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Abstract 

In this paper, the penalty unsymmetric finite element framework for the consistent couple stress 

theory is derived from the virtual work principle. The C1 continuity requirement is satisfied in weak 

form by using the penalty function method to constrain the independently introduced rotations for 

approximating the mechanical rotations, enabling the utilization of C0 continuous interpolations for 

designing the element displacement without the loss of convergence property. Within the proposed 

framework, 8-node quadrilateral element and 20-node hexahedral solid element are constructed for 

analyzing the size-dependent mechanical responses of consistent couple stress elasticity materials. 

In these developments, the quadratic serendipity isoparametric shape functions are enriched by the 

rotation degrees of freedom for determining the test functions, whilst the metric stress functions that 

are derived from the concerned equilibrium equations are used to design the trial functions. A series 

of numerical benchmarks are examined for verifying their effectiveness and accuracy. It is shown 

that the elements can efficiently capture the size dependences, exhibiting good accuracy and low 

susceptibility to mesh distortion.  

Key words: unsymmetric FEM; consistent couple stress theory; size dependence; mesh distortion; 

penalty function 
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1. Introduction 

The couple stress theories [1-4] have been demonstrated in various applications as the effective 

approaches to predict the size-dependent mechanical behaviors of small-scale structures. Compared 

with other high-order continuum theories, such as the strain gradient theories [5-8] and nonlocal 

theories [9-11], the couple stress theories are popular due to their concise mathematical expressions 

and explicit physical interpretations. The first attempt to develop a mathematical continuum model 

with couple stress can be traced back to Cosserat brothers [12]. In their theory, the basic kinematical 

quantities are the displacements and independent material microrotations. It is noted that the usage 

of independent microrotations brings extraneous degrees of freedom and many additional material 

parameters, and the experimentally determination of these material parameters is a very challenging 

task. From the Cosserat model, by constraining the microrotation to be identical to the continuum 

mechanical rotation which is defined as one half of the curl of the displacement, Toupin [1], Mindlin 

and Tiersten [2], Koiter [3] explored the classical C1 version of couple stress theory. Their theory is 

often referred to as the TMK-CST. In the developments, two intrinsic length scale parameters apart 

from two Lame’s constants are required in the constitutive relationships to consider the 

microstructure effects of isotropic elastic materials. Afterwards, Yang et al. [13] established the 

modified couple stress theory (MCST) by postulating an artificial equilibrium condition of moments 

of couples to enforce the couple stress tensor to be symmetric but without presenting a convincing 

argument. The decisive advantage is that only the symmetrical parts of curvatures are considered 

and consequently, the number of the additional material length scale parameters for isotropic elastic 

materials is further reduced from two to one. In past decades, the MCST has drawn great attention 

and been successfully used to analyze many kinds of problems [14]. 

Recently, Hadjesfandiari and Dargush [4] proposed another version of the couple stress theory 

that requires only one additional length scale parameter for isotropic elastic materials. Different with 

the MSCT, the couple stress tensor in their theory is assumed to be skew-symmetric and conjugated 

to the mean curvature tensor which is defined as the skew-symmetric part of the gradient of the 

rotation. As reported in [4] that this theory can overcome the inconsistent deficiency which is 

primarily caused by the indeterminacy of the spherical part of the couple stress tensor in the original 

couple stress theory or modified couple stress theory, thus it is named by the consistent couple stress 

theory (CCST). One can find that the MCST and CCST are the two distinct cases degenerated from 
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the TMK-CST in some sense. Rizzi et al. [15] pointed out that these two theories coincide with each 

other in simple shear responses meanwhile differences are expected in other types of deformation. 

To date, there is still some debate as to which of these two theories is more appropriate [16, 17]. But 

this topic is beyond the scope of the present article. 

Despite the controversy, the CCST has seen increasing use in the past few years owing to its 

simplicity and verifiability. For instance, Hadjesfandiari [18, 19] subsequently developed the size-

dependent piezoelectricity and thermoelasticity theories based on the CCST; Alavi et al. [20] 

proposed the Timoshenko beam model based on the CCST using the extended Hamilton’s principle; 

Patel et al. [21] analyzed the large deflection deformations of elastic cantilever microbeams based 

on the CCST; Li et al. [22] performed the size-dependent analysis of a microbeam considering the 

electromechanical coupling effects; Dehkordi and Beni [23] investigated the electromechanical 

vibration analysis of isotropic single-walled piezoelectric conic nanotubes using the Love’s thin 

shell assumption; Subramaniam and Mondal [24] studied the influences of couple stresses on the 

rheology and dynamics of linear Maxwell viscoelastic fluids based on the CCST; Wu and Hu [25] 

proposed the unified size-dependent plate formulation of various shear deformation plate theories; 

Qu et al. [26] developed a high-frequency micro-plate model based on the CCST using the series 

expansion theory and analyzed the propagation property of straight-crested waves. 

Although the theoretical investigations allow to provide an insight into the mechanism of 

micro/nano structures, the robust numerical methods play an important role in solving engineering 

problems with complex geometries and boundary conditions. As one of the most commonly used 

numerical tools for solids in science and engineering, the finite element method (FEM) has 

obviously become an appealing choice for this task. However, it’s worth emphasizing that it is not 

easy to develop advanced finite elements with simple expression and satisfactory performance based 

on the C1 couple stress theories due to the requirement of C1 continuity to the displacement 

interpolation. In general, the C1 continuity requirement inevitably makes the construction procedure 

of element quite tedious as well as makes the final formulation complicated [27]. In addition, it is 

well known that the precision of the FEM critically depends on the mesh quality and is very easily 

afflicted with the mesh distortion [28]. Unfortunately, this issue will be significantly exacerbated by 

the C1 continuity requirement. 

At present, there exists a variety of element models developed based on the MCST. We mention 
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the beam elements [29, 30], plate elements [31-33], shell elements [34, 35], two-dimensional (2D) 

elements [36-39] and three-dimensional (3D) elements [40, 41], just to name a few. On the other 

hand, it is also necessary to make great efforts to develop finite element models based on the CCST. 

Amongst the existing works, Darrall et al. [42] proposed the Lagrangian multiplier FE formulation 

for planar strain problems based on the CCST; Deng and Dargush [43, 44] developed a mixed 

Lagrangian multiplier formulation for elastodynamic and natural frequency analyses; Pedgaonkar 

et al. [45] also proposed a mixed FE formulation with primary variables of displacements and couple 

stresses for anisotropic centrosymmetric materials; Chakravarty et al. [46] developed the penalty-

based finite element framework for the CCST; Poya et al. [47] proposed a family of numerical 

models for flexoelectricity continua and beam based on the CCST; Darrall et al. developed the 2D 

element formulation for mechanical-electric coupling in dielectrics [48]. In addition to the FEM, the 

boundary element method (BEM) has also been applied to the CCST [49-51]. However, the BEM 

is less popular than the FEM in practical engineering applications. 

As discussed above, the C1 continuity requirement may make the element performance highly 

susceptible to the mesh distortion. With the help of the Lagrangian multiplier method or penalty 

function method for enforcing the C1 continuity requirement in weak sense, the distortion sensitivity 

problem can be alleviated to a certain extent, but not completely solved. The unsymmetric finite 

element method [52], that is fundamentally characterized by the usage of different interpolations 

respectively to design the test functions and trial functions of the element, emerged as a promising 

approach to develop distortion-immune elements. The first element developed based on the 

unsymmetric FEM is an 8-node membrane element whose stiffness matrix is unsymmetric [52]. But 

it should be pointed out that the unsymmetric FEM which belongs to the broad family of Petrov-

Galerkin variational method does not necessarily yield unsymmetric element stiffness matrix. So 

far, the unsymmetric FEM has seen various successful applications in the classical continuum theory 

[53-58]. Recently, it has also been applied to the MCST through the developments of 4-node 

quadrilateral and 8-node hexahedral elements [59, 60]. The numerical experiments reveal that the 

elements can provide good predictions in analyzing the small-scale structures based on the MCST. 

In the present work, the unsymmetric FEM is further applied to the CCST for verifying its 

effectiveness in simulating the size-dependent behaviors of consistent couple stress elasticity 

materials. By incorporating an independently assumed rotation field into the virtual work principle 
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and employing the penalty function method to consider the C1 continuity requirement in weak sense, 

the penalty C0 finite element framework is established. It is worth noticing that because the skew-

symmetric part of stress in the CCST is essentially derived from the second derivatives of the 

rotation, its effects cannot be correctly predicted in terms of low-order 4-node quadrilateral element 

and 8-node hexahedral element. Therefore, only the 8-node quadrilateral element and 20-node 

hexahedral element are constructed within the proposed framework. In the new developments, the 

shape functions of the quadratic serendipity isoparametric elements are enriched by the nodal 

rotation degrees of freedom (DOFs) for determining the element test functions, whilst the stress 

functions that are derived from the concerned equilibrium equations are adopted as the basis 

functions for designing the trial functions. It is expected that the proposed new elements can also 

inherit the many advantages of the unsymmetric FEM when solving the consistent couple stress 

elastic problems, such as the good numerical accuracy in distorted meshes.  

The rest of the paper is outlined below. In Section 2, we briefly introduce the basic equations of 

the CCST. In Section 3 and Section 4, the general formula of the penalty unsymmetric FEM and the 

detailed constructions of the new elements are provided respectively. The numerical examples are 

performed in Section 5 and the paper is concluded in Section 6. 

 

 

2. Basic Equations of Consistent Couple Stress Elasticity 

In this section, a brief description of the CCST [4] is presented. Considering a body subjected to 

a displacement field iu  , the strain ij   and mechanical rotation i   can be derived using the 

kinematical equations, respectively:  

 
, ,

,

1
,

2 2

i j j i

ij i ijk k j

u u
e u 

+
= = . (1) 

The mean curvature ij  which is defined as the skew-symmetric part of rotation gradient is given 

by 

 
, ,

2

i j j i

ij

 


−
= . (2) 

The stress ij  in the CCST in general is non-symmetric and can be decomposed into the symmetric 
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part 
( )ij

  and the skew-symmetric part 
 ij

 : 

 
( )  ij ij ij

  = + , (3) 

where only 
( )ij

  is the constitutive stress and work conjugates with the strain ij , while 
 ij

  has 

no contribution to the deformation energy. For the case of linear isotropic materials, the constitutive 

relations for 
( )ij

  may be written as  

 
( )

2kk ij ijij
G   = + , (4) 

in which   and G  are the Lame’s constants. Besides, the couple stress ij  which is the work 

conjugate pair of the mean curvature ij  is derived using the constitutive relations:  

 28ij ijGl = − ,  (5) 

in which l  is the additional material length scale parameter for representing the size dependence 

of consistent couple stress elasticity material. 

   The equilibrium equations in the CCST are given by [4] 

   , 0ji j if + = , (6) 

   , 0ji j ijk jke + = , (7) 

where if  stands for the external body force. The external body couple load is not included because 

it can be transformed into an equivalent system of body forces and surface tractions [4]. By virtue 

of Equation (3), we can further obtain 

   
( )  , ,

0
ji ji ij j

f + + = , (8) 

   
 , 0ji j ijk jk

e + = , (9) 

from which one can clearly view that the skew-symmetric part of the stress 
 jk

  are determined 

by the derivatives of the couple stress ij . 

In the CCST, the natural boundary conditions are given by [42] 

   ,ji j i ji j in t n m = =  (10) 

in which it  and im  are the prescribed force traction and moment traction, respectively; jn  is the 
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cosine of the normal direction to the boundary. Besides, the essential boundary conditions take the 

form 

   ,i i i iu u  = =  (11) 

in which iu  and i  are the prescribed displacement and rotation at the boundary. 

For linear elastic materials obeying the CCST, the deformation energy density function is 

composed of two terms respectively generated by the strain and mean curvature: 

   ( ) ( )

1 1
,

2 2
ij ij ji jj iiij

U      = +  (12) 

 

 

3. General Formulation of Unsymmetric FEM 

The derivation of the unsymmetric FEM directly begins from the virtual work principle [52]: 

 0in ex   =  −  = , (13) 

in which in   and ex   are the virtual works produced by the internal and external loads, 

respectively. For materials obeying the CCST, in  depends on the strain ij  and mean curvature 

ij  [4]: 

 
( )

d diin j jji iij
    

 
 = +   , (14) 

while ex  takes the following form: 

 d d dex i i i i i iu f u R M   
  

 = +  +    , (15) 

in which iR  and iM  are the external force and couple force applied to the boundary. In order to 

make the expressions more concise, they are rephrased in form of the vector and matrix based on 

the Voigt notation as follows: 

 ( ) ( )
T T

symd din  
 

 = +  ε u σ κ u μ , (16) 

 ( )
TT Td d dex   

  
 = +  +   u f u R ω u M . (17) 

For 2D/3D cases, the matrices and vectors in the preceding equations will have different concrete 

representations.  
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As shown in Equations (1) and (2), the mean curvatures in nature are the second-order derivatives 

of displacements. For ensuring the convergence, the straightforward FE implementation of Equation 

(13) will require the C1 compatibility condition for the displacement interpolation, that is a very 

difficult task especially in the 3D case. To alleviate this problem, the curvatures can be derived from 

an independently assumed rotation field θ  instead of the mechanical rotation ω . The differences 

between these two rotation fields are eliminated by using the penalty function method [46]. Thereby, 

Equation (13) changes into   

 * * * T d 0in ex k   


 =  −  +  = Λ Λ , (18) 

in which 

 = −Λ θ ω , (19) 

and accordingly 

 ( ) ( )
T T*

symd din  
 

 = +  ε u σ κ θ μ , (20) 

 * T T Td d dex   
  

 = +  +   u f u R θ M . (21) 

k is the penalty parameter that should be chosen carefully to enforce the constraint satisfied in the 

accept level and not to make the condition number of the finally stiffness matrix overly large. 

  As discussed above, the unsymmetric FEM is characteristic of designing the element’s test 

function and trial function using different interpolations. In general, both the test function and trial 

function in FEM can be ultimately expressed in terms of the element nodal DOF vector e
q . With 

regard to the present elements, the test functions of the displacement and rotation which are 

separately constructed have the expressions: 

 e= =u u Nq , (22) 

 e= =θ θ N q , (23) 

which lead to the strain and mean curvature by virtue of Equations (1) and (2): 

 ( ) n e= =ε ε u B q , (24) 

 ( ) c e= =κ κ θ B q ; (25) 

meanwhile, the trial functions of the work-conjugated stress and couple stress are  

 sym sym
ˆˆ n e= =σ σ S q , (26) 
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 ˆˆ c e= =μ μ S q . (27) 

Besides, the matrix Λ  takes the form:  

 ( ) e= − =Λ θ ω u N q . (28) 

  By inserting the foregoing definitions back into Equation (18) and applying the virtual work 

principle, the final equation to be solved is derived as   

 e e e=K q P , (29) 

in which 
e

K  is the stiffness matrix 

 T T Tˆ ˆd d de n n c c k  

  
= + +   K B S B S N N , (30) 

and 
e

P  is the equivalent nodal load vector 

 T T Td d de 

  
= +  +   P N f N R N M . (31) 

  Within the newly established unsymmetric FE framework, different 2D and 3D elements can be 

developed. However, considering that the skew-symmetric part of stress in the CCST is essentially 

the second derivatives of the rotation as shown in Equations (5) and (9), which cannot be correctly 

reproduced by the low-order 4-node quadrilateral elements and 8-node hexahedral elements, only 

the 8-node 2D quadrilateral element and 20-node 3D hexahedral element are developed in this work. 

Their detailed construction procedures are discussed in the next section. 

  

 

4. New Elements for CCST 

4.1. The 8-node quadrilateral element for CCST   

Let us consider an 8-node quadrilateral element that has two translation DOFs and one rotation 

DOF per node for the 2D consistent couple stress problems, as shown in Figure 1, the element nodal 

DOF vector e
q  is described as 

 
T

1 2 3 8...e e e e e =  q q q q q , (32) 

with 

  , 1 ~ 8e

i i i ziu v i= =q . (33) 

As previously discussed, C0 continuous interpolations can be used for designing the test functions 
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of the displacement within the present penalty FE framework. The commonly used C0 quadratic 

serendipity isoparametric shape function seems like an obvious choice. But it has been proved that 

its performance is not as satisfactory as expected in the couple stress elasticity problems [61]. For 

the 3-node triangular and 4-node quadrilateral elements, the famous Allman’s interpolation [62, 63] 

is a very important technique to use the drilling DOFs to enrich the displacement field. However, 

the original version of the Allman’s interpolation is only the boundary interpolation, and the scheme 

is very tedious when it is directly extended to in-domain interpolation. Shang and Ouyang [64] 

proposed an interpolation for 4-node quadrilateral element that has a relatively concise expression 

and coincides with the standard Allman’s interpolation along the element boundary. Recently, this 

kind of interpolation has been applied to the elements based on the couple stress theories [59, 60]. 

In this work, the standard 8-node isoparametric interpolation is enriched by the nodal rotation DOFs 

through the above-mentioned approach and accordingly, the matrices u  and N  in Equation (22) 

are presented as  

 1 2 8,e
u

v

 
 = = =   

 
u Nq N N N N , (34) 

with 

 

( )

( )

1
0

2
, 1 ~ 8

1
0

2

i i i

i

i i i

N N y y

i

N N x x

 
− − 

= = 
 −
  

N , (35) 

in which ( ),i ix y  are the Cartesian coordinates of the node i; iN  is the standard isoparametric 

shape function of the 8-node quadrilateral element: 

 

( )( )( ) ( )

( )( ) ( )

( )( ) ( )

2

2

1
1 1 1 1 ~ 4

4

1
1 1 5,7

2

1
1 1 6,8

2

i i i i

i i

i

i

N i

i

     

 

  


− + + − − =



= − + =



− + =


, (36) 

At the same time, the rotation in Equation (23) is determined by  

   1 2 8,e

z

      = = =  θ N q N N N N , (37) 

with 

  0 0 , 1 ~ 8i iN i = =N ; (38) 
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and accordingly, the detailed expression of Equation (28) is obtained:  

 
1 2 8

1
, =

2

e

z

v u

x y
     
    

 = − − =        
Λ N q N N N N , (39) 

in which the submatrices 
i


N  is given by 

 ( ) ( ), , , ,

1 1 1
, 1 ~ 8

2 2 2
i i y i x i x i i y i iN N N x x N y y N i  
= − − + − − = 

 
N . (40) 

Subsequently, the test functions of the strain and curvature in Equations (24) and (25) are 

delivered, respectively: 

 1 2 8,

2

xx

n e n n n n

yy

xy







 
 

 = = =   
 
 

ε B q B B B B , (41) 

 
1 2 8

2 2
,

2 2

zx xz c e c c c c

zy yz

 

 

−      
 = = = =     −      

κ B q B B B B , (42) 

in which 

 

( )

( )

( ) ( )

, ,

, ,

, , , ,

1
0

2

1
0 , 1 ~ 8

2

1 1

2 2

i x i x i

n

i i y i y i

i y i x i x i i y i

N N y y

N N x x i

N N N x x N y y

 
− − 

 
 = − =
 
 
 − − −
  

B , (43) 

 
,

,

0 0
, 1 ~ 8

0 0

i xc

i

i y

N
i

N

 
= = 
 

B . (44) 

On the other hand, as promised before, the trial functions of stress and couple stress are 

formulated based on the stress functions that can satisfy the equilibrium equations of the problem 

of interest. Thus, these stress functions should be first derived. The equilibrium equations in the 2D 

consistent couple stress elasticity problems are derived by substituting Equation (9) into Equation 

(8), as follows: 

 

( ) ( )

( ) ( )

2 2

2

2 2

2

1 1
0

2 2

1 1
0

2 2

xx yx

x

xy z

yz xz

y xzyy

y

f
x y y x y

f
x y x y x

 





 

   
+ + + + =

    

   

+ − − + =     

. (45) 

The solutions of above the differential equation system are comprised of the homogeneous part and 
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particular part. The existence of body force means that the particular solution part is not zero. In 

view of the fact that the external body forces are considered in the finite element model in the form 

of equivalent nodal loads ultimately, the particular solution can be omitted for sake of simplicity. 

This simplification will bring some error, but the error decreases with the mesh refinement. Herein, 

only the homogeneous part is concerned which should satisfy  

 

( ) ( )

( ) ( )

2 2

2

2 2

2

1 1
0

2 2

1 1
0

2 2

xx yx

xy

yz xz

yz xzyy

x y y x y

x y x y x

 

 

 

 

   
+ + + =

    

   

+ − − =     

. (46) 

Since it is very difficult and tedious to simultaneously derive the desired stress and couple stress 

functions by solving Equation (46), we make the following simplification: splitting Equation (46) 

into two parts and solving them separately: 

 

( ) ( )

( ) ( )

0

0

xx yx

xy yy

x y

x y

 

 

 
+ =

 

 

+ =  

, (47) 

and 

 

2 2

2

2 2

2

1 1
0

2 2

1 1
0

2 2

yz xz

yz xz

y x y

x y x

 

 

  
+ =

  


 
− − =   

. (48) 

It is worth noticing that, the stress and couple stress functions obtained by this approach is only a 

subset of that of Equation (46). Although the difficulty of derivation is reduced, this approach gives 

rise to a certain approximation. Thus, its validness and effectiveness should be carefully checked by 

the numerical tests. 

One can observe that Equation (47) has exactly the same form with the ones of the 2D classical 

continuum elasticity. This means the existing Airy stress solutions in the classical continuum 

elasticity [65] provide a potential choice to be the basic functions for designing the symmetric part 

of the stress in the CCST. Thereby, symσ̂  in Equation (26) can be initially described as  
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( )

( )

( )

sym

ˆ

ˆ ˆ

ˆ

xx

n

yy

xy







 
  

= = 
 
  

σ H α , (49) 

with 

  
T

1 2 15...  =α , (50) 

in which 
n

H  is composed of the Airy stress solutions which are summarized in Table 1. Next, for 

rewriting symσ̂   in terms of the nodal DOF vector e
q  , the coming weighted residual condition 

which means that the work done by the two different strains is equal to each other for the given 

stress state is considered:  

 ( )1

sym
ˆ dn t−


−  = M ε D σ 0 , (51) 

in which the weight function matrix M  is simply set as 
Tn

H ; under plane strain assumption, nD  

is given by 

 
( )( )

( )

1 0

1 0
1 1 2

0 0 1 2 2

n

E
 

 
 



− 
 

= − + −
 − 

D , (52) 

where E and  are the Young’s modulus and Poisson’s ratio. Note that only the plain strain state is 

considered here because the plane stress state cannot be exactly reduced to a two-dimensional 

problem in the couple stress theory. Using Equation (41) and Equation (49), Equation (51) leads to  

 e

n n=V q M α ,  (53) 

with 

 T T 1d , dn n n n

n n nt t−

 
=  =  V H B M H D H , (54) 

from which we can obtain 

 1 e

n n

−=α M V q ,  (55) 

Ultimately, the required expression of symσ̂   is deduced by inserting Equation (55) back into 

Equation (49): 

 
1

sym
ˆ ˆˆ ,n e n n

n n

−= =σ S q S H M V . (56) 

   Analogously, the couple stress μ̂  can initially take the following form that can satisfy Equation 
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(48): 

 ˆ c=μ H β , (57) 

in which 

 
2 2

2 2

1 0 0 0 0 2

0 1 0 0 2 0

c x y x y xy

x y xy x y

 −
=  

− 
H , (58) 

  
T

1 2 10...  =β . (59) 

By following the same path outlined in Equation (51), the relation between β  and e
q  can be 

obtained:  

 1 e

c c

−=β M V q , (60) 

with 

 T 1 Td , dc c c c

c c ct t−

 
=  =  M H D H V H B . (61) 

in which 
c

B  is given by Equation (42) and   

 
2

2

4 0

0 4
c

Gl

Gl

 
=  
 

D . (62) 

Finally, the following expression is deduced by inserting Equation (60) back into Equation (57):  

 
1ˆ ˆˆ ,c e c c

c c

−= =μ S q S H M V . (63) 

Note that the material length scale parameter l appears in the denominator in the process of matrix 

inversion shown in Equation (61). Thus, when dealing with the cases where l is very small, it is 

necessary to use the floating-point number type with sufficient precision in finite element 

programming for ensuring the accuracy of numerical calculation.  

As the detailed expressions of the test functions and trial functions of the new 8-node quadrilateral 

element have been determined, the element stiffness matrix and equivalent nodal load vector can be 

calculated in accordance with Equations (30) and (31). After e
q  being solved, the symmetric part 

of the stress and the couple stress can be respectively calculated using Equations (56) and (63), 

whilst the skew-symmetric part of the stress is derived by further substituting the obtained couple 

stress into Equation (9).  

It is noted that, even though the locking problem experienced by the penalty stiffness [66] is not 
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as serious as the 4-node lower order element, the 1×1 reduced quadrature scheme is suggested for 

calculating the penalty stiffness for purpose of further improving the element performance without 

resulting in spurious zero energy modes. Moreover, it can be easily proved that when all the integrals 

except the penalty stiffness are evaluated using the full quadrature scheme, the stiffness matrix of 

the new element is symmetric. In other words, if the reduced quadrature scheme is used in part of 

the integrals, the unsymmetric element stiffness matrix will be obtained. For instance, the one-point 

quadrature strategy is used to calculated the final stiffness integral in [67] for enhancing the element 

behavior and the resulted element stiffness matrix is unsymmetric. The findings reveal that the 

unsymmetric FEM which essentially belongs to the broad family of the Petrov-Galerkin (PG) 

variational method, does not necessarily yield unsymmetric element stiffness matrix, although the 

test and trial functions are constructed using different interpolations. Actually, it has already be 

reported that it is possible to derive the preferred symmetric linear equations from PG variational 

with some specific processing [68, 69]. It may provide a promising approach to overcome the 

computation inefficiency problem caused by the stiffness matrix’s unsymmetry while retaining 

many advantages of the original unsymmetric FEM. 

 

4.2. The 20-node hexahedral element for CCST  

The 20-node hexahedral element for the 3D consistent couple stress problems can be constructed 

in the same way. As shown in Figure 2, the developed hexahedral element has three translation 

DOFs and three rotation DOFs per node. The element nodal DOF vector e
q  is 

 
T

1 2 3 20...e e e e e =  q q q q q , (64) 

with 

 , 1~ 20e

i i i i xi yi ziu v w i   = = q . (65) 

The test function of the displacement is formulated in the same way as the 2D case in that the 

displacement is enhanced by the nodal rotation DOFs: 

 1 2 20, ...e

u

v

w

 
 

 = = =   
 
 

u Nq N N N N , (66) 

with 
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( ) ( )

( ) ( )

( ) ( )

1 1
0 0 0

2 2

1 1
0 0 0 , 1 ~ 20

2 2

1 1
0 0 0

2 2

i i i i i

i i i i i i

i i i i i

N N z z N y y

N N z z N x x i

N N y y N x x

 
− − − 

 
 = − − − =
 
 
 − − −
  

N , (67) 

in which iN  is the standard isoparametric shape function of the 20-node hexahedral element 

 

( )( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

2

2

2

1
1 1 1 2 1 ~ 8

8

1
1 1 1 9,11,13,15

4

1
1 1 1 10,12,14,16

4

1
1 1 1 17,18,19,20

4

i i i i i i

i i

i

i i

i i

i

i

N

i

i

         

   

    

   


+ + + − + + + =


 − + + =


= 
 − + + =


 − + + =


, (68) 

Besides, the rotation in Equation (23) takes the interpolation 

 1 2 20, ...

x

e

y

z

    







 
 

 = = =   
 
 

θ N q N N N N , (69) 

where the submatrices in 


N  read 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0,

0

1 ~ 2

i

i

i

i

N

N

N

i

 
 
 



=



=N . (70) 

Accordingly, the expression of Equation (28) is  

 1 2 20

1

2

1
, = ...

2

1

2

x

e

y

z

w v

y z

u w

z x

v u

x y







    

   
− −  

   
    

 = − − =       
   
 − − 

    

Λ N q N N N N , (71) 

in which 

 , 1 ~ 20i i i i 

   = = N N N , (72) 

with 

 

, ,

, ,

, ,

0
1

0
2

0

i z i

i

y

i z i x

i y i x

N N

N N

N N





 −
 

= − 
 − 

N , (73) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

, , , ,

2
1

2
4

2

i z i i y i i i y i i z i

i i x i i z i i x i i i z i

i x i i y i i y i i x i i

N z z N y y N N x x N x x

N y y N z z N x x N N y y

N z z N z z N y y N x x N





 − + − − − − − −
 

= − − − + − − − − 
 − − − − − + − − 

N . 

(74) 

The corresponding test functions of the strain and curvature are respectively determined by: 

 1 2 20, ...
2

2

2

n e

y

n n n n

x

xx

y

zz

y

yz

xz













 
 
 
  

=  


 =


 
 
  

= ε B q B B B B , (75) 

 1 2 20

2 2

2 2 , ...

2 2

yx xy

c e c c c c

zy yz

zx xz

 

 

 

−   
   

 = = − = =     
   −   

κ B q B B B B . (76) 

Upon substitutions of Equations (66) and (69) into the kinematical relationships, the detailed 

constituents of the matrices 
n

B  and 
c

B  in above equations can be evaluated. 

  Similar with the quadrilateral element, the trial functions of stress and couple stress of the present 

20-node hexahedral element are firstly designed based on the stress functions which can satisfy the 

3D equilibrium Equations (8) and (9), as follows:  

 

( )

( )

( )

( )

( )

( )

sym
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

ˆ

ˆ ˆ
ˆ

ˆ

xy

n

xx

yy

zz

xy

y

c

yz

xz

z

xz



















 
 
 
 
 
 
 

 
 

= 

 


= = =
 



 
 



σ H α μ H β . (77) 

Using the same simplification with the 2D case, the desired stress and couple stress functions for 

the 3D problem can be derived. For the sake of simplicity, the detailed components of the matrices 

n
H  and 

c
H  are summarized in Tables 2 and 3. It is worthy noticing that the above assumed stress 

and couple stress fields can satisfy the homogeneous parts of the concerned three-dimensional 

equilibrium equations. In accordance with the matrices 
n

H  and 
c

H  in Equation (77), α  and β  

respectively are:  

  
T

1 2 48...  =α , (78) 
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  
T

1 2 27...  =β . (79) 

Next, by following the same process in Section 4.1, the above stress and couple stress can be 

rewritten in terms of the element nodal DOF vector e
q .  

The detailed formulation of the new 20-node hexahedral element can be finally established 

through the substitutions of the above test functions and trial functions back into Equations (30) and 

(31). It is noted that the reduced 3×3×3 quadrature strategy which herein doesn’t lead to spurious 

zero energy modes is suggested for evaluating the penalty stiffness contribution.  

 

 

5. Numerical Validations 

For purpose of adequately assessing the validities of the new 8-node quadrilateral and 20-node 

hexahedral elements in predicting the size-dependent mechanical responses of consistent couple 

stress elasticity materials, a series of benchmark examples are investigated. The solutions obtained 

using either the analytical method or other numerical approaches are also provided as the reference 

values for comprehensive comparison. In these tests, the penalty parameter is set as 410k G =  that 

has been demonstrated by parametric analysis to be a prober value in practical applications. 

  

5.1. Tests for 2D consistent couple stress elasticity 

5.1.1 The 2D patch test  

As suggested by [70], the C0-1 patch test is used for examining whether the new quadrilateral 

element based on the CCST satisfies the convergence criterion. Figure 3 shows the typical meshes 

in which Mesh b and Mesh c contain heavily distorted element in the shape of degenerated triangle 

or concave quadrangle. The displacements and rotations calculated at the boundary nodes in 

accordance with the following functions are applied to the patch as the prescribed boundary 

conditions: 

 ( ) ( )2 2

1 2 3 4 4 5 52 1 2 2 1u a a x a y a x b b xy a y = + + + − − + − +   , (80) 

 ( ) ( )2 2

1 2 3 4 4 5 52 2 1 1 2v b b x b y b x a a xy b y = + + + − − + − +   , (81) 

 ( ) ( ) ( ) ( )2 4 4 5 3 5 4 52 2 2 2 1 1 2 2 2 1 2 2 1z b b x a a y a a y b b x    = + − − + − − − + − + −       , (82) 
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in which the coefficients are listed in Table 4. The results at the inner nodes are monitored. The 

numerical results show that the new element can always accurately reproduce the constant stress 

state and constant couple stress state no matter what badly distorted meshes are used, demonstrating 

that the computation convergence of the new quadrilateral element is guaranteed. 

 

5.1.2 Deformation of the circular ring  

As illustrated in Figure 4, the circular ring is fully fixed at the outer periphery while the prescribed 

boundary conditions at its internal surface are set as [46] 

 1mm, 0ru u = = . (83) 

Three different ratios of the material length scale parameter to the inner radius (l/a=0.25, 0.5, 1) are 

considered. The computations are operated by dividing the ring into M N  elements, in which M 

and N respectively denote the element numbers in the circumferential direction and radial direction. 

As is evident in Table 5 that, the numerical results converge into the reference solutions [46] very 

rapidly. Moreover, the distributions of the tangential displacement u  , the rotation z  , the 

symmetric part of shear stress 
( )r

  and the couple stress 
rz  along the radial path AB calculated 

by using 64×16 elements are provided in Figure 5. One can clearly observe that the numerical values 

are in good agreements with the reference ones. It’s noted that the present FE results can not exactly 

satisfy the zero-value stress boundary condition but the errors can be gradually eliminated with the 

mesh refinement. 

 

5.1.3 The plate with a hole 

As shown in Figure 6, the square plate with a central circular hole under uniform uniaxial tension 

is investigated to study the size effect. Due to symmetry, only a quarter of the plate is modeled by 

using the typical meshes as depicted in Figure 7. The convergence results of the nominal stress 

concentration factors for different material length scale parameters are summarized in Table 6 and 

the horizontal displacements respectively calculated at the points B and C are listed in Table 7. 

Because there are no analytical solutions available in the open literature, the results delivered by the 

boundary element method [49] are provided here as the reference values. It is obvious that with the 

increase of the material length scale parameter, the stress concentration is gradually reduced, 
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indicating that the curvatures have an increasing contribution to the deformation energy. 

 

5.1.4 The simple shear problem 

As shown in Figure 8, to model an infinite stripe subjected to simple shear boundary conditions, 

the slender rectangle which is clamped at its bottom is considered. At the top surface, the vertical 

displacement and rotation are constrained and the horizontal displacement is prescribed as U=1m. 

The variations of the horizontal displacement and rotation along the y-axis are evaluated. As 

discussed in [15], the solutions of this simple shear problem based on the CCST coincide with that 

of the MSCT. Thereby, the analytical solutions can be simply derived from the ones originally 

proposed for MSCT [71] by replacing the corresponding material length scale parameter: 

 ( ) 1 2 3 4

y yu y C C y C e C e −= + + + , (84) 

 ( ) ( )2 3 4

1

2

y y

z y C C e C e    −= − + − , (85) 

in which 

 ( ) ( ) ( ) ( )1 2 3 42 , , 1 , 1h h h h h hC e e C e e l C e C e        − − −= + − = − = − = − , (86) 

with 

 
( ) ( )

1
, 2

2 1 2 1 2h h

U

l h e h e 
 

 −
= =

− + + + −
. (87) 

In consideration of the steep rotation gradients near the top and bottom surfaces, two different 

bias meshes, as shown in Figure 9, that are respectively composed of 32×12 elements and 40×16 

elements are used. Besides, the angular distortions are also introduced for testing the element’s 

tolerance to the mesh distortion. Good agreements are observed between the numerical results and 

the analytical reference solutions given in Figures 10 and 11, revealing that the new element can 

still capture the size dependence effectively in distorted meshes.  

 

5.1.5 The cantilever thin beam 

As illustrated in Figure 12, the micro thin beam is fully fixed at its left end and subjected to a 

uniformly distributed transverse load p at the right tip. The variation of the non-dimensional stiffness 

ratio 0K K  versus the ratio h l  is evaluated with 
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 0 3

tip

3
,

pth EI
K K

v L
= = , (88) 

in which tipv  is the tip transverse deflection and I  is the area moment of inertia. Two different 

ratios of beam length to height (L/h=20, 40) are considered.  

  As discussed in [45, 72], the non-dimensional stiffness will experience the so-called couple stress 

saturated status when the material length scale parameter is significantly larger than the beam 

thickness for which the continuity assumption of material is somewhat questionable. In this situation, 

the effects of the couple stress are dominated, locking up the bending behavior and leading to a 

nearly pure shear mode. In order to capture such extreme phenomenon, the refined mesh 100×10 is 

employed and the numerical results are provided in Figure 13. It’s obvious that the present numerical 

results are in good agreement with the reference solutions which are obtained using the Lagrange 

multiplier FE formulation [42], accurately predicting the transition from classical case to saturated 

couple stress response. This test demonstrates once again that the new quadrilateral element can 

predict the size dependences well. 

 

5.2. Tests for 3D consistent couple stress elasticity 

5.2.1 The 3D patch test 

The 3D patch test is examined to assess the convergence property of the new hexahedral element. 

Figure 14 illustrates the rectangular solid and two typical meshes composed of 2×2×2 elements 

including the regular one and distorted one. It can be verified easily that the element can always 

exactly reproduce the constant stress state. Therefore, only the results of the constant couple stress 

test are discussed here. To generate a deformation where the couple stresses are constant, the 

following equations are considered: 

 2 2 2 2 2 2 2 2 25 , 5 , 5u x y z xy v x y z yz w x y z xz= + + − = + + − = + + − , (89) 

 3.5 , 3.5 , 3.5x y zz y x z y x  = − + = − + = − + . (90) 

The displacements and rotations calculated at the boundary nodes are imposed to the solid as the 

prescribed boundary conditions and the result of the central point A (0.15mm, 0.1mm, 0.1mm) are 

evaluated. The numerical results show that the element can strictly pass the test in the regular Mesh 

a but fails in the distorted Mesh b. This is mainly because that in the present development, the C1 
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continuity requirement is satisfied in weak form and the quadratic part of displacement interpolation 

is incomplete in distorted mesh. Next, in order to further verify whether the element in distorted 

mesh can give acceptable results in this test, the computations are repeated by subdividing Mesh b. 

It is shown in Table 8 that the errors are effectively eliminated by the mesh refinement, from which 

we can conclude that the reliable results can be obtained by using the mesh of the desired quality. 

 

5.2.2 Deformation of the hollow cylinder  

As shown in Figure 15, the circular ring examined in Section 5.1.2 is extruded into a thick-walled 

hollow cylinder. All the degrees of freedom at the outer surface of the cylinder are restrained, and 

the boundary conditions at the internal surface are given by    

 1.0mm,    0ru u w = = = . (91) 

The computations are operated by respectively dividing the cylinder into 10, 20 and 30 segments 

along the longitudinal direction whilst the cross section of the cylinder is modeled using 64×16 

elements in accordance with the conclusions given in Section 5.1.2. Table 9 gives the convergence 

results of the circumferential displacement calculated at the point C , 0,
2 2

a b L+ 
 
 

 and the rotation 

calculated at the point A , 0,
2

L
a
 
 
 

 . Figure 16 shows the distributions of the displacement and 

rotation along the radial path AB. The analytical plain strain solutions [46] are also provided here 

for comparison. One can easily view that the new hexahedral element has good numerical accuracy 

and captures the size effect effectively.   

 

5.2.3 Torsion of the slender cylindrical bar  

As depicted in Figure 17, the slender solid cylinder is subjected to a torque Q at its right end, 

while the left end is constrained as 

 0y z = =  at 0, 0, 0x y z= = = , (92) 

 0xu v w = = = =  at 0x = . (93) 

The outer surface of the cylinder is free. As stated in [4], for the consistent couple stress elasticity 

materials, the mean curvatures in this test vanish which means that no size effect exists in this 
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problem. Thus, the displacements and mechanical rotations are exactly in the form as in the classical 

theory. The model is meshed by ten equal segments along the longitudinal direction whilst three 

typical meshes shown in Figure 18 are employed to discretize the section plane. The convergence 

results of the displacement w   and mechanical rotation x   at the point B for three different 

material length scale parameters are summarized in Table 10, in which the reference solutions are 

analytically calculated by 

 ,    ,    x

p

Q
w xy x

GI
   = = = , (94) 

where   denotes the torsion angle per unit length and pGI  is the torsional rigidity of the cylinder. 

It is shown that the numerical results of the new hexahedral element converge very rapidly. 

 

5.2.4 The simple shear problem of 3D block 

  The simple shear problem discussed in the previous is analyzed once again by considering a 3D 

block as shown in Figure 19. The bottom of the block is clamped while the top surface is forced to 

deform as 

 1μm,    0x y zu v w   = = = = = = . (95) 

The computation is performed by using the bias mesh 40×16×10 which is the extrusion of the 

angularly distorted Mesh b given in Figure 9 along the z-direction. As demonstrated in Figure 20 

where the distributions of displacement u  and rotation z  along the path ( )0.5 , 0.5x L z L= =  is 

provided, the proposed hexahedral element also has good numerical accuracy in distorted meshes.  

  

5.2.5 The 3D cantilever thin beam  

As shown in Figure 21, this test involves the deformation of the 3D cantilever thin beam subjected 

to a uniformly distributed transverse load at the right end. The beam is fully fixed at the left end 

with the constraints 0x y zu v w   = = = = = =   while is free at its lateral surfaces. First, the 

stiffness of the 3D thin beam, which is calculated by substituting the tip transverse deflection at the 

symmetry plane ( )2z t=   into Equation (88), is investigated. Table 11 gives the convergence 

results of the case with t=10h for different material length scale parameters. One can see that the 
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material length scale parameter has some slight influences on the convergence rate. In general, the 

larger l is, the slower results converge. Besides, the stiffness of the 3D thin beams with different 

widths is analyzed. It is known that the solutions of 3D cases will gradually approach the plane 

strain solution as the beam width increases [72]. Thus, in order to reproduce the plane strain 

deformation state more correctly, the case t/h=1 is considered by imposing the following extra 

constrains to the beam’s two lateral surfaces: 

 0x yw  = = = . (96) 

As could be seen from Figure 22, the new hexahedral element predicts the size-dependent behaviors 

very well and accurately captures the saturated couple stress state as well as the transition process. 

Next, to illustrate the difference between the plane strain deformation state and fully 3D deformation 

state more clearly, the beam with t/h=10 and l/h=1.0 is analyzed again by considering and not 

considering the lateral constrains shown in Equation (96). The contours of the displacement v, stress 

xx , the couple stress xz  of the beam in these two deformation states are provided in Figure 23. 

One can see that the constraints acting on the beam lateral surfaces strongly affect the distribution 

of deformation.  

 

5.2.6 Another 3D cantilever thin beam  

As shown in Figure 24, this test also involves the deformation of a 3D cantilever thin beam, which 

is originally proposed in [72]. Different with the previous one, the beam is constrained at the left 

end with 0u v w= = =  , and subjected to a concentrated force at the right end. First, the beam 

stiffness of the 3D thin beam with different ratios of the width to the height are given in Figure 25, 

in which the results have been normalized by the values obtained using the classical elasticity. Note 

that the stiffness here is calculated using the same treatment as that in [72], namely tipK P v= , for 

purpose of comparing the present results with those obtained by the Ritz spline method [72]. As can 

be seen from Figure 25, the present numerical results are in good agreement with the reference 

values. Next, the case with t/h=4 and l/h=1 is evaluated to show the difference between the two 

different deformation state with and without considering the lateral constraints given in Equation 

(96). Figure 26 illustrates the distributions of the displacement v and couple stress xz  on the top 
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surface of the beam. It is shown that the displacement results agree with those proposed in [72] well. 

But the couple stress results are smaller than those in [72], although they have the similar 

distribution. 

 

 

5. Conclusions 

The consistent couple stress theory [4] has been demonstrated as a promising theory that can 

effectively capture the size effects of small-scale structures but requires the reliable numerical 

approaches for practical applications. In this paper, the penalty unsymmetric finite element 

framework is established for the consistent couple stress elasticity materials and then, C0 8-node 

quadrilateral element and 20-node hexahedral element are developed. In the present developments, 

the C1 continuity requirement is enforced by using the penalty function method in conjunction with 

the usage of independently introduced rotation DOFs. Consequently, the test functions of the 

displacement and mechanical rotation can be separately formulated by using C0 shape functions, 

from which the test functions of the strain and mean curvature are further derived. Besides, the trial 

functions of the stress and couple stress are constructed based on stress functions which are derived 

from the equilibrium equations of considered problems. Several benchmark tests involving different 

deformation modes are carried out by comparison with known in literature results, to validate the 

proposed elements’ performances. It is found that both the new 2D quadrilateral element and 3D 

hexahedral element can predict the size-dependent mechanical behaviors of consistent couple stress 

elasticity materials very efficiently and exhibits the advantages of the unsymmetric FEM, such as 

the concise formulation, good numerical accuracy and high tolerance to mesh distortion. 
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Table 1. Fifteen groups of the stress functions in the matrix 
n

H  in Equation (49) 

 i 1 2 3 4 5 6 7 8 9 10 

 ( )
i

xx
  0 0 2 0 0 2x 6y 0 6xy –12y2 

n

iH  ( )
i

yy
  2 0 0 6x 2y 0 0 6xy 0 12x2 

 ( )
i

xy
  0 –1 0 0 –2x –2y 0 –3x2 –3y2 0 

 

 i 11 12 13 14 15 

 ( )
i

xx
  12(x2–y2) 2x(x2–6y2) 10x3 6x2y 10y(3x2–2y2) 

n

iH  ( )
i

yy
  –12(x2–y2) 6xy2 –10x(2x2–3y2) –2y(6x2–y2) 10y3 

 ( )
i

xy
  –24xy –2y(3x2–2y2) –30x2y 2x(2x2–3y2) –30xy2 
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Table 2. Forty-eight groups of the stress functions in the matrix 
n

H  in Equation (77) 

 i 1 2 3 4 5 6 7 8 9 10 

n

iH  

( )
i

xx
  1 0 0 0 0 0 0 0 0 0 

( )
i

yy
  0 1 0 0 0 0 x 0 –y 0 

( )
i

zz
  0 0 1 0 0 0 0 x 0 0 

( )
i

xy
  0 0 0 1 0 0 0 0 x 0 

( )
i

yz
  0 0 0 0 1 0 0 0 0 x 

( )
i

xz
  0 0 0 0 0 1 0 0 0 0 

 

 i 11 12 13 14 15 16 17 18 19 20 

n

iH  

( )
i

xx
  0 y 0 –x 0 0 z 0 0 0 

( )
i

yy
  0 0 0 0 0 0 0 z 0 –y 

( )
i

zz
  –z 0 y 0 –z 0 0 0 0 0 

( )
i

xy
  0 0 0 y 0 0 0 0 z 0 

( )
i

yz
  0 0 0 0 y 0 0 0 0 z 

( )
i

xz
  x 0 0 0 0 y 0 0 0 0 

 

 i 21 22 23 24 25 26 27 28 29 30 

n

iH  

( )
i

xx
  –x 0 0 0 0 0 y2 0 –2xy 0 

( )
i

yy
  0 x2 0 –2xy 0 0 0 0 0 0 

( )
i

zz
  0 0 x2 0 0 –2xz 0 y2 0 –2yz 

( )
i

xy
  0 0 0 x2 0 0 0 0 y2 0 

( )
i

yz
  0 0 0 0 x2 0 0 0 0 y2 
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( )
i

xz
  z 0 0 0 0 x2 0 0 0 0 

 

 i 31 32 33 34 35 36 37 38 39 40 

n

iH  

( )
i

xx
  0 z2 0 0 0 –2xz 0 –x2/2 0 0 

( )
i

yy
  0 0 z2 0 –2yz 0 0 –y2/2 0 0 

( )
i

zz
  0 0 0 0 0 0 xy 0 –xz –yz 

( )
i

xy
  0 0 0 z2 0 0 0 xy 0 0 

( )
i

yz
  0 0 0 0 z2 0 0 0 xy 0 

( )
i

xz
  y2 0 0 0 0 z2 0 0 0 xy 

 

 i 41 42 43 44 45 46 47 48 

n

iH  

( )
i

xx
  yz –xz 0 –xy 0 0 0 –x2/2 

( )
i

yy
  0 0 –y2/2 0 xz –yz –xy 0 

( )
i

zz
  0 0 –z2/2 0 0 0 0 –z2/2 

( )
i

xy
  0 yz 0 0 0 xz 0 0 

( )
i

yz
  0 0 yz 0 0 0 xz 0 

( )
i

xz
  0 0 0 yz 0 0 0 xz 
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Table 3. Twenty-seven groups of the couple stress functions in the matrix 
c

H  in Equation (77)  

 i 1 2 3 4 5 6 7 8 9 10 

c

iH  

i

xy  1 0 0 x 0 0 y 0 0 z 

i

yz  0 1 0 0 x 0 0 y 0 0 

i

xz  0 0 1 0 0 x 0 0 y 0 

 

 i 11 12 13 14 15 16 17 18 19 20 

c

iH  

i

xy  0 0 x2 0 –2yz y2 0 0 z2 0 

i

yz  z 0 2xz x2 0 2xz y2 0 0 z2 

i

xz  0 z 0 0 x2 0 –2xy y2 0 –2xy 

 

 i 21 22 23 24 25 26 27 

c

iH  

i

xy  –2yz xy –yz 0 0 xz 0 

i

yz  0 0 xy yz xz 0 0 

i

xz  z2 0 0 0 yz xy xz 
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Table 4. The coefficients used for the 2D patch tests 

Description a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 

Constant stress 0 1 1 0 0 0 1 1 0 0 

Constant couple stress 0 0 0 1 1 0 0 0 1 1 
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Table 5. The convergence results calculated at the characteristic points of the circular ring 

 M×N 16×4 32×8 64×16 128×32 Reference [46] 

Cu (mm) 

l/a=0.25 0.3195  0.3030  0.2988  0.2977  0.297  

l/a=0.5 0.3036  0.2750  0.2687  0.2668  0.266  

l/a=1 0.3245  0.2697  0.2584  0.2547  0.254  

zA  

l/a=0.25 -0.4672  -0.4626  -0.4620  -0.4616  -0.462 

l/a=0.5 -0.5264  -0.5227  -0.5223  -0.5219  -0.522 

l/a=1 -0.5303  -0.5429  -0.5471  -0.5480  -0.548 

( )r A
 (MPa) 

l/a=0.25 -2.9186  -2.9128  -2.9189  -2.9222  -2.923 

l/a=0.5 -2.9692  -3.0058  -3.0181  -3.0314  -3.044 

l/a=1 -2.7066  -2.9193  -2.9662  -3.0295  -3.097 

rzB (N/mm) 

l/a=0.25 0.4107  0.4379  0.4463  0.4500  0.453 

l/a=0.5 1.2291  1.2614  1.2698  1.2744  1.278 

l/a=1 4.1936  4.3469  4.3873  4.4035  4.414 
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Table 6. The convergence results of the nominal stress concentration factors 

l/a Mesh a Mesh b Mesh c Reference [49] 

0.0001 3.19263  3.19406  3.19462  3.1935 

0.01 3.18656  3.18757  3.19160  3.1911 

0.1 2.76187  2.77017  2.77690  2.7843 

0.25 1.96916  1.98575  1.99417  2.0058 

0.5 1.46169  1.47944  1.48766  1.4998 

1 1.25037  1.26698  1.27473  1.2866 
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Table 7. The convergence results of the horizontal displacements at the points B and C 

 l/a Mesh a Mesh b Mesh c Reference [49] 

Cu (mm) 

0.0001 0.14685  0.14643  0.14640  0.1464 

0.01 0.14763  0.14726  0.14723  0.1472 

0.1 0.21082  0.21130  0.21130  0.2113 

0.25 0.35529  0.35574  0.35573  0.3557 

0.5 0.46338  0.46211  0.46188  0.4617 

1 0.51366  0.51095  0.51051  0.5102 

Bu (mm) 

0.0001 1.46407  1.46350  1.46339  1.4634 

0.01 1.46178  1.46115  1.46101  1.4610 

0.1 1.29072  1.28824  1.28759  1.2868 

0.25 0.94304  0.94038  0.93970  0.9387 

0.5 0.70840  0.70633  0.70582  0.7051 

1 0.60692  0.60493  0.60446  0.6038 
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Table 8. The results of the 3D constant couple stress test 

Mesh 8 elements 64 elements 512 elements Exact solution 

Au (mm)  -0.03243  -0.03244  -0.03249  -0.0325 

Av (mm)  -0.00814  -0.00741  -0.00750  -0.0075 

Aw (mm) -0.03247  -0.03249  -0.03250  -0.0325 

xyA (N/mm)  -0.713  -0.718  -0.720  -0.72 

yzA (N/mm) -0.713  -0.716  -0.720  -0.72 

xzA (N/mm) 0.750  0.723  0.720  0.72 
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Table 9. The convergence results calculated at the characteristic points of the hollow cylinder  

 Longitudinal mesh 10 20 30 Reference [46] 

Cu (mm) 

l/a=0.25 0.2985  0.2984  0.2984  0.297  

l/a=0.5 0.2675  0.2674  0.2674  0.266  

l/a=1 0.2544  0.2543  0.2543  0.254  

zA  

l/a=0.25 -0.4432 -0.4428 -0.4429 -0.462 

l/a=0.5 -0.5086 -0.5083 -0.5083 -0.522 

l/a=1 -0.5421 -0.5421 -0.5421 -0.548 
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Table 10. The convergence results of displacement and rotation the slender cylindrical bar  

 l /R 1210 4810 19210 Reference 

Bw (μm) 

0.1 122.209 122.018 122.013 

122.02 1 122.208 122.029 122.014 

10 122.216 122.032 122.018 

xB  

0.1 12.2196 12.1995 12.2073 

12.202 1 12.2210 12.2035 12.2021 

10 12.2214 12.2032 12.2022 
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Table 11. The convergence results of stiffness of the 3D cantilever thin beam  

 h/l 25510 501020 1001040 1002040 

K/K0 

0.1 5.641  5.034  4.807  4.805  

1 3.915  3.744  3.697  3.696  

2 2.873  2.783  2.764  2.764  

5 1.661  1.638  1.633  1.633  

10 1.211  1.207  1.206  1.206  
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Figure 1. The new 8-node quadrilateral element based on the CCST 
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Figure 2. The new 20-node hexahedral element based on the CCST  
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Mesh a Mesh b Mesh c 

Figure 3. The typical meshes used for the 2D patch test 
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E=2.5MPa, ν=0.25, a=1.0mm, b=2.0mm, Point C  

Figure 4. The model of the circular ring and the typical mesh 16×4  
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Figure 5. The distributions of the displacement, rotation, shear stress and couple stress 

along the radius obtained using the mesh 64×16  
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E=2.5MPa, ν=0.25, H=2.0mm, a=1.0mm, p=0.5N/mm 
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Figure 6. The square plate with a hole  
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Mesh a: 100 elements Mesh b: 400 elements Mesh c: 900 elements 

Figure 7. The typical meshes used for the square plate with a hole 
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E=1.44GPa, ν=0.38, h=100.0µm, L=10h, U=1.0µm 
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y 

Figure 8. The 2D simple shear problem 
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Mesh a: 32×12 elements  

Mesh b: 40×16 elements 

Figure 9. The bias meshes used for the 2D simple shear problem 
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Figure 10. The distribution of displacement along x=0 of the 2D simple shear problem 

Mesh a Mesh b 
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Figure 11. The distribution of rotation along x=0 of the 2D simple shear problem 
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E=2.0MPa, ν=0.0, width t=1mm, p=1.0N/mm2 

Figure 12. The 2D cantilever thin beam  
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Figure 13. The stiffness of the 2Dcantilever thin beam   
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E= 1.0GPa, ν=0.25, l=10.0µm 
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Figure 14. The typical meshes for the 3D patch test 
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E=2.5MPa, ν=0.25, a=1.0mm, b=2.0mm, L=10.0mm 

Figure 15. The model of the hollow cylinder  
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Figure 16. The distributions of the displacement and rotation along the radius of 

the hollow cylinder obtained using the mesh 64×16×10  
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E=1.44GPa, ν=0.38, R=10μm, L=20R, Q=1N·μm 

Figure 17. Torsion of the slender cylindrical bar 
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Figure 18. The typical meshes for the slender cylindrical bar 

(a) 1210 elements (b) 4810 elements (c) 19210 elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

E=1.44GPa, ν=0.38, h=100.0µm, L=10h, U=1.0µm 

Figure 19. The simple shear problem of 3D block 
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Figure 20. The distributions of the displacement and rotation along the path 

(x=0.5L, z=0.5L) of the 3D block 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

E=2.0MPa, ν=0.0, p=1.0N/mm2, h=1mm, L/h=20 

Figure 21. The full fixed 3D cantilever thin beam 
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Figure 22. The stiffness of the fully fixed 3D cantilever thin beam 
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displacement v (mm) 

stress  (MPa) 

couple stress  (N/mm) 

Figure 23. The displacement, stress and couple stress contours of the 3D cantilever beam (Left: 

with lateral constrains; Right: without lateral constrains) 
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Figure 24. Another 3D cantilever thin beam  

 

E=2.0MPa, ν=0.0, P=1.0N, L/h=10, h=1.0mm 

y 

L 

t 

x 

z 

h 

P 



68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 25. The stiffness of another 3D cantilever thin beam 
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Figure 26. The displacement and couple stress contours of another 3D cantilever beam (Left: 

with lateral constrains; Right: without lateral constrains)  


