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Abstract. We introduce the global conflict graph of DQCNFs (depen-
dency quantified conjunctive normal forms), recording clashes between
clauses on such universal variables on which all existential variables de-
pend (called “global variables”). The biclique covers of this graph cor-
respond to the eligible clause-slices of the DQCNF which consider only
the global variables. We show that all such slices yield satisfiability-
equivalent variations. This opens the possibility to realise this slice using
as few global variables as possible. We give basic theoretical results and
first supporting experimental data.

Keywords: QBF solving, DQBF, 2QCNF, biclique cover problem, conflict graph,
preprocessing, Horn clause-sets, minimal unsatisfiability

1 Introduction

The last two decades have seen enormous progress in quantified Boolean formula
(QBF) theory and technology, as witnessed by the Handbook chapters [2,14].
Core areas are preprocessing techniques, result validation of the solvers, strategy
extraction, and theoretical lower bounds. There are many applications in the
areas of artificial intelligence, planning, two player gaming and synthesis; see the
overview [25]. This progress is complemented by the annual QBF competition
called QBFEval (see [21]). A special class of QBF, 2QBF, is used to model
problems with simple quantifier structure (see [1,24] for basic references). In the
other direction, the more expressive logic DQBF has also seen recent progress in
this decade; see for example [13,26,3,12]. Here solving techniques from SAT and
QBFs are generalised, including preprocessing, strategy extraction and circuit
synthesis. We remind at the central complexity classes covered here: SAT is
NP-complete, 2QBF is ΠP

2 -complete, QBF is PSPACE-complete, and DQBF is
NEXPTIME-complete. In our paper we rely on the CNF-structure, and thus we
will use 2QCNF instead of 2QBF, and DQCNF instead of DQBF.

In our paper we present a new, at first sight astonishing, but essentially
simple theoretical insight into general DQCNFs, which enables transformations
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of problem instances, maintaining satisfiability-equivalence. We consider “global
variables”, universal variables on which every existential variable depends, and
the corresponding “slice” of the CNF (the parts of the clauses using these vari-
ables). The main insight is that we can replace this global slice by any other
global slice (using completely different variables and clauses), with the only con-
dition that the conflict (clashing) patterns between global literals need to be
maintained. These conflict patterns can be represented by bicliques in graphs,
with one biclique corresponding to one variable with its positive and negative
occurrences, establishing the two sides of the biclique (where all vertices from
the two sides are connected). In this way the tools of the theory of biclique
(edge) covers (and also biclique partitions) of graphs can be used to find “bet-
ter” global slices. A natural first metric for “better” is to use fewer bicliques, and
the corresponding decision problem, whether a graph has a biclique cover using
at most a given number of bicliques, is the NP-complete Problem GT18 in the
classical book [11]. The smallest number of bicliques needed to cover a graph is
called the biclique cover number, or also the bipartite dimension. In our context
there is a very natural alternative point of view of biclique-covers/partitions,
namely representing bicliques by boolean variables in CNFs, and then instead of
a biclique-cover we just have a CNF realising the graph, which means its conflict
graph is the given graph; now “fewer bicliques” means “fewer variables”. This
has apparently been first explored in [18,10]. The potential applications of this
new transformation (changing the global slice) are in preprocessing for solving,
and also the proof complexity aspect seems very interesting — how much do
such changes affect the complexity of the formula?

We now run through a simple example, which shows the main topic of the
paper in a nutshell: Using graph theory connected to CNFs to lower the number
of (certain) universal variables in a DQCNF.

1.1 Using fewer universal variables

Consider the DQCNF F with four universal and two existential variables

F := ∀x1, x2, x3, x4 ∃y1(x1, x2, x3) ∃y2(x1, x2, x3, x4) : F,

where F := (y1∨x2∨x3)∧(¬y1∨x1∨¬x2)∧(¬y2∨¬x1∨¬x2∨¬x3∨x4)∧(y2∨¬x4).
The universal variables of F are x1, x2, x3, x4, the existential variables are y1, y2,
with their dependencies shown in brackets. F has a solution: y1 = ¬x2, y2 = x4
(which makes all clauses tautologies). A central concept for this paper is that of a
global variable, which is a universal variable such that all existential variables
depend on it. The global variables of F are x1, x2, x3. The sub-clauses given by
the global variables yield the global slice, which is denoted by gsl(F ) (switching
from logical to clause-notation — the global slice is just a CNF-clause-set):

gsl(F ) =
{
{x2, x3}, {x1, x2}, {x1, x2, x3}, ∅

}
.

The second central concept of this paper is the global conflict graph gcg(F ),
which is the conflict graph of the global slice: the clauses are the vertices, and
an edge connects clauses iff they have clashing literals:
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{x2, x3} {x1, x2}

{x1, x2, x3} ∅

Note that indeed we have a graph, and there is only one edge between {x2, x3}
and {x1, x2, x3} (not two). Now the basic insight of our paper (Corollary 2) is:

Any clause-set realising the conflict-graph
can be used instead of the (given) global slice.

Here by “realising” we just mean that the clause-set has the given conflict-graph.
In our case, the triangle can be realised with just two variables x1, x2, yielding

{x1} {x1, x2}

{x1, x2} ∅

This triangle-realisation is Horn, minimally unsatisfiable, with one clause more
than variables (we will show that this is always available). We obtain the new
DQCNF F ′ (which is satisfiability-equivalent to F , also shown for comparison):

F = ∀ x1, x2, x3, x4 ∃y1(x1, x2, x3) ∃y2(x1, x2, x3, x4) : F

F = (y1 ∨ x2 ∨ x3)∧(¬y1 ∨ x1 ∨ ¬x2)∧(¬y2 ∨ ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4)∧(y2 ∨ ¬x4)

F ′ := ∀ x1, x2, x4∃y1(x1, x2)∃y2(x1, x2, x4) : F ′

F ′ := (y1 ∨ x1) ∧ (¬y1 ∨ ¬x1 ∨ x2) ∧ (¬y2 ∨ ¬x1 ∨ ¬x2 ∨ x4) ∧ (y2 ∨ ¬x4),

where a solution now is y1 = ¬x1, y2 = x4. In general we are aiming at reducing
the number of global variables, by using a smaller CNF-realisation of the global
conflict graph. Since minimising the number of global variables is NP-hard, for
this first study we only consider fixed predetermined replacement-schemes.

1.2 Overview

In Section 2 we present basic definitions related to logic and graph theory. Espe-
cially the conflict graph of clause-sets is given in Definition 1, and in Subsection
2.2 we discuss biclique-covers/partitions, and how they relate to conflict graphs
(Lemma 1). Section 3 then discusses the semantics of global variables in DQC-
NFs. Theorem 1 spells out the basic fact that global variables can be expanded
(they can be eliminated by considering all assignments to them), and that the
results are captured by independent (clash-free) sets of the global conflict graph.
In Definition 7 we make precise what it means that one DQCNF is obtained from
another one by replacing the global slice with an equivalent one, namely having
the same global conflict graph, and being the same after removal of the global
slices. Corollary 2 then says that such DQCNFs are satisfiability-equivalent.

O. Kullmann and A. Shukla374



In Section 4 we study the most basic realisations, “precise” and “imprecise”
ones, the former realising precisely the number of given parallel edges in a given
multigraph. We start in Subsection 4.1 by using “full clause-sets”, which are
clause-sets where all clauses contain the same variables. So these are (imprecise)
realisations of complete graphs, and indeed contain optimal ones (always w.r.t.
the number of variables). In Subsection 4.2 we consider the trivial realisations,
where every clash is realised by one new variable with one positive and one
negative occurrence. A new perspective on basic realisations by “singular vari-
ables”, which occur in one sign only once, is then presented in Subsection 4.3. In
Lemma 2 we give a simple generation process for the class of Horn minimally un-
satisfiable clause-sets (HMUs), and, exploiting this, in Theorem 2 we show that
every graph has a precise realisation by HMUs, computable in linear time. In
Corollary 4 we obtain that every DQCNF with m clauses can be transformed in
linear time into a satisfiability-equivalent one with only the global slice changed,
so that now there are at most m − 1 global variables, using for each connected
component of the global conflict graph a (variable-disjoint) HMU.

We now come to the experimental part of the paper. In Section 5 we present
the first instance of a general scheme for generating 2QCNF, which are DQCNFs
of the form ∀X∃Y : F , where X is the set of global variables, and Y the set of
existential variables. The general scheme starts with a graph G with m vertices,
and chooses some realisation F of G. One chooses the number C ≥ 1 of connected
components of the (overall) global conflict graph, consisting of C vertex-disjoint
copies of G, realised by C variable-disjoint copies of F . This yields altogether
C ·m clauses. On these Cm clauses finally the existential slice is created, with
n variables, which makes altogether three parameters (C,m, n). For the graphs
G we choose complete graphs, and for the realisations the trivial realisation, the
(unique) HMU realisation, and the (optimum) log (full) realisation, considering
only powers of two: m = 2p. Finally for the existential slice we create random
3-CNFs. The basic question we want to explore is Hypothesis SIB: is using fewer
global variables better for solving? We run two leading solvers on a selection of
benchmark sets, which is presented in Section 6; see [19] for the benchmarks. To
a large extend SIB is validated; we found only one parameter triple where the
HMU-realisation could have some edge over the log-realisation, and present the
finding. We conclude in Section 7 with future research directions.

2 Preliminaries

2.1 Logic

We have an infinite set of variables to start with; these variables can be used as
universal or existential (boolean) variables in DQCNFs (see below), or just as
plain (boolean) variables in clause-sets. We usually write v for a variable, using
x for literals, with x the complement of a literal (“negation”). A clause C is a
(finite) set of literals not containing clashing literals, that is, there is no x ∈ C
with x ∈ C. Using L := {x : x ∈ L} for a set L of literals, clash-freeness of clauses
C means the condition C ∩ C = ∅. A clause-set F is a finite set of clauses. We
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use var(x) for the underlying variable of a literal x, var(C) := {var(x) : x ∈ C}
for the set of variables occurring (positively or negatively) in a clause C, and
var(F ) :=

⋃
C∈F var(C) for the set of variables occurring in F . As measures for

clause-sets F we use (taking values in N0 = {x ∈ Z : x ≥ 0}):

1. n(F ) := |var(F )| ∈ N0 for the number of variables in F ;

2. c(F ) := |F | ∈ N0 for the number of clauses in F ;

3. δ(F ) := c(F )− n(F ) ∈ Z for the deficiency of F .

Since in general we can not avoid having clauses with multiplicity, and we
want to name clauses, we also use labelled clause-sets, which are pairs (L,F ),
where L is the (finite) set of (clause-)labels, and F is a map with domain L,
mapping every label l ∈ L to a clause F (l). An ordinary clause-set F is converted
into a labelled clause-set by using F as the label-set, and using the identity on
F as clause-map. A DQCNF is a 4-tuple F = (A,E, F,D), where

– A,E are disjoint sets of variables, the universal and the existential variables;

– F is a clause-set over A∪E (i.e., using literals with variables from A or E);

– D maps every existential variable v to D(v) ⊆ A (the set of universal vari-
ables on which v depends; boolean variables have D(v) = ∅).

A satisfying (total) assignment of F is a map Φ with domain E, where Φ(v)
is a boolean function over the variables D(v), such that F after substitution via
Φ becomes a tautology (over A), where F is understood as a CNF (a conjunction
of clauses, where a clause is a disjunction of literals). A DQCNF F is satisfiable
if it has a satisfying assignment, otherwise F is unsatisfiable. Two DQCNFs are
satisfiability-equivalent if either both are satisfiable or both are unsatisfiable.

2.2 Graphs

We use
(
V
2

)
to denote the set of 2-element subsets of a set V . A graph is a pair

(V,E), with V the (finite) vertex-set, and E ⊆
(
V
2

)
the edge-set (undirected, no

parallel edges or (self-)loops). More generally, a multigraph is a pair (V,E), with
V as before, while E :

(
V
2

)
→ N0 maps every potential edge to its multiplicity

(a natural number ≥ 0). An ordinary graph is converted into a multigraph
by using the characteristic function of the edge-set. In the other direction, the
underlying graph of a multigraph (V,E) has the edge {v, w} iff E({v, w}) ≥ 1.
We use V (G) for the vertex-set of a (multi)graph G, and E(G) for the edge-set
of a graph G resp. for the edge-function of a multigraph G. An independent
set I ⊆ V (G) of a (multi)graph G has no edge e ∈ E(G) with e ⊆ I (resp.
E(G)(e) ⊆ I). For the number of vertices we use |V (G)| ∈ N0, while for the
number of edges we use |E(G)| ∈ N0, which for a multigraph G is defined as
|E(G)| :=

∑
e∈(V (G)

2 )E(G)(e), that is, as the sum of edge-multiplicities. Kn is

the complete graph with n ∈ N0 vertices, that is, V (Kn) = {1, . . . , n} and

E(G) =
(
V (G)

2

)
(thus |E(Kn)| = 1

2n(n− 1)).
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Definition 1. Consider a labelled clause-set (L,F ). The conflict multigraph
cmg(F ) is the multigraph with vertex-set L, where the multiplicity of an edge
{a, b} (for labels a, b ∈ L) is |F (a)∩F (b)|, that is, the number of clashing literals
between the clauses of a and b. The conflict graph cg(F ) is the underlying graph
of cmg(F ). A labelled clause-set (L,F ) precisely-realises a multigraph G, if
cmg(L,F ) = G, and realises a graph G, if cg(L,F ) = G.

We write “precisely-realise” instead of “precisely realise” to avoid grammatical
ambiguity (as in “that precisely realises what I want”).

A biclique in a multigraph G is a pair (A,B) of disjoint vertex sets A,B ⊆
V (G), such that all a ∈ A are adjacent with all b ∈ B. The corresponding
characteristic function maps exactly the edges {a, b} to 1 (all other edges to
zero). A biclique partition of G is a family ((Ai, Bi))i∈I of bicliques in G, such
that the sum of characteristic functions equals the edge-function of G, while
for a biclique cover of G that sum needs to be equal zero exactly for the non-
edges. For graphs G a biclique represents the corresponding set of edges of G,
and a biclique partition yields a partitioning of the edge-set, while a biclique
cover has as its union the edge-set. For (multi)graphs G by bcp(G) ∈ N0 resp.
bcc(G) ∈ N0 the minimum number of bicliques in a biclique partition resp.
cover of G is denoted. For an overview on the complexity of computing bcp(G)
and bcc(G) see [9,4,7]. That boolean clause-sets yield a natural environment for
biclique partitions (and covers) was apparently first realised in [18]:

Lemma 1. For a multigraph G the biclique partitions resp. biclique covers cor-
respond, up to handling of degenerations, to precise-realisation resp. realisations
of G by labelled clause-sets (Definition 1), with the bicliques corresponding to
the variables and their positive and negative occurrences. bcp(G) is the minimal
number of variables in a precise-realisation of G, while bcc(G) is the minimal
number of variables in a realisation of G.

We are mostly interested in (imprecise-)realisations, since we are interested in
using realisations F with as few variables as possible (i.e., minimising n(F ),
which is equivalent to maximising δ(F )). However also precise-realisations can be
of interest, since they are smaller in regards to the number of literal occurrences.

With the example from Subsection 1.1 we have already seen two different re-
alisations of the triangle K3 (thus using the label-set {1, 2, 3}), namely first using
three variables in

{
1 7→ {x2, x3}, 2 7→ {x1, x2}, 3 7→ {x1, x2, x3}

}
, correspond-

ing to the biclique cover by the three bicliques ({2}, {3}), ({1}, {2, 3}), ({1}, {3}),
and second using two variables in

{
1 7→ {x1}, 2 7→ {x1, x2}, 3 7→ {x1, x2}

}
, cor-

responding to the biclique cover by the two bicliques ({1}, {2, 3}), ({2}, {3}). The
latter is a precise-realisation (the cover is a partition).

3 The global conflict graph

We now study the simplest type of universal variables of a DQCNF, called “global
variables”, which are the variables every existential variable depends on. In the
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final result, Corollary 2, we will see that concerning satisfiability (at all), all what
matters about global variables is the clashes they create between the clauses.

Definition 2. A global variable of a DQCNF F = (A,E, F,D) is a universal
variable, such that every existential variable depends on it. We denote the set of
all global variables by gvar(F ) := {v ∈ A : ∀w ∈ E : v ∈ D(w)}.

We note that the notion of a global variable does not depend on the clauses. A
DQCNF might not have any global variable. For a 2QCNF the global variables
are all the universal variables, i.e., gvar(A,E, F,D) = A (that is indeed the
definition of 2QCNF). In order to access the clause-parts with global literals,
we consider a DQCNF as “sliced up” by their variable-sets, for example for a
QCNF ∃X∀Y ∃Z : F we have three natural slices, for X,Y, Z.

Definition 3. For a DQCNF F = (A,E, F,D) and some set V ⊆ A ∪ E of
variables, the V -slice is the labelled clause-set (F, FV ) (using the clauses of F
as labels), such that the clause of label C ∈ F is FV (C) := C[V ] := {x ∈ C :
var(x) ∈ V }. The global slice of F is the gvar(F )-slice, denoted by gsl(F ).

Combining Definition 1, 2, and 3, we obtain the “global conflict graph” as
the conflict graph of the global slice:

Definition 4. For a DQCNF F = (A,E, F,D) the global conflict graph resp.
multigraph is gcg(F ) := cg(gsl(F )) resp. gcmg(F ) := cmg(gsl(F )).

The vertices of the global conflict (multi)graph are the clauses, with the edges
corresponding to clashes between literals over global variables. Note that the
realisations of the global conflict graph are the same as the realisations of the
global conflict multigraph (for realisations, multiplicities of edges are irrelevant).

We need the ability to remove the global variables (obtaining another DQCNF),
for which we introduce the following notation:

Definition 5. For a DQCNF F = (A,E, F,D) let V := gvar(F ) be the set of
global variables, while V ′ := (A ∪E) \ V is the set of other variables. We define

mgvar(F ) := (A \ V,E, {C − V }C∈F , (D(v) \ V )v∈E),

with “m” for “minus”, which is the DQCNF obtained by removing the global
variables from its universal variables (removing all literals with underlying global
variable). Here C − V := C[V ′] (removing all literals with variables from V ).

The semantic contribution of global variables is captured by the global-clash-
free sub-clause-sets and their related sub-DQCNFs:

Definition 6. Consider a DQCNF F = (A,E, F,D). A globally-independent
sub-clause-set of F is a clause-set F ′ ⊆ F which is an independent sub-
set of gcg(F ) (that is, the global variables of F are all pure variables, appear-
ing only in one sign, in F ′). A globally-independent sub-DQCNF is some
mgvar(A,E, F ′, D) for some globally-independent sub-clause-set F ′. Speaking of
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maximal globally-independent, we restrict the F ′ ⊆ F to maximal inde-
pendent subsets of gcg(F ). The set of all maximally globally-independent sub-
DQCNFs is denoted by gind(F ), and two DQCNF’s F ,F ′ are called gind-
equivalent if gind(F ) = gind(F ′).

We note that two gind-equivalent DQCNFs have the same existential variables,
and that gind-equivalence is indeed an equivalence relation. We now come in
Theorem 1 to the basic observation about the role played by global literals (lit-
erals whose underlying variables are global). Most basic is the insight that global
variables are exactly the variables which always allow reducing the problem by
substituting all possible truth values, which we illustrate by a simple example:

Example 1. Let A := {a}, E := {x}, F := {{a, x}, {a, x}}, D1 := (x 7→ A),
D2 := (x 7→ ∅), and finally F i := (A,E, F,Di) for i = 1, 2. Less formally, we have
two QCNFs: F 1 , ∀a∃x : F and F 2 , ∃x∀a : F , where F , a ↔ x. Obviously
F 1 is satisfiable, with the unique solution x , a, while F 2 is unsatisfiable.

We have gvar(F 1) = {a}, while gvar(F 2) = ∅. Substituting a 7→ 0 into F 1

or F 2 yields in both cases the DQCNF G0 = ∃x : ¬x, while a 7→ 1 yields
G1 = ∃x : x. Gε has the unique solution x , ε for ε ∈ {0, 1}. For F 1 we are
then able to get a solution for x, since x depends on a, and thus we can select
the appropriate solution from Gε, depending on the value ε. While x does not
depend on a in F 2, and thus we could only lift the solutions from G0,1 to F 2 if
they would be the same in both cases.

The vertices of the global conflict graphs of F 1,F 2 are the two clauses, which
in F 1 are connected by an edge, while in F 2 they are isolated. So gind(F 1) ,
{∃x : ¬x, ∃x : x}, while gind(F 2) = {F 2}.

Theorem 1. A DQCNF F = (A,E, F,D) is unsatisfiable iff there is some un-
satisfiable maximal globally-independent sub-DQCNF of F .

Proof. We show the equivalent statement: F is satisfiable iff all maximal globally-
independent sub-DQCNFs are satisfiable.

Let V := gvar(F ). F is satisfiable iff for all boolean total assignments ϕ :
V → {0, 1}, after substitution of ϕ into F , the resulting DQCNF ϕ ∗ F :=
(A\V,E, ϕ∗F, (D(v)\V )v∈E) is satisfiable, where ϕ∗F is the usual application of
a partial assignment to a clause-set (removing all satisfied clauses, and removing
the falsified literals from the remaining clauses): The direction from left to right
holds for all partial assignments to universal variables, while the direction from
right to left uses that the variables in V are global, and thus the boolean functions
used in a satisfying assignment of a DQCNF can be made dependent on them.
Now the clauses of ϕ ∗ F come from an independent subset of gcg(F ), since an
edge, that is a clash, would cause one of the two clauses involved to be satisfied.
And for every maximal independent subset F ′ we can find ϕ : V → {0, 1}
satisfying exactly all clauses in F \ F ′, by setting all global literals occurring
in F ′ to 1. Thus the maximal independent F ′ ⊆ F cover exactly the relevant
(maximal) cases of ϕ ∗ F , which shows the assertion. ut

Thus F is unsatisfiable iff gind(F ) contains an unsatisfiable element:
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Corollary 1. Gind-equivalence implies sat-equivalence, that is, if for DQCNF
F ,F ′ holds gind(F ) = gind(F ′), then F is satisfiable iff F ′ is satisfiable.

A sufficient condition for F ,F ′ being gind-equivalent is that F ′ is obtained
from F by replacing the global slice in such a way that the global conflict
graph is maintained. The precise concept is captured by “global-conflict-graph-
equivalence”:

Definition 7. Two DQCNFs F = (A,E, F,D), F ′ = (A′, E′, F ′, D′) are gcg-
equivalent if the following conditions hold:

1. mgvar(F ) = mgvar(F ′).
2. There is a bijection σ : F → F ′, which is an isomorphism from gcg(F ) to

gcg(F ′), such that for all C ∈ F we have C − gvar(F ) = σ(C)− gvar(F ′).

The first condition of Definition 7 says that after removal of the global variables,
we have exactly the same DQCNFs, while the second condition says that the
global literals inserted into the clauses of mgvar(F ) = mgvar(F ′) yield exactly
the same conflict-pattern (and thus the same independent subsets).

Corollary 2. Gcg-equivalence implies gind-equivalence. Thus two gcg-equivalent
DQCNFs are sat-equivalent.

In the following Section 4 we will consider the problem of constructing gcg-
equivalences. This is just a study of graphs G and their (CNF-)realisations,
since all what matters here is the global slice of a DQCNF, which is just a
boolean CNF. Furthermore we only need to consider connected graphs, since
every connected component of G can be handled separately.

4 Realisations

We now introduce the three most basic classes of realisations of multigraphs:

1. In Subsection 4.1 we consider clause-sets, where all clauses contain the
same variables (“full clause-sets”). These realisations realise exactly com-
plete graphs (all vertices connected to each other), and they contain the
optimum realisation (always w.r.t. the number of variables), which we call
log-realisations (of complete graphs).

2. In Subsection 4.2 we consider realisations, which as biclique-partitions/covers
only contain bicliques which are single edges. In this way every multigraph
is (trivially) precisely-realised, and we speak of trivial realisations.

3. In Subsection 4.3 we consider more generally realisations, which correspond
to biclique-partitions/covers containing only claws (connecting one vertex
with many). Here we get better bounds, and it is known that every con-
nected graph with m vertices allows such a precise-realisations with m − 1
variables. Looking closer, one sees that these realisations actually encode
unit-clause propagation, and thus the underlying class of clause-sets is the
class of minimally unsatisfiable Horn clause-sets (which are special cases of
MUs of deficiency 1). We call these realisations HMU-realisations.
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These three representation-classes are based on three classes of clause-sets:

Definition 8. For a clause-set F we introduce the following special cases of
variables v ∈ var(F ):

1. v is full if every clause contains v (positively or negatively);
2. v is 1-singular if it occurs in both signs exactly once;
3. v is singular if it occurs in both signs, and in one sign exactly once.

A clause-set having only full resp. 1-singular resp. singular variables is a full
resp. totally 1-singular resp. totally singular clause-set.

4.1 Full clause-sets

Any full clause-set F realises the complete graph Kc(F ) with c(F ) many vertices.
Indeed the realisations of the complete graphs are exactly the hitting clause-sets
(any two clauses clash; as DNFs also known as orthogonal or disjoint DNFs),
and we will see in Corollary 5 another class of hitting clause-sets. For a complete
graph Km with m ∈ N vertices, it is well-known ([8]) that bcc(Km) = dlg(m)e,
where lg(m) is the binary logarithm of m. Such optimal realisations F are ob-
tained from the canonical (full) clause-set with n := dlg(m)e many variables and
2n clauses by selecting any m clauses.

In contrast to this we have the Theorem of Graham-Pollak ([15]), which
states bcp(Km) = m − 1. Thus there exists a precise-realisation of Km with
deficiency 1 (which is optimal among precise-realisations), and in the already
mentioned Corollary 5 we will see an example for that (the simplest example).
More generally, in Subsection 4.2 we will indeed see that every nonempty con-
nected graph has a minimally unsatisfiable precise-realisation F with δ(F ) = 1.
We note that the above optimal logarithmic realisations by full clause-sets are
minimally unsatisfiable iff m is a power of two (otherwise they are satisfiable);
this could be repaired by removal of literal occurrences for the non-powers of
two, but we have to leave this refinement to future work, and in this paper we
only consider the cases m = 2n.

4.2 Totally 1-singular clause-sets

Obviously, every multigraph G can be precisely-realised by a totally 1-singular
clause-set F with n(F ) = |E(G)|. For a connected G, these precise-realisations
are minimally unsatisfiable iff G is a tree; these are exactly the marginal mini-
mally unsatisfiable clause-sets of deficiency 1 (see Corollary 6). Otherwise they
are satisfiable.

4.3 Totally singular MUs

It is well-known that every connected graph G with m := |E(G)| ≥ 1 vertices
has a claw-decomposition with m − 1 claws, and thus bcp(G) ≤ m − 1. Here a
“claw” is a special biclique, with one side having exactly one vertex. The proof
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uses a elimination-sequence v1, . . . , vm−1 ofG, which removes one vertex after the
other (including incident edges) such that always a (nonempty) connected graph
is maintained. That is, G0 := G, while Gi := Gi−1 − vi for i = 0, . . . ,m− 1: the
defining property of “elimination-sequence” is that each Gi is connected (and
nonempty — eliminating the last vertex would yield a superfluous claw, with
one side being empty). Here for a graph G and a vertex v ∈ V (G) we define
G− v := (V (G) \ {v}, {e ∈ E(G) : v /∈ e}).

The existence of an elimination-sequence, and computing it in linear time in
the size of the graph, can be accomplished as follows (this is well-known, see e.g.
[6, Proposition 1.4.1], but for completeness we discuss it here):

(a) an elimination-sequence for a spanning tree of G (which can be computed in
linear time) is an elimination-sequence for G;

(b) an elimination-sequence for a tree is a sequence removing one leaf after the
other (these are the vertices of degree 1, that is, having exactly one neigh-
bour); by a procedure similar to unit-clause propagation this can be accom-
plished in linear time as well.

A claw in a biclique-partition is a singular variable in the corresponding reali-
sation. Thus we obtain that G has a totally singular realisation F with m − 1
variables (and m clauses, thus of deficiency 1). Now indeed the F constructed
in this way are exactly the minimally unsatisfiable Horn clause-sets, and this
correspondence, based on unit-clause propagation, we discuss in this subsection.

It is useful to introduce the following three classes of clause-sets:

– MU is the class of all minimally unsatisfiable clause-sets, that is, all unsat-
isfiable clause-sets F such that F \ {C} is satisfiable for all C ∈ F .

– HO is the class of all Horn clause-sets, defined by the property that every
clause contains at most one positive literal (i.e., all F such that for all C ∈ F
holds |C ∩ var(C)| ≤ 1).

– HMU := HO ∩MU are the minimally unsatisfiable Horn clause-sets.

For a general overview on minimally unsatisfiable formulas see [17], while [5,
Corollary 10] seems the first source for the fact that HMUs have deficiency 1.

Lemma 2. The class HMU is generated by the following process (each step
called a singular positive unit-extension):

1. Start with {⊥}.
2. For some F already created, choose a variable v /∈ var(F ) and some ∅ 6= F0 ⊆

F , and create a new clause-set F ′ := {{v}} ∪ (F \ F0) ∪ {C ∪ {v} : C ∈ F0}
(that is, add the unit-clause {v}, and add the literal v to the clauses of F0).

Proof. It is easy to see that all generated clause-sets are elements of HMU .
It remains to show that all F ∈ HMU can be generated; we show this by
induction on n(F ). For n(F ) = 0 we have F = {⊥}, which is the base case of the
generation process. So assume n(F ) > 0. F must contain a positive unit-clause
{v} (otherwise every clause would contain a negative literal, due to the Horn-
property, and then setting all literals to 0 would be a satisfying assignment). Due
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to F being minimally unsatisfiable, there is no other clause than {v} containing
the positive literal v. Now setting v to 1 produces F ′ ∈ HMU , where we can
apply the induction hypothesis to F ′, and from F ′ by one step of singular positive
unit-extension with v we obtain F . ut

The following four properties of HMUs follow all easily from the generation
process of Lemma 2 by induction:

Corollary 3. Clause-sets F ∈ HMU have the following properties:

1. F is totally singular (indeed for every variable the positive literal occurs
exactly once).

2. The number n(F ) of variables equals the number of singular unit-extensions
applied, while c(F ) = n(F ) + 1. Thus F has deficiency 1 (δ(F ) = 1).

3. F has exactly one negative clause.
4. The conflict multigraph of F is a graph (at most one conflict between clauses).

So HMUs precisely-realise nonempty connected graphs, and indeed they re-
alise exactly those:

Theorem 2. For every connected nonempty (finite) graph G one can construct
in linear time (in the length of G, i.e., in |V (G)| + |E(G)|) an HMU precisely-
realising G.

Proof. For G compute an elimination-sequence v1, . . . , vm−1 as explained at the
beginning of the subsection, and use these vertices as variables for the generation
process according to Lemma 2, where F0 is the set of neighbours. ut

The novelty of Theorem 2 from the graph-theoretical perspective lies in re-
lating biclique partitions by claws with realisations by HMUs (note that realisa-
tion by any totally singular clause-set of deficiency 1 is trivial). The restriction
to graphs (without parallel edges) is natural here, since our main interest is
in imprecise-realisations (using as few variables as possible). A related result
here for precise-realisations of multigraphs is given in [27], where it is shown
(in graph-theoretical language), that for every graph G the multigraph G′ with
V (G) = V (G′), which has as many edges between vertices as is given by their
distance in G, has a precise-realisation F with δ(F ) ≥ 1; such an F yields a
so-called “addressing” of G.

Corollary 4. For each DQCNF F there is a gcg-equivalent F ′ such that the
global slice of F ′ is a variable-disjoint union of HMUs.

Recall that a “hitting clause-set” is a clause-set F such that every two (dif-
ferent) clauses clash; full clause-sets are a special case. In other words, hitting
clause-sets are exactly the realisations of complete graphs.

Corollary 5. The hitting HMUs are exactly those where for each singular unit-
extension step F0 = F holds. For every n ∈ N0 there is up to isomorphism
exactly one such clause-set, called Sn, with n(Sn) = n.

Corollary 6. The totally 1-singular HMUs are exactly those where for each
singular unit-extension step |F0| = 1 holds; they precisely-realise exactly all trees.
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5 A basic generator

The main target of this first experimental evaluation is the validation or refu-
tation of the Hypothesis SIB: “Small Is Better” — the smaller the number of
variables in the realisation, the easier to solve.

First, to generate test-instances, we take the simplest approach for our gen-
erator, focusing on generating 2QCNFs. For 2QCNFs, the global variables are
all the universal variables (for more information, see Section 3), and thus the
universal slice is the same as the global slice. The following is an example of
2QCNF in the standard QDIMACS form, with 6 variables and 4 clauses:

p cnf 6 4 # parameter line; nvars ncls

a 5 6 0 # universally quantified variables

e 1 2 3 4 0 # existentially quantified variables

-1 -3 4 | 5 0 # | 0

-1 -2 3 | -5 0 # exist | univ 0

1 -2 5 | 6 0 # slice | slice 0

1 3 -4 | -6 0 # | 0

For the presentation, existential literals precede the universal literals, using a sep-
arator ”|”. The existential slice is {{−1,−3, 4}, {−1,−2, 3}, {1,−2, 5}, {1, 3,−4}},
while the universal (global) slice is {{5}, {−5}, {6}, {−6}}. In Section 3 we con-
sidered the case of connected graphs. Real world instances have indeed a large
number of connected (global) components, and so we are using C ∈ N many
components. Altogether the parameters (C, p, n) specify the generated 2QCNF,
where p ∈ N is the (binary log of the) number of vertices in a component, and
n ∈ N is the total number of existential variables.

For the component-conflict-graph of the universal slice, we use the complete
graph with m := 2p vertices (clauses), and q := 1

2m(m− 1) edges — this is the
simplest case where we have an exponential separation between the optimum
realisation and the HMU-realisation. So the total number of generated clauses
is C ·m. In the above QDIMACS we have C = 2 and p = 1 (the smallest value
to obtain a proper 2QCNF), thus q = 1. For the existential slice we choose a
random 3-CNF with n variables and C · m clauses; note that components of
the conflict graph do not play any role here. We use the three realisation from
Section 4 (for each component, with m clauses):

– Trivial: q variables (Subsection 4.2; all clauses have length m− 1).

– HMU: m− 1 variables (Sm−1 from Corollary 5; clause-lengths 1, . . . ,m− 1).

– Log: a full clause-set with p variables (Subsection 4.1).

Example 2. Below we display a generated 2QCNF for all three realisations, with
(C, p, n) = (2, 2, 4). Thus m = 22 = 4 clauses per component, making 2 · 4 = 8
clauses in total. The existential slice is a uniform random 3-CNF with 4 variables
and 8 clauses. For each component, the trivial realisation uses q = 1

2 · 4 · 3 = 6
variables, HMU uses 3 variables, and log uses 2 variables. Leftmost is the trivial
realisation, then the HMU realisation, and finally the logarithmic realisation:
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-1 -3 -4 | 5 6 7 0 -1 -3 -4 | 5 0 -1 -3 -4 | -5 -6 0
1 2 -4 | -5 8 9 0 1 2 -4 | -5 6 0 1 2 -4 | -5 6 0

-2 3 4 | -6 -8 10 0 -2 3 4 | -5 -6 7 0 -2 3 4 | 5 -6 0
1 -3 4 | -7 -9 -10 0 1 -3 4 | -5 -6 -7 0 1 -3 4 | 5 6 0
1 3 4 | 11 12 13 0 1 3 4 | 8 0 1 3 4 | -7 -8 0
2 3 4 | -11 14 15 0 2 3 4 | -8 9 0 2 3 4 | -7 8 0
1 2 -3 | -12 -14 16 0 1 2 -3 | -8 -9 10 0 1 2 -3 | 7 -8 0
2 3 -4 | -13 -15 -16 0 2 3 -4 | -8 -9 -10 0 2 3 -4 | 7 8 0

6 Experimental results

We use two top-performing 2QCNF solvers, DepQBF [20] and CADET [23],
based on the QBFEVAL 2020 competition results [22]. In order to avoid the
known high variability on satisfiable instances, for this first experimental eval-
uation we only considered unsatisfiable instances (throwing away satisfiable in-
stances). Recall that we use parameter values (C, p, n) according to Section 5.
For each parameter value, we generated 1000 instances and report the results
only on the unsatisfiable instances. In general we tried to select values such
that the created benchmarks are of medium hardness, around at most one hour,
considering all three realisations (trivial, HMU, logarithmic). Now it turned out
that the trivial realisation caused mostly very hard instances, and so our selec-
tion process focuses on HMU and logarithmic realisations. We found in general
Hypothesis SIB (“small is better”) well validated: On all parameters considered,
both solvers solved more instances with the logarithmic realisation and had a
better average runtime than with the HMU-realisation. All the experiments were
conducted on Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs with a time limit
of 3600s and memory limit of 8 GB per instance. Memory usage for instance
generation and solving processes of generated benchmarks was minimal (< 1
GB). The summary of the results is as follows, using rounded runtimes:

No. Solver C p n
#inst Solved instances HMU time(s) log time(s)

/1000 triv HMU log mean median mean median

1. D
10 4 8 1000

0 978 1000 280 82 32 23

C 140 384 990 448 39 67 2

2. D
10 4 10 500

0 167 500 1260 884 155 139

C 7 23 236 303 10 637 146

3. D
10 4 12 28

0 14 28 1530 1562 87 87

C 0 3 19 774 56 458 70

4. D
10 5 12 35

0 3 35 1788 1108 1911 1916

C 3 4 5 721 232 1099 375

5. D
12 4 12 384

0 70 384 1176 993 1125 930

C 5 12 149 663 381 736 218

6. D
14 4 11 1000

1 971 1000 301 92 294 172

C 170 327 827 431 27 292 13

The solver column labelled with “D” refers to DepQBF, while “C” is CADET.
The mean and median consider only instances solved by the corresponding solver.
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For example for Row 1D, the HMU-mean 280 as well as the HMU-median 82
relates only to the runtimes on the 978 HMU-instances solved by DepQBF.

The table shows that the Hypothesis SIB is mostly validated for the 2 ·6 = 12
rows (only comparing HMU and log now). First there are 6 fully conforming rows,
namely 1DC, 2D, 3D, 5D, and 6C, where more instances were solved for the log-
realisation, and this also with better mean and median times. Then there are 4
mostly conforming rows 2C, 3C, 4D, and 5C, where we have also clearly more
solved log-realisations, while mean or median could be better for HMU, but only
for a small number of instances. This leaves two exceptional rows: 4C and 6D.
We need to leave 4C for more extensive experimentation: these instances were
very hard for CADET, and the number of solved instances is too small for a
statistical analysis. For the 6D instances with (C, p, n) = (14, 4, 11), the median
solving time for the HMU realisation is better (92s versus 172s), and it solves
nearly as many instances as the logarithmic realisation. However, the average
solving time for the HMU realisation is worse than for the logarithmic realisation
(301s versus 294s; timeouts are not included in these averages). This warrants
further investigation, and the density plot (the second plot shows times ≤ 1000s
only) can provide additional insight:
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The mean values shown in the plots now include the 3600s timeout, which
for HMU increases the mean to 397s. The second plot, which shows times ≤
1000s, reveals that the HMU realisation solves several instances faster than the
logarithmic realisation, but its performance deteriorates over time, with fewer
and fewer instances solved. The first plot, which shows the overall picture, shows
a spike for the HMU realisation at times ≤ 3600s at the tail end, indicating that
29 instances timed out (while the logarithmic realisation solved all instances).
When the timeout is increased from 3600s to 18000s, the mean of the HMU
realisation increases to 445s.

On these instances we could devise a portfolio strategy in which both HMU
and logarithmic realisation instances run in parallel, while aborting HMU reali-
sation relatively quickly — in this way one could achieve a faster average solving
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time overall. While this parameter triple is interesting, more investigation is
required to understand the precise causes of this behaviour.

7 Conclusion and Outlook

We have introduced the global conflict graph of DQCNFs, which represents the
clashes (conflicts) between global literals; for 2QCNFs the global literals are just
the universal literals. We have shown that the corresponding global slice can
be replaced by anything else which just reproduces the conflict graph. We then
switched to investigating (CNF-)realisations of arbitrary graphs, concentrating
on the three most basic classes, given by full clause-sets (complete graphs only),
by variables occurring only twice, and by HMUs (Horn minimally unsatisfiable
clause-sets). For the latter we showed that they can realise everything, and thus
yield the upper bound m − k on the number of global variables needed for any
DQCNF with m clauses and k connected components of the conflict graph;
such a transformation can be computed in linear time. We created then families
of 2QCNF instances, with a relatively small number of connected components,
and consisting of small complete graphs; together with any of the three basic
realisations (full-log, trivial, HMU) this creates the universal slice, while the
existential slice is given by a random 3-CNF. We investigated whether indeed
in this setting fewer universal variables mean easier solving, and found that in
general well supported. There are many future avenues for research and practice:

1. In a forthcoming paper we investigate the global conflict graph of real-world
instances — when and how we can simplify the global slice (using several
metrics), and what effect this has on solving time (for satisfiable and unsatis-
fiable instances). For the minimisation of the number of variables, naturally
SAT-solving is employed.

2. The instances created for this first experimental evaluation can be gener-
alised by a general DQCNF generator, which takes as input-parameters (a)
graph families for the global conflict graphs, (b) realisation strategies to pro-
duce the global slice, and (c) some generator to create the DQCNF minus
the global slice.

3. Especially interesting should be classes where an exponential separation be-
tween the best and an HMU-realisation exists. We have seen the example of
complete graphs; a more complex class are the grid graphs ([16]).

Of course, insights into the behaviour of solvers is an important goal here.

On the theory side, a fundamental question here is to investigate which re-
stricted classes of global conflict graphs still yield completeness for the respective
complexity classes. Finally it seems natural to conjecture that allowing arbitrary
transformations of the global slice can have a huge influence on various complex-
ity issues, like proof-length in various calculi, and the complexities of strategy
extraction.
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