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Abstract

In-plane wave propagation in hexagonal and re-entrant lattices is a widely investigated
subject in the literature. Such systems can exhibit many different but limited band struc-
ture properties that depend on the topology and geometry of structural members and the
lattice itself. This manuscript proposes a novel class of hexagonal and re-entrant lattices
with unit cells containing combined straight and curved beams with enhanced band-gap
properties. Timoshenko beams are suggested to represent beam members of the lattice
and corresponding governing equations are derived. Bloch theorem is applied to study in-
plane wave propagation and get the unique dispersion properties of the modified lattices.
The influence of a new geometric parameter, the curvature angle of the constituent curved
beams is explored for the dispersion characteristics and wave directionality through iso-
frequency contours of dispersion surfaces. Enhanced band-gap properties in the context
of the generation of new band-gaps and widening of the band-gaps for the cellular lattices
with curved beams are promising from the viewpoint of the future design of phononic
crystals and metamaterials in their mechanical setup.

Keywords: Hexagonal lattices, Curved beams, Timoshenko beams, Bloch waves,
Phononic bandgaps.

1. Introduction

Lattice structures are widely used in engineering practice due to their unique me-
chanical properties, robustness, and economic efficiency. These applications range from
structural and civil engineering to crystallography, biological and material sciences [1]. An
important requirement for some structural components is a lightweight design typically
combined with increased stiffness, which can conflict with the need for energy-related
dissipation of undesired vibrations and shock. In [2] the authors have shown that both of
these requirements, load-carrying capabilities, and vibration attenuation, can be achieved
through an embedded lattice with chiral configuration. Many authors have proposed a
variety of lattice designs and investigated their wave propagation and dispersion proper-
ties. Most common one-dimensional [3] and two-dimensional designs include triangular
and square lattices [4], hexagonal/re-entrant [5] and chiral lattices [6].

∗Corresponding author 1
∗∗Corresponding author 2

Email addresses: shuvajit.mukherjee@swansea.ac.uk (Shuvajit Mukherjee ),
milan.cajic@swansea.ac.uk (Milan Cajić )
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A comprehensive analysis of plane wave propagation and directional behavior in hexag-
onal and re-entrant beam-based lattices was performed in [7]. Different band structures
and directional properties were achieved for varying angles between beam members based
on Bloch theory, dispersion relations, phase, and group velocities. Dispersion curves
are usually plotted within the irreducible Brillouin zone, where approximate numerical
methods are used to obtain dispersion relations based on the corresponding unit cell
and constructed reciprocal lattice. The directional energy flow and stop band identifi-
cation was also investigated for different types of lattices in [8] by proposing a method
which produces group velocity maps. In [9] the author suggested an exact wave-based
Bloch method to study wave propagation in the two-dimensional square, honeycomb, and
hexagonal lattices, where predicted corresponding dispersion curves are compared and ad-
vantages emphasized against those obtained via finite elements. Despite interesting band
structure properties, classical lattice structures often lack desired band-gap properties
and there were many attempts in the literature to introduce modifications and improve-
ments in lattice topology [10–14] towards this direction. For example, a novel design for
honeycomb lattices with widen band-gaps was suggested by combining the conventional
and auxetic cores [15]. Some authors [16] introduced the effect of pre-stress on beam
elements in the hexagonal lattice to shift the band-gap to lower frequency. Bang gaps can
be also manipulated by changing the design of individual beam members or the unit cell
geometry either manually or through the utilization of topology optimization methods
[17–19]. Timoshenko beams of non-uniform thickness [20] were employed in hexagonal
and re-entrant lattice structures where widening of the existing ones and emerging of new
band-gaps were noticed for certain ranges of material distribution parameters. Moreover,
topological design based on the improved genetic algorithm was applied to the square
lattice structure by filling the material to manipulate the lower frequency band-gaps [21].
Besides these straightforward methodologies, some authors suggested the application of
fractal-inspired [22, 23] or bio-inspired [24] lattice structures capable of inhibiting the
wave propagation at sub-wavelength frequency ranges.

Another ambitious approach to control the band-gaps at both lower and higher fre-
quency ranges includes lattices with zigzag and undulated geometry of limbs in the unit
cell. Several types of two-dimensional beam-like zigzag lattice structures were proposed in
[25, 26] and their band-gaps and directional wave propagation were investigated in detail.
It was revealed that multiple wide and complete band-gaps appear in a wide porosity
range due to the separation of the degeneracy when bending arms are introduced. Simi-
larly, wave propagation analysis was performed for the triangular chiral lattice containing
zigzag beams [27] and for the re-entrant and anti-chiral hybrid auxetic metastructures
with mass inclusions [28]. Moreover, undulated geometry obtained by using the initial
curvature to the square lattice elements was studied in [29]. The authors devoted spe-
cial attention to induced anisotropy and break of symmetry to the regular square lattice,
which resulted in band-gaps at specified frequency ranges as well as a wave motion in
specific directions. Utilizing the fact that curved beams can perform a weaker stiffness
and therefore exhibit lower band-gaps, a recent study [30] performed a wave propaga-
tion analysis of rotationally symmetric lattices with curved beams that are transformed
from square lattices. Numerical simulations and experiments were conducted to demon-
strate the existence of lower band-gaps and directional wave propagation when certain
geometrical parameters are manipulated.

Motivated by previous studies [25, 31–33], the influence of curved beam elements are
explored for achieving lower and emergence of new band-gaps modifying the conventional
hexagonal lattice. Here, attention has been paid to hexagonal and re-entrant lattices
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modified by curved beams. Flexibility and weaker stiffness properties of such lattices
were demonstrated in a recent study [31]. Therefore, a unit cell composed of one straight
and two curved beams approximated by many straight Timoshenko beams is proposed.
Corresponding governing equations are derived and the finite element method and Bloch
theorem are applied to obtain the dispersion relations, and investigate and compare the
band structures of different curved beam configurations with the conventional one. Unlike
the curved beam-based square lattice [30], where the unit cell is exhibiting a full rotation
symmetry and has a limited number of emerging and vanishing bang gaps, in our case of
modified hexagonal/re-entrant-like variation of curved beam geometry leads to the emer-
gence, widening and even shifting of band-gaps to lower frequencies. The convergence
study is performed to see what number of beams is required to approximate the curved
beams with satisfying accuracy of eigenvalues. Moreover, the dispersion relations are
given in the form of iso-frequency curves to investigate the amount of anisotropy in the
wave propagation characteristic of the observed lattices. Today’s additive manufacturing
technologies allow us to design lattices with a variety of geometries which makes lattices
with curved elements and desired wave propagation features easy to make and utilize in
different engineering applications. The structures presented in this study give an insight
into potential applications of curved lattices in the direction of mechanical filters, sound
isolations, tunable acoustics, energy absorption, vibration control, and control and ma-
nipulation of wave propagation. Their main advantage lies in the emergence of new lower
and higher frequency band gaps only by manipulating the angles of curved beam elements
while keeping the main topological features of the lattice.

2. Wave propagation in two-dimensional lattice structures with curved beams

2.1. Mechanical model and geometry of a unit cell
Let us consider a two-dimensional lattice hexagonal/re-entrant-like type of lattice mod-

ified by curved beams, More precisely, a representative unit cell is composed of one straight
and two curved beams as given in Fig.1.

Four different combinations of lattices considering straight and curved beams, where
curvatures are varied from one or another side of the straight configuration, are consid-
ered as illustrated in Fig.1. However, it should be noted that in further analysis curved
beams are approximated with a satisfying number of straight beams based on previously
performed convergence analysis. Details about the geometry of the unit cell with its
characteristic dimensions and base vectors are also given in Fig.2. One can observe two
characteristic angles of the unit cell elements, where θ is a cell angle which defines the
angle between the inclined beam members and the axis normal to the straight beam el-
ement while ψ is the curvature angle (see Fig.2). This means that taking the cell angle
θ as a positive or negative value characterizes the lattice as hexagonal or re-entrant, re-
spectively. Change of curvature angle ψ defines the amount of modification of a lattice
from the hexagonal/re-entrant configuration. It is worth mentioning that lattice points
of modified latices are the same as in the conventional case and the basis vectors for the
periodic unit cell are denoted as e1 and e2. The entire lattice can be formed by tessellating
the periodic unit cell in the direction of the lattice vectors. Thus, the wave propagation
characteristics can be obtained by analysing a single unit cell by applying the Bloch the-
orem and periodic boundary conditions. The details about the lattice vectors and Bloch
theorem are elaborated/ explained in Appendix A and Appendix B, respectively.
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(a)

e1e2

(b)

e1e2

(c)

e1e2

(d)

Figure 1: Curved lattices and their corresponding unit cells along with the direct lattice vectors denoted
as e1 and e2. (a) curved hexagonal lattice, (b) curved hexagonal lattice with reverse curvature, (c) re-
entrant curved lattice, (d) re-entrant curved lattice with reverse curvature.

2.2. Timoshenko’s beam equations
The constituent beam members are modelled as the assembly of straight Timoshenko’s

beam. We consider the following material characteristics of the Timoshenko beam: ρ is the
density, h is the beam width, E is the modulus of elasticity, G = E/(2(1+ν)) is the shear
modulus while Poisson ratio is denoted as ν. We also adopted the shear correction factor
as ks = 10(1+ ν)/(12+11ν). The governing equations for the Timoshenko beam are well
known in the literature. However, for the sake of simplicity, we will repeat the derivation
procedure based on Hamilton’s principle. Therefore, the variations of the kinetic δK and
potential δU energy are defined as

δK =

∫ L

0

[
ρAu̇δu̇+ ρIζ̇δζ̇ + ρAẇδẇ

]
dx, (1)

δU =

∫ L

0

[
EA

∂u

∂x
δ
∂u

∂x
+ EI

∂ζ

∂x
δ
∂ζ

∂x
+GAks

(
ζ − ∂w

∂x

)
δ

(
ζ − ∂w

∂x

)]
dx, (2)

where δ denotes the variation operator.
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Using Eq.(1) and Eq.(2) and Hamilton’s principle gives
∫ t2

t1

(δK − δU)dt = 0, (3)

Finally, after performing the standard procedure one can get governing equations for the
longitudinal and transverse vibrations of the Timoshenko beam as

ρAü− EA
∂2u

∂x2
= p(x, t) (4)

ρAẅ +GAks

(
∂ζ

∂ζ
− ∂2w

∂x2

)
= q(x, t) (5)

EI
∂2ζ

∂x2
−GAks

(
ζ − ∂w

∂x

)
− ρIζ̈ = 0 (6)

where w(x, t) denotes the transverse displacement, u(x, t) is the axial displacement, and
ζ is rotation of the cross section. We adopted that ˙(·) ≡ ∂(·)/∂t. In this work we neglect
the influence of the external axial p(x, t) and transverse q(x, t) loads.

2.3. The finite element formulation of the unit cell
Here, the finite element method is employed to discretize the governing equations of

a unit cell with applied Bloch boundary conditions. As mentioned previously, a unit cell
is given as an assembly of one rigidly connected straight beam with two inclined curved
beams. Each beam is discretized by straight Timoshenko beam elements. The convergence
analysis to obtain a minimum number of straight beams that can approximate the curved
beam is given in Section 3.1.

(a) (b)

Figure 2: Figure showing (a) finite element discretization of a unit cell and three constituent beam
members numbered as 1 (vertical beam), 2 (right beam) and 3 (left beam), respectively. Each beam
is discretised with some finite elements and then assembled to obtain the global matrices. q0, q1 and
q2 denote the boundary degrees of freedom and qi denotes the internal degrees of freedom and (b)
discretization procedure of a single curved beam (right beam) and the geometric details required for
doing finite element assembling. The curved beam is approximated by considering a number of straight
Timoshenko beams. θ, ψr, R, α and ϕi are the cell angle, curvature angle of the right beam, radius,
curvature angle for a single finite element, and angle between the global and local co-ordinate system for
the finite elements, respectively.

Finite element models for Timoshenko beam are adopted in the same manner as in
[34] with approximations of displacements u(x, t) and w(x, t) and rotation ζ(x, t) given as
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follows

u(x, t) =
6∑

j=1

Nu
j (x)qj(t), w(x, t) =

6∑

j=1

Nw
j (x)qj(t), ζ(x, t) =

6∑

j=1

N ζ
j (x)qj(t), (7)

where Nu
j (x), N

w
j (x) and N ζ

j (x), (j = 1, 2, ..., 6) represents the shape functions for six
nodal degrees of freedom of the Timoshenko beam element. The nodal vector is q(t) =
[u1, w1, ζ1, u2, w2, ζ2]

T . The shape functions used in this work are given in Appendix C.
If we consider the governing equations for Timoshenko beam Eq.(4) - Eq.(6), energy
variation Eq.(1) - Eq.(3) and approximation of displacements and rotation Eq.(7) we
get

Meq̈e + Keqe = fe, (8)

where Me is the finitand Ke are mass and stiffness matrices of the beam element while
qe and fe are the corresponding element displacement and force vector, respectively.

By considering a typical unit cell of a hexagonal and re-entrant lattice, the model
represents a frame structure where mass and stiffness matrices (Me,Ke) of the beam
element are obtained in local coordinates but should be transformed into the global ones.
In the following, the relation between the global and local mass and stiffness matrices is
given

Me
g = TTMeT, Ke

g = TTKeT, (9)

where the transformation matrix T is given as

T =

(
T0 0
0 T0

)
, (10)

and the rotation matrix T0 as

T0 =




cosφ(ψ, n, θ) sinφ(ψ, n, θ) 0
− sinφ(ψ, n, θ) cosφ(ψ, n, θ) 0

0 0 1


 , (11)

where the angle between the local and global axial directions of the beam φ depends on the
number of finite elements considered to discretise the beam. In Fig.2 the φ corresponding
to each finite elements are shown (φi, i = 1, 2, ...n). Angle φi can be expressed as the
function of the curvature angle ψ of the whole beam, number of finite elements to discretize
the curved constituent beam (n) and cell angle θ. The connection angle for the three
straight beam unit cell model of a hexagonal lattice is more simple and it is given in [34].
The beam model of some unit cell with one straight and two curved beams approximated
by many small Timoshenko beams and connected under different angles according to the
local coordinate system are assembled by taking into account matrices from Eq.(9) in
the following manner

K =

nele∑

e=1

Ke
g, M =

nele∑

e=1

Me
g, (12)

where M and K are the global mass and stiffness matrices of the unit cell and nele = 3×n
(the same number of finite elements are considered for each constituent beam member) is
the number of elements in the unit cell. The final equation for the unit cell finite element
model is of the form

Mq̈ + Kq = f. (13)
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2.4. Dispersion relations for the periodic unit cell
By using the previously described concept, a corresponding eigenvalue problem can be

established whose solution gives dispersion curves i.e. frequencies in terms of wavenum-
bers.

To get the dispersion relations and investigate the band structure of the unit cell we
need to utilize the previous finite element model and corresponding periodic boundary
condition. Let us first introduce the harmonic solution q(x, t) = q(x)eiωt into the Eq.(13),
which yields

(K − ω2M)q = 0 , (14)
where ω is the frequency of the free wave propagation. Here, the force vector f is neglected
and the vector q of nodal displacements are considered as

q = {q0 q1 q2 qi}T , (15)

with q0,q1, and q2 denoting the vectors of nodal displacements at unit cell nodes while
qi are degrees of freedom of internal nodes (see Fig.2 (a)). By employing Bloch’s theorem
and periodic boundary conditions at the nodes of a unit cell is defined as follows

q1 = ek1q0, q2 = ek2q0. (16)

where k1 and k2 are the wavenumbers as mentioned in Appendix B. By utilizing the
equation Eq.(16) we can apply transformation matrix to the global vector of nodal dis-
placements in the following manner

q = Tbqr, (17)

yielding the global vector of nodal displacements in the reduced form qr = {q0 qi}T
while matrix Tb is given as

Tb =




I 0
Iek1 0
Iek2 0
0 I


 . (18)

By considering the Eq.(17) into Eq.(14) and pre-multiplying the results with the Her-
mitian (complex conjugate) transpose matrix TH

b results in

(Kr(k1, k2)− ω2Mr(k1, k2))qr = 0 , (19)

where the reduced mass and stiffness matrices are of the form

Mr(k1, k2) = TH
b MTb, (20)

Kr(k1, k2) = TH
b KTb.

The eigenvalue problem Eq.(19) can be solved by considering a set of values for k1 and
k2 in the first Brillouin zone to obtain the dispersion surfaces ω = ω(k1, k2). The dimension
of the eigenvalue problem determines the number of dispersion surfaces. The geometry
of the reciprocal lattice depends on the cell angle (θ) of the lattice and the reciprocal
lattice vectors (e∗

1, e∗
2) can be obtained by following the standard procedure mentioned in

Appendix A. The author refers [35] for more details on the symmetry and Brillouin zone.
The symmetry of the unit cell dictates the symmetry of the Brillouin zone. Considering
the symmetry property of the first Brillouin zone the irreducible Brillouin zone (IBZ)
can be obtained. Eventually, the computational effort can be substantially reduced by
considering the values of wavenumbers varying along the contours of the IBZ. The same
IBZ in the reciprocal lattice and its contours for the hexagonal and re-entrant lattices as
given in [20, 34] are used and shown Table 1.
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Table 1: The boundary points of the irreducible Brillouin zone of hexagonal and re-entrant lattice struc-
tures.

Type of periodic structure Hexagonal structure Re-entrant structure
0◦ ≤ θ < 90◦ −30◦ < θ ≤ 0◦

O (0, 0) (0, 0)
A 2π(1/(4 sin2 ϕ),−1/(4 sin2 ϕ)) 2π(1/2,−1/2)
B 2π(1− 1/(4 sin2 ϕ), 1/(4 sin2 ϕ)) 2π(1− 1/(4 cos2 ϕ),−1/(4 cos2 ϕ))
C 2π(1/2, 1/2) 2π(1/(4 cos2 ϕ), 1/(4 cos2 ϕ))

3. Numerical study and discussion

The dispersion characteristics of the new set of curved hexagonal lattices (see Fig.1)
are investigated considering Timoshenko beam-based modelling for the constituent beam
members. In this study, hexagonal and re-entrant lattices along with their variant where
the curvature of the constituent curved beams are reversed are considered. These geome-
tries are variants of the conventional hexagonal lattice formed by curved beams. Thus,
unlike the conventional case with the cell angle, θ another geometric parameter, curvature
angle ψ is appeared in our investigation. The main motivation of this work is to exploit
ψ to enhance the band-gap characteristics without including local resonators. A study
on the band-gap analysis considering the pre-stressed beam with embedded masses shows
additional band-gaps for the hexagonal lattice [34] mostly in the mid or high-frequency
region. The present work demonstrates the exploitation of the curved beams to obtain
both low and high-frequency band-gaps along with their widening. All the codes for the
numerical calculation are developed in MATLAB. The band-gaps with very thin widths
are neglected for all the figures.

The dispersion analysis is performed considering the wave vector (k) varying along
the contour O − A − B − C − O (see Fig.A.1). The material and geometric parameters
considered for the analysis are taken from [34] for the sake of validation and they are
used for the present analysis as well. The properties are as follows: elastic modulus
E = 210× 109 Pa, mass density ρ = 25× 103 kg/m3, Poisson’s ratio ν = 0.25, slenderness
ratio β = t/L = 1/15, length of the beam L = 0.125m (see Fig.2). Frequencies (ω)
obtained from the eigenvalue analysis to get the dispersion diagrams are normalized with
the first flexural natural frequency of the simply-supported beam to maintain consistency
with the previous literature. The first flexural natural frequency can be expressed as
ω0 = π2/L2

√
EI/ρA and the expression for the normalised frequency becomes Ω = ω/ω0.

The second moment of inertia is denoted as I = bt3/12 and the area A = bt (b and t are
the widths and the thickness of the beam, respectively). The coupled effect of cell angle
and curvature angle is discussed in the following sections.

3.1. Converge study and validation of band structures
Here we perform a convergence study to adopt the number of necessary finite elements

required in curved beam discretization to achieve satisfying accuracy. For this, a free
vibration analysis of the unit cell considering both pinned-pinned and clamped-clamped
boundary conditions is performed. Both boundary conditions are applied to all boundary
nodes of the unit cell given in Fig.2a. The natural frequencies for the first few modes
are obtained by increasing the overall number of elements in a unit cell for θ = 30◦ and
ψ = 50◦. Table 2 shows that 30 finite elements per beam in a unit cell (90 in the whole
unit cell) gives satisfying accuracy that is used in the rest of our analysis.
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Table 2: Convergence study for the number of finite elements used to discretise the constituent beam
members in the unit cell. The natural frequencies are normalised by ω0 = π2/L2

√
EI/ρA

pinned-pinned clamped-clamped
Natural Number of elements Number of elements

frequencies 10 20 30 10 20 30
ω1 0.4408 0.4539 0.4585 0.8547 0.8705 0.8761
ω2 1.3340 1.3331 1.3328 1.9149 1.9154 1.9154
ω3 2.8290 2.8224 2.8226 3.5826 3.5760 3.5757
ω4 3.1224 3.1210 3.1223 3.8779 3.8774 3.8788
ω5 4.4554 4.4580 4.4583 5.5123 5.5156 5.5160
ω6 5.7033 5.7472 5.7667 6.0355 6.0856 6.0969
ω7 6.5544 6.3622 6.2988 6.6288 6.4559 6.4088
ω8 6.7244 6.6902 6.6874 7.6393 7.6283 7.6307
ω9 8.8636 8.8690 8.8693 9.6770 9.6541 9.6474
ω10 9.4202 9.4725 9.4928 10.4968 10.4798 10.4825

Here, the band structure and the corresponding dispersion surfaces obtained for two
cases, 1. curved hexagonal lattice with θ = 30◦ and ψ = 30◦, and 2 are shown. Curved
hexagonal lattice with θ = 30◦ and reverse ψ = 30◦. Fig.3a and Fig.3b verify that the band
structure of the curved hexagonal lattice and corresponding band-gaps in the irreducible
Brillouin zone are matching with the 3D dispersion surface plots for the whole Brillouin
zone. Fig.3c and Fig.3d are showing the same thing for the re-entrant hexagonal lattice.

(a) (b)

(c) (d)

Figure 3: Frequency band structures for (a) the curved hexagonal lattice with θ = 30◦ and ψl = ψr = 30◦,
(b) dispersion surface of curved hexagonal lattice with θ = 30◦ and ψl = ψr = 30◦, (c) the re-entrant
curved hexagonal lattice with θ = −10◦ and ψl = ψr = 30◦ for constitutive curved beam, (d) dispersion
surface of re-entrant curved hexagonal lattice with θ = −10◦ and ψl = ψr = 30◦ constitutive curved
beam. θ, and ψ are cell angle and curvature angle, respectively.
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The main observation for both cases is that the band structures display the emergence
of new band-gaps in different frequency regions compare to to the hexagonal/re-entrant
lattices with straight beam elements. The details of the influence of curvature angle and
also the coupled effect of θ and ψ are discussed in the next sections.

3.2. Finite element validation of band-gap charecteristics with finite lattice
In this section, finite element verification of the band structure is performed considering

a finite lattice. The lattice has 20 cells in the x-direction and 9 cells in the y-direction.
The unit cell of the lattice structure has the same geometric and material properties as
mentioned before with θ = 30◦ and ψl = ψr = 30◦. The left boundary of the lattice
is fixed and the excitation is applied on the other side as shown in Fig.4. We consider

Figure 4: The geometry of finite lattice with boundary condition along with the excitation and measuring
points

three different locations to measure the responses. The geometry and the meshing are
performed in Gmsh and the finite element analysis with the postprocessing performed in
MATLAB. Each beam of the corresponding unit cell is discretised with 10 finite elements
which result in 5850 elements in total for the whole structure.

The transmittance for the finite lattice is obtained to verify the results obtained from
the periodic analysis of the unit cell. The steady-state frequency responses are obtained
followed by the transmittance at various measuring points. The excitation is applied on
the x-direction and only the transmittance plot for the measuring point 3 is shown for
the sake of brevity in the Fig.5a. The expression for the transmittance is as follows:

Ut = 20log
Um

Ue

(21)

where Um and Ue are the displacements of the measuring and excitation points, respec-
tively. The band-gap characteristics is also shown in Fig.5b for comparison. It is observed
from the analysis that the reduction in transmittance is more for the measuring points
which are located far from the excitation point. We can see that there is a reduction in
the transmittance in frequency ranges corresponding to the band gap frequencies. The
frequency ranges for the first three band gaps are matching quite well with the frequency
ranges of the transmittance peaks. However, the band gap position near frequency 8 is

10
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deviating from the frequency range of the transmittance peak. The reason behind this
is due to the finite number of unit cells in the lattice and also the discretization of the
finite element model might not be enough to capture the high frequency region. This
investigation verifies the band gap analysis considering the unit cell.

(a) (b)

Figure 5: Figure showing (a) transmittance and the (b) frequency band structures of the corresponding
unit cell with θ = 30◦, and ψl = ψr = 30◦.

Next, the time response for the excitation and measuring points are also obtained.
The lattice was subjected to loading at the excitation point with a modulated pulse with
two different frequency content shown in Fig.6. Figure 6a shows the tone burst signal with
frequency content around 140 Hz (Ω = 0.2; long wavelength region) and Fig.6b shows the
same with frequency content 2100 Hz (Ω = 3; lies inside the band gap). The time history
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Figure 6: Figure showing tone burst signals with a frequency content of around (a) 140 Hz (normalised
Ω = 0.2) and (b) 2100 Hz (normalised Ω = 3.0).

of the different measuring points along with the excitation point are shown in Fig.7 and
Fig.8 for two different modulated pulse loadings mentioned in Fig.6. It is observed in
Fig.7 the amplitudes of the responses are of the same order. The amplitude of responses
for the measuring points doesn’t follow any trend; i.e the amplitude of the response of
measuring point 3 is higher than measuring point 2. Whereas, for Fig.8 the amplitude
reduces gradually as one goes far from the excitation point. This is because the frequency
content lies within the band gap region, unlike in the previous case.
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(a) (b)

(c) (d)

Figure 7: Time response of three measuring points on the curved hexagonal finite lattice with θ = 30◦

and ψl = ψr = 30◦ subjected to harmonic excitation of around 140 Hz (normalised Ω = 0.2) applied
on the global x direction at the excitation point (shown in Fig.4) (a) response at measuring point 1, (b)
response at measuring point 2, (c) response at the measuring point 3, and (d) response of all points.

3.3. Curved hexagonal lattice
The effect of the curvature angle on the dispersion characteristics of the hexagonal

and re-entrant lattices with constituent curved beams is investigated through the Bloch
wave analysis. Incorporation of the curved beam as the constituent beam originates new
band-gaps and also induces band-gap widening.

The influence of the curvature angle can be observed in Fig.9. In this plot the hexag-
onal straight (see Fig.9a) and curved hexagonal lattices (Fig.9b - Fig.9d) is considered.
The cell angle θ is kept constant at 30◦ and the ψ is varied.

Comparing Fig.9a and Fig.9b one can observe that unlike the conventional hexagonal
lattice with straight constituent beam there is a new band-gap opening near Ω = 3 and
the width of the former bad-gap for 4 ≤ Ω ≤ 6 is slightly reduced. New band-gaps are
continuously emerging as soon as the ψ is increasing. Fig.9c shows four band-gaps for the
case of ψl,r = 30◦ located in both lower and higher frequency regions. To have a more
clear picture of the influence of curvature angle on the evolution of band-gaps Fig.9d is
obtained by varying ψ and keeping θ = 30◦. For low values of curvature angle, there is
only one gap that is equivalent to the case of hexagonal lattice when θ = 30◦. At a certain
value of ψ close to 5◦ the second band-gap appears. A further change of the curvature
angle yields more band-gaps and five of them in total exists for ψ = 50◦. The width of
band-gaps also varies with some of them slightly shifting towards lower frequency regions.

One interesting feature that can be observed in band structures of hexagonal lattices
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(a) (b)

(c) (d)

Figure 8: Time response of three measuring points on the curved hexagonal finite lattice with θ = 30◦

and ψl = ψr = 30◦ subjected to harmonic excitation of around 2100 Hz (normalised Ω = 3.0) applied
on the global x direction at the excitation point (shown in fFig.4) (a) response at measuring point 1, (b)
response at measuring point 2, (c) response at the measuring point 3, and (d) response of all points.

with straight constituent beams is the veering and locking of frequency bands. These
phenomena that appear when corresponding dispersion branches mutually interact are
well known in weakly coupled mechanical systems [36, 37]. Veering and/or locking were
observed by different authors for a variety of planar lattice topologies such as hexagonal,
trigonal and square honeycomb lattices [38], hierarchical lattices [27] or frame grid lattices
with resonators [39]. Veering can be viewed as a localized zone in the dispersion diagram
that appears between the pairs of eigenmodes, where eigenvalues do not cross but veer
away. In the case of locking, the merging of two non-zero eigenfrequencies occurs to form
a complex-conjugate pair (e.g. see [37]). Observing Fig.9a for the conventional hexagonal
lattice one can notice three characteristic veering and locking points that appear between
the third and the fourth as well as eight and tenth dispersion branches. As earlier described
in [39], two closely spaced modes are having identical mode shapes which means that a
small change in energy can shift the system from one mode to another in the veering
zone. However, introducing the curved beam-based configuration of hexagonal lattices
yields much different behaviour of band structure with fewer veering points. An increase
of curvature angle causes some new band-gaps to open at the frequency of veering and/or
locking points along with the obvious detachment of dispersion branches. Therefore,
the energy levels of such separated modes are much higher and jump-up or jump-down
phenomena are difficult to occur in such systems. Similar behaviour can be noticed
in different curvature beam configurations and both modified hexagonal and re-entrant
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(a) (b)

(c) (d)

Figure 9: Figure showing frequency band structures of the (a) hexagonal lattice with straight beam
members with θ = 30◦, and curved hexagonal lattice with θ = 30◦ and (b) ψl = ψr = 10◦, (c) ψl = ψr =
30◦, and (d) evolution of the frequency band-gaps with curvature angle ψ considering cell angle θ = 30◦.
θ and ψ are the cell angle and curvature angle, respectively.

lattices. According to [37], effects analogous to locking are common in stability analysis
where for example some instabilities can be predicted in certain hydrodynamic systems.
Having in mind that many veering and locking points vanish in modified hexagonal and
re-entrant lattices, it can be also concluded that wave modes become more stable after
introducing the curved beam-based configuration. It is also evident from the Fig.9 that
the group velocities which is the slope of the dispersion curves (cg = ∂Ω/∂k) for the
longitudinal waves at long wavelength limits reduce with increase in ψ.

Another interesting curved lattice configuration, when one of the curvature angles ψ
is reversed (see Fig.1b) is also studied. The reversed curvature configuration is depicted
as positive and negative ψ values for the two constitutive beam elements. The curvature
angles for the left and right curved beams are denoted as ψl and ψr, respectively. The
band structure of these two cases is much different compared to the case with both positive
curvatures. Fig.10 is showing the band structures of the curved hexagonal lattice for beam
members with reverse curvature. In this plot, Fig.10a) shows the dispersion diagram with
very small ψ values for both curved beam members which shows a very good match
with the conventional hexagonal lattice. In the following figures (Fig.10b - Fig.10c) the
curvature angle is increased and it shows occurrence and disappearance of band-gaps. The
nature of the dispersion diagrams is different from the previous case where both curvature
angles were positive. Overall, the number of band-gaps is less in this case as well as the
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widening of the band-gaps. Comparing Fig.9d and Fig.10d it is observed that even for
ψ = 50◦ the number of band-gaps are less for lattice considering curved beam with reverse
curvature. The band-gap which appeared near Ω = 5 eventually gets narrower and again
widens at ψ close to 42◦. Also, the width of the band-gap which occurs near Ω = 3,
increases with ψ like in the previous case but decreases with increasing ψ after ψ around
25◦. Although the nature of the band-gap shifting towards the lower frequency range is
similar to the previous case.

(a) (b)

(c) (d)

Figure 10: Figure showing frequency band structures of the curved hexagonal lattice with θ = 30◦ and
reverse curvature angle for the curved beams (a) ψl = 0.001◦, ψr = −0.001◦, (b) ψl = 10◦, ψr = −10◦,
(c) ψl = 30◦, ψr = −30◦, and (d) evolution of the frequency band-gaps with reverse curvature angle ψ
considering cell angle θ = 30◦. θ and ψ are the cell angle and curvature angle, respectively.

3.4. Curved re-entrant lattice
The same analysis is also performed for the re-entrant case with a positive curvature

angle for both of the constituent beam members and with reverse curvature. The influence
of the curvature angle is observed in Fig.11.

In this analysis, the cell angle for the re-entrant lattice is considered as 10◦. The
dispersion diagram for the re-entrant lattice with the straight beams is shown in Fig.11a.
The value of the curvature angles is then increased eventually to investigate the effect of
the curvature angle on the dispersion relationship for the re-entrant lattice. Plots Fig.11b
- Fig.11d show the details of the study. Comparing Fig.11a and Fig.11b it is observed
that unlike the conventional re-entrant lattice with straight constituent beam there are
two a new band-gap opening near Ω = 8 and 3. As the value of ψl,r is increased to 30◦ the
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(a) (b)

(c) (d)

Figure 11: Figure showing frequency band structures of the (a) re-entrant lattice with straight beam
members with θ = −10◦, and curved re-entrant lattice with θ = −10◦ and (b) ψl = ψr = 10◦, (c)
ψl = ψr = 30◦, and (d) evolution of the frequency band-gaps with curvature angle ψ considering cell
angle θ = −10◦. θ, and ψ are the cell angle and curvature angle, respectively.

width of the band-gap near Ω = 3 increases and two new band-gaps appear near Ω = 5
and 2. To have a more clear picture of the influence of curvature angle, the evolution
of band-gaps with ψ is obtained and shown in Fig.11d while keeping θ = 30◦. One can
observe that the width of the band-gap which appeared near Ω = 3 keeps increasing
up to curvature angle 22◦ and then remains almost unaltered for the rest. Thought the
band-gap shifts towards the lower frequency ranges. The shifting of band-gaps to the lower
frequency range is true for other band-gaps as well. With increasing ψ the band-gap which
appeared near Ω = 3 disappears around ψ = 35◦ and regenerates again after a while. The
width of these band-gaps then keeps increasing with ψ. Another band-gap appears near
ψl,r = 25◦ and its width keeps increasing towards the lower frequency region. It is noticed
that at ψl,r = 50◦ there are 5 band-gaps present. A similar investigation is performed
for re-entrant lattice with configuration considering both positive and negative ψ for the
curved beam in the unit cell (see Fig.1b). This configuration is named a unit cell with
a reverse angle. The band structure with reverse curvatures is much different compared
to the case with both positive curvatures. Fig.12 is showing the band structures of the
curved re-entrant lattice reverse configuration. Figure 12a shows the dispersion diagram
with very small ψ values for both curved beam members which shows a very good match
with the conventional hexagonal re-entrant lattice. In the following figures (Fig.12b and
Fig.12c) the curvature angle is increased. It show occurrence of new band-gaps in lower
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as well as higher frequency regions in the lower as well as higher frequency regions for
ψl = 30◦, ψr = −30◦ (Fig.12c) case.

The nature of the dispersion diagrams is different from the re-entrant case with both
positive curvatures. Overall the number of band-gaps is less in this case as well as the
widening of the band-gaps. Comparing Fig.11d and Fig.12d it is observed that even for
ψ = 50◦ the number of band-gaps are less for lattice considering curved beam with reverse
curvature. From Fig.12d one can notice that the width of the band-gap which appeared
near Ω = 3 near ψ = 15◦ increases up to around ψ = 21◦ and continues for higher values
of ψ and the width decreases eventually. The small band-gap which appears near Ω = 5
increase its width up to ψ = 26◦ and then decreases until ψ = 35◦. Again the band-gap
starts to grow and continues while shifting towards the lower frequency region. The overall
nature of the band-gap is shifting towards the lower frequency region with increasing ψ.
Unlike the previous case with both positive curvature angles, the number of band-gaps
and widths are less for the case with reverse curvature.

(a) (b)

(c) (d)

Figure 12: Figure showing frequency band structures of the curved re-entrant lattice with θ = −10◦ and
reverse curvature angle for the curved beams (a) ψl = 0.001◦, ψr = −0.001◦, (b) ψl = 10◦, ψr = −10◦,
(c) ψl = 30◦, ψr = −30◦, and (d) evolution of the frequency band-gaps with reverse curvature angle ψ
considering cell angle θ = −10◦. θ and ψ are the cell angle and curvature angle, respectively.

3.5. Effect of cell angle on the band-gaps
The effect of the cell angle on the band-gap characteristics is summarised in the Fig.13.

To obtain the effect of θ the ψ value is fixed to 50◦ for all the cases. The effect of θ on
the curved hexagonal lattice is shown in Fig.13a. It is observed that for the two lower
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band-gaps the width remains the same while for the third one the band-gap increase with
the θ. For the band-gap in the higher frequency, the width of the band-gap is highest for
lower θ values and decreases with increasing θ. There are two band-gaps below Ω = 6 and
7 whose widths increase with θ. Fig.13b shows the effect of θ on the hexagonal lattice with
a reverse curvature angle for the constituent beam. It can be observed that the effect of
the θ on the width of the band-gap is almost minimal. There is a new band-gap opening
in the high-frequency region near θ = 25◦. The influence of θ on the curved re-entrant
lattice is shown in Fig.13c. The width of the band-gaps in the lower frequency region
remains unaltered while the width of the mid-frequency one increase with θ. There are
some small openings of band-gaps at higher θ values. The width of the band-gap in the
higher frequency region decreases with increasing θ. Unlike the previous case with reverse
curvature (see Fig.13b) for the re-entrant case with reverse curvature the influence of θ
is negligible except the opening of very small band-gaps for different θ values. It is clear
from the plots that the effect of θ for the lattice with the reversely curved beam is very
less compared to the other case.

(a) (b)

(c) (d)

Figure 13: Evolution of band-gaps with cell angle θ considering ψ = 50◦ for (a) curved hexagonal lattice,
(b) curved hexagonal lattice with reverse curvature, (c) re-entrant curved lattice, and (d) re-entrant
curved lattice with reverse curvature. θ, and ψ are the cell angle and curvature, respectively.

3.6. The iso-frequency contours
Important conclusions regarding the existence of stop bands in lattices are drawn

from the band structure analysis. However, we can get a complete picture of the wave
propagation in modified lattices only by investigating their directional behaviour. Figures
14 and 15 are showing contours of dispersion surfaces corresponding to the first four
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Figure 14: Iso-frequency contour plots for the first four modes of the conventional and modified hexagonal
lattice. The first row shows the contours for hexagonal lattice with straight constituent beam with θ = 30◦.
The second row shows the contour for the curved hexagonal lattice with θ = 30◦ and ψl,r = 50◦. The
third row shows the contour for the curved hexagonal lattice with θ = 30◦ and ψl = 50◦, and ψr = −50◦.

wave modes of six different lattice types whose main geometrical parameters are given in
the beginning of this section. These contours, known in the literature as iso-frequency
contours, are revealing the direction of the group velocity which is perpendicular to them.
This enables one to disclose the directionality of wave propagation in lattices only by
knowing their dispersion characteristics. A well known property of homogeneous materials
is that wave propagates equally in all directions resulting in circular iso-frequency curves
while in anisotropic mediums such as lattices of different topology these contours can
have a variety of shapes. Let us superimpose the first Brillouin zone to the iso-frequency
contour plots for each of the given wave modes. The first four panels in Fig.14 are showing
the iso-frequency contours of the hexagonal lattice with straight beams. The next four
panels are referring to the modified lattice when both curved beams are defined by the
positive angle ψl and ψr while the last four panels are referring to the positive ψl and
negative ψr.

In the first mode of the convectional hexagonal lattice, one can identify six-lobed con-
tour curves that are displaying anisotropic behaviour at certain frequency values. More-
over, a moderate number of iso-frequency contours can be observed in this mode for both
lower and higher frequency values, which means that there are no abrupt changes in the
corresponding dispersion surface. The second and third modes are displaying different
behaviour, where a high number of contours can be seen for low values of frequency and
wavenumber while their density is becoming low towards the edges of the Brillouin zone
that is attributed to almost flat dispersion surfaces at higher frequencies. In the last wave
mode, there are no contours at the boundaries of the Brillouin zone and dispersion surfaces
are flat in that region. Elliptical or nearly circular shapes of iso-frequency curves in the
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Figure 15: Iso-frequency contour plots for the first four modes of the conventional and modified re-
entrant lattice. The first row shows the contours for re-entrant lattice with straight constituent beam
with θ = −10◦. The second row shows the contour for the curved re-entrant lattice with θ = −10◦

and ψl,r = 50◦. The third row shows the contour for the curved re-entrant lattice with θ = −10◦ and
ψl = 50◦, and ψr = −50◦.

last three modes are implying the quasi-isotropic behaviour which suggests an identical
speed of wave propagation in all directions mostly associated with the low frequency.

By comparing the iso-frequency surface plots between the conventional and modified
curved lattice it is noticed that the same topology of iso-frequency curves is kept in the
first mode while there is a significant difference in higher frequency wave modes. For
the second wave mode, this change reflects in a slower change of dispersion surfaces
for low frequency values due to less density of iso-frequency curves associated with quasi-
isotropic behaviour. Towards the boundaries of the Brillouin zone, a lesser number of lobed
contours appears due to the flattened dispersion surfaces. The iso-frequency contours
drastically change in the third and fourth modes compared to the conventional lattice,
where anisotropic behaviour becomes more apparent. This drastic change is attributed
to the fact that in between these bands a new band-gap opens. That causes shifting of
the bands to either lower or higher frequencies and their flattening at the edges of band-
gaps as well as the reverse appearance of contours associated with the lowest and highest
frequency. Similar behaviour can be observed for the lattice with reverse curvatures where
in the first mode only smoothed lobed contours can be noticed and slight shifting of the
frequency to lower values. The lesser density of contours is present for the lower frequency
values indicating the slower change of dispersion surfaces. Again third and fourth modes
are displaying much different iso-frequency contours. The directional behaviour of the
third mode is more emphasized than the one of the conventional lattice with equally
distributed contours indicating the slower change of the dispersion surface within the first
Brillouin zone. The fourth band is associated with the band-gap between the fourth and

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

fifth (not given here) band and only fewer contours can be seen due to the flat nature
of the corresponding dispersion surface. An interesting wave propagation nature of re-
entrant hexagonal lattices was revealed in many previous works. Here, modified re-entrant
hexagonal lattices with curved beams are observed and the directional wave propagation
behaviour based on iso-frequency contours of the dispersion surfaces of four wave modes
is studied. Similar to the previous case, in Fig.14 the first four panels are referring
to the conventional re-entrant lattice, the next four are representing the configuration
with both positive curvature angles and the last four are referring to the case with one
positive and one negative curvature. Highly directional behaviour of all propagating wave
modes can be observed in the conventional re-entrant hexagonal lattice. However, this
feature is changed at a certain amount in the modified lattices. This change is not that
pronounced in the first mode like in the other three higher wave modes. Moreover, the high
density of low frequency contours in the second and third modes of the conventional lattice
is lost in the modified lattice configuration indicating the slower change of dispersion
surfaces. In these cases, the contours are evolving from nearly circular to oval shapes thus
changing their nature from isotropic to anisotropic one. However, this change is much
more smooth in the case of curved beam lattices compared to the conventional one. The
main characteristic of the fourth mode iso-frequency contours of the modified lattices is
the change from highly directional (conventional case) to almost quasi-isotropic nature of
the propagating waves. These wave modes are associated with the emerging band-gap,
which causes flattening of dispersion surface at its edges and lower density of iso-frequency
contours. As given in [39], square lattice can exhibit sensational wave propagation and
anisotropic characteristics due to the negative refraction in lattices having the concave
nature of iso-frequency curves. As mentioned previously, circular iso-frequency contours
are related to the isotropic nature of propagating waves. However, exotic phenomena such
as self-collimation and lensing can be identified from the corresponding concave shapes of
iso-frequency contours. More precisely, the self-collimation phenomenon (wave beaming)
is associated with the straight edges of the iso-frequency contours with waves propagating
in the perpendicular direction to the contours. In the case of lensing, if the iso-frequency
contours are converging normal to the contour then the waves having a wavelength within
the concave contour are converging and focusing. The concave shapes of iso-frequency
curves can be observed in both modified hexagonal and re-entrant lattices with curved
beam unit cells. These characteristic concave shapes of iso-frequency contour edges can
be observed from the last three modes in Fig.14 as well as in the first and fourth modes in
Fig.15. Moreover, the frequency-dependent directional behavior of these types of lattices
can be also visualized through a polar plot [5], however, this type of analysis is out of the
scope of this study.

4. Summary and Conclusions

This work focuses on the investigation of the wave propagation characteristics of a
class of 2D hexagonal lattice material considering curved beams as constituent beam
members. The effect of the geometric parameters of the unit cell is explored for the
dispersion properties of those particular lattice materials. Below are the key findings
from this present study are as follows.

• The curvature angle of the curved beam plays an important role in the generation
of new band-gaps, especially in the lower frequency region. The number of the
new band-gaps increases with increasing curvature angle for the lattice with both
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positive curvature angles. Also, the width of the bad-gaps increases for most of the
gaps. This is true for the re-entrant case also.

• The position of the veering and locking in the conventional hexagonal lattice indi-
cates the opening zones of the band-gaps for the lattice with curved beams. The
number of veering and locking zones gets lesser with the increase in the curvature
angle values and the modes become separate from each other.

• Curvature angle has an influence on group velocities for the longitudinal wave mode.
With the increase in curvature angle, the values attain lower values as the slope of
the dispersion curves gets reduced.

• Unlike the lattice with a positive curvature angle for both beams, the lattice with
reverse curvature has not had very promising dispersion characteristics regarding the
occurrence of band-gaps. Though there are some band-gaps in the lower frequency.

• The findings from the present investigations show that this class of lattice can be
utilised for low-frequency vibration suppression depending on the design require-
ments.

• Iso-frequency contours revealed a slower change of dispersion surfaces in curved
lattices, which is reflected in lesser density of contours and flattening of dispersion
curves towards the edges of the first Brillouin zone. At certain frequencies in k-
space the contours are displaying both quasi-isotropic and anisotropic behaviour of
propagating waves. Moreover, the near circle shapes are indicating quasi-isotropic
behaviour while concave shapes and straight edges are referring to the occurrence
of phenomena such as lensing and wave beaming.

These promising results could be useful for future guidelines of the hexagonal meta-
materials and also serve as benchmark results for further investigation in this domain.
Future investigation will focus on the wave propagation characteristics of curved hexago-
nal lattices coupled with multi-physics along with experimental validation.
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Appendix A. Reciprocal lattice vectors

In the case of the unit cell of a hexagonal lattice structure having the positive internal
angle θ the basis vectors (e1, e2) are defined in local Cartesian coordinates with unit
vectors (i1, i2) as

e1 = (L cos θ, L(1 + sin θ))T , (A.1)

e2 = (−L cos θ, L(1 + sin θ))T .

Here, L denotes the length of the individual constituent beam and θ is the cell angle.
It is well known that in the periodic structure, lattice points with the corresponding base
vectors (e1, e2) defines the direct lattice space. Here, for the modified hexagonal lattice
with curved beam the lattice points are same as for the conventional one. Therefore, the
reciprocal lattice space can be defined in the same manner as in [34] and based on the
following relation

ei · e∗
j = 2πδij, (A.2)

with e∗
j representing the basis vector of the reciprocal lattice and δij denoting the Kro-

necker delta. In that case, the reciprocal lattice vectors of the hexagonal lattice are given
as

e∗
1 = (

1

2L cos θ
,

1

2L(1 + sin θ)
)T , (A.3)

e∗
2 = (− 1

2L cos θ
,

1

2L(1 + sin θ)
)T .

ϴ

e2 e1

(a) Unit cell

e1*

A

BC

(b) 0 < θ < 30◦

A

B

C

(c) −30◦ < θ < 0

Figure A.1: Figure showing the (a) unit cell with direct lattice vector and Brioullin zone for (b) hexagonal
and (c) re-entrant lattice along with the reciprocal lattice vectors.
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Appendix B. Bloch’s theorem

The wave propagation characteristics of the curved hexagonal periodic lattice can be
obtained by employing the Bloch theorem [34]. Now, if the displacement vector of a point
inside the chosen reference unit cell (Fig.1) corresponding to a wave of frequency ω is
w(rP ). Then, it can be expressed in the form

w(rP ) = wP0e
iωt−k·rP (B.1)

where wP0 and k are the wave amplitude and wave vector, respectively. The position of
the point P in the unit cell is denoted by rP in the reference cell with respect to (0,0).
The position of any point P ′ in the lattice can be obtained as rP ′ = rP + ne1 + me2

where n and m are the integers placed along the direction of the basis vectors e1 and e2.
According to the Bloch theorem the displacement of the arbitrary point P at (n,m) cell
can be expressed as

w(rP ′) = w(rP )ek·(rP ′−rP ) = w(rP )ek·(ne1+me2) = w(rP )enk1+mk2 (B.2)

where ki = k · ei are the wavenumbers (i = 1, 2).

Appendix C. The shape function and matrix coefficients

We adopt the same shape functions for the Timoshenko beam element as in [34]:

Nu
1 (x) = 1− ξ, Nu

2 (x) = 0, Nu
3 (x) = 0, (C.1)

Nu
4 (x) = ξ, Nu

5 (x) = 0, Nu
6 (x) = 0,

Nw
1 (x) = 0, Nw

2 (x) =
1− 3ξ2 + 2ξ3 + (1− ξ)Φ

1 + Φ
, Nw

3 (x) =
he(ξ − 2ξ2 + ξ3 + 1

2
(ξ − ξ2)Φ)

1 + Φ
,

(C.2)

Nw
4 (x) = 0, Nw

5 (x) =
3ξ2 − 2ξ3 + ξΦ

1 + Φ
, Nw

6 (x) =
he(−ξ2 + ξ3 − 1

2
(ξ − ξ2)Φ)

1 + Φ
,

N ζ
1 (x) = 0, N ζ

2 (x) =
6(−ξ + ξ2)

he(1 + Φ)
, N ζ

3 (x) =
1− 4ξ + 3ξ2 + (1− ξ)Φ

1 + Φ
, (C.3)

N ζ
4 (x) = 0, N ζ

5 (x) =
6(ξ − ξ2)

he(1 + Φ)
, N ζ

6 (x) =
−2ξ + 3ξ2 + ξΦ

1 + Φ
,

where ξ = x/he denotes the dimensionless axial coordinate and Φ = 12EI
GAksh2

e
is the shear

deformation parameter.
After adopting these functions, the elements of the stiffness and mass matrix of FE

beam model can be written as:

Ke
ij =

∫ he

0

[
EA

∂Nu
i

∂x

∂Nu
j

∂x
+ EI

∂N ζ
i

∂x

∂N ζ
j

∂x
+GAks

(
N ζ

i − ∂Nw
i

∂x

)(
N ζ

j − ∂Nw
j

∂x

)]
dx,

(C.4)

M e
ij =

∫ he

0

(
ρANu

i N
u
j + ρIN ζ

i N
ζ
j + ρANw

i N
w
j

)
dx, (C.5)
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