–stator rub failure. Among the earliest studies
here the rub-impact phenomenon in rotating machinery was reported,

ohnson [4] reported that for the same rotor speed, various responses
ould be achievable. Ehrich and O’Connor [5] noted the ‘‘hula hoop’’
otion of the rotor–stator couple. Black [6] used a polar receptance

aw with dry friction.
The steady state responses of a rotor interacting with the stator

an be full annular rubs [7–10]. The responses can also be inter-
ittent contact oscillations that are periodic in stationary frame or
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in rotating frame, synchronous or sub-synchronous in frequency con-
tent. Quasiperiodicity and even chaos are observed, as well as these
other types of responses in theoretical studies [11–14] and also in
experimental studies [15–19].

One of the features of the contact phenomenon that greatly affects
the response is the ratio of the stator stiffness to the rotor linear
stiffness. A wide range of stator stiffness levels compared to the rotor’s
stiffness has been investigated. For example, Shaw et al. [14] inves-
tigated soft and rigid stators where the stator stiffness values of 0.1
MN/m and 10 MN/m were used to give stiffness ratios of 1.25 and 125,
respectively, for an 80 cm long, 2 cm diameter overhung rotor. Zilli
et al. [20] used 1.32 for the stiffness ratio, while Karpenko et al. [21]
chose a value of 30 for the stator stiffness to rotor stiffness ratio. Some
authors modelled the contact with an impact law definition [22,23].
The impact model with friction resulted in rotating frame periodic
orbits [23]; a similar response was also observed in the case of very
soft snubber ring stiffness [15].

The results from a wide range of stiffness ratios suggests that
intrinsically smooth nonlinearities could generate similar responses to
discontinuous stiffness models of the rotor–stator interaction. With this
inspiration, our preceding study [24] investigated the softer extreme
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Abbreviations

dof Degree of freedom
HBM Harmonic balance method
FW Forward whirl
BW Backward whirl
DL Double loop (3:1 internal resonance response)
SL Single loop (2:1 internal resonance response)
S Synchronous response (stationary in rotating frame)
PD Period doubling bifurcation or branch

of the contact phenomenon by replacing the snubber ring stiffness of a
2-dof overhung rotor with gyroscopic effects (the Zilli system [20]) by a
comparable cubic stiffness. Similar internal resonance responses in the
rotating frame to those of Zilli et al. [20] was observed, though Zilli
et al. interpreted the motion using phasor diagrams in the stationary
frame. A transient decay study was performed by Zilli et al. [20] where
rapid slow-down of the rotor resulted in a quasiperiodic motion with
a higher probability. This fact was more visible in the bifurcation
diagrams of Akay et al. [24] that were obtained using numerical contin-
uation; more transient energy would make the instantaneous response
reach the unstable solutions, which is more likely to push the response
to settle onto these asynchronous solutions. Rotating frame Campbell
plots [14] were used to predict regions of quasiperiodic responses. The
study showed the numerical continuation as a superior tool to brute
force time simulations in terms of computational efficiency to obtain
bifurcation diagrams of rotor systems. Stepped sine sweep tests were
also an improvement in terms of obtaining more of a solution branch
continuously.

Previously, the emphasis of the rotating frame perspective was
stressed by Cole & Keogh [23]. They studied quasiperiodic responses
that looks periodic in the rotating frame, due to rotor–stator contact
friction. Shaw et al. [14] defined the internal resonance phenomenon
in the rotating frame, and generalised the idea to multi-dof models.

Chipato et al. [12,13] studied frictional and gravitational effects
on the Zilli system. They found that gravity affected the response of
the system only when the shaft stiffness was small. The same authors
recently simulated an MDOF rotor with disk and shaft contact [25].
Asynchronous quasiperiodic responses which are periodic in the rotat-
ing frame were observed in the MDOF model. Dry friction effects were
more pronounced for softer stators due to increased contact duration
compared to stiffer stators. Ref. [26] modelled the contact of a non-
ideal drive system with 5 dofs and an overhung disk, i.e. neglecting
the axial dof. They successfully designed a pinned inner ring to prevent
sustained rubbing in experiments. Other complex models based on the
finite element method (FEM) formulation were given by [16] where a
full-scale test rig was used to analyse partial seal contact. They detected
the contact with acoustic signals and a Wheatstone bridge. In the FE
model, beam elements with 5 dofs per node and gyroscopic, shear and
rotary effects were used. The model was deemed reliable for analysing
real machines if the rub is soft and was able to produce experimental
responses. Torkhani et al. studied the free rundown of real-scale test
rigs experimentally and numerically with good agreement [27]. They
did not report subharmonic responses in the models contrary to some
other works, e.g. [18]. Wang et al. investigated sudden unbalance on
an overhung rotor in experiments and in FE simulations [28]. Floquet
theory was used to interpret contact as a time varying constraint
stiffness. The sudden unbalance tests showed that the supercritical
speeds are more sensitive to the sudden unbalance in terms of relative
effect on the transient amplitude. Gyroscopic effects decreased this
effect. Gyroscopic effects also caused the first backward whirl mode
to be excited upon the sudden unbalance. More recently, Prabish and
Krishna studied the multi-disk rubbing response of a two-spool engine
2

for the fan blade-off scenario [29]. The FE model was established
with Timoshenko beams, which was reduced using component mode
synthesis. The observed quasiperiodic motions exhibited frequencies
at fractions of rotor speed. The approximate time variational method
was employed to obtain the response, which was validated by time
simulations.

Despite these complex models, understanding of the complex phe-
nomena resulting from the rotor–stator rub-impact requires simpler
models to be investigated in a more closely controlled way. Ishida
et al. [17] investigated the response patterns of a 4-dof extended
Jeffcott rotor (i.e. non-centred disk position) with clearance on one
bearing only. Eccentricity of the bearing assembly was added to rep-
resent effects such as mounting errors. Numerical and experimental
methods produced results with a close match, although the numer-
ical model introduced a small change to the system. Rich response
patterns were observed that included 2:1 internal resonance in the
rotating frame, although this was expressed in the stationary frame as a
combination resonance expression. The paper explained the entrainment
phenomenon theoretically using the stability of the periodic motion,
which is the inclusion of a subharmonic region inside a broader region
of self-excited quasiperiodic motion.

The numerical continuation method [30] has been used extensively
in the rotordynamics literature in the last two decades. Sundararajan
and Noah [31] used continuation in conjunction with the shooting
method. Von Groll and Ewins [32] used HBM with continuation on
a rotor coupled to a stator with mass. The HBM method they used
included subharmonic components to allow the detection of details
of rub-impact motion. Alternating time frequency (ATF) steps were
used to tune the amplitudes of the harmonic components because of
the discontinuous stiffness nonlinearity. Later, Peletan and colleagues
worked on the HBM [33,34], and used a quasiperiodic HBM formula-
tion [35], adapting both periodic HBM and the continuation method
to the quasiperiodic formulation. Branch switching from periodic re-
sponses were left for future research. Another study where HBM and
numerical continuation were used together was conducted by Salles
et al. [36] on the reduced FE model of an aero-engine with three
shafts and four snubber rings. The numerical continuation method was
used to find isolated solutions in the bifurcation diagrams, where the
asynchronous response was not analysed. Al-Solihat and Behdinan [37]
used HBM and continuation methods for analysing the response from
a rotor system that is supported by bearings with cubic stiffness and
damping.

Other approaches in the analysis of rotor–stator interaction include
the following. Numerical normal forms were used by Shaw et al. [11]
on the rotating frame internal resonance response of a Zilli system
and on a multi-disk FE rotor model, where the fundamental frequency
of harmonic expansion was not required beforehand but calculated in
the solution process. Nonlinear normal modes, originally developed
by [38], were used to define complex nonlinear modes by Laxalde
and Thouverez [39], which were then utilised in the analysis of tur-
bomachinery blades with friction interfaces. The concept was used by
Hong et al. [40] on a Jeffcott rotor where the negative modal damping
of backward whirl motion was found to cause instability, leading
to a backward whip motion. Also, Liu and Hong used the complex
nonlinear modes of a compressor–turbine unit to analyse the dry whip
motion [41]. The modal assurance criteria was used by [25] to identify
the modal content of the nonlinear response of an interacting rotor–
stator system, where the modal amplitudes of the FFT of the response
were compared to the linear eigenvalue solutions of the same system.
Backward whirl modes constituted many of the modal components.
Piecewise-smooth dynamics was used by Mora et al. [22] to define
contact for a Zilli system where the grazing bifurcations of the rub-
impact phenomenon were investigated to analyse the onset of the
rub-impact fault. A similar method of piecewise-smooth dynamics was
used by [42].

In the wider scope of rotor–stator contact, backup bearing impact

for magnetically supported shafts were studied [43,44]. Refs. [45,46]
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Fig. 1. (a) A representative cubic to contact transition with single parameter method (single arrows, see Fig. 4(a) and (b)) and fold method (double arrows, see Fig. 4(c)). (b) A
representative 𝜅 homotopy is illustrated in a pair of axes perpendicular to the bifurcation diagram for the single parameter method (see Fig. 4(b)).
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nvestigated grounded nonlinear energy sinks to suppress the motion of
vibrating 4-dof rotor. The nonlinear stiffness used in the study was

ubic, but practically obtained using a squirrel cage. Some of the rods
onstituting the squirrel cage had clearance of varying sizes at one end;
s the amplitude of oscillation increased these clearances closed one
y one, creating a piecewise-linear stiffness that approximated a cubic
tiffness profile. Cubic pedestal stiffness with looseness was studied in
n HBM formulation, time integration and experiment by [47], where
uasiperiodic motion was seen in addition to subharmonic and multi-
eriod motions. Rotor blades rubbing against the stator were studied
y [48] on a disk with wide chord blades, and [49] studied the effect
f manoeuvres of a plane on the blade rub phenomenon using a 2-disk
ero-engine model, one of which was contacting with the stator.

In the present study of the nonlinear overhung rotor (the Zilli
ystem) shown in Fig. 2, the rotor–stator contact interaction is initially
eplaced by an isotropic cubic stiffness whose solutions have already
een obtained [24]. To explore the characteristics of the system with
ontact and gain new insights, homotopy continuation (e.g. see [30])
s applied from these cubic stiffness solutions to a hyperbolic tangent
unction representing a smooth approximation to the discontinuous
tiffness as a contact definition. Aside from this nonlinearity homo-
opy, the continuation method is also applied to investigate different
arameter spaces. In the following, Section 2 outlines the theory and
he method, with a brief discussion on numerical continuation, and the
quations of motion. In Section 3, results are presented with relevant
iscussion of various cases of damping and unbalance excitations, and
he effectiveness of the tanh-contact representation is discussed. In Sec-
ion 4, conclusions are drawn both on the method and the rub-impact
ystem analysed.

. Theory and methods

.1. Numerical continuation

Numerical continuation allows a known solution to be used as the
asis to trace a branch of solutions or a solution family. In the case of
rc-length numerical continuation [30], which was implemented in the
resent work, the so-called folds or turning points (Fig. 1) of a solution
an be traced without any numerical issues, regardless of the stability
f solution. This contrasts well to a time simulation where an initial
ondition is simulated in time using e.g., a Runge–Kutta scheme, to
onverge only onto stable solutions. Furthermore, the numerical checks
an spot bifurcations off the main branch, which could more easily be
nnoticed in a simulation scheme, unless a computationally expensive
asin of attraction study is conducted.

The method states that in the vicinity of a regular point, 𝒖0, satisfy-
ing a system of equations of the form 𝑮 (𝒖, 𝜆) = 𝟎,𝑮∶𝑅𝑛×𝑅 → 𝑅𝑛, there
is a continuous family of solutions given that 𝑮 (𝒖, 𝜆) is continuously
differentiable at this point and the Jacobian 𝑮

(

𝒖 , 𝜆
)

is non-singular
𝒖 0 0

3

Fig. 2. Schematic drawing of the mechanical system used. In the figure 𝑐𝑟 is the
damping coefficient, 𝑘𝑟 is the linear radial rotor stiffness, 𝑘𝑠 is the stator stiffness
that engages after a clearance 𝑐, 𝑘3 is the cubic stiffness. All stiffness and damping
components are isotropic. The rotating frame [𝑢, 𝑣] has an angle of 𝜙 = 𝛺𝑡 with the
stationary frame [𝑥, 𝑦].

the Implicit Function Theorem). Here, 𝜆 is the free parameter of the sys-
em which is to be changed to investigate the response. Differentiating
(𝒖, 𝜆) gives,

𝒖
d𝒖
d𝜆

+𝑮𝜆 = 0 →
d𝒖
d𝜆

= −𝑮−1
𝒖 𝑮𝜆 (2.1)

here 𝐺𝜆 is the derivative of the system with respect to the free
parameter, 𝜆. If the Jacobian 𝑮𝒖 is singular, i.e. at fold points, this
equation becomes problematic. However, if 𝜆 is appended to the states
of the system as a further unknown, 𝒙 = (𝒖, 𝜆), and the parametrisation
of the branch uses the arclength of the solution family instead of 𝜆,
the folds can be passed. An arclength condition expressed as �̇�𝑇 ⋅ �̇� =
‖�̇�‖2 = 1 is used to augment the system in finite difference form that
is multiplied once by the increment of the arclength (the step size),
𝛥𝑠 =

(

𝑠1 − 𝑠0
)

, see Eq. (2.2). This ensures that the extended Jacobian,
𝑮𝑥 =

[

𝑮𝒖,𝑮𝜆
]

is full rank even at folds. Thus,

𝑭
(

𝒙1, 𝑠
)

=

{

𝑮
(

𝒙1
)

= 0
(

𝒙1 − 𝒙0
)T

⋅ �̇�0 − 𝛥𝑠 = 0, ‖

‖

�̇�0‖‖ = 1
(2.2)

where the direction vector �̇�0 is written with respect to the arclength,
𝑠, the sub-scripts 0 and 1 denote the known and the next point to
calculate on the solution family, respectively. This next point is initially
predicted with a step such as

(

𝒖(0)1 , 𝜆(0)1

)𝑇
=

(

𝒖0, 𝜆0
)𝑇 +

(

𝛥𝒖0, 𝛥𝜆0
)𝑇 .

Newton–Raphson correction step, for example, can be implemented
n the predicted solution: 𝑭 𝒙

(

𝒙(𝜈)1

)

⋅ 𝛥𝒙(𝜈)1 = −𝑭 (𝜈) (𝒙1
)

with the
efinition of distance as 𝛥𝒙(𝜈)1 = 𝒙(𝜈+1)1 − 𝒙(𝜈)1 where 𝜈 designates the
𝑡ℎ correction iteration of the next point, 𝒙1. This yields the following
ewton–Raphson iteration equation:

[

𝑮𝑢(𝑢
(𝜈)
1 , 𝜆(𝜈)1 ) 𝑮𝜆(𝑢

(𝜈)
1 , 𝜆(𝜈)1 )

�̇�𝑇0 �̇�0

]{

𝛥𝒖(𝜈)1
𝛥𝜆(𝜈)1

}

= −

{

𝑮(𝑢(𝜈)1 , 𝜆(𝜈)1 )
(

𝒖(𝜈) − 𝒖
)

⋅ �̇� +
(

𝜆(𝜈) − 𝜆
)

̇�̇� − 𝛥𝑠

}

(2.3)

1 0 0 1 0 0
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After the convergence (when the solution is no longer changing with

respect to a convergence criteria such as
max

(

𝛥𝒖(𝜈)1

)

1+max
(

𝒖(𝜈)1

) ,
𝛥𝝀(𝜈)1
1+𝝀(𝜈)1

< 𝜖𝑢, 𝜖𝜆 in

UTO [50]), the next direction vector �̇�1 =
(

�̇�1, �̇�1
)

is determined from
he derivation of the system at the new point: 𝑭 𝒙

(

𝒙1
)

⋅ �̇�1 = {0, 1}𝑇 .
he new direction vector is normalised to make up the new arclength
quation: ‖

‖

�̇�1‖‖ = 1, which is used in the definition of the new system
see Eq. (2.2)) for the calculation of the next point (see Eq. (2.3)).

In the periodic case, 𝒖 of Eq. (2.3) will be obtained from the dis-
retisation in time of the periodic solution 𝒚 to the ODE �̇� = 𝑇𝒇 (𝒚, 𝜆).
here are two additional conditions, namely, periodicity 𝒚 (0) = 𝒚(1)
nd a phase locking condition such as 𝑃𝑝ℎ𝑎𝑠𝑒 (𝒚 (0) , 𝜆) = ̇𝑦𝑘 (𝜏 = 0) = 0,
here 𝑘 is an arbitrary dimension. Here, 𝑇 is the true period and the
erivatives are with respect to the period-normalised time, 𝜏, defined
ithin 0 < 𝜏 < 1. Also, for a periodic solution, the period and the

ree parameter are constant, namely, �̇� = 0 and �̇� = 0, respectively.
astly, adding parametrisation 𝑃𝑝𝑎𝑟𝑎𝑚 (𝒚 (0) , 𝜆) (such as arclength as
hown above) and gathering the equations together, one can write,

�̇�
�̇�
�̇�

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑇𝒇 (𝑦, 𝜆)
0
0

⎞

⎟

⎟

⎠

, 𝒓 =
⎛

⎜

⎜

⎝

𝒚 (0) − 𝒚 (1)
𝑃𝑝ℎ𝑎𝑠𝑒 (𝒚 (0) , 𝜆)
𝑃𝑝𝑎𝑟𝑎𝑚(𝒚 (0) , 𝜆)

⎞

⎟

⎟

⎠

= 𝟎 (2.4)

The discretisation of this ODE will ultimately result in a system
f the form 𝑭 = 𝟎 for which the above discussion of arclength
ontinuation is relevant. The discretisation, as well as the issues of
tability and step size, are well discussed in textbooks, such as in [30].

The numerical continuation method was implemented using the
pen source software AUTO [50], where the stability is calculated
ased on the work of Fairgrieve and Jepson [51].

.2. Equations of motion

Eq. (2.6) shows the dimensional nonlinear equations of motion of
he 2-dof overhung rotor with a massless shaft in the rotating coordi-
ate frame (Fig. 2). The reason why the rotating frame was selected
s that the investigated bouncing solutions are quasiperiodic in the
tationary frame, yet periodic in the rotating frame [14].

𝐼𝑜𝑑
𝑎2

�̈� +
(

−𝜔𝑱
𝐼𝑝 − 2𝐼𝑜𝑑

𝑎2
+ 𝑐𝑟

( 𝑏
𝑎

)2
𝟏
)

�̇�

+
(

𝜔2
𝐼𝑝 − 𝐼𝑜𝑑

𝑎2
𝟏 + 𝑘𝑟

( 𝑏
𝑎

)2
𝟏 + 𝑐𝑟

( 𝑏
𝑎

)2
𝜔𝑱

)

𝑽 + 𝒃𝑛𝑙 = 𝑚𝑑𝑒𝜔
2
{

1
0

}

𝒃𝑛𝑙 = (1 − 𝜅) 𝒃𝑐𝑢𝑏𝑖𝑐 + 𝜅𝒃𝑠𝑛𝑢𝑏

𝒃𝑐𝑢𝑏𝑖𝑐 = 𝑘3
( 𝑏
𝑎

)4
𝑟2𝑐𝑽 ,

𝑠𝑛𝑢𝑏 =
1
2

(

tanh
(

𝐾
(

𝑟𝑐𝑏
𝑎

− 𝑐
)

1
𝑐

)

+ 1
)

𝑘𝑠
( 𝑏
𝑎

)2 (

1 − 1
𝑟𝑐

𝑐𝑎
𝑏

)

𝑽

(2.5)

where

• 𝐼𝑝 is the polar moment of inertia of the rotor,
• 𝐼𝑜𝑑 = 𝐼𝑑 +𝑚𝑑𝑎2 is the diametral moment of inertia with respect to

the centre of the frame of reference,
• 𝑏 is the position of all stiffness and damping elements on the rotor

(Fig. 2), 𝑎 is the overhung distance,
• 𝑽 = {𝑢, 𝑣}𝑇 is the vector of positions in the rotating frame,
• 𝑟𝑐 = 𝑽 𝑇 ⋅ 𝑽 is the amplitude of the position of the centre of the

disk,
• 𝐾 is the tanh function steepness,
• 𝜔 is the rotor speed,
• 𝒃𝑛𝑙 is the weighted sum of the nonlinear restoring forces from
snubber ring stiffness and the cubic stiffness elements.

4

Table 1
The reference values of the constants that appear in Eq. (2.6) unless otherwise
indicated.

Damping ratio 𝜁 = 0.01
Nondimensional polar moment of inertia 𝐽𝑝 = 0.143
Nondimensional disk mass 𝑚 = 0.9
Nondimensional distance of the eccentric centre of mass 𝜀 = 0.353
Cubic stiffness measure 𝛾 = 0.25
Stiffness ratio 𝛽 = 10
Tanh-steepness parameter 𝐾 = 150
Nonlinearity weight 𝜅 = 0

If Eq. (2.5) is multiplied by 1
𝑘𝑟

𝑎
𝑏𝑐 , the following nondimensional equa-

tions of motion can be obtained, which was derived in more detail
by [24],

𝑼 ′′ +
(

−𝛺𝑱
(

𝐽𝑝 − 2
)

+ 2𝜁𝟏
)

𝑼 ′ +
(

𝛺2 (𝐽𝑝 − 1
)

𝟏 + 𝟏 + 2𝜁𝛺𝑱
)

𝑼 + 𝒇 𝑛𝑙

= 𝑚𝜀𝛺2
{

1
0

}

𝒇 𝑛𝑙 = (1 − 𝜅)𝒇 𝑐𝑢𝑏𝑖𝑐 + 𝜅𝒇 𝑠𝑛𝑢𝑏

𝒇 𝑐𝑢𝑏𝑖𝑐 = 𝛾𝑟2𝑼 , 𝒇 𝑠𝑛𝑢𝑏 = 0.5 (tanh (𝐾 (𝑟 − 1)) + 1) 𝛽 (1 − 1∕𝑟)𝑼

(2.6)

The following identities appear in Eqs. (2.5) and (2.6),

𝑱 =
[

0 −1
1 0

]

, 𝟏 =
[

1 0
0 1

]

,

𝛾 =
𝑘3
𝑘𝑟

𝑐2, 𝛽 =
𝑘𝑠
𝑘𝑟

, 𝜁 =
𝑐𝑟𝑏2

2𝐼𝑜𝑑𝜔𝑛
, 𝑚 =

𝑚𝑑𝑎2

𝐼𝑜𝑑

(⋅)′ =
(⋅)
𝜔𝑛

, 𝛺 = 𝜔
𝜔𝑛

, 𝜔2
𝑛 =

𝑘𝑟𝑏2

𝐼𝑜𝑑
, 𝑐 = 𝑐𝑎

𝑏
, 𝐽𝑝 =

𝐼𝑝
𝐼𝑜𝑑

𝑼 = 𝑽 1
𝑐
, 𝑟 =

𝑟𝑐
𝑐
, 𝜀 = 𝑒

𝑐

(2.7)

here

• 𝑼 is the nondimensional position vector in the rotating frame,
• 𝛺 is the nondimensional rotor speed,
• 𝜁 is the damping ratio,
• 𝐽𝑝 is the nondimensional polar moment of inertia,
• 𝑚 is the nondimensional disk mass,
• 𝜀 is the nondimensional distance of the eccentric centre of mass,
• 𝛽 = 𝑘𝑠∕𝑘𝑟 is the nondimensional measure of snubber-ring stiffness,
• 𝛾 = 𝑏2𝑘3∕𝑘𝑟 is the nondimensional measure of cubic stiffness,
• 𝑟 is the nondimensional vibration amplitude in the rotating frame,
𝑟2 = 𝑼𝑇 ⋅ 𝑼 .

he definition of the restoring force as a weighted sum of the two
onlinearities allows one to incorporate a new parameter, 𝜅, ranging
rom 0 to 1 Eq. (2.6). Table 1 gives the constants used to obtain the
esults in the next section.

.2.1. Contact definition
The numerical continuation method assumes smoothness of the so-

utions with respect to the free parameters (see Section 2.1). Therefore,
nstead of the Heaviside step function, a tanh function was employed,
hich does not require a correction step (see e.g. [32]). The accuracy
f this function is determined by the tanh-steepness parameter, 𝐾.

In the definition of the tanh-contact formulation, care must be taken
o ensure accuracy and efficiency at the contact amplitude, where a
ictitious negative restoring force is generated, see Fig. 3(b). For the
ame ratio between the (𝛽,𝐾) pair (e.g. (5,50) and (10,100) pairs), the
ictitious force amplitude is the same, but the width of the affected zone
s different. Also, observing the red lines’ cascade, one can see that for a
iven 𝛽, the increase of 𝐾 decreases the amplitude and the affected zone
idth (see Fig. 3) together. This artificial effect of the sigmoid function
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Fig. 3. (a) Hyperbolic tangent function for various 𝛽 and 𝐾 value pairs. This paper used 𝛽 = 10, 𝐾 = 150. (b) The returning force at the contact amplitude generated by the
tanh-contact definition. The legend applies to both figures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 4. The flow of runs. (a) A direct and unlikely single parameter flow. (b) Single parameter flow with added 𝛺 runs for more flexibility on the parameter space. (c) Fold-
continuation flow. The arrows show the continuation runs and obtained solution families, and the homotopy process in the case of 𝜅. The red and blue boxes show the sampled
rbits of cubic and contact cases, respectively. The continuation of 𝜁 and 𝜀 are optional in the exploration of the new nonlinearity for the system. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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as more pronounced than tanh for the same values of 𝛽 and 𝐾, which
s not presented here. Therefore, the tanh function was adopted in the
resent study.

The chosen value of 𝐾 was determined by comparing the bifurca-
ion diagrams from the tanh-contact model to that from a Heaviside-
ontact model (Fig. 3) using the ode45 function of MATLAB (RK4(5)
cheme of Dormand and Prince [52]). This resulted in the selection of
= 150 for 𝛽 = 10 (see Fig. 3).

.3. Homotopy from smooth to contact nonlinearity

The parameter 𝜅 is used to switch the system response from cubic
onlinearity (𝜅 = 0) to the contact nonlinearity (𝜅 = 1), as shown in
ig. 1. As a first approach, a homotopy process can be applied on a
tarter orbit generated using the cubic nonlinearity, to change it to the
esponse of a system with contact nonlinearity, while optionally adding
ther parameter changes as shown in Fig. 4(a). This might result in a
ailure if a different state of the parameter space is needed for 𝜅 to reach
. For example, for the given values of 𝜁, 𝜀 and 𝛺, a 𝜅 homotopy might
each a value of 𝜅 = 0.8, make a fold, and then decrease the values of
. Thus, as in Fig. 4(b), additional continuation in 𝛺 may be necessary.

To avoid this trial and error approach, Fig. 4(c) shows that a more
irect alternative is to trace the fold point of the cubic nonlinearity (if
 s

5

fold point is present in the interested range) via a fold-continuation
n two free parameters. In the runs, the most intuitive parameter is
he rotor speed, and the main investigation concerns the bifurcation
iagrams with respect to the rotor speed. Therefore, this additional
arameter was selected as 𝛺 for both optional parameter change runs
nd for homotopy of the nonlinearity. The approaches in Fig. 4(b) and
ig. 4(c) were applied successfully, despite the greater difficulty in the
umerical convergence of the fold-continuation method (Fig. 4(c)) in
he low 𝜁 cases. When the damping approaches zero, the periodic so-
utions’ isolation is not guaranteed, hence the tangent vector struggles
o resolve. In order to help the convergence, the minimum arclength
tep size was decreased from 0.05 to 0.0001, the number of Newton-
hord iterations was increased from 5 (default) to 7, out of which
he Newton iterations were increased from 3 (default) to 5. Also, the
elative convergence criterion was relaxed from 10−6 to 3 ⋅ 10−6 for
oth the continuation parameters and the solution components, i.e., the
tates

{

𝑼 , �̇�
}𝑇 of Eq. (2.6).

. Results and discussion

Fig. 5 shows the investigated 3:1 and 2:1 internal resonance re-
ponses in the rotating frame. These responses were named double loop
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Fig. 5. At a nondimensional rotor speed of 𝛺 = 5.0; (a) a sample 3:1 (DL) internal
resonance response in the rotating frame from tanh-contact, and (b) its signed frequency
content, (c) a sample 2:1 (SL) internal resonance response in the rotating frame, and
(d) its signed frequency content. Negative frequencies indicate a backward whirl in the
present frame of reference, which is rotating with 𝛺. The DC components result from
the unbalance excitation that is a constant force in this rotating frame.

Fig. 6. Orbits at 𝛺 = 5.0 corresponding to responses of cubic (a) SL and (b) DL, tanh-
contact (c)SL and (d) DL responses. Black circles in (c) and (d) show the contact level
for the tanh-contact system (see Eq. (2.6)). Other parameters are default according to
Table 1.

(DL) and single loop (SL), respectively, due to their appearance. The
frequency content of the SL and DL responses are shown in Fig. 5(d)
and (b), respectively, which were calculated from the complex signed
frequency content, 𝑼𝝎, obtained from the DFT as,

𝑼𝝎 (𝑘) = 1
𝑁

𝑼∗ (𝑡) ⋅ e−𝑗2𝜋𝑓𝑘𝒕, 𝑼∗ (𝑡) = {1,−𝑗} ⋅ 𝑼 (𝑡) ,

𝑓𝑘 =
(

−
(𝑁
2

+ 1
)

+ 𝑘
) 𝑓𝑠
𝑁

, 𝑘 = 1, 2,… , 𝑁, (3.1)
𝑁 is the data length and is even.

6

where 𝑡 is the vector of 𝑁 time points of an orbit’s trajectory data and 𝑓𝑠
s the sampling rate. The shape of the complex transform, {1,−𝑗}, is se-
ected so that a forward whirl motion is associated with a positive whirl

requency, 𝜔, using 𝑅𝑒
({

1
−𝑗

}

𝑒+𝑗𝜔𝑡
)

, given the Fourier transform

onvention with a negative sign in the exponential (e−𝑗2𝜋𝑓𝑘𝒕). Here, the
(𝑡) matrix stores in its columns the nondimensional positions in the

otating frame at different times, and the rows are the corresponding
ime series to each nondimensional position; 𝑼∗ (𝑡) is a vector of the
ime series of the complex nondimensional position in the rotating
rame — note the number of dof is two for the system investigated.
he nondimensional frequency amplitudes in Fig. 5(b) and (d) are the
agnitude of the vector 𝑼𝜔. The DC components here indicates the

esponse due to the unbalance forcing, which is a constant force in
otating frame. Converged internal resonance responses of SL and DL
n the rotating frame from the cubic stiffness formulation were used to
tart the continuation process. This corresponds to the first arrow and
he first box in Fig. 4. An orbit on this branch was used to start the
ontinuation of the homotopy parameter, 𝜅, switching to the contact
efinition, without optional parameter changes of 𝜁 and 𝜀 (Fig. 4(b)).

Similarity of the responses from the cubic formulation and the
ontact formulation could be observed in Fig. 6. The orientations of
he loop of these orbits are different in the two systems, which might
e linked to the delayed engagement of the tanh-contact nonlinearity
bove the amplitude level of the clearance compared to the cubic case
here the nonlinearity is active at all amplitude levels. Apart from this,

he orbits do not show qualitative difference.
The analysis here corresponds to the values given in Table 1, which

ere chosen by [24] to constitute a model that is comparable to that
f [20].

The results for the cubic case are shown in Fig. 7(a). For all the plots
ncluding those in Fig. 7, continuous and dashed lines show stable and
nstable response branches, respectively. The first thing to notice is the
ifference of the stiffening response between the two nonlinearities. All
ranches of the cubic nonlinearity bifurcation diagram (Fig. 7(a)) settle
nto a constant inclination as the amplitude of oscillation increases
ecause the nonlinear force increases with the amplitude of oscillation.
herefore, the stiffening effect is present at all amplitude levels in the
ubic nonlinearity. All branches of the tanh-contact nonlinearity have a
trong stiffening effect in the lower amplitude oscillations with contact
ust above the amplitude level of 1, even manifested on the synchronous
S) branch with a pronounced kink. However, the relative effect of
he nonlinearity decreases as the severity of contact increases. This
ifference can be attributed to the fact that the cubic nonlinearity is
resent at each amplitude level, whereas the tanh-contact nonlinearity
s linear below contact and converges towards linear behaviour at
igh amplitudes since the effect of the stiffness change becomes less
ignificant. Note that in Fig. 7 (as well as in Fig. 10 and Fig. 12) the S
nd SL branches do not close within the shown range of rotor speed and
mplitude. It should be noted that the out of balance force rises with
he square of the drive speed, and it is thought that therefore these
olution branches are unbounded. For the system in Eq. (2.6) this has
een validated up to 𝛺 = 100 with parameter values in Table 1.

As shown in Fig. 8, the lowest amplitude level for the cubic SL
ranch is below the contact level; after the nonlinearity switch, the
owest point moves upward above the contact level, because below the
ontact amplitude, there is no nonlinearity to produce these internal
esonance responses.

In the contact bifurcation diagram (Fig. 7(b)), the low amplitude
eriodic response is mostly unstable. However, a small region between
he nondimensional rotor speeds of 4.4 – 4.8 exists, where the unstable
eriodic orbits of SL might push the transitional response to the DL
table periodic orbits.

In Fig. 7, period doubling bifurcations can be seen on the tanh-
ontact model, towards the lower amplitudes, which are zoomed in
ig. 9(a). Fig. 9(b) shows the SL period doubling region, where sec-
ndary period doubling bifurcation is visible. These period doubling
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Fig. 7. The transform of the bifurcation diagram in (a) the cubic nonlinearity (red) to that of (b) the contact nonlinearity (blue). The zoomed view of the blue rectangular zone
is shown in Fig. 9(a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
w
d

Fig. 8. Closer view of the homotopy of SL periodic solutions. Small orbits are from
Fig. 6.

responses are only stable at a very narrow rotor speed band; therefore,
it might be unlikely to obtain these solutions in a real-world scenario.
Nevertheless, in the brute force time simulation period doubling bifur-
cations were captured, as shown in Fig. 9(c). Note that, in the time
simulations only the stable solutions are converged and the diagram is
not as smooth as that obtained from the numerical continuation process
(Fig. 9(b)), because some of the responses are converged onto DL or
S branches, breaking the PD-branches’ integrity. One can mitigate the
problem when sweeping in terms of 𝛺 in time simulations by using
the end datum of a trajectory as the initial condition for the next 𝛺,
which is shown on the DL PD solutions in Fig. 9(d). More discussion
on the comparison of time simulation and numerical continuation can
be found in recent work [24]. Lastly, the PD cascade could indicate a
chaotic behaviour despite the fact this was not experienced in the time
simulations [53].

3.1. The case of low damping

To further explore the behaviour of the new nonlinearity, the orig-
inal system parameters can be altered before the homotopy of the
7

nonlinearity. One can investigate the response of the system under a dif-
ferent damping case, which can instantaneously change [54]. In Fig. 10,
a damping ratio of 𝜁 = 1𝑒− 5 was used to investigate the low damping
systems of both nonlinearities comparatively. In addition to the phe-
nomena observed in Fig. 7, the zoom view at the lower amplitude ends
of the DL and SL branches in Fig. 11 show that low damping ensures
that periodic solutions can be achieved at lower amplitudes levels,
closing the gap between the synchronous and asynchronous solutions.
This would allow smaller perturbations of the synchronous solution
to end up on the periodic solution branches for both nonlinearities
more easily. However, since the contact nonlinearity is absent below
the contact level, the closing of this gap is confined to right above the
contact level, thereby requiring more disturbance of the synchronous
solutions to settle onto periodic solutions.

3.2. The case of low damping and high unbalance

The unbalance excitation was increased by setting the eccentricity
value greater than the contact clearance, 𝜀 = 1.5, while the damping
of the systems was retained at 𝜁 = 1𝑒 − 5. Compared to Figs. 10 and
11, in Fig. 12 the bifurcation diagram of the cubic nonlinearity looks
qualitatively identical to the previous case (Fig. 11) except that the
amplitudes of oscillation are increased and the internal resonance is
moved towards higher frequencies. However, the bifurcation diagram
for the contact model shows a closer resemblance to the cubic case,
this time. As can be seen in Fig. 12(b), the closing of the contact
synchronous and asynchronous solutions is clearly visible. As seen in
the cubic nonlinearity, the higher unbalance pushed the region of in-
ternal resonance to higher frequencies. However, since the nonlinearity
decreases with amplitude in the tanh-contact nonlinearity, the periodic
solution families straighten. This phenomenon twisted the DL branch
(Fig. 13) so much that a new stable zone formed below the main stable
zone. This indicates that the same solution family can generate different
amplitude solutions of the same nature within the investigated rotor
speed region, breaking an intuition of having the stable solutions of
the same solution family located adjacent, for example, in a stepped
sine test.

3.3. Tanh-contact

The selection of the steepness, 𝐾, of the hyperbolic tangent function
as found to be important to avoid contamination of the bifurcation
iagram with non-realistic effects. As pointed out in Section 2.2, the
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t
H

Fig. 9. Period doubling (PD) bifurcation diagrams of tanh-contact model. (a) Zoom view at the blue rectangle in Fig. 7(b) and (b) at the blue rectangle inside (a). (c) Time
simulation results of SL solutions. (d) Stepped sine sweep results of DL solutions.
Fig. 10. Bifurcation diagrams that correspond to a very low damping ratio value (𝜁 = 1𝑒 − 5) of (a) the cubic and (b) contact nonlinearities. The zoomed views of the red and
blue rectangles in (a) and (b) are shown in Fig. 11(a) and (b), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
value of 𝐾 was determined so that the bifurcation diagrams of the
ime simulations of the tanh-contact model overlapped with that of the
eaviside step functions. This indeed eliminated most of the fictitious
8

response. However, for certain values of the parameters and a value
of tanh-steepness smaller than the validated value, the effect of the
tanh-contact being a smooth approximation of the contact was visible.
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Fig. 11. Low damping case. Zoom view of Fig. 10 at the red and blue windows therein. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
Fig. 12. Bifurcation diagrams that correspond to low damping, high forcing case for (a) the cubic, and (b) the contact nonlinearities.
Fig. 13. Low damping, high forcing case. Zoom view at the blue window in Fig. 12.
(For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 14 shows two such cases. In Fig. 14(a) there are soft kinks below
the contact amplitude, although these would be located at the contact
amplitude if it was a true discontinuous stiffness. Even an unstable
region is visible between the fold points on the left-hand branch of S
solutions (Fig. 14(a)). In Fig. 14(b), one can see the periodic solution
family around and below the amplitude of contact. The numerical
continuation continued right onto this new solution family for a certain
combination of accuracy constants of the runs. However, the fact that
this jump occurred shows that they are related to the actual periodic
solutions. Nevertheless, the solution was not reliable for the tanh-
steepness values, 𝐾 less then validated by the comparative brute force
simulations.

The reason follows from Fig. 3(b), where the restoring force due
to the contact definition is plotted. The tanh-contact restoring force
below the point of contact has a false negative value in a small region of
oscillation amplitude. This means that the solution is pushed downward
(towards a lower amplitude) in this region while no force should have
been present from the contact. However, the increase of the tanh-
steepness decreases this effect considerably, by decreasing the affected
amplitude region (on the 𝑥-axis of the plot) and shrinking the fictitious
restoring force amplitude (on the 𝑦-axis of the plot). For the values of
𝛽 = 10 and 𝐾 = 150, no such effects were observed in the practical
scale, that is, compared to the step size of 𝛺 in the continuation runs.
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Fig. 14. The fictitious parts of the bifurcation diagram. (a) Smoothing at the kink of the synchronous solution branches for a stiffness ratio of 𝛽 = 6 and 𝐾 = 30, a value lower
han the validated value of 𝐾 = 90. (b) The fictitious periodic solution family appeared around and below the contact amplitude when 𝜁 = 1𝑒 − 5 and 𝜀 = 0.8. The red solution
amily shows the cubic case. Other parameters are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
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. Conclusions

In this paper, a new concept of making the homotopy from one
onlinearity to the other was studied. In the paper, the method was
emonstrated on a smooth modification of the Zilli system [20] that
eatures a tanh-contact stiffness nonlinearity. The numerical continu-
tion method was employed in the process of changing the parameters
f the original cubic-stiffness model, as well as in the homotopy of
he nonlinearity weight, 𝜅, that transitions from the cubic to the tanh-
ontact nonlinearity. The method appears to be a potentially powerful
ool for the investigation of more complex nonlinearities starting from
simpler and smoother case. The results were in agreement with the

imulations, which were used to validate the contact stiffness. The
ollowing conclusions can be drawn:

n the method:
The whole bifurcation diagram can be computed quickly using

umerical continuation, including the unstable regions that convey
seful information on the response of the system. The user of the
ethod, however, has to note the considerable time needed to setup the

orrect accuracy constants (in AUTO [50]) adjusting the discretisation
nd tolerances for computational accuracy and efficiency, such as the
aximum and minimum step sizes, the mesh interval count and its

daptation rate, the accepted solution accuracy and so on.
Nonlinear force homotopy made the investigation of the new non-

inearity possible without any prior knowledge on the new system.
The method is useful particularly when the known response belongs

o a simple smooth nonlinearity such as a geometrical nonlinearity such
s a cubic stiffness instead of a discontinuous stiffness, and shows simi-
ar responses to those from the new nonlinearity. The cubic nonlinearity
as shown to be such a case in a preceding study [24].

However, more complex nonlinearities can give more complex bi-
urcation diagrams, that are not easily obtainable from a solution of
he simpler system. As such, only the responses that are related in both
ystems can be analysed in the presented method. For example, a 2:1 in-
ernal resonance response in the cubic system cannot result in a branch
f 3:2 internal resonance responses in the contact system. However, the
esponses of the 2:1 (SL) and 3:1 (DL) solutions are quite common in the
iterature on different systems. If the forcing and damping are zero, the
ynchronous amplitude goes to zero except that the main backbone is
 o

10
ooted at the main resonance, and the asynchronous solution branches
ake up backbone curves. This, in an amplitude-rotor speed bifurcation
iagram, would combine the synchronous and asynchronous solutions
t the rotating frame Campbell diagram-predicted internal resonance
oints. However, at the 0-amplitude points where those synchronous
nd asynchronous solutions meet, the periodicity and morphology of
he solutions would be different. This study is left for future research.

Contrary to the approaches in the field of rotordynamics such as
hose with HBM and shooting method formulations, the direct approach
sing the system of equations with the tanh-contact definition was
traightforward while maintaining a good level of accuracy when com-
ared to the time simulations. The selection of the tanh-contact smooth
pproximation of the discontinuous stiffness nonlinearity was useful in
erms of the ease of setup of the method, not necessitating a correction
cheme for the correct calculation of contact forces. Nonetheless, the
anh steepness (accuracy) has to be decided for accuracy around the
ontact level to avoid prediction of fictitious responses. The solution
rocedure has the system of equations in first order form, although
hey need to be discretised to fit into this continuation method. The
ophisticated adaptive mesh formulation of AUTO worked well in the
on-smooth approximation of the contact discontinuity. In the HBM
ormulation, one would have the defining factor of the number of
quations solved as the harmonics included.

n the dynamics of the system:
Some insight of the dynamics of the system was developed.
The loss of proper damping could make the synchronous unbalance

esponse jump to the periodic (quasiperiodic in the stationary frame)
olutions more readily.

The increased unbalance excitation pushed the periodic response
igher in amplitude, into the more linear regions of contact nonlin-
arity. This made the stiffening effect less pronounced in the periodic
ranches, straightening them in the bifurcation diagrams. As this hap-
ened, a new stable solution zone emerged on the DL branch in addition
o the regular stable zone. This means that the same pattern of solutions
an be observed at different amplitudes.

RediT authorship contribution statement

Mehmet Selim Akay: Conceptualization, Methodology, Software,
riting – original draft. Alexander D. Shaw: Conceptualization, Method
logy, Project administration, Software, Supervision, Writing – review



M.S. Akay, A.D. Shaw and M.I. Friswell International Journal of Non-Linear Mechanics 150 (2023) 104343
& editing. Michael I. Friswell: Conceptualization, Project administra-
tion, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

This study was funded by the Ministry of National Education of the
Republic of Turkey.

References

[1] B. Saldivar, I. Boussaada, H. Mounier, S. Mondié, S.I. Niculescu, An overview
on the modeling of oilwell drilling vibrations, IFAC Proc. Vol. 47 (3) (2014)
5169–5174, http://dx.doi.org/10.3182/20140824-6-ZA-1003.00478.

[2] G. Jacquet-Richardet others, Rotor to stator contacts in turbomachines, Rev.
Appl. Mech. Syst. Signal Process. 40 (2) (2013) 401–420, http://dx.doi.org/10.
1016/j.ymssp.2013.05.010.

[3] S. Ahmad, Rotor casing contact phenomenon in rotor dynamics — Literature
survey, J. Vib. Control 16 (9) (2010) 1369–1377, http://dx.doi.org/10.1177/
1077546309341605.

[4] D.C. Johnson, Synchronous whirl of a vertical shaft having clearance in one
bearing, J. Mech. Eng. Sci. 4 (1) (1962) 85–93, http://dx.doi.org/10.1243/jmes_
jour_1962_004_012_02.

[5] F.F. Ehrich, J.J. O’Connor, Stator whirl with rotors in bearing clearance, J. Eng.
Ind. 89 (3) (1967) 381–389, http://dx.doi.org/10.1115/1.3610057.

[6] H.F. Black, Interaction of a whirling rotor with a vibrating stator across a
clearance annulus, J. Mech. Eng. Sci. 10 (1) (1968) 1–12, http://dx.doi.org/
10.1243/jmes_jour_1968_010_003_02.

[7] Y.S. Choi, Investigation on the whirling motion of full annular rotor rub, J.
Sound Vib. 258 (1) (2002) 191–198, http://dx.doi.org/10.1006/jsvi.5091.

[8] X. Dai, Z. Jin, X. Zhang, Dynamic behavior of the full rotorstop rubbing:
Numerical simulation and experimental verification, J. Sound Vib. 251 (5) (2002)
807–822, http://dx.doi.org/10.1006/jsvi.2001.3998.

[9] D.E. Bently, J.J. Yu, P. Goldman, A. Musynska, Full annular rub in mechanical
seals, part I: Experimental results, Int. J. Rotat. Mach. 8 (5) (2002) 319–328,
http://dx.doi.org/10.1155/S1023621X02000301.

[10] A.R. Bartha, Dry Friction Backward Whirl of Rotors Doctor of Technical Sciences
Doctoral Thesis, Swiss Federal Institute of Technology, 2000.

[11] A.D. Shaw, A.R. Champneys, M.I. Friswell, Normal form analysis of bouncing
cycles in isotropic rotor stator contact problems, Int. J. Mech. Sci. 155 (2019)
83–97, http://dx.doi.org/10.1016/j.ijmecsci.2019.02.035.

[12] E. Chipato, A.D. Shaw, M.I. Friswell, Frictional effects on the nonlinear dynamics
of an overhung rotor, Commun. Nonlinear Sci. Numer. Simul. 78 (2019) http:
//dx.doi.org/10.1016/j.cnsns.2019.104875.

[13] E. Chipato, A.D. Shaw, M.I. Friswell, Effect of gravity-induced asymmetry on
the nonlinear vibration of an overhung rotor, Commun. Nonlinear Sci. Numer.
Simul. 62 (2018) 78–89, http://dx.doi.org/10.1016/j.cnsns.2018.02.016.

[14] A.D. Shaw, A.R. Champneys, M.I. Friswell, Asynchronous partial contact motion
due to internal resonance in multiple degree-of-freedom rotordynamics, Proc.
Math. Phys. Eng. Sci. 472 (2192) (2016) 20160303, http://dx.doi.org/10.1098/
rspa.2016.0303.

[15] E.T. Chipato, A.D. Shaw, M.I. Friswell, R. Sánchez Crespo, Experimental study of
rotor-stator contact cycles, J. Sound Vib. 502 (2021) http://dx.doi.org/10.1016/
j.jsv.2021.116097.

[16] P. Pennacchi, N. Bachschmid, E. Tanzi, Light and short arc rubs in rotating
machines: Experimental tests and modelling, Mech. Syst. Signal Process. 23 (7)
(2009) 2205–2227, http://dx.doi.org/10.1016/j.ymssp.2009.03.008.

[17] Y. Ishida, M. Inagaki, R. Ejima, A. Hayashi, Nonlinear resonances and self-excited
oscillations of a rotor caused by radial clearance and collision, Nonlinear Dynam.
57 (4) (2009) 593–605, http://dx.doi.org/10.1007/s11071-009-9482-3.

[18] F. Chu, W. Lu, Experimental observation of nonlinear vibrations in a rub-impact
rotor system, J. Sound Vib. 283 (3-5) (2005) 621–643, http://dx.doi.org/10.
1016/j.jsv.2004.05.012.

[19] Y. Ishida, I. Nagasaka, T. Inoue, S. Lee, Forced oscillations of a vertical
continuous rotor with geometric nonlinearity, Nonlinear Dynam. 11 (2) (1996)
107–120, http://dx.doi.org/10.1007/BF00044997.

[20] A. Zilli, R.J. Williams, D.J. Ewins, Nonlinear dynamics of a simplified model
of an overhung rotor subjected to intermittent annular rubs, J. Eng. Gas Turb.

Power 137 (6) (2015) http://dx.doi.org/10.1115/1.4028844.

11
[21] E.V. Karpenko, M. Wiercigroch, E.E. Pavlovskaia, R.D. Neilson, Experimental
verification of Jeffcott rotor model with preloaded snubber ring, J. Sound Vib.
298 (4–5) (2006) 907–917, http://dx.doi.org/10.1016/j.jsv.2006.05.044.

[22] K. Mora, A.R. Champneys, A.D. Shaw, M.I. Friswell, Explanation of the onset
of bouncing cycles in isotropic rotor dynamics; A grazing bifurcation analysis,
Proc. Math. Phys. Eng. Sci. 476 (2237) (2020) 20190549, http://dx.doi.org/10.
1098/rspa.2019.0549.

[23] M.O.T. Cole, P.S. Keogh, Asynchronous periodic contact modes for rotor vibra-
tion within an annular clearance, Proc. Inst. Mech. Eng. C 217 (10) (2003)
1101–1115, http://dx.doi.org/10.1243/095440603322517126.

[24] M.S. Akay, A.D. Shaw, M.I. Friswell, Continuation analysis of a nonlinear rotor
system, Nonlinear Dynam. 105 (1) (2021) 25–43, http://dx.doi.org/10.1007/
s11071-021-06589-8.

[25] E.T. Chipato, A.D. Shaw, M.I. Friswell, Nonlinear rotordynamics of a MDOF
rotor–stator contact system subjected to frictional and gravitational effects,
Mech. Syst. Signal Process. 159 (2021) http://dx.doi.org/10.1016/j.ymssp.2021.
107776.

[26] S. Lahriri, H.I. Weber, I.F. Santos, H. Hartmann, Rotor–stator contact dynamics
using a non-ideal drive—Theoretical and experimental aspects, J. Sound Vib. 331
(20) (2012) 4518–4536, http://dx.doi.org/10.1016/j.jsv.2012.05.008.

[27] M. Torkhani, L. May, P. Voinis, Light, medium and heavy partial rubs during
speed transients of rotating machines: Numerical simulation and experimental
observation, Mech. Syst. Signal Process. 29 (2012) 45–66, http://dx.doi.org/10.
1016/j.ymssp.2012.01.019.

[28] C. Wang, D. Zhang, Y. Ma, Z. Liang, J. Hong, Theoretical and experimental
investigation on the sudden unbalance and rub-impact in rotor system caused
by blade off, Mech. Syst. Signal Process. 76-77 (2016) 111–135, http://dx.doi.
org/10.1016/j.ymssp.2016.02.054.

[29] K. Prabith, I.R. Praveen Krishna, Response and stability analysis of a two-spool
aero-engine rotor system undergoing multi-disk rub-impact, Int. J. Mech. Sci.
213 (2022) 1–24, http://dx.doi.org/10.1016/j.ijmecsci.2021.106861.

[30] R. Seydel, From Equilibrium to Chaos: Practical Bifurcation and Stability
Analysis, Elsevier, New York, 1988.

[31] P. Sundararajan, S.T. Noah, An algorithm for response and stability of large order
systems—Application to rotor systems, J. Sound Vib. 214 (4) (1998) 695–723,
http://dx.doi.org/10.1006/jsvi.1998.1614.

[32] G. Von Groll, D.J. Ewins, The harmonic balance method with arc-length
continuation in rotor/stator contact problems, J. Sound Vib. 241 (2) (2001)
223–233, http://dx.doi.org/10.1006/jsvi.2000.3298.

[33] L. Peletan, S. Baguet, M. Torkhani, G. Jacquet-Richardet, A comparison of
stability computational methods for periodic solution of nonlinear problems
with application to rotordynamics, Nonlinear Dynam. 72 (3) (2013) 671–682,
http://dx.doi.org/10.1007/s11071-012-0744-0.

[34] L. Peletan, S. Baguet, G. Jacquet-Richardet, M. Torkhani, Use and limitations
of the harmonic balance method for rub-impact phenomena in rotor-stator
dynamics, in: ASME Turbo Expo 2012: Turbine Technical Conference and
Exposition, 2012, Volume 7: Structures and Dynamics, Parts a and B, pp.
647–655, http://dx.doi.org/10.1115/gt2012-69450, [Online]. Available: http://
dx.doi.org/10.1115/GT2012-69450.

[35] L. Peletan, S. Baguet, M. Torkhani, G. Jacquet-Richardet, Quasi-periodic har-
monic balance method for rubbing self-induced vibrations in rotor–stator
dynamics, Nonlinear Dynam. 78 (4) (2014) 2501–2515, http://dx.doi.org/10.
1007/s11071-014-1606-8.

[36] L. Salles, B. Staples, N. Hoffmann, C. Schwingshackl, Continuation techniques for
analysis of whole aeroengine dynamics with imperfect bifurcations and isolated
solutions, Nonlinear Dynam. 86 (3) (2016) 1897–1911, http://dx.doi.org/10.
1007/s11071-016-3003-y.

[37] M.K. Al-Solihat, K. Behdinan, Force transmissibility and frequency response of
a flexible shaft–disk rotor supported by a nonlinear suspension system, Int.
J. Non-Linear Mech. 124 (2020) http://dx.doi.org/10.1016/j.ijnonlinmec.2020.
103501.

[38] R.M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems, J.
Appl. Mech. 29 (1) (1962) 7–14, http://dx.doi.org/10.1115/1.3636501.

[39] D. Laxalde, F. Thouverez, Complex non-linear modal analysis for mechanical
systems: Application to turbomachinery bladings with friction interfaces, J.
Sound Vib. 322 (1009) (2009) 4–5–1025, http://dx.doi.org/10.1016/j.jsv.2008.
11.044.

[40] J. Hong, P. Yu, D. Zhang, Y. Ma, Nonlinear dynamic analysis using the complex
nonlinear modes for a rotor system with an additional constraint due to rub-
impact, Mech. Syst. Signal Process. 116 (2019) 443–461, http://dx.doi.org/10.
1016/j.ymssp.2018.06.061.

[41] D. Liu, J. Hong, Failure analysis of backward whirl motion in an aero-engine
rotor, Eng. Fail. Anal. 128 (2021) http://dx.doi.org/10.1016/j.engfailanal.2021.

105620.

http://dx.doi.org/10.3182/20140824-6-ZA-1003.00478
http://dx.doi.org/10.1016/j.ymssp.2013.05.010
http://dx.doi.org/10.1016/j.ymssp.2013.05.010
http://dx.doi.org/10.1016/j.ymssp.2013.05.010
http://dx.doi.org/10.1177/1077546309341605
http://dx.doi.org/10.1177/1077546309341605
http://dx.doi.org/10.1177/1077546309341605
http://dx.doi.org/10.1243/jmes_jour_1962_004_012_02
http://dx.doi.org/10.1243/jmes_jour_1962_004_012_02
http://dx.doi.org/10.1243/jmes_jour_1962_004_012_02
http://dx.doi.org/10.1115/1.3610057
http://dx.doi.org/10.1243/jmes_jour_1968_010_003_02
http://dx.doi.org/10.1243/jmes_jour_1968_010_003_02
http://dx.doi.org/10.1243/jmes_jour_1968_010_003_02
http://dx.doi.org/10.1006/jsvi.5091
http://dx.doi.org/10.1006/jsvi.2001.3998
http://dx.doi.org/10.1155/S1023621X02000301
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb10
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb10
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb10
http://dx.doi.org/10.1016/j.ijmecsci.2019.02.035
http://dx.doi.org/10.1016/j.cnsns.2019.104875
http://dx.doi.org/10.1016/j.cnsns.2019.104875
http://dx.doi.org/10.1016/j.cnsns.2019.104875
http://dx.doi.org/10.1016/j.cnsns.2018.02.016
http://dx.doi.org/10.1098/rspa.2016.0303
http://dx.doi.org/10.1098/rspa.2016.0303
http://dx.doi.org/10.1098/rspa.2016.0303
http://dx.doi.org/10.1016/j.jsv.2021.116097
http://dx.doi.org/10.1016/j.jsv.2021.116097
http://dx.doi.org/10.1016/j.jsv.2021.116097
http://dx.doi.org/10.1016/j.ymssp.2009.03.008
http://dx.doi.org/10.1007/s11071-009-9482-3
http://dx.doi.org/10.1016/j.jsv.2004.05.012
http://dx.doi.org/10.1016/j.jsv.2004.05.012
http://dx.doi.org/10.1016/j.jsv.2004.05.012
http://dx.doi.org/10.1007/BF00044997
http://dx.doi.org/10.1115/1.4028844
http://dx.doi.org/10.1016/j.jsv.2006.05.044
http://dx.doi.org/10.1098/rspa.2019.0549
http://dx.doi.org/10.1098/rspa.2019.0549
http://dx.doi.org/10.1098/rspa.2019.0549
http://dx.doi.org/10.1243/095440603322517126
http://dx.doi.org/10.1007/s11071-021-06589-8
http://dx.doi.org/10.1007/s11071-021-06589-8
http://dx.doi.org/10.1007/s11071-021-06589-8
http://dx.doi.org/10.1016/j.ymssp.2021.107776
http://dx.doi.org/10.1016/j.ymssp.2021.107776
http://dx.doi.org/10.1016/j.ymssp.2021.107776
http://dx.doi.org/10.1016/j.jsv.2012.05.008
http://dx.doi.org/10.1016/j.ymssp.2012.01.019
http://dx.doi.org/10.1016/j.ymssp.2012.01.019
http://dx.doi.org/10.1016/j.ymssp.2012.01.019
http://dx.doi.org/10.1016/j.ymssp.2016.02.054
http://dx.doi.org/10.1016/j.ymssp.2016.02.054
http://dx.doi.org/10.1016/j.ymssp.2016.02.054
http://dx.doi.org/10.1016/j.ijmecsci.2021.106861
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb30
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb30
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb30
http://dx.doi.org/10.1006/jsvi.1998.1614
http://dx.doi.org/10.1006/jsvi.2000.3298
http://dx.doi.org/10.1007/s11071-012-0744-0
http://dx.doi.org/10.1115/gt2012-69450
http://dx.doi.org/10.1115/GT2012-69450
http://dx.doi.org/10.1115/GT2012-69450
http://dx.doi.org/10.1115/GT2012-69450
http://dx.doi.org/10.1007/s11071-014-1606-8
http://dx.doi.org/10.1007/s11071-014-1606-8
http://dx.doi.org/10.1007/s11071-014-1606-8
http://dx.doi.org/10.1007/s11071-016-3003-y
http://dx.doi.org/10.1007/s11071-016-3003-y
http://dx.doi.org/10.1007/s11071-016-3003-y
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103501
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103501
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103501
http://dx.doi.org/10.1115/1.3636501
http://dx.doi.org/10.1016/j.jsv.2008.11.044
http://dx.doi.org/10.1016/j.jsv.2008.11.044
http://dx.doi.org/10.1016/j.jsv.2008.11.044
http://dx.doi.org/10.1016/j.ymssp.2018.06.061
http://dx.doi.org/10.1016/j.ymssp.2018.06.061
http://dx.doi.org/10.1016/j.ymssp.2018.06.061
http://dx.doi.org/10.1016/j.engfailanal.2021.105620
http://dx.doi.org/10.1016/j.engfailanal.2021.105620
http://dx.doi.org/10.1016/j.engfailanal.2021.105620


M.S. Akay, A.D. Shaw and M.I. Friswell International Journal of Non-Linear Mechanics 150 (2023) 104343
[42] E.V. Karpenko, M. Wiercigroch, E.E. Pavlovskaia, M.P. Cartmell, Piecewise
approximate analytical solutions for a Jeffcott rotor with a snubber ring, Int. J.
Mech. Sci. 44 (3) (2002) 475–488, http://dx.doi.org/10.1016/S0020-7403(01)
00108-4.

[43] C.A.L.L. Fonseca, I.F. Santos, H.I. Weber, Experimental comparison of the
nonlinear dynamic behavior of a rigid rotor interacting with two types of
different radial backup bearings: Ball & pinned, Tribol. Int. 119 (2018) 250–261,
http://dx.doi.org/10.1016/j.triboint.2017.07.018.

[44] C.A. Fonseca, I.F. Santos, H.I. Weber, Influence of unbalance levels on nonlinear
dynamics of a rotor-backup rolling bearing system, J. Sound Vib. 394 (2017)
482–496, http://dx.doi.org/10.1016/j.jsv.2017.01.020.

[45] Y. Cao, H. Yao, Q. Li, P. Yang, B. Wen, Vibration mitigation and dynamics of
a rotor-blade system with an attached nonlinear energy sink, Int. J. Non-Linear
Mech. 127 (2020) http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103614.

[46] H. Yao, Y. Cao, Z. Ding, B. Wen, Using grounded nonlinear energy sinks to
suppress lateral vibration in rotor systems, Mech. Syst. Signal Process. 124 (2019)
237–253, http://dx.doi.org/10.1016/j.ymssp.2019.01.054.

[47] H. Zhang, K. Lu, W. Zhang, C. Fu, Investigation on dynamic behaviors of rotor
system with looseness and nonlinear supporting, Mech. Syst. Signal Process. 166
(2022) http://dx.doi.org/10.1016/j.ymssp.2021.108400.
12
[48] H. Kou, et al., Rub-impact dynamic analysis of a rotor with multiple wide-chord
blades under the gyroscopic effect and geometric nonlinearity, Mech. Syst. Signal
Process. 168 (2022) http://dx.doi.org/10.1016/j.ymssp.2021.108563.

[49] W. Pan, L. Ling, H. Qu, M. Wang, Nonlinear response analysis of aero-engine
rotor bearing rub-impact system caused by horizontal yawing maneuver load, Int.
J. Non-Linear Mech. 137 (2021) http://dx.doi.org/10.1016/j.ijnonlinmec.2021.
103800.

[50] AUTO-07P: Continuation and bifurcation software for ordinary differential
equations, 2019.

[51] T.F. Fairgrieve, A.D. Jepson, O.K. Floquet multipliers, SIAM J. Numer. Anal. 28
(1991) 1446–1462.

[52] J.R. Dorm, P.J. Prince, A family of embedded Runge–Kutta formula, J. Comput.
Appl. Math. 6 (1) (1980) 19–26.

[53] P. Varney, I. Green, Rotordynamic analysis of Rotor–Stator rub using rough
surface contact, J. Vib. Acoust. 138 (2) (2016) http://dx.doi.org/10.1115/1.
4032515.

[54] F. Quinci, W. Litwin, M. Wodtke, R. van den Nieuwendijk, A comparative
performance assessment of a hydrodynamic journal bearing lubricated with oil
and magnetorheological fluid, Tribol. Int. 162 (2021) http://dx.doi.org/10.1016/
j.triboint.2021.107143.

http://dx.doi.org/10.1016/S0020-7403(01)00108-4
http://dx.doi.org/10.1016/S0020-7403(01)00108-4
http://dx.doi.org/10.1016/S0020-7403(01)00108-4
http://dx.doi.org/10.1016/j.triboint.2017.07.018
http://dx.doi.org/10.1016/j.jsv.2017.01.020
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103614
http://dx.doi.org/10.1016/j.ymssp.2019.01.054
http://dx.doi.org/10.1016/j.ymssp.2021.108400
http://dx.doi.org/10.1016/j.ymssp.2021.108563
http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103800
http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103800
http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103800
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb50
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb50
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb50
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb51
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb51
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb51
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb52
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb52
http://refhub.elsevier.com/S0020-7462(22)00313-4/sb52
http://dx.doi.org/10.1115/1.4032515
http://dx.doi.org/10.1115/1.4032515
http://dx.doi.org/10.1115/1.4032515
http://dx.doi.org/10.1016/j.triboint.2021.107143
http://dx.doi.org/10.1016/j.triboint.2021.107143
http://dx.doi.org/10.1016/j.triboint.2021.107143

	Continuation analysis of overhung rotor bouncing cycles with smooth and contact nonlinearities
	Introduction
	Theory and Methods
	Numerical continuation
	Equations of motion
	Contact definition

	Homotopy from smooth to contact nonlinearity

	Results and Discussion
	The case of low damping
	The case of low damping and high unbalance
	Tanh-contact

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


