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Abstract

Genotoxicity assessment is a critical component in the development and evaluation of

chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugeni-

city) have been limited to dichotomous hazard classification, while other toxicity end-

points are assessed through quantitative determination of points-of-departures (PODs)

for setting exposure limits. The more recent higher-throughput in vitro genotoxicity

assays, many of which also provide mechanistic information, offer a powerful approach

for determining defined PODs for potency ranking and risk assessment. In order to

obtain relevant human dose context from the in vitro assays, in vitro to in vivo
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extrapolation (IVIVE) models are required to determine what dose would elicit a concen-

tration in the body demonstrated to be genotoxic using in vitro assays. Previous work

has demonstrated that application of IVIVE models to in vitro bioactivity data can pro-

vide PODs that are protective of human health, but there has been no evaluation of how

these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Tech-

nical Committee, under the Health and Environmental Sciences Institute, conducted a

case study on 31 reference chemicals to evaluate the performance of IVIVE application

to genotoxicity data. The results demonstrate that for most chemicals considered here

(20/31), the PODs derived from in vitro data and IVIVE are health protective relative to

in vivo PODs from animal studies. PODs were also protective by assay target: mutations

(8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that

this novel testing strategy could enhance prioritization, rapid screening, and risk assess-

ment of genotoxic chemicals.

K E YWORD S

clastogen, genetic toxicology, in vitro to in vivo extrapolation, mutation, new approach
methodologies

1 | INTRODUCTION

A critical and early step in the safety evaluation of a chemical, regardless

of application (drugs/therapeutics, agrochemicals, pesticides, food addi-

tives, etc.), is the assessment of its genotoxic potential. Consequently,

international regulatory agencies are in need of genotoxicity data to sup-

port hazard and/or risk assessment of data-poor legacy chemicals that

already exist in commerce. Genotoxicity assessment focuses on whether

a chemical damages DNA, that is, alters DNA sequence (mutagen), dam-

ages chromosomes (clastogen), or alters chromosome number (aneugen).

The traditional genotoxicity testing strategies rely on assays designed to

detect gene mutations, structural chromosomal aberrations (clastogeni-

city), and numerical chromosomal aberrations (aneuploidy), and have

been in place for decades with only marginal changes in the data inter-

pretation and test systems used (Cimino, 2006). These standard tests

have played a significant role in hazard identification, but they are lower

throughput and provide limited mechanistic information; thus, there

exists an opportunity for innovations and alternative testing strategies to

modernize genotoxicity evaluation.

Recently, there has been increased international pressure to develop

robust alternatives to animal testing (Kavlock et al., 2018). For example,

the U.S. Environmental Protection Agency recently committed to the

reduction and eventual elimination of animal toxicity testing

(Grimm, 2019), and the Canadian federal government has followed suit

with similar targets (Trudeau, 2021; Government of Canada, 2021).

These ambitious efforts present an opportunity to modernize risk assess-

ment activities, including priority setting and rapid screening assessment,

through the exploration and implementation of new approach methodol-

ogies (NAMs). NAMs refer broadly to any technology, method, and/or

approach supporting risk assessment without the use of animals. NAMs

also pertain to modernized methods for data analysis and interpretation.

Several in vitro NAMs that provide some measure of genotoxicity

already exist. Some examples of NAMs include indicator assays that

measure DNA damage reporter signals, such as ToxTracker® (Hendriks

et al., 2012), Prediscreen (Khoury et al., 2013, 2016a), and MultiFlow®

(Bryce et al., 2018). There are also NAMs that directly measure muta-

tions, such as the FE1 cell-based in vitro version of the MutaMouse

transgenic rodent (TGR) gene mutation assay (Maertens et al., 2017;

White et al., 2003). These NAMs and other more traditional in vitro

approaches for genotoxicity assessment serve as robust tools for hazard

identification and can be used to support a weight of evidence assess-

ment. However, the lack of human dose context from in vitro NAM

results makes it difficult to use the data in a quantitative risk assessment

application, that is, in vivo genotoxicity doses can be compared to human

exposure levels to derive margins of exposure, but in vitro genotoxicity

concentrations cannot. Furthermore, in vivo dose context is required to

improve the utility of NAM data for deriving margins of exposure, which

are important metrics for risk management, as well as for potency rank-

ing and prioritization of genotoxicants.

In vitro to in vivo extrapolation (IVIVE) offers the potential to

enhance the utility of quantitative genotoxicity NAM assay data in

risk assessment applications by offering human dose context to the

in vitro results. Specifically, IVIVE models can translate the bioactive,

or in this case genotoxic, concentrations measured in vitro (e.g., μM)

into a dose expected to induce genotoxiciy in vivo by taking into

account chemical disposition (i.e., absorption, distribution, metabolism,

and excretion). These IVIVE-modeled doses are referred to as admin-

istered equivalent doses (AEDs; in mg/kg bw/day), and they represent

the estimated dose that needs to be administered in vivo to reach a

steady-state concentration in the plasma that is equal to the concen-

tration inducing genotoxicity in the in vitro test system. Potency rank-

ing by AEDs provides a different ranking than using in vitro data

alone, with the AED ranking more relevant to human health (Rotroff

et al., 2010; Wetmore et al., 2012). Thus, IVIVE models have the
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potential to play an important role in the development of a framework

for the interpretation of concentration-response data in a quantitative

risk assessment context when evaluating potentially genotoxic

substances.

In order to apply IVIVE to a broad class of chemicals, high-

throughput toxicokinetics (HTTK) approaches and models have been

developed and validated. These HTTK models are based on pharma-

cokinetic models originally developed by the pharmaceutical industry,

but adaptations to these models have allowed for their application to

go beyond pharmaceuticals and include environmental and industrial

chemicals (Rotroff et al., 2010; Wetmore et al., 2012, 2015;

Wetmore, 2015). Simplification of the model parameters has

increased the coverage of application to a broad chemical space with

increased confidence of implementation (Cohen Hubal et al., 2019;

Wambaugh et al., 2018). Recent case studies have demonstrated that

application of these models to in vitro bioactivity data allows for the

derivation of AEDs to be used as surrogate points-of-departures

(PODs) for risk assessment activities. Specifically, the surrogate PODs

(i.e., AEDs derived from in vitro data) can be used to derive bioactivity

exposure ratios (BERs). BERs are analogous to margins of exposure

(MOEs) and are calculated by dividing the AED by the estimated

human exposure level. These surrogate PODs derived from in vitro

data were demonstrated to be protective of human health (i.e., lower)

relative to PODs derived from traditional animal studies (Paul

Friedman et al., 2020; Health Canada, 2021; Beal et al., 2022). This

trend was observed to be consistent across hundreds of unique che-

micals evaluated using these models. However, most of these previ-

ous case studies did not consider genotoxicity endpoints. Only one

study has demonstrated the utility of IVIVE for deriving AEDs from

in vitro genotoxicity data that are protective of human health for most

chemicals (24/33 chemicals), but the analysis was limited to data from

the micronucleus assay (Kuo et al., 2022). Therefore, more efforts are

needed to demonstrate the ability of these models to identify poten-

tial genotoxic hazards or risks across the various genotoxicity end-

points (Health Canada, 2021).

Here we present a case study that critically evaluates the utility of

applying IVIVE to concentration-response data from different types of

genotoxicity NAMs. This work was conducted under the auspices of the

Health and Environmental Sciences Institute (HESI) Genetic Toxicology

Technical Committee (GTTC), with regulatory commentary and support

provided by participating members of the Accelerating the Pace of

Chemical Risk Assessment (APCRA) initiative. The GTTC IVIVE subgroup,

as part of the broader in vitro genetic toxicology working group, were

the leaders of the case study and consisted of experts in the genetic toxi-

cology field from government agencies, academia, and industry. This case

study focused on 31 reference chemicals, consisting of established geno-

toxicants, which were evaluated by in vivo studies using traditional assay

protocols that are standard in genetic toxicology hazard identification, as

well as in vitro genetic toxicology NAMs. AEDs from in vitro data were

derived by applying quantitative benchmark concentration (BMC) model-

ing and IVIVE to NAM data. This case study aimed to address three main

objectives: (1) determine how these NAM-based AEDs compare to

PODs from relevant animal studies; (2) assess the utility of BERs derived

from AEDs and human exposure estimates in chemical safety evalua-

tions; and (3) use the lessons learned to inform a SWOT (i.e., strengths,

weaknesses, opportunities, threats) analysis. It is envisioned that this

approach could modernize genotoxicity data interpretation, testing

approaches and strategies, as well as support the reduction of animal use

in regulatory decision-making.

2 | MATERIALS AND METHODS

2.1 | New approach methodology and chemical
selection

Following multiple consultations, the members of the GTTC IVIVE

working group reviewed a comprehensive list of genotoxicity NAMs

and identified higher-throughput NAMs that contained sufficient

concentration-response data for inclusion in this case study. Assays

were required to provide some measure of DNA damage response,

mutagenicity, clastogenicity, or aneugenicity. The identified assays

included the in vitro TGR assay, ToxTracker® (Bscl2 and Rtkn reporter

genes only), PrediScreen (γH2AX and phospho-histone H3 [p-H3]),

MultiFlow® (γH2AX, p53, p-H3, and polyploidy), and the in vitro

MicroFlow® flow cytometry version of the micronucleus assay

(i.e., Organization for Economic Co-operation and Development

(OECD) test guideline 487).

The case study was limited to chemicals that were evaluated by

both the aforementioned in vitro NAM assays and traditional in vivo

assays. First, a list was compiled of over 300 possible chemicals with

concentration-response data available across the selected NAMs. This

list was cross-referenced with chemicals in the HTTK library (dis-

cussed in Section 2.3) and databases containing information on in vivo

genotoxicity (discussed in Section 2.4). The expert working group

examined the compiled list of chemicals and identified well-

established genotoxicants for inclusion in this case study. Chemicals

were limited to organic compounds (i.e., no organometallic chemicals

were included) and needed to have been tested by at least one NAM

as well as have known in vivo data available. NAM data were obtained

from the literature or supplied by members of the working group. All

experimental data required concurrent negative controls and the

study design needed to be amenable to BMC modeling (sufficient

number of dose groups). Data where a BMC could not be modeled

due to experimental design (dose spacing, insufficient number of repli-

cates given the variability, insufficient top concentration) were

excluded.

2.2 | Benchmark concentration and benchmark
dose modeling

Benchmark concentration and BMD modeling were conducted on

in vitro concentration-response data and in vivo dose–response data,

respectively, using a modified version of the PROAST R package (ver-

sion 70.0) that allowed for batch modeling (https://github.com/
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MarcBeal/GTTC/tree/main/IVWG/IVIVE). A benchmark response of

100, which corresponds to the concentration or dose required to elicit

a doubling in response, was applied to be consistent with the analysis

performed on ToxTracker data by Boisvert (2020) as the threshold for

positive classification in reporter assays is typically around a 2-fold

response. The BMC or BMD was determined based on the best fit of

either model 3 (3-parameter model: includes background response,

potency, and steepness parameters) or model 5 (4-parameter model:

includes maximum response as fourth parameter) from the nested

exponential family of models. If raw data were available in the litera-

ture or provided by working group members, they were modeled as

replicate data as opposed to summary data. Otherwise, data were

modeled as continuous summary data (i.e., mean response and stan-

dard deviation or standard error with sample size). As a quality control

measure, a BMC100 or BMD100 value was excluded if the correspond-

ing BMCU/BMCL or BMDU/BMDL (upper and lower confidence

interval ratio) was above 100 (White, Zeller, et al., 2019). This filter

removes concentration-response or dose–response data where a

response is not detected or the response is much lower than the

benchmark response. Only BMCs and BMDs from data showing a

positive concentration- or dose–response trend were considered.

ToxTracker BMC100 values were used as previously reported

(Boisvert, 2020).

2.3 | High-throughput toxicokinetics modeling

Generic IVIVE modeling to estimate the AEDs in mg/kg bw/day was

performed using the HTTK R package (version 2.2.1) (Pearce

et al., 2017). Specifically, a three-compartment steady-state (“3com-

partmentss”) model, consisting of the gut, liver, and rest of the body,

was used to estimate the steady-state plasma concentration (Css)

reached after simulating a constant dose rate of 1 mg/kg bw/day. The

relationship between Css and dose rate is assumed to be linear, and

thus, the AED/BMC ratio is proportional to the dose rate divided by

the modeled Css. At a modeled dose rate of 1 mg/kg bw/day, the cal-

culation of AED simplifies to AED = BMC/Css. In other words, the

AED is the administered dose required to reach a steady-state plasma

concentration equal to the compound-specific BMC determined for

the selected genotoxicity NAM.

To run the 3compartmentss model, the R function calc_mc_css

(which.quantile = c(0.95), model = "3compartmentss", output.

units = "uM", species = "Human") was used. The 3compartmentss

model requires the input of different in vitro toxicokinetic parameters

and physical chemical properties: fraction unbound in the plasma pro-

tein, hepatic clearance (Clint), octanol/water partition coefficient (log

P), and molecular weight (MW). For six of the case study chemicals,

there was sufficient input data for the required input parameters

within the HTTK library to model Css values. An additional eight che-

micals had available in vitro toxicokinetics data generated in-house by

Health Canada (HC) following the published HC approach (Health

Canada, 2021). For chemicals with any missing input toxicokinetics

parameters, in silico predictions were obtained using ADMET

Predictor (version 10) following previously used methods (Beal

et al., 2022). In the HC toxicokinetics data, there were some chemicals

with negligible biotransformation. For these chemicals, the Clint was

based on the lower Clint (conservative estimate) determined by the

clearance rate predicted by ADMET Predictor or measured using the

in vitro clearance rate where half-life was set equal to the maximum

assay experimental time (i.e., half-life equals �360 min, Clint = 3.851).

The MW and log P data for all chemicals outside of the HTTK data-

base came from the CompTox Chemicals Dashboard (https://

comptox.epa.gov/dashboard/) (Williams et al., 2017). The add_chem-

table(overwrite = F) function was used to add any missing input data

to the HTTK database prior to modeling. The HTTK data used to run

the 3compartmentss model are provided in Table S1. Most chemicals

lack in vivo toxicokinetic data and therefore, measured in vivo Css

values are not known; however, previous work has established that

the HTTK model predicts Css values that are on the same order of

in vivo measurements for the majority of chemicals (Wambaugh

et al., 2015).

2.4 | Identification of traditional in vivo points
of departure

BMD100 values were modeled following the procedure from

Section 2.2 using data taken from the Transgenic Rodent Assay Infor-

mation Database (TRAID; data freely available on request), the Pig-a

in vivo Gene Mutation Assay Database (Shemansky et al., 2019), and

from compiled in vivo micronucleus data (Soeteman-Hernández

et al., 2015; 2016). For reference chemicals lacking in vivo data from

the listed sources, individual searches of the Chemical Effects in Bio-

logical Systems database (Lea et al., 2017) and literature were con-

ducted by core members of the GTTC working group to identify

PODs. All no-observed-genotoxic-effect-levels (NOGELs) or lowest-

observed-genotoxic-effect-levels (LOGELs) that were reported by the

identified studies were noted, but only LOGELs, indicative of signifi-

cant genotoxic responses, were used as an in vivo POD in this case

study. The in vivo assays included the micronucleus assay, fluores-

cence in situ hybridization (FISH) assay, chromosomal aberration

(CA) assay, aneuploidy assays, TGR assay, Pig-a assay, hypoxanthine

phosphoribosyl transferase (Hprt) assay, and thymidine kinase (Tk)

assay.

2.5 | Estimation of bioactivity exposure ratios

The Systematic Empirical Evaluation of Models 3 (SEEM3) Exposure

Forecasting (ExpoCast) exposure predictions (Ring et al., 2019) were

downloaded from the CompTox Chemicals Dashboard (https://

comptox.epa.gov/dashboard/) (Williams et al., 2017) on April

21, 2021. ExpoCast SEEM3 is calibrated to human exposure predic-

tions deduced from human biomonitoring data and depends on pro-

duction volume as an indicator for environmental release as well as

four distinct exposure pathways: consumer products (near-field),
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nonpesticidal dietary, far-field industrial, and far-field pesticide. In

SEEM3, a consensus approach is applied to a suite of 13 high-

throughput exposure prediction models to estimate human exposure

levels for each chemical. As exposure sources are unknown for most

chemicals, chemical structure and physicochemical properties are

input into machine learning models to quantify the relevance of che-

micals to the four pathways and provide a rapid estimate of potential

human exposure levels. BERs were estimated by dividing the AED of

each chemical by the exposure prediction (upper 95th credible inter-

val from the predicted population median intake rate) from ExpoCast

SEEM3 (U.S. “Total”) where exposure estimates were available.

3 | RESULTS

The list of reference chemicals was narrowed to 31 chemicals that

had at least one source of NAM data and had in vivo data (Table 1).

The included chemicals were genotoxic through various mechanisms

such as DNA alkylation, adduct formation, crosslinking, topoisomerase

inhibition, indirect mechanisms (e.g., oxidative damage, metabolite

inhibition), or for some chemicals a combination of different modes of

action. For these 31 chemicals, an AED (in vitro POD based on

BMC100 and IVIVE) could be compared against an in vivo POD

(i.e., POD based on in vivo BMD100 or LOGEL). There were published

MicroFlow data for 12 chemicals (Allemang et al., 2021), published

MultiFlow data for 13 chemicals with raw data provided by Litron

Laboratories (Dertinger et al., 2019; Bryce et al., 2017), published or

PrediTox-supplied PrediScreen data for 22 chemicals (Khoury

et al., 2013; 2016a; 2016b; Kopp et al., 2018), published TGR data for

18 chemicals identified by White, Luijten, et al. (2019), and published

or Toxys-supplied ToxTracker data for 21 chemicals (Allemang

et al., 2021; Boisvert, 2020).

Across the 31 reference chemicals, a total of 198 AEDs could

be modeled from in vitro data (Table S2). Specifically, BMC100

values could be derived from the concentration-response data and

IVIVE could be applied to estimate an AED from those BMCs.

There were 16 in vitro MicroFlow-based AEDs, 52 MultiFlow-

based AEDs (10 24 h γH2AX, 13 24 h p53, 3 24 h p-H3, 4 24 h

polyploidy, 10 4 h γH2AX, 9 4 h p53, and 3 4 h p-H3), 42 PrediSc-

reen-based AEDs (38 γH2AX and 4 p-H3), 41 ToxTracker-based

AEDs (21 bscl2 and 20 rtkn), and 47 TGR-based AEDs. The AEDs

ranged from 1.34 � 10�6 to 1.90 � 104 mg/kg bw/day, with a

median AED of 1.37 mg/kg bw/day and a geometric mean AED of

1.48 mg/k bw/day.

In contrast to in vitro data that used BMC100 values exclusively,

there were many instances where in vivo BMD100 values could not be

used for POD derivation due to limitations in the animal study design

(i.e., limited dose selection). Thus, LOGELs were also reported for

in vivo genetic toxicity data. For the 31 reference chemicals, there

were 321 in vivo PODs (Table S3). Specifically, there were

177 BMD100 values and 144 LOGELs. There were 22 NOGELs identi-

fied but these were not used in this case study. There were 135 PODs

related to chromosomal damage or aneuploidy (123 micronucleus

assay PODs, 2 FISH assay PODs, 6 CA assay PODs, and 4 PODs from

measurements of aneuploidy by cytogenetic analysis of metaphases).

There were also 186 PODs from gene mutation assays (88 PODs from

the TGR assay, 89 PODs from the Pig-a assay, 5 PODs from the Hprt

assay, and 4 PODs from the Tk assay). The in vivo PODs ranged from

2.79 � 10�6 to 1.00 � 103 mg/kg bw/day, with a median POD of

8.77 mg/kg bw/day and a geometric mean POD of 5.20 mg/kg

bw/day.

3.1 | Comparison of administered equivalent doses
with traditional points-of-departure

In total, a comparison could be made between 198 AEDs and

321 PODs, from a total of 31 chemicals, obtained from either in vitro

AEDs or in vivo data (i.e., BMDs and LOGELs). All of the AEDs and

PODs are shown in Figure 1. All AEDs and PODs for individual chemi-

cals are also displayed in Figures S1–S31 with 90% confidence inter-

vals provided for AEDs and PODs modeled using PROAST. Examples

of these chemical-specific results are highlighted in Figure 2.

3-Nitrobenzanthrone is an example of a chemical where AEDs are

clearly highly protective (i.e., over two orders of magnitude) relative to

PODs, chlorambucil shows where data from indicator assays provide

highly protective AEDs with some overlapping PODs, 4-nitroquinoline

1-oxide shows where the AEDs are more protective (i.e., less than

two orders of magnitude lower than the POD), methyl methanesulfo-

nate (MMS) shows where AEDs are overlapping with PODs, vinblas-

tine shows where AEDs are overlapping or slightly higher than PODs

but mechanism of action (i.e., aneugenicity) is concordant between

AEDs and PODs, and glycidamide shows an example where AEDs are

not protective relative to PODs. Two different POD quantiles (median

and fifth percentile) were compared to account for the effects of out-

liers, limitations in dose/concentration range, and various genotoxic

mechanisms (Figure 3). First, chemicals were arranged based on the

ratio between the median in vitro AED and median in vivo POD. Most

chemicals (20/31) had a median AED that was lower than the median

POD. The log10 median POD-log10 median AED difference ranged

from �1.9 to 3.2 with an average log10 difference of 0.92, indicating

that on average the median AED was around 8.3-fold lower than the

POD on the arithmetic scale. Eleven of the 31 median AEDs were

within 10-fold of the median PODs (three AEDs lower than PODs,

eight AEDS higher than PODs). Fifth percentile PODs were also com-

pared to be consistent with the approach previously applied to

in vitro bioactivity data (Paul Friedman et al., 2020; Beal et al., 2022).

Approximately the same number of chemicals (21/31) had a fifth per-

centile AED that was lower than the fifth percentile POD. The log10

POD-log10 AED difference based on the fifth percentile values ranged

from �3.5 to 4.7 with an average log10 difference of 1.1, indicating

that on average the fifth percentile AED was also around 11.7-fold

lower than the POD on the arithmetic scale. Seven of the 31 fifth per-

centile AEDs were within 10-fold of the fifth percentile PODs (two

AEDs lower than PODs, five AEDs higher than PODs). Considering

that the differences between comparison approaches (i.e., median or
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fifth percentile) were marginal, only the median results are discussed

below.

Using all the available data, there were 11 chemicals where the

median in vitro AED was higher than the median in vivo POD, and

therefore, the in vitro data is unlikely to be protective of human health

compared to the in vivo data (Figure 3). The difference was small for

MMS (1.2-fold higher), resorcinol (1.3-fold), ethyl methanesulfonate

(EMS; 3.4-fold), eugenol (3.6-fold), dimethylnitrosamine (DMNA;

4.2-fold), cyclophosphamide (7.0-fold), glycidamide (7.5-fold), and

acrylamide (9.0-fold). There were three chemicals where the median

in vitro AED was more than one order of magnitude higher than the

median in vivo POD. This was the case for vinblastine (19.6-fold),

1,2-dibromo-3-chloropropane (DBCP; 23.0-fold), and N-ethyl-N-

nitrosourea (ENU; 85.5-fold).

Additional comparisons were made that focused on genotoxic

mode of action (MOA; i.e., mutagenicity, clastogenicity, and/or

TABLE 1 Summary of reference chemicals and in vitro data sources.

Compound CASRN

Number of

unique NAMs
testeda MicroFlow MultiFlow Prediscreen TGR ToxTracker TK source

HTTK
Css (μM)

Etoposide 33419-42-0 5 Y Y Y Y Y HC/HTTK 3.628

N-Ethyl-N-nitrosourea 759-73-9 5 Y Y Y Y Y ADMET 4.255

Camptothecin 7689-03-4 4 Y Y Y Y ADMET 10.35

Cyclophosphamide 50-18-0 4 Y Y Y Y HC/HTTK 2.278

5-Fluorouracil 51-21-8 4 Y Y Y Y ADMET/HTTK 3.626

Methyl methanesulfonate 66-27-3 4 Y Y Y Y ADMET/HC 4.86

Mitomycin C 50-07-7 4 Y Y Y Y ADMET 2.504

4-Nitroquinoline 1-oxide 56-57-5 4 Y Y Y Y ADMET 5.191

Acrylamide 79-06-1 3 Y Y Y ADMET/HC 10.64

Aflatoxin B1 1162-65-8 3 Y Y Y HTTK 4.425

Benzo[a]pyrene 50-32-8 3 Y Y Y HTTK 0.0695

Chlorambucil 305-03-3 3 Y Y Y ADMET/HTTK 232.1

Colchicine 64-86-8 3 Y Y Y HTTK 5.99

7,12-Dimethylbenz[a]

anthracene

57-97-6 3 Y Y Y HTTK 0.686

Eugenol 97-53-0 3 Y Y Y HTTK 0.912

Ethyl methanesulfonate 62-50-0 3 Y Y Y ADMET 5.468

Glycidamide 5694-00-8 3 Y Y Y ADMET 5.18

Griseofulvin 126-07-8 3 Y Y Y ADMET 1.767

Hydroquinone 123-31-9 3 Y Y Y ADMET/HC 2.416

Paclitaxel 33069-62-4 3 Y Y Y HC/HTTK 2.736

Vinblastine 865-21-4 3 Y Y Y ADMET/HTTK 0.0802

PhIP.HClb 105650-23-5 2 Y Y HC 38.41

Emodin 518-82-1 2 Y Y ADMET 21.97

Resorcinol 108-46-3 2 Y Y HTTK 2.738

2-Acetylaminofluorene 53-96-3 1 Y ADMET/HC 35.44

3-Aminobenzanthrone 13456-80-9 1 Y ADMET 20.14

1,2-Dibromo-

3-chloropropane

96-12-8 1 Y ADMET 2.177

Dimethylnitrosamine 62-75-9 1 Y ADMET/HC 10.19

1,8-Dinitropyrene 42397-65-9 1 Y ADMET 24.49

N-Hydroxy-

4-acetylaminobiphenyl

4463-22-3 1 Y ADMET 30.77

3-Nitrobenzanthrone 17117-34-9 1 Y ADMET 18.5

aFor each chemical, a Y designates that the chemical was tested by the corresponding new approach methodology (NAM) at least once. Chemicals are

arranged by the number of unique NAMs tested.
b2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine hydrochloride abbreviated to PhIP.HCl.
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aneugenicity). There were 13 chemicals that had both in vitro and

in vivo gene mutation data from any of the TGR, Pig-a, HPRT, and TK

assays (Figure 4). The majority of gene mutation AEDs were lower

than the corresponding PODs for the same chemical (8/13). The log10

median POD-log10 median AED difference ranged from �1.9 to 2.5

with an average log10 difference of 0.57, indicating that on average

the median AED was around 3.7-fold lower than the median POD on

the arithmetic scale. Three of the 13 median AEDs were within

10-fold of the median PODs. The chemicals with gene mutation AEDs

higher than PODs were etoposide (1.5-fold), cyclophosphamide

(6.8-fold), glycidamide (47.9), acrylamide (54.8-fold), and ENU

(75.9-fold).

There were 12 chemicals that had both in vitro and in vivo micro-

nucleus data to allow for a direct comparison (Figure 5). All but three

of the chemicals (9/12) had a median micronucleus AED that was

lower than the corresponding median micronucleus POD. Eugenol,

5-fluorouracil and cyclophosphamide were the chemicals with higher

micronucleus AEDs, but the differences were small (1.1-, 1.3-, and

4.3-fold higher, respectively). The log10 median POD-log10 median

AED difference ranged from �0.6 to 3.6 with an average log10

difference of 0.86, indicating that on average the median AED was

around 7.3-fold lower than the POD on the arithmetic scale. Eight of

the 12 median AEDs were within 10-fold of the median PODs.

Among the 31 reference chemicals, there were four chemicals

with an a priori classification as likely aneugens: colchicine, griseoful-

vin, paclitaxel, and vinblastine (Kirkland et al., 2016; Oliver

et al., 2006; Bryce et al., 2016; Dertinger et al., 2019). To investigate

the application of the IVIVE approach to aneugens, we only included

the AEDs derived from polyploidy or p-H3 in the comparison with in

vivo PODs. It has previously been demonstrated that exposure to

spindle poison-type aneugens cause p-H3-positive cells to accumu-

late, making this a useful biomarker for studying aneugenicity

(Muehlbauer and Schuler, 2005). These AEDs were compared with

in vivo PODs derived from FISH, micronucleus assay, or aneuploidy

assays (Figure 6). The results show that all aneugens tested had a

median AED that was lower than the median POD. The log10 median

POD-log10 median AED difference ranged from 0.05 to 3.3, and the

average log10 difference was 2.0, indicating that on average the

median AED was around 90-fold lower than the POD on the arith-

metic scale. Only one of the four median AEDs was within 10-fold of

F IGURE 1 Comparison of all administered equivalent doses (AEDs) from in vitro studies and points-of-departures (PODs) from in vivo
studies. The in vitro-derived AEDs (red circles) were compared against the in vivo PODs (blue circles). For the chemicals at the top, the median
AEDs were orders of magnitude lower than the median PODs. In contrast, the chemicals at the bottom had median AEDs that were higher than
median PODs. Confidence intervals for AEDs and PODs are displayed in the Supplementary Figures for the chemical-specific plots.
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the median PODs. Thus, based on the small number of aneugenic che-

micals analyzed, the combination of NAM data and IVIVE provides a

sensitive approach for deriving surrogate PODs for aneugens that errs

on the side of caution.

Finally, a comparison was made between available AEDs derived

from measuring changes in DNA damage markers (γH2AX, p53, bscl2,

and rtkn) and all available in vivo PODs (Figure 7). The AEDs based on

the γH2AX biomarker were compared to PODs for 20 chemicals, and

for 13 chemicals the median AED was lower than the median POD. The

average difference of log10 medians was 0.57, indicating that on average

the median AED based on γH2AX was around 3.7-fold lower on the

arithmetic scale. The AEDs based on the p53 marker were compared to

PODs for 13 chemicals, and for 9 chemicals the median AED was lower

than median POD. The average difference of log10 medians was 0.90,

indicating that on average the median AED based on p53 was around

7.9-fold lower on the arithmetic scale. The AEDs based on the bscl2

marker were compared to PODs for 20 chemicals, and for 13 chemicals

the median AED was lower than median POD. The average difference

of log10 medians was 0.54, indicating that on average the median AED

based on bscl2 was around 3.5-fold lower on the arithmetic scale. The

AEDs based on the rtkn marker were compared to PODs for 19 chemi-

cals, and for 11 chemicals the median AED was lower than median

POD. The average difference of log10 medians was 0.71, indicating that

on average the median AED based on rtkn was around 5.1-fold lower

on the arithmetic scale. The chemicals where AEDs were not protective

were consistent with previous comparisons (i.e., acrylamide, cyclophos-

phamide, EMS, ENU, eugenol, glycidamide, MMS, resorcinol, and vin-

blastine) with the additions of benzo[a]pyrene, colchicine, and

7,12-dimethylbenz[a]anthrene as not protective. In the case of colchi-

cine, the AED based on p53 was protective relative to the in vivo PODs

but the AED based on rtkn was not. These results highlight that the bio-

marker AEDs tend to be closely aligned with in vivo PODs, but that mul-

tiple biomarkers may need to be considered in a weight-of-evidence

assessment to capture the different forms of genotoxicity.

F IGURE 2 Examples of individual chemical administered equivalent dose (AED) and points-of-departures (POD) comparisons with confidence
intervals. Example plots are presented for 3-nitrobenzanthrone, chlorambucil, 4-nitroquinoline 1-oxide, methyl methanesulfonate (MMS),
vinblastine, and glycidamide. Red data points represent in vitro derived AEDs and blue data points represent in vivo derived PODs. The 90%
confidence intervals are shown for data points based on BMD/BMC modeling. The different shapes represent different types of assays: gene
mutation (circle), micronuclei (square), bscl2 (b), rtkn (r), γH2AX (solid triangle), p-H3 (diamond), p53 (inverted empty triangle), polyploidy (+),
and chromosomal aberration (*). The data are arranged from lowest AED or POD at the top to the highest at the bottom.
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3.2 | Derivation of bioactivity exposure ratios

ExpoCast exposure estimates were available for 19 of the 31 reference

chemicals. To be as protective as possible, the minimum AED (lowest

AED obtained from modeling in vitro data) was compared to the 95th

percentile exposure estimate to derive a BER for each of the 19 chemi-

cals (Figure 8; Table S4). BERs were separated into four bins of varying

levels of risk potential based on Beal et al. (2022). Specifically, chemi-

cals were assigned to bins of log10BER < 0 (minimum AED below expo-

sure prediction), log10BER 0–2 (minimum AED within 100-fold of

F IGURE 3 Comparison of administered equivalent doses (AEDs) and points-of-departures (PODs) using median or fifth percentile values. In
panel A, the median in vitro-derived AEDs (red circles) were compared against the median in vivo PODs (blue circles). For the chemicals at the
top, the median AEDs were orders of magnitude lower than the median PODs. In contrast, the chemicals at the bottom had median AEDs that

were higher than median PODs. In panel B, the fifth percentile in vitro-derived AEDs (red circles) were compared against the fifth percentile
in vivo PODs (blue circles). The bottom histograms display the log10 differences between in vivo PODs and in vitro AEDs (C: median; D: fifth
percentile).
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exposure prediction), log10BER 2–3 (minimum AED above 100 but

within 1000-fold of exposure prediction), and log10BER > 3 (minimum

AED greater than 1000-fold of exposure prediction). Previous work

based on ToxCast bioactivity data demonstrated that the first two bins

(log10BER < 0 and log10BER 0–2) were able to identify chemicals con-

cluded to be toxic to human health or the environment based on risk

assessments under Section 64 of the Canadian Environmental Protec-

tion Act (CEPA), 1999 (Health Canada, 2021). However, this approach

was limited to nongenotoxic effects. Applying the same bins to 19 geno-

toxic chemicals, we determined that one chemical was categorized in

the log10BER <0 bin as having the highest potential of concern (etopo-

side). In addition, there were seven chemicals with a log10BER between

0–2 (benzo[a]pyrene, colchicine, 7,12-dimethylbenz[a]anthracene,

hydroquinone, acrylamide, MMS, and ENU). The remaining chemicals

had lower potential for concern with a log10BER between 2 and

3 (nitroquinoline 1-oxide, EMS, eugenol, and emodin), and a log10BER

above 3 (5-fluorouracil, resorcinol, 1,8-dinitropyrene, griseofulvin,

DMNA, DBCP, and glycidamide).

4 | DISCUSSION

Here we present a collaborative retrospective analysis comparing

AEDs, derived from in vitro concentration-response genotoxicity data

and IVIVE modeling, with in vivo PODs, derived from traditional

animal genotoxicity studies. This work builds on earlier studies that

applied a similar approach to quantitative high-throughput screening

data, but lacked a thorough assessment of the various mechanisms for

genotoxicity (Paul Friedman et al., 2020; Beal et al., 2022; Health

Canada, 2021). There were three main objectives for this work:

(1) determine how in vitro derived AEDs compare to in vivo PODs for

the same chemicals; (2) determine whether the derivation of BERs

helps to support the ranking of chemicals based on potential for con-

cern; and (3) use the lessons learned from the case study to develop a

SWOT analysis.

The results of this case study demonstrated that the application

of IVIVE to in vitro genotoxicity data yielded AEDs that are lower or

equal to PODs from animal studies for most (65%) of the chemicals

tested (Figure 1). Ignoring genotoxic MOA, the median AEDs were

lower than median PODs for 20 chemicals, slightly higher for eight

chemicals (i.e., 9-fold and under), and one order of magnitude higher

for three chemicals (Figure 3). When the analysis was based on MOA

(i.e., mutagenicity, clastogenicity, and aneugenicity), the proportion of

chemicals with lower AEDs than in vivo PODs increased for most

MOAs. Specifically, there were 8/13, 9/12, and 4/4 chemicals with

lower AEDs than PODs for gene mutation (Figure 4), clastogenicity

measured by micronuclei (Figure 5), and aneugen markers/aneuploidy

(Figure 6), respectively. Analyzing in vitro DNA damage response bio-

markers (γH2AX, p53, bscl2, and rtkn) alone also provided highly con-

vergent AEDs relative to in vivo PODs (Figure 7). On average, the

F IGURE 4 Comparison of gene mutation administered equivalent doses (AEDs) and points-of-departures (PODs). The in vitro-derived AEDs
from gene mutation data (red circles) were compared against the in vivo PODs from gene mutation data (blue circles).
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AEDs based on DNA damage response biomarkers were on the same

order of magnitude as in vivo PODs (between 3.5- and 7.9-fold lower

on average for the four markers). Overall, the results show that for

the majority of the chemicals, the application of IVIVE to in vitro gen-

otoxicity concentration-response data can provide a reasonable

approximation of a lower bound estimate of in vivo effect levels.

There were some chemicals assessed in this study that had higher

AEDs than in vivo PODs across analyses. In some cases, the AEDs

were only slightly higher than in vivo PODs. For example, eugenol

(Figure S20) and resorcinol (Figure S30) had median AEDs that were

3.6-fold and 1.3-fold higher than in vivo PODs, respectively. During

compilation of in vivo PODs, it was determined that most studies on

eugenol and resorcinol reported a NOGEL (6/8 and 6/7 of PODs,

respectively; NOGEL results not shown nor used in analysis). Thus, in

most cases at guideline-required maximum doses, no genotoxic

effects were seen in vivo. These chemicals have been previously cate-

gorized as “misleading positives” as they often produce negative

results in vivo and positive results in vitro (Kirkland et al., 2016). Thus,

the high AEDs for these chemicals (165–18,967 and 112–951 mg/kg

bw/day for eugenol and resorcinol, respectively) are confounded by

the lower or equivocal genotoxic potential of these chemicals.

Vinblastine (Figure S31) had a median AED 19.6-fold higher than

the median in vivo POD when MOA was not taken into account.

However, vinblastine is an aneugen and when the analysis focused on

markers of aneugenicity (i.e., p-H3), the AED was highly correlated

with the in vivo PODs (Figure 2). DMNA (Figure S16) and DBCP

(Figure S1) had AEDs that were 4.2-fold and 23.0-fold higher than

in vivo PODs, respectively. However, the comparison was limited to

one in vitro gene mutation study and one in vivo micronucleus study

each. Thus, the discrepancies between AEDs and PODs may be

related to the differences in endpoints evaluated for these chemicals.

These findings highlight the importance of considering MOA in the

assessment of both genotoxicity and potency.

Cyclophosphamide (Figure S15) had an AED that was 7.0-fold

higher than the in vivo POD. For the in vitro data, weak responses

were observed using the TGR assay in cryopreserved (Luijten

et al., 2016) and fresh (Zwart et al., 2012) hepatocytes. A weak

response was also observed using the PrediScreen assay in HepG2

cells (Khoury et al., 2013). The ToxTracker system provided AEDs

most closely aligned with in vivo PODs, but the addition of S9 was

required for metabolic activation (Boisvert, 2020; Wills et al., 2021).

Cyclophosphamide is a pro-mutagen that requires activation by cyto-

chrome P450 enzymes, such as CYP2B6 (Kirkland et al., 2016). It is

possible that enzyme expression was not sufficiently present in the

cells that yielded a weak response. In a recent study by Seo et al.

(2022), it was revealed that three-dimensional spheroids from

HepaRG cells had CYP2B6 activity that was 6.7- to 25.0-fold higher

than two-dimensional cell cultures, indicating that three-dimensional

models might be the preferable to studying the genotoxicity of geno-

toxic chemicals requiring metabolic activation. Furthermore, the

F IGURE 5 Comparison of micronucleus administered equivalent doses (AEDs) and points-of-departures (PODs). The in vitro-derived AEDs
from micronucleus data (red circles) were compared against the in vivo PODs from micronucleus data (blue circles).
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cyclophosphamide results highlight the challenge associated with

using a generic model in IVIVE application. Specifically, the IVIVE was

based on the disposition of the parent compound (cyclophosphamide)

as a surrogate for the disposition of the active metabolite(s). Thus,

interpretation of AEDs for genotoxic substances requiring metabolic

activation needs careful consideration during quantitative assessment

of hazard or risk, and there will be a need to prioritize the use of

chemical-specific models for certain chemicals.

There were three chemicals that consistently had higher AEDs

than in vivo PODs regardless of MOA considerations. Acrylamide

(Figure S9) and its metabolite glycidamide (Figure S21) had median

AEDs that were 9.0-fold and 7.5-fold higher than median in vivo

PODs, respectively. In addition, ENU (Figure S26) is a potent mutagen

and is often used as a positive control. The median AED for ENU was

85.5-fold higher than the median in vivo POD. It is possible that there

are considerations related to disposition of these chemicals that are

unaccounted for by the generic HTTK model. For example, ENU is

highly unstable at a neutral pH and is hydrolyzed rapidly (Arcos

et al., 2013), and previous measurements have estimated that the

half-life of ENU in phosphate buffered saline could be as low as

10 min at neutral pH (Tosato et al., 1987). Thus, the nominal concen-

tration for ENU in the aqueous phase that is used in the derivation of

AEDs may be drastically higher than the true concentration that the

cells are exposed to. Other sources of toxicokinetics data or other

computational models, such as mass balance models (Armitage

et al., 2014) or higher-tier physiologically-based toxicokinetic (PBTK)

models, may help minimize discrepancies between AEDs and PODs

for certain chemicals. For example, this could help lower the AED for

volatile chemicals such as DBCP and is worth exploring for both acryl-

amide and glycidamide. However, unstable chemicals like ENU may

not be appropriate for these types of analyses. Further work is

required to establish the domains of applicability and exclusion criteria

for the application of toxicokinetic models to genotoxicants. Without

established exclusion criteria and application guidelines, it will be diffi-

cult to determine the chemicals where IVIVE application can be con-

sidered reliable.

Traditionally, application of genotoxicity data has been limited to

hazard identification and potency ranking of genotoxic potential is

rarely used (White et al., 2020). A detailed case for why the assump-

tions perpetuating the screen-and-bin paradigm for genotoxic chemi-

cals are false was presented in White et al. (2020). Specifically, the

three false assumptions are that (1) genotoxic chemicals are rare and

exposures are avoidable; (2) genotoxicity dose–response relationships

do not contain a low-dose region where the response is indistinguish-

able from background (i.e., dose region mechanistically characterized

by zero-order kinetics); and (3) genotoxicity cannot be regarded as a

bona fide toxicological endpoint. The acknowledgement that these

assumptions are false warrants a shift towards the use of quantitative

F IGURE 6 Comparison of aneugen administered equivalent doses (AEDs) and points-of-departures (PODs). The in vitro-derived AEDs (red
circles) were compared against the in vivo PODs (blue circles). Only data from assays or markers measuring aneuploidy or polyploidy (i.e., in vitro

p-H3 and polyploidy; in vivo FISH, MN, and aneuploidy) were included in the comparison.
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analyses in the assessment of genotoxic chemicals. For example,

recent work conducted under the GTTC demonstrated that derivation

of MOEs based on mutagenicity-based BMDs yielded similar regula-

tory decisions as carcinogenicity-derived MOEs for most chemicals

(Chepelev et al., 2022). Thus, the case has been made that MOEs

based on in vivo genotoxicity data can support risk assessment. How-

ever, there has been no detailed investigation on the application of

genotoxicity-based BERs, which are analogous to MOEs based on

in vivo data for assessing risk.

In this case study, we derived BERs for 19 chemicals with avail-

able in vitro genotoxicity data and modeled exposure estimates

(Figure 8). The minimum AED was used in BER derivation to be con-

servative and demonstrate how the BER approach could be used in

screening or prioritization. Other risk assessment activities may

require more careful evaluation of the AEDs and exposure values used

in BER derivation. The chemicals with exposure estimates were

ranked by BER and were categorized into separate bins capturing

varying levels of potential for concern. Etoposide was the only

chemical in the log10BER < 0 bin and identified as having a high

potential for concern. Etoposide is widely used during chemotherapy

due to its ability to inhibit the topoisomerase II enzyme, thereby dam-

aging DNA in rapidly dividing cancer cells (Attia et al., 2003). The

International Agency for Research on Cancer (IARC) classified Etopo-

side as a carcinogen by itself (group 2A: probably carcinogenic) and in

combination with other drugs (group 1: carcinogenic) (IARC, 2000).

Thus, the BER approach, using ExpoCast to predict the potential for

exposure for nontherapeutic uses, was effective in identifying etopo-

side as a chemical with a higher potential for concern. However, eval-

uation of the uses and exposures that are not related to use as an

ingredient in drugs in the Government of Canada screening assess-

ment report of etoposide, concluded that the lowest therapeutic dose

was several orders of magnitude higher than what humans are

exposed to through environmental media. As such, risks from indirect

exposure to etoposide are likely to be negligible (Environment and Cli-

mate Change Canada, 2014a). In addition to etoposide, benzo[a]pyr-

ene and 7,12-dimethylbenz[a]anthrene also had very low BERs

F IGURE 7 Comparison of administered equivalent doses (AEDs) based on DNA damage indicator assays and all points-of-departures (PODs).
PODs were based on all available in vivo data and AEDs were based on biomarkers from DNA Damage indicator assays: γH2AX (MultiFlow and
PrediScreen), p53 (MultiFlow), bscl2 (ToxTracker), and rtkn (ToxTracker).
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(log10BERs were 0.11 and 0.83, respectively); these chemical have

been identified as potent mutagens that are also ubiquitous in the

environment (IARC, 2010). These findings suggest that the BER

approach is a useful early tier screening tool capable of identifying

genotoxicants based on the certainty of the hazard identification, but

further refinement of estimated exposure is required for quantitative

risk assessment purposes.

In contrast to the low BER chemicals, the chemicals with the high-

est BERs (i.e., log10BER > 3) include environmental contaminants with

regulated exposure levels (DBCP and DMNA) or very low exposure

levels (1,8-dinitropyrene). DBCP and DMNA are contaminants in

ground water and chlorinated drinking water, respectively. DBCP was

previously used as a nematocide in the United States but was eventu-

ally banned from use by the US EPA in the late 1970s (Olsen

et al., 1995). DMNA is a by-product of drinking water chlorination,

and allowable levels and strict reporting measures have been put in

place by regulatory agencies to limit DMNA exposures (Mitch

et al., 2003). The high BERs for the environmental contaminants are

consistent with the regulations in place to minimize exposures.

The high BER group also includes chemicals that are used as com-

mon therapeutics meeting important health needs due to their risk/

benefit profile. Specifically, 5-flourouracil is a nitrogenous base ana-

logue used to treat cancers and viral infections, and IARC classified

5-fluorouracil as group 3 due to inadequate or limited carcinogenicity

data: “The agent (mixture) is unclassifiable as to carcinogenicity in

humans” (IARC, 1987). Similarly, resorcinol, which is used in produc-

tion of adhesives and is used in acne medication, was classified as

group 3 by IARC (IARC, 1987). In contrast, griseofulvin is an anti-

fungal agent that has been classified as a group 2B carcinogen and “is
possibly carcinogenic to humans” as a result of “sufficient evidence”
in experimental animals but “inadequate evidence” in humans

(IARC, 2001). However, griseofulvin is on the World Health Organiza-

tion's list of essential medicines (WHO, 2021) and a risk assessment

concluded that griseofulvin was not entering the environment in a

quantity that may constitute a danger to human health (Environment

and Climate Change Canada, 2014b). The higher BERs for these che-

micals used as therapeutics seem to reflect both a combination of

their lower exposure levels and relatively low genotoxic potential.

Glycidamide was identified as the chemical with the highest BER;

however, considering that glycidamide is formed through the epoxida-

tion of acrylamide and is the main genotoxic metabolite of acrylamide

(National Toxicology Program, 2014; EFSA Panel on Contaminants in

F IGURE 8 Bioactivity exposure ratios. Chemicals were ranked by the bioactivity exposure ratio (BER) calculated by dividing the minimum
administered equivalent dose (AED) by the 95th percentile ExpoCast exposure prediction. Red box indicates log10BER < 0, orange box displays
log10BER 0–2, yellow box displays log10BER 2–3, and green box indicates log10BER > 3.
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the Food Chain (CONTAM), 2015), the BERs of these two chemicals

should be evaluated together. Glycidamide and acrylamide have AEDs

on the same order of magnitude but very different exposure estimates

(Table S4), the latter exposure estimate of acrylamide being more

applicable to the existing risk assessment on acrylamide. In the EFSA's

Scientific Opinion on acrylamide in food (EFSA Panel on Contami-

nants in the Food Chain (CONTAM), 2015; European Food Safety

Authority (EFSA) et al., 2022), it was concluded that the MOEs for

cancer-related effects of acrylamide (425 for adults; 50 for toddlers)

were in a range that was indicative of a concern for public health.

Interestingly, the BER for acrylamide based on the median and mini-

mum AEDs were 361 and 38 and these BERs were slightly lower than

the MOE for adults and toddlers, respectively. Thus, the combined

assessment of glycidamide and acrylamide BERs supports the utility

of genotoxicity-derived BERs as an effective screening tool in chemi-

cal safety evaluations.

TABLE 2 IVIVE genotoxicity-approach: Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis

IVIVE genotoxicity-approach

Strengths:

• Compliant with 3Rs; in vivo OECD genotoxicity test guidelines

require at the very least 20 animals per chemical

• Establishes framework for interpretation of in vitro NAM-based

concentration-response data in a quantitative risk assessment

context

• Contributes to modernization of risk assessment approach for data-

poor chemicals

• Expands on quantitative framework for interpretation of

genotoxicity concentration-response data

• Approach allows for screening and potency ranking of chemicals

with modeled human dose context

• Multi-assay assessment provides mechanistic insight into genotoxic

mode of action

• Genotoxicity data coupled with IVIVE models provide surrogate

PODs protective of human health for most chemicals

• Open source computational models allow for transparency and

transferability of IVIVE approach

Opportunities:

• Other types of NAM data can be integrated into this approach

• Approach could be applied to human cell model to study anticipated

effects in target organ (i.e., human HepaRG instead of rodent liver)

• Automated computational workflow can be applied to a broad chemical

space; such approach can potentially increase the throughput of NAM-

based chemical screening

• Establishment of a domain of applicability by refining/standardizing in

vitro test conditions and understanding the impact of key parameters

on the outcomes of IVIVE for increased confidence in model

implementation

• Mass balance model and higher tier toxicokinetics models may improve

the accuracy of IVIVE and minimize the discrepancies between AEDs

and PODs

• Deriving bioactivity exposure ratios (i.e., margins of exposure) can be

used for quantitative risk assessment activities (i.e., chemical

prioritization and screening)

• Increasing the confidence of models will support transition to in vitro

only testing framework

• Prospective studies with comparable designs and broader scope of

chemicals and NAMs will increase the understanding of the correlation

between AEDs and PODs

Weaknesses:

• Unclear on critical effect size to use in deriving in vitro BMCs; some

weaker responses may have been omitted when applying

computational workflow

• The in vitro-derived PODs are extremely low for certain chemical

classes relative to in vivo PODs

• For some chemicals, the in vitro AEDs are higher than the in

vivo PODs

• For pro-mutagenic compounds requiring metabolic activation, the

current approach relies on kinetics of parent compound as a

surrogate

• The in vitro cell models employed in certain NAMS lack metabolic

capabilities; thus, addition of an exogenous metabolism system (i.e.,

S9) with uncertain human comparability is needed for manifestation

of the genotoxicity

• Uncertainty of optimal in vitro exposure duration and timing of the

assays and standardization across labs

• Key toxicokinetic properties for certain test chemicals may not have

been accounted for by the generic HTTK model, leading to large

discrepancies between AEDs and PODs

• Requires technical expertise for concentration-response analysis,

computational modeling, and interpretation of the analyses in the

context of human exposure

• Uncertainty related to variability and reproducibility of in vivo PODs

used in comparison with in vitro AEDs (Ly Pham et al., 2020)

Threats:

• IVIVE modeling parameter assumptions have not been uniformly

specified or accepted for particular regulatory applications

• Currently no standardization of the testing conditions for the NAMs

exist

• Regulatory hesitance to adopt nonanimal-based approaches for risk

assessment; currently no regulatory guidance or test guidelines

Abbreviations: AED, administered equivalent dose; BMC, benchmark concentration; HTTK, high-throughput toxicokinetics; IVIVE, in vitro to in vivo

extrapolation; NAM, new approach methodology; OECD, Organization for Economic Co-operation and Development; PODs, points-of-departures.
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An intended outcome of the presented case study was to use the

results and lessons learned to inform a SWOT analysis. The specific

purpose was to encourage a discussion on the usefulness and feasible

risk assessment applications of the IVIVE/genetox NAM approach.

The analysis was performed generically and not limited to specific

endpoints or assays. The outcomes of the SWOT analysis are given in

Table 2. Although the application of IVIVE to genotoxicity NAMs is

still in its infancy, apparent by the presence of threats and weak-

nesses, there are several notable strengths of the approach and

opportunities to apply the approach in certain risk assessment

activities.

This case study represents an early step in building confidence in

the application of IVIVE to in vitro genotoxicity data in support of

chemical risk assessment modernization. The results demonstrate that

the IVIVE approach can provide a reasonable lower bound estimate of

the effect levels for in vivo genotoxicity. Furthermore, BERs derived

from modeled AEDs can be used as a tool in screening and prioritiza-

tion efforts. There were some limitations associated with the retro-

spective design of the case study. For example, some traditional

in vivo PODs were based on study designs with limited dose range or

insufficient maximum doses, making it difficult to quantify a precise

in vivo effect level for comparison with AEDs. Thus, for some chemi-

cals there were differences in in vivo PODs across studies that varied

by orders of magnitude (Figure 1). To account for this, the median

AEDs and PODs were compared (Figure 3), and 90% confidence inter-

vals were considered on a chemical-by-chemical basis (Figure 2; Sup-

plementary Figures). There were varying levels of data availability for

AEDs and PODs (one to 50 values), and in some instances, the median

AED or POD was based on a single value. Another limitation was that

there are multiple genotoxic endpoints that can be considered, and

the available endpoints for comparison were not always consistent

between in vitro and in vivo studies. In an effort to modulate the com-

parison between in vitro AEDs and in vivo PODs, comparisons were

made by MOA where possible. Furthermore, many of the in vivo

PODs were based on LOGELs as the study designs were insufficient

for BMD modeling; thus, there was a trade-off between comparison

reliability (in some cases) and the number of chemicals that could be

included in the case study. To build on this work, future prospective

case studies comparing in vitro and in vivo studies with similar designs

and a broader scope of both the chemicals and methods are needed.

For example, these studies should also explore other computational

models (e.g., in vitro disposition models, higher-tier PBTK models),

other routes of exposures (e.g., systemic or potentially inhalation

exposures in organotypic air-liquid-interface airway models (Wang

et al., 2021), dermal exposures in 3D skin models), and more complex

in vitro test systems (e.g., repeated dosing in liver spheroids, multi-

organ-on-a-chip systems, or microphysiological systems). The explora-

tion of these novel in vitro test systems and computational models

will presumably improve the extrapolation of in vitro genotoxicity data

to human responses and lead to the formation of novel genotoxicity

testing strategies that have a lower reliance on the use of animals.

These efforts will ultimately support the modernization of risk

assessment.
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