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A B S T R A C T

The paper proposes a novel nature-inspired optimization technique called Eagle Perching Optimizer (EPO). It
is an addition to the family of swarm-based meta-heuristic algorithms. It mimics eagles’ perching nature to
find prey (food). The EPO is based on the exploration and exploitation of an eagle when it descends from
the height such that it formulates its trajectory in a way to get to the optimal solution (prey). The algorithm
takes bigger chunks of search space and looks for the optimal solution. The optimal solution in that chunk
becomes the search space for the next iteration, and this process is continuous until EPO converges to the
optimal global solution. We performed the theoretical analysis of EPO, which shows that it converges to the
optimal solution. The simulation includes three sets of problems, i.e., uni-model, multi-model, and constrained
real-world problems. We employed EPO on the benchmark problems and compared the results with state-of-
the-art meta-heuristic algorithms. For the real-world problems, we used a cantilever beam, three-bar truss, and
gear train problems to test the robustness of EPO and later made the comparison. The comparison shows that
EPO is comparable with other known meta-heuristic algorithms.
. Introduction

There are a variety of social behaviors in nature that are used to
ccomplish a task. Creatures collaborate and interact in groups, herds,
chools, colonies, and flocks for various reasons, including hunting, pro-
ecting, navigating, and foraging. At the same time, the ultimate goal
f all individual and collective activities is survival. In particular, wolf
acks have one of the most sophisticated social structures coordinating
ith others to accomplish a common goal during hunting. Generally

peaking, wolves have a social direction during the many stages of
unting, including pursuing prey, pestering prey, attacking prey, and
ircling prey are all examples of this [1]. On the other hand, living
hings like Beetle [2–5] live on their own and search for food based on
heir smelling nature.

It is fascinating to see how different species figure out how to get
long best and work together to get the job done. The evolution of
uch perfect and efficient habits over thousands of years is evident.
n light of this, we would draw motivation from them to find an-
wers to our issues. With this in mind, researchers Beni and Wang
n 1989 [6]proposed a new field of study called swarm intelligence
SI). Collective and social intelligence in a group of living organisms in
ature [7] is what SI attempts to emulate artificially. Social intelligence
esearchers seek to understand the contextual norms governing the
nteractions between people that produce this intelligence. Without a

∗ Corresponding author.
E-mail addresses: ameer.khan@connect.polyu.hk (A.T. Khan), Shuaili@ieee.org (S. Li), yyzhang@jnu.edu.cn (Y. Zhang), peckois@ptt.rs (P.S. Stanimirovic).

leader to direct them, the population can be ‘‘simulated’’ by discov-
ering the basic principles that govern interactions among a subset of
individuals.

For the past few years, meta-heuristic algorithms have been vital in
determining optimal solutions to engineering optimization problems.
They are based on a stochastic approach, different from the determin-
istic approach. The deterministic approach provides the exact solution
repeatedly for the same initial conditions. In contrast, in the stochastic
process, the algorithms search randomly over the search space and
every time end up at a different solution, close to optimal [8]. Deter-
ministic algorithms work efficiently in the case of uni-modal problems,
which only have one global solution. However, there is an issue with
multi-modal problems, i.e., with several local minima. It will create a
local minima entrapment, making it problematic for the deterministic
algorithms to search for the global optimum. It is known as local
stagnation, in which an algorithm fails to find the global optimal point
and gets stuck in a local solution. Real-world problems are mainly like
this, containing several local optima.

Stochastic (meta-heuristic) algorithms are based on stochastic op-
erators that ensure randomness [9]. Local stagnation or entrapment is
avoided because of the random nature and will result in a different
solution on each run despite the same initial conditions. These evolu-
tionary algorithms initially made an initial guess by generating random
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candidate solutions. The solutions are iteratively improved until the
final condition meets, finding a globally optimal solution. The evolu-
tionary algorithms bring many advantages: simplicity, derivation inde-
pendency, problem independency, and local optima avoidance [10].

Evolutionary algorithms follow a specific pattern in nature that
involves randomness. They treat an optimization problem as a black
box and are only concerned with inputs and outputs. The primary
process of the optimization remains the same [11]. To achieve the goal,
they improve those candidate solutions iteratively until it reaches the
optimal output.

The avoidance of local stagnation is another advantage of the
evolutionary algorithm. Although there is no theoretical guarantee to
avoid it altogether, its random nature suggests that the chances of
such occurrence are narrow. The exact and accurate approximation
of the global optimum solution is also not guaranteed. Running the
algorithm several times and then taking an average out will improve the
results [12]. Finally, the simplicity of evolutionary algorithms makes
them appealing since they are based on some mechanisms presented
in nature. Understanding those natural phenomena helps us formulate
algorithms we can employ to solve real-world problems and achieve the
desired solutions. They follow the same rules of the defined framework
and treat every problem equally under the specified norms.

There are three optimization algorithms; basic, genetic, and swarm
optimization. Basic algorithms generally involve the derivative and
differential approaches to solve the optimization problem. Genetic
algorithms are inspired by Charles Darwin’s theory of evolution and are
based on a natural selection process that mimics biological evolution.
Swarm optimization is based on those species that work as a group
in nature and provides each other assistance while searching for food
or avoiding predator; Particle Swarm Optimization (PSO) [13], Ant-
Lion Optimizer (ALO) [14], and Dragon Optimization (DA) [15] are
some of those. There are some other popular algorithms which includes;
Grey Wolf Optimizer (GWO) [16], Cuckoo Optimization Algorithm
(COA) [17], Beetle Antennae Search [2,3,18–28], Magnetic Charged
System Search [29], Cuckoo Search (CS) algorithm [30], Gravitational
Search Algorithm (GSA) [31], Democratic Particle Swarm Optimization
(DPSO) [32], and Chaotic Swarming Of Particles (CSP) [33].

In this paper, we propose a new algorithm called eagle perching
optimizer (EPO), inspired by eagles and how they are wired by nature.
It is another meta-heuristic algorithm that is iteratively for the optimal
solution. The main contributions of this paper are listed as follows:

1. The inspiration, mathematical formulation of the algorithm,
global convergence proof, and comparison between the designed
algorithms.

2. Results and discussion based on the comparison between EPO
and other meta-heuristic algorithms.

3. Analyze the algorithm by varying its different controlling vari-
ables and will discuss the results.

4. Engineering problems will be optimized using EPO algorithms,
and then we will compare the results with the rest of the
meta-heuristic algorithm.

The rest of this paper is organized as follows. Section 2 presents the
inspiration behind the algorithm, its mathematical formulation, EPO
algorithm, and its modified version, a comparison between the two,
and mathematical proof for global convergence. Section 3 will discuss
the benchmark testing results and performance comparisons. Section 4
will discuss the constrained problems, in which we will optimize some
real-world engineering optimization problems. Section 5 will conclude
the paper with final remarks.

2. Eagle perching optimizer

In this section, we will first discuss the inspiration behind the
EPO algorithm. The algorithm and mathematical formulation are then
discussed.
2

2.1. Inspiration

The term ‘‘eagle’’ is typically applied to a variety of huge predatory
birds in the Accipitridae family. Their typical length is between 30 and
31 inches, while their wingspan is between 6 and 7 feet [34]. They
normally live in the heavens, and even when it is time to reproduce, the
male and female engage in a special rite of wooing. They soar upward
to a great height. There, they lock their clays together, execute aerobic
exercises as they fall, and shatter just before they hit the ground. Their
life cycle primarily consists of five cycles: hatching, fledgling, juvenile
stage, and adulthood [35]. Females often hatch 2 to 4 eggs.

They come under the category of predators. They typically eat fish,
other aquatic life, and tiny animals for food. Their method of hunting
is distinctive; they soar into the air to perhaps a great height before
focusing on their prey [36]. Once it is located, they swoop down
and seize the prey. They live higher up, as was previously indicated,
typically on tall trees, cliffs, and mountains. They just descend from a
high vantage point, look down at the ground, sample a few places, then
identify the most elevated position among those samples to determine
where to travel next using a natural process. As they get closer, they
reassess a few areas and further solidify their opinion of the highest
place. They carry out this work iteratively and fine-tune their search for
the best location to live. The characteristics of their built-in perching
algorithm are depicted in Fig. 1.

We will exploit this nature and will employ it in optimization to
obtain optimal solutions. In our algorithm, we will make a folk of eagles
search for the optimal elevation to reside. They all will look for the best
solution individually. The algorithm will then pick the best solution out
of all the eagles and compare it with the previously stored best solution.
This process will run iteratively until the algorithm reaches its optimal
solution, after which no further improvement is obtained.

In the next section, we will discuss this algorithm’s mathematical
representation that how we exploited nature and brings it into the
mathematical formulation.

2.2. Mathematical formulation of EPO

The EPO algorithm mimics the eagle perching behavior. Like eagle
this algorithm also finds the highest point of the solution i.e. optimal
solution. In optimization, there is a unique relation between the minima
and maxima of a function i.e., for function 𝑓, 𝑚𝑖𝑛(𝑓 ) = 𝑚𝑎𝑥(−𝑓 ). The
nature defines the working algorithm for all its inhabitants. Eagle has
a very simple but unique way to explore its terrain. Flying high up
in skies it looks around by sampling few points and move towards
the highest point, reaching there it again glance around and repeating
the same process, this recurrence allows an eagle to reach the highest
point. At first that the eagle views the whole terrain from the skies,
which is exploration, after repeating the same exercise for several times
it reaches near the ground, which is exploitation. The transformation
from exploration to exploitation is the key for stochastic optimization
(meta-heuristic) algorithms. This is mathematically formulated in EPS
algorithm as follows:

𝑙𝑠𝑐𝑎𝑙𝑒 = 𝑙𝑠𝑐𝑎𝑙𝑒 ∗ 𝑒𝑡𝑎, (1)

where 𝑙𝑠𝑐𝑎𝑙𝑒 is the scaling variable that will decrease recurrently and
will move from exploration to exploitation, 𝑒𝑡𝑎 is a shrinking constant
0 < eta < 1. To achieve the optimality faster we will employ a group of
i.e. eagles. They will look the search space cooperatively to make the
task easier,

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝑋1,1 𝑋1,2 𝑋1,3 ... 𝑋1,𝑚
𝑋2,1 𝑋2,2 𝑋2,3 ... 𝑋2,𝑚
𝑋3,1 𝑋3,2 𝑋3,3 ... 𝑋3,𝑚
𝑋4,1 𝑋4,2 𝑋4,3 ... 𝑋4,𝑚
⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

, (2)
⎣𝑋𝑛,1 𝑋𝑛,2 𝑋𝑛,3 ... 𝑋𝑛,𝑚⎦
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Fig. 1. It demonstrates the perching nature of the eagle: in (a), the eagle is over its search space; in (b), the eagle samples the search space and looks for the sample at the
ighest point; in (c), the eagle has reached over the sampled point; in (d), the eagle sampled the search space again, but since the space is now small, it will again look for the
ample at the highest point; from (e) to (h).
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here 𝑛 represents the number of particles that we are employing in the
earch space and 𝑚 are the number of dimensions of the search space.

To understand the strolling of particles (eagles) in search space,
onsider a particle at position 𝑥, to roam freely and randomly in all
ossible direction. A 𝛥𝑥 (which is a random value) is added to its
urrent position, i.e., 𝑥 + 𝛥𝑥 at each iteration. As a result, we have,

= 𝑋 + 𝛥𝑋, (3)

here,

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅1,1 𝑅1,2 𝑅1,3 ... 𝑅1,𝑚
𝑅2,1 𝑅2,2 𝑅2,3 ... 𝑅2,𝑚
𝑅3,1 𝑅3,2 𝑅3,3 ... 𝑅3,𝑚
𝑅4,1 𝑅4,2 𝑅4,3 ... 𝑅4,𝑚
⋮ ⋮ ⋮ ⋮

𝑅𝑛,1 𝑅𝑛,2 𝑅𝑛,3 ... 𝑅𝑛,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

with 𝑅 ∈ (−1, 1) denoting the random values. For each element of 𝑋,
e have,

𝑖𝑗 = 𝑋𝑖𝑗 + 𝑙𝑠𝑐𝑎𝑙𝑒 × 𝛥𝑋𝑖𝑗 , (5)

where, 𝑖 represents the 𝑖𝑡ℎ particle and 𝑗 represents the 𝑗𝑡ℎ dimension
of the corresponding position. Since the folk of eagles are high-up in
air with some samples looking for the highest place on ground. They
evaluate their respective set of samples and find out the highest place.
We will replicate that result in our algorithm and will pass the 𝑋𝑖𝑗 to
the function we want to minimize,

𝑌𝑖𝑗 = 𝑓 (𝑋𝑖𝑗 ). (6)

It shows that each particle position gets evaluated. Our goal is to
minimize the given function so as to find the best solution out of all
the eagle positions, which is denoted by 𝑌𝑚𝑖𝑛. We will define two more
variable 𝑌𝐵𝑒𝑠𝑡 and 𝑋𝐵𝑒𝑠𝑡. The evolution of 𝑌𝐵𝑒𝑠𝑡 and 𝑋𝐵𝑒𝑠𝑡 is set as
follows,

if ∶ 𝑌𝑚𝑖𝑛 < 𝑌𝐵𝑒𝑠𝑡 (7)

𝑌𝐵𝑒𝑠𝑡 = 𝑓 (𝑋𝑖𝑗 ) (8)

𝑋𝐵𝑒𝑠𝑡 = 𝑋𝑖𝑗 , (9)

The recursion of this algorithm will ultimately find the optimal
solution of a given function.

2.3. EPO algorithm

With the above explained mathematical formulation of the EPO, we
are now able to discuss its algorithmic procedure in detail. The pseudo
code of the EPO shown in Algorithm 1.
3

Algorithm 1 EPO algorithm
1: procedure
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
3: for < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛥𝑋 𝑢𝑠𝑖𝑛𝑔 (4)
5: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑋 𝑢𝑠𝑖𝑛𝑔 (3)
6: for < 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 > do
7: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑌 𝑢𝑠𝑖𝑛𝑔 (6)
8: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑌𝑚𝑖𝑛𝑓𝑟𝑜𝑚 𝑢𝑠𝑖𝑛𝑔 (6)
9: 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑌𝑚𝑖𝑛 𝑤𝑖𝑡ℎ (7)
0: if (7) 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 then
1: 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (8) 𝑎𝑛𝑑 (9)
2: 𝑟𝑒𝑒𝑣𝑎𝑙𝑢𝑡𝑒 𝑙𝑠𝑐𝑎𝑙𝑒 𝑢𝑠𝑖𝑛𝑔 (1)

2.4. Modified EPO algorithm

To accelerate the convergence of the EPO, we introduce a modifica-
tion. This modification is related to the calculation of 𝑒𝑡𝑎. Specifically,
we will modify the value of 𝑒𝑡𝑎 as well in every iteration as shown
elow:

𝑡𝑎 = 𝑒𝑡𝑎𝑚𝑎𝑥 − 𝑡 ∗
𝑒𝑡𝑎𝑚𝑎𝑥 − 𝑒𝑡𝑎𝑚𝑖𝑛

𝑡𝑠
(10)

where 𝑒𝑡𝑎𝑚𝑎𝑥 and 𝑒𝑡𝑎𝑚𝑖𝑛 represents maximum value (starting value of
𝑡𝑎) and minimum value (ending value of 𝑒𝑡𝑎) respectively. This will
ake the transformation more fast and efficient and the modified

lgorithm with‘‘varying 𝑒𝑡𝑎’’ is shown as Algorithm 2.

Algorithm 2 Modified EPO algorithm
1: procedure
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
3: for < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛥𝑋 𝑢𝑠𝑖𝑛𝑔 (4)
5: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑋 𝑢𝑠𝑖𝑛𝑔 (3)
6: for < 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 > do
7: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑌 𝑢𝑠𝑖𝑛𝑔 (6)
8: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑌𝑚𝑖𝑛𝑓𝑟𝑜𝑚 𝑢𝑠𝑖𝑛𝑔 (6)
9: 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑌𝑚𝑖𝑛 𝑤𝑖𝑡ℎ (7)
0: if (7) 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 then
1: 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (8) 𝑎𝑛𝑑 (9)
2: 𝑟𝑒𝑒𝑣𝑎𝑙𝑢𝑡𝑒 𝑙𝑠𝑐𝑎𝑙𝑒 𝑢𝑠𝑖𝑛𝑔 (1)
3: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑡𝑎 𝑢𝑠𝑖𝑛𝑔 (10)

The algorithm of this modified version is same as that of ‘‘EPO
Algorithm’’ except that in the current version we need to update the
value of 𝑒𝑡𝑎 as well. In the next section we will compare both these
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Table 1
Uni-modal functions.

Function Dim Range 𝑓𝑚𝑖𝑛
𝑔1(𝑥) = 𝛴𝑛

𝑖=1(𝑥 + 2)2𝑖 + 2 30 [−10 10] 2
𝑔2(𝑥) = 𝛴𝑛

𝑖=1|𝑥
2
𝑖 | +𝛱𝑛

𝑖=1|𝑥𝑖| 30 [−10 10] 0
𝑔3(𝑥) = 𝛴𝑛

𝑖=1(𝛴
𝑖
𝑗−1𝑥𝑗 )

2 30 [−10 10] 0

Table 2
Results of uni-modal functions.

Function 𝑓𝑥

𝑔1(𝑥)
EPO avg 2.0116

std 0.00168

EPO (mod.) avg 2
std 0

𝑔2(𝑥)
EPO avg 0.4388

std 0.0604

EPO (mod.) avg 2.934E−22
std 4.956E−38

𝑔3(𝑥)
EPO avg 0.0364

std 0.00284

EPO (mod.) avg 2.189E−23
std 0.00E+00

algorithms to find out which one is more efficient and accurate to find
the optimality of test functions.

We introduced another improvement to the algorithm. After evalu-
ating the values of all the particles using (6), we sort them from best
solution to the worst (11). Out of the sorted solutions we select ‘‘𝑛’’
number of best solutions and store their corresponding coordinates in
an array (13). We average out the array as shown in (14) and the
resultant is use to again calculate the value of function using (6). This
procedure repeats recursively until an optimal solution is achieved.
The purpose of this improvement is to further broaden the scope of
algorithm so instead of relying on single 𝑋𝑏𝑒𝑠𝑡 value now we are relying
on an average value 𝑋𝑎𝑣𝑔 .

𝑌𝑠𝑜𝑟𝑡 = [𝑌𝑏𝑒𝑠𝑡1 𝑌𝑏𝑒𝑠𝑡2 𝑌𝑏𝑒𝑠𝑡3 𝑌𝑏𝑒𝑠𝑡4 ... 𝑌𝑤𝑟𝑜𝑠𝑡] (11)

𝑌𝑠𝑜𝑟𝑡 = [𝑌𝑏𝑒𝑠𝑡1 𝑌𝑏𝑒𝑠𝑡2 𝑌𝑏𝑒𝑠𝑡3 𝑌𝑏𝑒𝑠𝑡4 ... 𝑌𝑏𝑒𝑠𝑡𝑛 ] (12)

𝑠𝑜𝑟𝑡 = [𝑋𝑏𝑒𝑠𝑡1 𝑋𝑏𝑒𝑠𝑡2 𝑋𝑏𝑒𝑠𝑡3 𝑋𝑏𝑒𝑠𝑡4 ... 𝑋𝑏𝑒𝑠𝑡𝑛 ] (13)

𝑋𝑎𝑣𝑔 =
𝑋𝑏𝑒𝑠𝑡1 +𝑋𝑏𝑒𝑠𝑡2 +𝑋𝑏𝑒𝑠𝑡3 ... +𝑋𝑏𝑒𝑠𝑡𝑛

𝑛
. (14)

.5. Comparison between the two algorithms

Our main goal is to optimize the function and search for the best
ossible solution. Our algorithm’s general framework is to employ all
he particles in search space and then look for the one at the best
osition. This iterative process will finally converge the function to its
ptimal value. Both algorithms perform the same job, and we test some
ni-modal and multi-modal functions to evaluate their performance and
fficiency. For the test purposes, we ran both the algorithms 30 time
ith 500 iterations with 𝑙𝑠𝑐𝑎𝑙𝑒 = 500 and 𝑟𝑒𝑠 = 0.05. For the modified
PO, the value of 𝑒𝑡𝑎 deteriorated from 0.9 and 0.8.

.5.1. Comparison based on uni-modal functions
The functions mentioned in Table 1 are uni-modal since they have

nly one convergence point, all of which have 0 as an optimal solution.
he corresponding results are shown in Table 2, from which it is evi-
ent that the modified EPO out-shined the EPO. The 𝑎𝑣𝑔 of the modified
PO is closer to the actual convergence point, with a small 𝑠𝑡𝑑, mainly
ecause of the linear transformation between the exploration and the
xploitation. And by a linear transformation means that the variation
f 𝑒𝑡𝑎 is linear over the time 𝑡. In the original EPO algorithm, there
as less diversity due to the constant value of 𝑒𝑡𝑎, however, in the

odified version, we have given more leverage to the algorithm by

4

ntroducing another variable term 𝑒𝑡𝑎, which allows the algorithm to
ransform between exploration and exploitation robustly.

From Table 1, it is quite evident that the modified EPO algorithm
as more promising results than the EPO with constant 𝑒𝑡𝑎. That is only
ecause, in the revised version, we have better control over the scaling
f the search space.

We used the built-in MATLAB command fmincon to evaluate the
ptimal solution of all functions mentioned and then compared those
esults with both algorithms. Both were efficient and approximated the
ptimal solution, but the careful Comparison showed that the modified
PO outclassed the simple EPO. In the modified EPO algorithm, we
teratively change the value of 𝑒𝑡𝑎 from 0.9 to 0.8, since all uni-
odal function converges to 0 so the amount of accuracy in case of

he modified EPO was between range 10−20 and 10−50 with standard
eviation(std) between the range 10−20 and 10−60. In contrast, the EPO
ith constant 𝑒𝑡𝑎 produced results with accuracy in the range 10−1 and
0−2 with standard deviation (std) between 10−1 and 10−3.

.5.2. Comparison based on multi-modal functions
We applied the algorithms to multi-modal functions as well. In

uch functions, many local optimum solutions lie at different locations
ithin the search space, but only one optimal or global solution exists.
ur algorithm is meta-heuristic-based, so our solution will have ran-
omness despite the same initial conditions. Applying it to multi-modal
unctions can produce different results, which is why we ran it 30 times
nd calculated the standard deviation to determine our algorithm’s
onsistency and accuracy. The functions are shown in Table 3, and their
espective results are shown in Table 4 (see Table 6).

The results presented in Table 9 further clarify that the modified
PO is more efficient than EPO with constant 𝑒𝑡𝑎. As mentioned above,
ulti-modal functions have several optimal solutions within the search

pace, so it may be difficult for an algorithm, especially meta-heuristic,
o identify the most accurate optimal solution. Considering this fact,
e defined a parameter ‘‘std’’ to finds out the standard deviation that
ccurs in 30 runs. It is evident from the result that ‘‘std’’ in the case
f the modified EPO is of 10−2 value which is comparable with the
erformance of EPO accuracy. Still, the modified EPO has shown more
fficient and consistent results.

We analyzed an improved version of the algorithm as well, men-
ioned from (11) to (14) and found that as the value of 𝑛 increases,
he algorithm’s efficiency decreases. We applied the algorithm on both
ni-modal and multi-modal functions and found out the results, shown
n Table 5. The parameters kept were: 𝑡𝑠(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) = 500, 𝑟𝑒𝑠 = 0.05,
𝑖𝑚 = 4, 𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = 30, and 𝑒𝑡𝑎 varies from 0.9 to 0.8.

In the next section, we will verify that using EPO, the convergence
f a function to its optimality is inevitable.

.6. Mathematical proof for global convergence

A series converges when the sequence of its partial sums approaches
limit; that means the partial sums become closer to a given number
hen the number of terms increases. In proof, we will show that the

onvergence of EPO is inevitable. The solution converges to global op-
ima with probability 1 when time 𝑡 goes to infinity. Before starting the
athematical manipulations, we need to consider these three points.

1. Monotonically non-reducing function converges if it has an up-
per bound.

2. The (1) does not imply that the lower bound is the limit. The
limit may be greater than it.

3. Here, convergence means the limit exists. It does not imply the
limit is exactly the global optima.

Monotonicity recall (7) (8) and (9), with this we know 𝑌𝐵𝑒𝑠𝑡(𝑡+1) ≥
𝐵𝑒𝑠𝑡(𝑡). if condition (7) is not met then, 𝑌𝐵𝑒𝑠𝑡(𝑡+1) = 𝑌𝐵𝑒𝑠𝑡(𝑡). For upper
ound recall that we are searching for the maximum. If the maximum
xists, itself constructs the upper bound.
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Table 3
Multi-modal functions.

Function Dim Range 𝑓𝑚𝑖𝑛

𝑔4(𝑥) = −20𝑒𝑥𝑝(−0.2
√

1
𝑛
𝜎𝑛
𝑖=𝑛𝑥

2
𝑖 ) − 𝑒𝑥𝑝( 1

𝑛
𝜎𝑛
𝑖=𝑛 cos(2𝜋𝑥𝑖)) + 20 + 𝑒 30 [−5.12 5.12] 0

𝑔5(𝑥) = (1(1 + 𝑥1 + 𝑥2)2(19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6 ∗ 𝑥1𝑥2 + 3𝑥22)) 30 [−10 10] 3
(30 + (2𝑥1 − 3𝑥2218 − 32𝑥1 = 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22))

𝑔6(𝑥) =
1

4000
𝛴𝑛

𝑖=1𝑥
2
𝑖 −

∏𝑛
𝑖 cos(

𝑥𝑖
𝑖
) + 1 30 [−10 10] 0
Table 4
Results of multi-modal functions.

Function 𝑓𝑥

𝑔4(𝑥)
EPO avg 8.70 × 10−12

std 3.20 × 10−11

EPO (mod.) avg −1.00 × 10−13

std 2.00 × 10−3

𝑔5(𝑥)
EPO avg 3.13

std 4.60 × 10−16

EPO (mod.) avg 3.03
std 0.00

𝑔6(𝑥)
EPO avg 0.00

std 0.00

EPO (mod.) avg 5.72 × 10−3

std 9.47 × 10−3

This proof is particularly for proving that the convergence limit
s exactly the global optima. In order to proceed let us do a little
odification to the (1) as show below.

𝑠𝑐𝑎𝑙𝑒 = 𝑙𝑠𝑐𝑎𝑙𝑒 ∗ 𝑒𝑡𝑎 + 𝐿𝑜 0 < 𝐿𝑜 < 1 (15)

The Eqs. (3) and (15) plays the key role in this proof. Consider the
set of global optima 𝑥𝑜𝑝𝑡 as follow:

𝑥 ∈ 𝑅𝑛, 𝑎𝑏𝑠(𝑥𝑖 − 𝑥𝑜𝑝𝑡𝑖) ≤ 𝑑𝑒𝑙𝑡𝑎 (16)

where 𝑑𝑒𝑙𝑡𝑎 > 0 and 𝑥 = [𝑥𝑖].
Consider the problem: For step 𝑡, how large is the probability to

cast a sample into the above defined neighborhood.

𝛺 = {𝑥 ∈ 𝑅𝑛, 𝑥𝑜𝑝𝑡𝑖 − 𝑑𝑒𝑙𝑡𝑎 < 𝑥𝑖
+𝑟𝑎𝑛𝑑𝑛 < 𝑥𝑜𝑝𝑡𝑖 + 𝑑𝑒𝑙𝑡𝑎}

(17)

Thus the above Probability will be:

𝑃 = 𝑃 (𝑥𝑜𝑝𝑡_1 − 𝑑𝑒𝑙𝑡𝑎 < 𝑥1 + 𝑟𝑎𝑛𝑑𝑛1
< 𝑥𝑜𝑝𝑡_1 + 𝑑𝑒𝑙𝑡𝑎) ∗ 𝑃 (𝑥𝑜𝑝𝑡_2 − 𝑑𝑒𝑙𝑡𝑎

< 𝑥2 + 𝑟𝑎𝑛𝑑𝑛2 < 𝑥𝑜𝑝𝑡_2 + 𝑑𝑒𝑙𝑡𝑎)

∗ ... ∗ 𝑃 (𝑥𝑜𝑝𝑡_𝑛 − 𝑑𝑒𝑙𝑡𝑎 < 𝑥𝑛 + 𝑟𝑎𝑛𝑑𝑛𝑛
< 𝑥𝑜𝑝𝑡_𝑛 + 𝑑𝑒𝑙𝑡𝑎)

𝑃 = [𝐹 (𝑥𝑜𝑝𝑡_1 + 𝑑𝑒𝑙𝑡𝑎 − 𝑥1) − 𝐹 (𝑥𝑜𝑝𝑡_1
− 𝑑𝑒𝑙𝑡𝑎 − 𝑥1)] ∗ [𝐹 (𝑥𝑜𝑝𝑡_2 + 𝑑𝑒𝑙𝑡𝑎 − 𝑥2)

− 𝐹 (𝑥𝑜𝑝𝑡_2 − 𝑑𝑒𝑙𝑡𝑎 − 𝑥2)] ∗ ... ∗ [𝐹 (𝑥𝑜𝑝𝑡_𝑛
+ 𝑑𝑒𝑙𝑡𝑎 − 𝑥𝑛) − 𝐹 (𝑥𝑜𝑝𝑡_𝑛 − 𝑑𝑒𝑙𝑡𝑎 − 𝑥𝑛)]

(18)

where 𝐹 (𝑥) is the cdf (cumulative distribution function) of 𝑁(0, 𝐿),
i.e., 𝐹 (𝑥) = 𝑖𝑛𝑡_(−𝑖𝑛𝑓 )𝑥 ∗ 𝑓 (𝑦)𝑑𝑦 (see Table 8).

We made the assumption that searching space is bounded. And the
diameter of searching space, which is defined as the largest distance
between any two points in the domain, is bounded by D. Then, we can
conclude that,
[𝐹 (𝑥 + 𝑑𝑒𝑙𝑡𝑎) − 𝐹 (𝑥 − 𝑑𝑒𝑙𝑡𝑎)] > 𝑚𝑖𝑛{𝑓 (𝑥 + 𝑑𝑒𝑙𝑡𝑎)

, 𝑓 (𝑥 − 𝑑𝑒𝑙𝑡𝑎)}

∗ 2 ∗ 𝑑𝑒𝑙𝑡𝑎

(19)

For, [𝐹 (𝑥𝑜𝑝𝑡_𝑖+𝑑𝑒𝑙𝑡𝑎−𝑥𝑖)−𝐹 (𝑥𝑜𝑝𝑡_𝑖−𝑑𝑒𝑙𝑡𝑎−𝑥𝑖)], note that 𝑎𝑏𝑠(𝑥𝑜𝑝𝑡_𝑖−
𝑥𝑖) ≤ 𝐷 according to above definition. Thus,

[𝐹 (𝑥𝑜𝑝𝑡_𝑖 + 𝑑𝑒𝑙𝑡𝑎 − 𝑥𝑖) − 𝐹 (𝑥𝑜𝑝𝑡_𝑖 − 𝑑𝑒𝑙𝑡𝑎 − 𝑥𝑖)] > (20)

𝑚𝑖𝑛{𝑓 (𝐷 + 𝑑𝑒𝑙𝑡𝑎), 𝑓 (𝐷 − 𝑑𝑒𝑙𝑡𝑎)} ∗ 2 ∗ 𝑑𝑒𝑙𝑡𝑎

5

where 𝑓 (𝑥) is the pdf of 𝑁(0, 1) Clearly, 𝑓 (𝐷 + 𝑑𝑒𝑙𝑡𝑎) < 𝑓 (𝐷 − 𝑑𝑒𝑙𝑡𝑎) if
𝑑𝑒𝑙𝑡𝑎 ≪ 𝐷. So, 𝑚𝑖𝑛 = 𝑓 (𝐷 + 𝑑𝑒𝑙𝑡𝑎). Therefore, [𝐹 (𝑥𝑜𝑝𝑡_𝑖 + 𝑑𝑒𝑙𝑡𝑎 − 𝑥𝑖) −
𝐹 (𝑥𝑜𝑝𝑡_𝑖 − 𝑑𝑒𝑙𝑡𝑎− 𝑥𝑖)] > 𝑓 (𝐷 + 𝑑𝑒𝑙𝑡𝑎) ∗ 2 ∗ 𝑑𝑒𝑙𝑡𝑎, for 𝑁(0, 1) 𝑓 (𝐷 + 𝑑𝑒𝑙𝑡𝑎)
Can be computed easily. From the above we know the probability of
𝑌 ≥ [𝑓 (𝐷+ 𝑑𝑒𝑙𝑡𝑎) ∗ 2 ∗ 𝑑𝑒𝑙𝑡𝑎]𝑛 = 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 > 0 where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 > 0. In order
to understand how proof works consider the descriptive form below.

• Consider 𝐾 particles, and their probability of falling in the neigh-
borhood of optimal solution is 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.

• The probability of 𝐾 particles never falling in the neighborhood
of optimal solution is (1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛)𝑘.

• For 𝑡 number of iterations this probability will be:
(1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛)𝑘 ∗ ...(1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛)𝑘 = (1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛)𝑘𝑡

This represent the probability that sample will never drop into the
optima neighborhood. So far, we have successfully proved that at
step 𝑡, the probability to sample a point in the neighborhood of
the optimum is greater than 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.

• When 𝑡 goes to infinity, (1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛)𝑘𝑡 goes to 0. This means that
the probability of 𝐾 particles not falling in the neighborhood of
optimal solution reaches to zero as the 𝑡 approaches to infin-
ity. Thus the probability of particles falling in neighborhood of
optimal solution becomes 1.

3. Results and discussion

This section will do the competitive analysis and benchmark the per-
formance of EPO with many other famous meta-heuristic algorithms.
We will use the number of test functions. Based on their nature, they
are divided into two groups: uni-modal functions and multi-modal func-
tions. Uni-modal functions are those with a single optimum solution,
so they are easy to handle since they converge to a single solution.
Contrary, multi-modal functions are those with the number of optimal
solutions. However, they also have one global convergence, but it is
hard to deal with them because of the number of optimal solutions.

For the results verification of EPO, we will compare the results
with Ant-Lion Optimizer (ALO) [14], Dragon Fly Optimizer (DA) [15],
Particle Swarm Optimizer (PSO) [13], which is the best among the
group of swarm optimizers, and GA [37] the best evolution-based
optimization algorithm. In addition to them, there are other recently
developed optimization techniques which includes; Flower Pollination
Algorithm [38], State of Matter Search Algorithm (SMS) [39], Cuckoo
Search Algorithm (CS) [40], Bat Algorithm (BA) [41], and Firefly
Algorithm (FA) [42]. To quantify the results, we will run each function
30 times and calculate their average (avg) and standard deviation (std).

Each of the function will undergo 30 test run, with 500 iteration,
𝑙𝑠𝑐𝑎𝑙𝑒 = 500, and 𝑟𝑒𝑠 = 0.05. Here we will employ both the EPO
algorithm and compare it with the rest of the algorithms mentioned
above.

3.0.1. Comparison result of uni-modal functions
Table 7 shows all the seven test functions used for the comparison.

Table 7 shows results obtained after testing the uni-modal functions,
and it is quite prominent that EPO outperforms the rest of the algo-
rithms. As mentioned in Section 2.5 the range of accuracy both the
EPO algorithm shows is incredible. All the test functions in uni-modal

have a global optimum at 0 (zero).
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Table 5
Results of further modified EPO algorithm.

Function 𝑛 = 2 𝑛 = 4 𝑛 = 6 𝑛 = 8 𝑛 = 10 𝑛 = 12

𝑔2(𝑥) avg 1.82×−24 4.08×−24 2.18×−19 6.08×−08 3.74×−04 3.50×−3

𝑔3(𝑥) avg 1.75×−42 5.09×−22 5.39×−08 1.13×−05 0.67 4.73
𝑔4(𝑥) avg 0.06 0.05 0.02 0.10 0.19 0.40
𝑔5(𝑥) avg 2.99 3.01 3.30 3.31 4.09 4.10
a

l
c

a

s
f
a
𝑎
s

5

o

Table 6
Uni-modal benchmark functions.

Function Dim Range 𝑓𝑚𝑖𝑛
𝐹1(𝑥) = 𝛴𝑛

𝑖=1𝑥
2
𝑖 30 [−100, 100] 0

𝐹2(𝑥) = 𝛴𝑛
𝑖=1|𝑥

2
𝑖 | +𝛱𝑛

𝑖=1|𝑥𝑖| 30 [−10, 10] 0
𝐹3(𝑥) = 𝛴𝑛

𝑖=1(𝛴
𝑖
𝑗−1𝑥𝑗 )

2 30 [−100, 100] 0
𝐹4(𝑥) = 𝑚𝑎𝑥(|𝑥|) 1 ≤ 𝑖 ≤ 𝑛 30 [−100, 100] 0
𝐹5(𝑥) = 𝛴𝑛

𝑖=1[100(𝑥𝑖+1 − 𝑥2𝑖 )
2 30 [−30, 30] 0

+(𝑥𝑖 − 1)2]
𝐹6(𝑥) = 𝛴𝑛

𝑖=1([𝑥𝑖 + 0.5])2 30 [−100, 100] 0
𝐹7(𝑥) = 𝛴𝑛

𝑖=1𝑖𝑥
4
𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1] 30 [−1.28, 1.28] 0

3.0.2. Comparison result of multi-modal functions
The comparison results of the multi-modal functions are shown in

Table 9, it is evident from the table that EPO outclassed the rest of the
algorithms and its average converges to the global optimum solution
with the least standard deviation. It is because of the efficient and vast
exploration of the algorithm that then transformed into exploitation
when it reaches to the region of optimum solution. As mentioned
earlier, multi-modal functions have number of local optimum solution
with only one global solution, the results we obtained showed that EPO
efficiently avoid the local optima and converges to the global solution
only.

4. Analysis of the EPO algorithm

In Section 2, we discussed the performance of both EPO algorithms
in detail. We also discuss how EPO (mod.) is more powerful than EPO.
In Section 3, we did a comprehensive, competitive analysis of both EPO
algorithms with other well-known algorithms, which includes; ant-lion
(ALO), dragon-fly, particle swarm , etc. From the detailed analysis, we
oncluded that in both uni and multi-modal functions EPO outperforms
he testing algorithms and very efficiently achieve the required optimal
oint.

In this section, we will do a detailed analysis of the EPO algorithm;
e will manipulate the controlling unit of the algorithm and will

ind out how it affects the output. Before starting, the algorithm’s
arameters, particularly for this practice, are; 𝑙𝑠𝑐𝑎𝑙𝑒 = 100, 𝑟𝑒𝑠 =
.05, 𝑡𝑠(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 500, 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = 30, 𝑎𝑛𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 2. As explained
arlier in a modified version of the algorithm, we manipulated the value
f 𝑒𝑡𝑎 using (10). The value of 𝑒𝑡𝑎, in fact, faster the transformation from
xploration to exploitation of our algorithm, making it more efficient.
o explore the effect of 𝑒𝑡𝑎 on the working of our algorithm, we choose
hree functions, 𝐹1, 𝐹4, 𝑎𝑛𝑑 𝐹7 from the uni-modal function list 1 and
un the algorithm with three-four different values of the , 𝑒𝑡𝑎, i.e., 0.9,
.9–0.8, 0.9–0.7, and 0.9–0.6. The obtained results are shown in Fig. 2.

It is evident from the figure that as the value of 𝑒𝑡𝑎𝑚𝑖𝑛 decreases,
n other words, as the difference between 𝑒𝑡𝑎𝑚𝑖𝑛 and 𝑒𝑡𝑎𝑚𝑎𝑥 increases,

the test functions converge to their optimal value very fast, and more
efficiently. For example, in the case of 𝐹1, if we run the algorithm

ith 𝑒𝑡𝑎 constant, after 500 iterations, the function ended up at around
0−15, identical results were obtained within 150 iterations when 𝑒𝑡𝑎
aries from 0.9 to 0.8, the same trend is followed further. All three
unctions behave alike, but if we meticulously observe the trend in
7, we notice a slight variation, and the trend is not the same as in
revious cases. There is a bit of irregularity when we move from }}𝑒𝑡𝑎
aries from 0.9 to 0.8ε to }}𝑒𝑡𝑎 varies from 0.9 to 0.7ε and further }}𝑒𝑡𝑎

aries from 0.9 to 0.6ε. From the first two functions, 𝐹1 and 𝐹4, the a

6

lgorithms become more efficient as the range of 𝑒𝑡𝑎 increases. But, 𝐹7
broke this trend and showed that is only sometimes the case. Namely,
as the complexity of a goal function increases, we will find certain
anomalies in the algorithm functioning concerning the range of 𝑒𝑡𝑎.
From the testing of uni-modal functions, we concluded two things:

• For simple functions, as the range of 𝑒𝑡𝑎 increases, the function
will converge faster to the optimal point.

• For complex functions, as the range of 𝑒𝑡𝑎 increases, we will find
anomalies in the system, and there we need to tune the value of
𝑒𝑡𝑎 to achieve the optimal point.

We extended the analysis to the multi-modal problems presented
in Table 3. The generated results are shown in Fig. 3. It proves our
above-mentioned second point that as the complexity of a test function
increases, the algorithm does not sustain the general trend of 𝑒𝑡𝑎. As the
range of 𝑒𝑡𝑎 increases, the convergence of the functions gets affected.
Since multi-modal functions are more complex than uni-modal (because
they have several local minima and one global minima), it is not wise to
accelerate the transformation from the exploration to the exploitation
phase, as there is an excellent chance to avoid the optimal global
solution. It is observed, in that case, we need to tune the range of 𝑒𝑡𝑎
to obtain the optimality.

Function 𝐹8 shows a complex search space; out of all the tested
functions, it is the only one whose optimal solution depends on the
number of dimensions employed in the algorithm. When we bench-
marked the EPO algorithm, the optimal solution obtained for this
function differed from the one we obtained here. This is because the
dimension was 30, and here it is 2. 𝐹1 shows a fluctuation in the results
obtained using different ranges of 𝑒𝑡𝑎; despite the fluctuation, if we
ook at the graph, we can see that 𝑠𝑡𝑑 of this function is around 370
onsidering the different ranges of the 𝑒𝑡𝑎. Similarly, 𝐹9 also shows the

same trend. The common thing in both functions was that they were
close to their optimal solution despite the fluctuations. The 𝐹10 shows

very different trend; for the first three cases of the 𝑒𝑡𝑎, it shows more
or less the same trend but for }}𝑒𝑡𝑎 varies from 0.9 to 0.6ε it shows a
very different trend, almost a constant line and not closer to the optimal
solution as compare to other cases.

The other controlling parameters involved in the algorithm are; 𝑙𝑠𝑐𝑎𝑙𝑒
and 𝑟𝑒𝑠; both are directly or indirectly related to 𝑒𝑡𝑎. 𝑙𝑠𝑐𝑎𝑙𝑒 represents
the area of search space that our algorithm will explore, and its value
should be manageable and manageable in both cases. It may need help
to track the optimum point accurately. 𝑟𝑒𝑠 is also a controlling variable
because if its value is higher than 𝑙𝑠𝑐𝑎𝑙𝑒, then we will have 𝑒𝑡𝑎 > 1, which
means that on each iteration, 𝑙𝑠𝑐𝑎𝑙𝑒 will become greater and greater, so
it will be unable for the algorithm to track the optimal point.

We can further tune the results with the help of 𝑡𝑠 and the number
of runs. Here, 𝑡𝑠 represents the number of iterations to obtain a more
table output; it is better to have it in triple digits, but it varies from
unction to function so that we can set it accordingly. After running the
lgorithm number of times, e.g., 10 to 20 times, obtaining the average
𝑣𝑔 and standard deviation 𝑠𝑡𝑑 of the results, it will produce stable
olutions.

. Constrained optimization using EPO

In this section, we will apply the EPO algorithm to some constrained
ptimization problems and will compare the results with two other
lgorithms: ALO (ant-lion optimizer) and DA (dragon optimizer). Each
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Table 7
Results of uni-modal benchmark functions.

Function EPO (mod.) EPO DA ALO PSO

avg std avg std avg std avg std avg std

F1 3.93 × 10−45 6.56 × 10−61 1.14 × 10−02 1.66 × 10−03 2.85 × 10−18 7.16 × 10−18 2.59 × 10−10 1.65 × 10−10 2.70 × 10−09 1.00 × 10−09

F2 3.26 × 10−22 4.96 × 10−38 4.39 × 10−01 5.83 × 10−02 1.49 × 10−05 3.76 × 10−05 1.84 × 10−06 6.58 × 10−07 7.15 × 10−05 2.26 × 10−05

F3 1.04 × 10−52 1.95 × 10−68 8.47 × 10−09 2.45 × 10−08 1.29 × 10−06 2.10 × 10−06 6.06 × 10−10 6.34 × 10−10 4.71 × 10−10 1.49 × 10−066
F4 1.04 × 10−52 1.95 × 10−68 8.47 × 10−09 2.45 × 10−08 1.29 × 10−06 2.10 × 10−06 6.06 × 10−10 6.34 × 10−10 4.71 × 10−06 1.49 × 10−06

F5 0.00 0.00 0.00 0.00 7.60 6.78 0.34 0.10 0.12 0.21
F6 0.00 0.00 8.03 × 10−03 3.30 × 10−03 4.17 × 10−16 1.32 × 10−01 2.53 × 10−10 1.09 × 10−10 5.23 × 10−07 2.74 × 10−06

F7 1.77 × 10−03 0.00 1.38 × 10−03 2.64 × 10−03 1.02 × 10−02 4.69×10−03 4.292 × 10−03 5.08 × 10−03 1.398 × 10−03 1.26 × 10−03

SMS BA FPA CS FA

avg std avg std avg std avg std avg std

F1 0.05 0.01 0.77 0.52 1.06 × 10−07 1.27 × 10−07 6.50 × 10−03 2.05 × 10−04 0.03 0.01
F2 6.84 × 10−03 1.577 × 10−03 0.33 3.81 6.24 × 10−04 1.76 × 10−04 0.21 3.98 × 10−02 0.05 0.01
F3 0.96 0.82 0.11 0.76 5.67 × 10−08 3.90 × 10−08 0.24 0.21 4.93 × 10−02 1.94 × 10−02

F4 0.27 5.74 × 10−03 0.19 0.89 3.83 × 10−03 2.18 × 10−03 1.12 × 10−05 8.25 × 10−06 0.14 0.03
F5 0.08 0.14 0.33 0.30 0.78 0.36 7.19 × 10−03 7.22 × 10−03 2.17 1.44
F6 0.12 0.08 0.77 0.67 1.09 × 10−07 1.25 × 10−07 5.95 × 10−05 1.08 × 10−06 0.05 0.01
F7 3.04 × 10−04 2.58 × 10−04 0.13 0.11 3.10 × 10−03 1.36 × 10−03 1.32 × 10−03 7.28 × 10−04 8.53 × 10−04 5.04 × 10−04
Table 8
Multi-modal benchmark functions.

Function Dim Range 𝑓𝑚𝑖𝑛

𝐹8(𝑥) = 𝛴𝑛
𝑖=1 − 𝑥𝑖 sin(

√

|𝑥𝑖|) 30 [−500, 500] −418.9 × Dim𝑎

𝐹9(𝑥) = 𝛴𝑛
𝑖=1[𝑥

2
𝑖 − 10 cos(2𝜋𝑥𝑖) + 10] 30 [−5.12, 5.12] 0

𝐹10(𝑥) = −20𝑒𝑥𝑝(−0.2
√

1
𝑛
𝜎𝑛
𝑖=𝑛𝑥

2
𝑖 ) − 𝑒𝑥𝑝( 1

𝑛
𝜎𝑛
𝑖=𝑛 cos(2𝜋𝑥𝑖)) + 20 + 𝑒 30 [−5.12, 5.12] 0
Table 9
Results of multi-modal benchmark functions.

Function EPO (modified) EPO DA ALO PSO

avg std avg std avg std avg std avg std

F8 −6.23 × 1003 7.67E−12 −7.11 × 1004 0.00E+00 −2.85 × 1003 383.6 −1.60 × 1003 314.4 −1.36 × 1003 146.4
F9 −290.0 0.00 −286.1 5.99 × 10−14 16.01 9.47 7.71 × 10−06 8.45 × 10−06 0.27 0.21
F10 −1.06 × 10−13 2.058 × 10−03 −8.07 × 10−12 1.47 × 10−11 0.23 0.48 3.73 × 10−15 1.50 × 10−15 1.11 × 10−09 2.39 × 10−11

SMS BA FPA CS FA

avg std avg std avg std avg std avg std

F8 −4.20 × 10−06 9.36 × 10−16 −1.06 × 10−03 8.98 × 10−03 −1.84 × 10−04 5.04 × 10−03 −2.09 × 10−03 7.61 × 10−03 −1.24 × 10−03 3.53 × 10−03

F9 1.32 0.32 1.23 0.68 0.27 0.06 0.12 0.02 0.26 0.18
F10 8.88 × 10−06 8.56 × 10−09 0.12 0.043251 730 × 10−03 7.09 × 10−03 8.16 × 10−09 1.63 × 10−08 0.16 0.05
Fig. 2. Search space of uni-modal functions, convergence with constant 𝑒𝑡𝑎, convergence when 𝑒𝑡𝑎 varies from 0.9 to 0.8, convergence when 𝑒𝑡𝑎 varies from 0.9 to 0.7, convergence
when 𝑒𝑡𝑎 varies from 0.9 to 0.6.
7
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Fig. 3. Search space of multi-modal functions, convergence with constant 𝑒𝑡𝑎, convergence when 𝑒𝑡𝑎 varies from 0.9 to 0.8, convergence when 𝑒𝑡𝑎 varies from 0.9 to 0.7, convergence
hen 𝑒𝑡𝑎 varies from 0.9 to 0.6.
Fig. 4. The cantilever beam design problem. (a) is the design of cantilever, (b) shows that all the five blocks of the cantilever are in decreasing size, (c) represents that the
hickness of each square block remains constant whereas the length 𝑥 is the one needs to optimize.
Table 10
Results of cantilever beam design problem.

Algorithms 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑓𝑥 𝑡 (s)

EPO avg 6.00 5.25 4.50 3.57 2.13 13.36 1.31
std 0.93 × 10−15 0.93 × 10−15 0.93 × 10−15 0.93 × 10−15 0.46 × 10−15 1.87 × 10−15

EPO (mod.) avg 6.01 5.26 4.53 3.48 2.17 13.36 1.19
std 0.93 × 10−16 0.00 0.93 × 10−16 0.93 × 10−16 0.46 × 10−16 1.87 × 10−15

ALO avg 6.03 5.29 4.48 3.50 2.15 13.36 52.26
std 0.01 0.04 0.03 0.03 0.02 8.62 × 10−04

DA avg 6.22 5.57 4.45 3.37 2.22 13.60 117.3
std 0.53 1.01 0.23 0.18 0.27 5.00 × 10−01
𝑆

b
t
v
o

t
o
a

problem has some constraints with it, we will run the problem 10
imes, will 𝑎𝑣𝑔 (average) their optimal coordinates and their respective
olutions. We will also calculate the 𝑠𝑡𝑑 (standard deviation) and then
e will benchmark the performance of algorithms.

.1. Cantilever beam design problem

Cantilever is the structure of five hollow square boxes mounted on
ach other with the decreasing sizes as shown in Fig. 4(a). Each box has
constant thickness whereas different length 𝑥, as shown in Fig. 4(c).
ere the optimization problem is to minimize the weight of the lever.
here are two constraint for the objective function: variable con-
traints and vertical displacement constraint [43]. The mathematical
epresentation of the problem is as follows:

𝑜𝑛𝑠𝑖𝑑𝑒𝑟 #»𝑥 = [𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ]
1 2 3 4 5 t

8

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 ( #»𝑥 ) = 0.6224(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)

𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔( #»𝑥 ) = 61
𝑥31

+ 37
𝑥32

19
𝑥33

7
𝑥34

1
𝑥35

𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 0.01 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 100.

The results obtained after testing the function are shown in Ta-
le 10. From the results arranged in the table, it is obvious that both
he EPO algorithms have outperformed ALO and DA. Although the 𝑎𝑣𝑔
alue of five blocks of both the EPO algorithm was almost same as that
f ALO and DA, but least 𝑠𝑡𝑑 in both, 𝑠𝑡𝑑𝑥 and 𝑠𝑡𝑑𝑓𝑥 .

The 𝑠𝑡𝑑𝑥 and 𝑠𝑡𝑑𝑓𝑥 are far much better than others which mean
hat the probability of EPO algorithm deviating from its mean value
r optimum value in our case is very small. The time 𝑡𝑠 that EPO
lgorithms took to complete the search is also much lesser than the
ime corresponding to ALO and DA, this is still a simple engineering
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Table 11
Results of three-bar truss design problem.

Function 𝑥1 𝑥2 𝑓𝑥 𝑡 (s)

EPO avg 0.79 0.39 2.63 1.22
std 0.11E−15 0.058E−15 4.68E−16

EPO (mod.) avg 0.79 0.39 2.63 1.67
std 0.11E−15 0.05E−15 0.00

ALO avg 0.78 0.41 2.63 24.20
std 0.007 0.01 4.97E−04

DA avg 0.82 0.34 2.66 94.17
std 0.06 0.13 6.01E−02
problem and AO and DA took a lot of time to complete the algorithm
consider a complex problem with several inputs and constraints they
will take even more time in that case. Contrary to that, EPO algorithm
will save a lot of time and will produce the results more efficiently. This
is a practical example that shows the extent to which we can apply this
algorithm, it is sufficient enough to handle engineering problem with
higher efficiency and accuracy.

5.2. Three-bar truss design problem

The second constrained optimization problem is the design of the
three-bar truss to minimize its weight, as shown in Fig. 5. The objective
function of the problem is very simple, whereas it is highly constrained.
Its structure under goes some severe constraints which include: stress,
deflection, and buckling constraints [44]. The mathematical model of
the problem is shown below.

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 #»𝑥 = [𝑥1, 𝑥2]

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 ( #»𝑥 ) = (2
√

2𝑥1 + 𝑥2) ∗ 𝑙

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔1( #»𝑥 ) =

√

2𝑥1
√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔2( #»𝑥 ) =
𝑥2

√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔3( #»𝑥 ) = 1
√

2𝑥2 + 𝑥1
𝑃 − 𝜎 ≤ 0

𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 0 ≤ 𝑥1, 𝑥2 ≤ 1.

We tested the three-bar truss design in doing so we employed
our testing algorithms: eagle perching optimization (EPO), modified
agle perching optimization (EPO mod.), ant-lion optimization, and
ragonfly optimization (DA). We performed 10 runs on this problem
nd obtained the 𝑎𝑣𝑔 (average), 𝑠𝑡𝑑 (standard deviation), and total time
t took 𝑡. The results are shown in Table 11, which shows the promising
esults of EPO and EPO (mod.) with the 𝑠𝑡𝑑 of range 10−15 to 10−16.
he time the considered algorithms took to complete 10 runs is also
inimal in case of EPO algorithms around 1.6 s, whereas ALO and DA

re not even comparable with them.

.3. Gear train design problem

This is another problem of constrained optimization, it is related
o the making of train gears, shown in Fig. 6 and the optimization
roblem is to find the optimal number of tooth for the four gears to
inimize the gear ratio. It is not highly constrained problem, it has

nly one constrain the range of number of tooth for the gear [45]. The
athematical formulation of the problem is shown below.

𝑜𝑛𝑠𝑖𝑑𝑒𝑟 #»𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 ( #»𝑥 ) = ( 1
6.931

−
𝑥3 ∗ 𝑥2
𝑥1 ∗ 𝑥4

)2

𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 12 ≤ 𝑥1, 𝑥2, 𝑥,𝑥4 ≤ 60.

e tested five algorithms and then compared their results with the
uilt-in MATLAB function fmincon which are shown in Table 12, we
9

Fig. 5. Three-bar truss design problem.

Fig. 6. Gear train design problem.

round of the value since we are dealing with the number of tooth for
the gears. From the arranged results, it is evident that EPO algorithms
evaluated the results more nearer to the actual solutions. Especially,
EPO (mod.) has not only the more accurate solution but also have the
least 𝑠𝑡𝑑 (standard deviation) and the evaluation time 𝑡 = 0.9723.

From all the above-explained three problems, it is clear that EPO
can handle the constrained, real-world problems. It also proves that
its evaluation time is many-fold less than the other test optimization
algorithms. If you further narrow the performance criteria, then EPO
(modified) looks more promising than EPO because of the ability of
EPO (modified) to explore more areas in less time. In other words,
the modified EPO has an efficient transformation from exploration to
exploitation.

We would, like to point out some limitations and the future direc-
tion of our work. Like any swarm algorithm, EPO cold be computation-
ally expensive and slow when optimizing complex time-taking objective
functions, e.g., robotics systems, portfolio optimization. In that case,
single particle algorithms like BAS are preferable. In future, we intend
to collect the comprehensive data on the design and performance of
state-of-the-art heuristic algorithms, so that a comprehensive compari-
son could be made based on several aspects. Likewise, we will extend
our performance measure metrics by including statistical t-test [46] like
techniques. We also intend to find a way to find the optimal selection
of hyper-parameter, and Hyperband and Bayesian optimization are one

of the techniques that cold be employed.
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Table 12
Results of Gear train design problem.

Function 𝑥1 𝑥2 𝑥3 𝑥4 𝑓𝑥

fmincon avg 42 16 16 42 3 × 10−12

std NA NA NA NA NA

EPO avg 49 15 26 57 3 × 10−18

std 0.0×10−14 0.1 × 10−14 0.0 × 10−14 0.0 × 10−14 8 × 10−34

EPO (mod.) avg 42 15 18 44 0.0
std 0.00 0.00 0.30 × 10−14 0.70 × 10−14 0.0

ALO avg 49 19 16 43 2E−12
std NA NA NA NA NA

CS avg 43 16 19 49 2E−12
std NA NA NA NA NA

MBA avg 43 16 19 49 2E−12
std NA NA NA NA NA
6. Conclusion

EPO (Eagle Perching Optimization) is a unique nature-inspired op-
timization algorithm. It is modeled on the behavior of an eagle, which
seeks out from the highest spot in the environment towards its prey.
We exploited its nature, mathematically formulated it, and suggested
two algorithms based on its properties. One is a straightforward EPO
algorithm with a constant degradation rate of search space, whereas
the modified variant exponentially accelerates this decay and makes it
robust. Later, we showed the theoretical soundness of the algorithm.
We compared two EPO variants, and it is determined that the latter
has better convergence. In addition, we evaluated its performance
with several state-of-the-art heuristic optimization techniques using
benchmark uni-modal and multi-modal functions. According to the
findings, the EPO algorithm is comparable with other algorithms. It also
shows that EPO converges to the optimal solution in fewer iterations
with smaller standard deviation. We performed a comprehensive inves-
tigation of the method and determined that, for uni-modal functions,
the general trend is that as the range of 𝑒𝑡𝑎 expands, the algorithm’s
performance improves. However, this is different with complex multi-
modal functions, for which the eta range must be fine-tuned. The
optimal eta range we have determined for our test functions by hit-
and-trial is between 0.9 and 0.8. We further evaluated its performance
by deploying it to solve real-world restricted optimization problems
and compared its findings to those of other algorithms and MATLAB’s
built-in function. We discovered that EPO calculated optimal values
with greater precision and shorter time, demonstrating the algorithm’s
increased efficiency.
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