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Abstract 24 

Plant invasion and aquaculture activities have drastically modified the landscape of 25 

coastal wetlands in many countries, but their impacts on soil organic carbon (SOC) 26 

mineralization and greenhouse gas production remain poorly understood. We measured 27 

SOC mineralization rate and soil CO2 and CH4 production rates in three habitat types 28 

from 21 coastal sites across the tropical and subtropical zones in China: native mudflats 29 

(MFs), Spartina alterniflora marshes (SAs) and aquaculture ponds (APs). Landscape 30 

change from MFs to SAs or APs increased total and labile fraction of SOC, as well as 31 

carbon mineralization rate and greenhouse gas production, but there were no 32 

discernible differences in SOC source-sink dynamics between SAs and APs. SOC 33 

mineralization rate was highest in SAs (20.4 μg g-1 d-1), followed by APs (16.9 μg g-1 34 

d-1) and MFs (11.9 μg g-1 d-1), with CO2 as the dominant by-product. Bioavailable SOC 35 

was less than 2% and was turned over within 60 days in all three habitat types. 36 

Proliferation of S. alterniflora marshes and expansion of aquaculture pond construction 37 

had resulted in a net increase in soil CO2-eq production of 0.4–4.3 Tg yr-1 in the last 38 

three decades. Future studies will benefit from better census and monitoring of coastal 39 

habitats in China, complementary in situ measurements of greenhouse gas emissions, 40 

and more sampling in the southern provinces to improve spatial resolution.   41 

Plain Language Summary Wetlands are one of the largest reservoirs of soil 42 

carbon and play importance role in the global terrestrial biogenic carbon cycle. Coastal 43 

wetlands are major sinks for carbon due to high sedimentation rate and burial of 44 
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organic matter. However, landscape modifications due to invasive vegetation and 45 

aquaculture activities have profoundly impacted the carbon source-sink dynamics in 46 

coastal wetlands. We compared the soil organic carbon turnover and greenhouse gas 47 

(CO2 and CH4) production between native mudflat, Spartina marshes and aquaculture 48 

ponds in five coastal provinces across the tropical-subtropical gradient in China. 49 

Landscape modification of native mudflats increased soil carbon mineralization rate 50 

and greenhouse gas production, predominantly as CO2, and the effect was consistent 51 

across the large geographical and climate gradients. Our results provide a better insight 52 

into the carbon dynamics in impacted wetlands across a large geographical range. 53 
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List of abbreviations: 54 

APs: Aquaculture ponds                 BD: Soil Bulk Density                   55 

CO2: Carbon Dioxide                   CH4: Methane 56 

C0: Bioavailable SOC                 DOC: Dissolved Organic Carbon          57 

DON: Dissolved Organic Nitrogen         EF: Environmental Factors 58 

MBC: Microbial Biomass Carbon         MFs: Mud flat                          59 

MBN: Microbial Biomass Nitrogen        SAs: Spartina alterniflora marshes 60 

Sal: Soil Salinity                       SOCM: SOC Mineralization Rate 61 

SOC: Soil Organic Carbon               Soil C:N: Total Carbon: Total Nitrogen 62 

ΣSOCM: Cumulative anaerobic SOC Mineralization   63 

s(RR++): Standard error of RR++                 SPS: Soil Particle Size 64 

SWC: Soil Water Content                RR: Response Ratio 65 

RR++: Weighted Response Ratio           TC: Total Carbon                        66 

TN: Total Nitrogen            67 
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1. Introduction 68 

Wetlands are considered to be among the most productive but vulnerable ecosystems 69 

(Kirwan & Megonigal, 2013; Su et al., 2021; Wen et al., 2019). Despite covering just 70 

4–6 % of the total land area, wetlands hold approximately 450 Pg of the global soil carbon, 71 

representing 25–30 % of the terrestrial biosphere carbon pool (Kayranli et al., 2010). 72 

Coastal wetlands are a crucial sink in the global carbon cycle due to high sedimentation 73 

rate and burial of organic matter (Drake et al., 2015; Packalen et al., 2014; Zhang et al., 74 

2021a), and it is estimated that coastal wetlands globally store at least 53.7 Tg C yr-1 75 

(Wang et al., 2021). However, wetland habitats have been impacted around the world, and 76 

despite international initiative to protect these habitats (e.g. Ramsar Convention on 77 

Wetlands), wetland degradation and loss rate remains high in Asia (Davidson, 2014), 78 

potentially altering the land’s carbon source-sink dynamics over different time and spatial 79 

scales (Mitsch et al., 2013).  80 

Plant invasion and land-use change are two major threats to the world's coastal wetlands 81 

(Sun et al., 2015; Walker and Smith 1997; Zhu et al., 2020). Invasive plant species may 82 

alter the soil microbial community compositions and dynamics, above- and below-ground 83 

carbon pools, primary productivity, and nutrient and carbon mineralization rates (Piper et 84 

al., 2015; Yuan et al., 2019; Zhang et al., 2010). Land-use change can modify hydrology, 85 

nutrient cycles, soil properties and overall ecosystem structure (Andreetta et al., 2016; 86 

Dick & Osunkoya, 2000; Gao et al., 2019). Increasing range shift by exotic species and 87 

coastal development will intensify these threats, potentially changing the dynamics of soil 88 
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organic carbon (SOC) and subsequent production of greenhouse gases such as carbon 89 

dioxide (CO2) and methane (CH4) (Gao et al., 2018a; Yang et al., 2017), and their 90 

feedback effect on climate is a major concern.  91 

China accounts for about 4.2% of the global wetland area, and despite the conservation 92 

effort, wetlands still disappear at a rate close to 1% per year (Meng et al., 2017). Coastal 93 

wetlands in mainland China cover an estimated area of 5.79 M ha across its southern and 94 

eastern seaboards, and invasion by Spartina alterniflora and land-use change for 95 

aquaculture have profoundly changed this coastal landscape (Duan et al., 2020; Ren et al., 96 

2019; Sun et al., 2015). For example, S. alterniflora was first introduced into China in 97 

1982 and by 2015, S. alterniflora marshes had covered 54,600 ha (Mao et al., 2019). 98 

Similarly, it has been estimated that coastal aquaculture ponds in China grew from 6,000 99 

km2 to ~10,000 km2 in the past three decades (Duan et al., 2021). To-date, most of the 100 

research has been focused on changes to wetland ecosystem at the local scale, in terms of 101 

SOC (Gao et al., 2016), soil composition (Wang et al., 2019) and stability (Yang et al., 102 

2016; Zhang et al., 2021b) and related carbon emissions (Gao et al., 2018b; Tan et al., 103 

2020; Yang et al., 2017), but they do not allow for a fuller comparison of the SOC and 104 

greenhouse gas dynamics in impacted coastal wetlands across the wider geographical and 105 

environmental gradients. There has been only one study that compared SOC and plant 106 

biomass compositions (C, N and P) from eight coastal locations invaded by S. alterniflora, 107 

but it did not examine greenhouse gas production (Wang et al., 2019). Also, many of the 108 

coastal wetland areas in China have been converted into aquaculture ponds, which were 109 



 

 7

not included in the earlier study (Wang et al., 2019).  110 

In order to generate a more comprehensive understanding of the biogeochemical 111 

consequences of habitat modification in coastal wetlands, we systematically studied 21 112 

coastal wetland areas spanning 20°42′ N to 31°51′ N in mainland China. We hypothesized 113 

that soil organic carbon content and carbon mineralization rate would increase when 114 

mudflats were converted into marshes due to organic input from marsh vegetation, which 115 

could also lead to higher greenhouse gas production. We expected the soil properties to 116 

change in the opposite direction when marsh vegetation was removed to create 117 

aquaculture ponds. We further hypothesized that landscape modification dominated over 118 

other local environmental factors in affecting soil properties and greenhouse gas 119 

production across the broad latitudinal range. 120 

To test these hypotheses, we sampled three habitat types at each location: native mudflats, 121 

mudflats that were converted into marshes by invasive S. alterniflora, and aquaculture 122 

ponds that were created from S. alterniflora marshes. We compared the soil 123 

physicochemical properties, SOC, carbon mineralization rate, and soil CO2 and CH4 124 

production rates. The results will improve our understanding of the changes to soil 125 

characteristics in coastal wetlands as results of S. alterniflora invasion and aquaculture 126 

activities, the consequent carbon turnover and greenhouse gas production, and the related 127 

environmental drivers. 128 

2. Methods   129 
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2.1. Study Area  130 

Field sampling campaigns were conducted in five Chinese provinces including Shanghai 131 

(SH), Zhejiang (ZJ), Fujian (FJ), Guangdong (GD), and Guangxi (GX) (Figure 1). The 132 

large latitudinal and longitudinal ranges (20°42′ N to 31°51′ N; 109°11′ E to 122°11′ E) 133 

covered a tropical-to-subtropical climate gradient. The annual average temperature range 134 

was 11.0–23.0 °C and precipitation range was 1000–2200 mm across the five provinces. 135 

Their coastal wetlands combined cover about 2.58 × 106 ha, or 44.5 % of the total coastal 136 

wetlands in China (Sun et al., 2015), and they all have been impacted by S. alterniflora 137 

invasion or construction of aquaculture ponds. There was approximately 334 km2 of S. 138 

alterniflora marshes (Liu et al., 2018) and 5309 km2 of aquaculture ponds (Duan et al., 139 

2020) along the coastal zone of the five provinces, representing 61.2% and 36.9% of the 140 

total areas of S. alterniflora marshes and aquaculture ponds, respectively, in China.  141 

2.2. Soil Sampling  142 

Field sampling was conducted in December 2019 and January 2020 at 21 sites across the 143 

five provinces, with two sites in SH, six in ZJ, nine in FJ, three in GD and one in GX 144 

(Figure 1). At each site, triplicate surface soil samples (top 20 cm) were collected from the 145 

three habitats (mud flat, S. alterniflora marshes and aquaculture ponds) using a steel corer 146 

(1.5 m length; 5 cm internal diameter) and transferred into ziplock bags; a total of 189 soil 147 

samples were collected (21 sampling sites × 3 habitats × 3 plots). All soil samples were 148 

transported in a chilled cooler to the laboratory, where they were stored at 4 °C until 149 

processing.  150 
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2.3. Analyses of Soil Physicochemical Properties.  151 

In the laboratory, a subsample of the soil was freeze-dried, homogenized and then ground 152 

to a fine powder for measuring pH, salinity, soil particle size, inorganic nitrogen, Cl-, 153 

SO4
2-, total carbon (TC), total nitrogen (TN) and soil organic carbon (SOC). Soil pH was 154 

measured by an Orion 868 pH meter (Thermo Fisher Scientific, Cambridge, 155 

Massachusetts, USA; a 1:2.5 soil/distilled water mixture) with a measurement precision of 156 

±1.0%. Soil salinity was measured by a Eutech Instruments-Salt6 salinity meter (Thermo 157 

Fisher Scientific, San Francisco, California, USA; a 1:5 soil/distilled water mixture) with 158 

a measurement precision of ±1.0%. A subsample was treated with the deflocculant 159 

hexametaphosphate and then analyzed for particle size based on laser diffraction 160 

(Mastersizer 2000, Malvern Instruments, Malvern, UK). Soil particle size (SPS) was 161 

calculated on a volume basis using the Malvern proprietary software. Soil inorganic 162 

nitrogen species (NH4
+-N and NO3

--N) were extracted by 2 M KCl (Gao et al., 2019; Yin 163 

et al., 2017) and quantified by a flow injection analyzer (Skalar Analytical SAN++, 164 

Netherlands) (Yang et al., 2021). The detection limit and relative standard deviation (RSD) 165 

for inorganic nitrogen were 0.6 μg L-1 and ≦3.0% in 24 hr, respectively. Soil Cl- and SO4
2- 166 

contents were determined according to Chen & Sun (2020). Soil TC and TN were 167 

determined using a combustion analyzer (Elementar Vario MAX CN, ELEMENTAR, 168 

Hanau, Frankfurt, Germany) with a measurement precision of ±2.0%. Soil water content 169 

(SWC) and bulk density (BD) were determined after drying fresh soil at 105 °C for 48 h 170 

(Percival & Lindsay, 1997; Yin et al., 2019). 171 
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SOC was measured according to Liu et al. (2017). Briefly, 3 g of air-dried sample was 172 

screened, weighed and extracted in 1 M hydrochloric acid (HCl) solution for 24 h, then 173 

oven-dried at 60 °C. Afterward, SOC was determined by a combustion analyzer 174 

(Elementar Vario MAX CN, ELEMENTAR, Hanau, Frankfurt, Germany) based on 175 

standard procedures. The microbial biomass carbon (MBC) and nitrogen (MBN) contents 176 

were measured using the chloroform fumigation extraction method (Templer et al., 2003; 177 

Vance et al., 1987). Briefly, two portions of 10 g soil sample were fumigated with 178 

ethanol-free CHCl3 for 24 h; two additional 10 g samples were not fumigated (Wang et al., 179 

2011). All samples were then extracted in 0.5 M K2SO4 solution. Afterwards, the soil 180 

extracts were analyzed for total dissolved organic carbon (DOC) and total dissolved 181 

organic nitrogen (DON) using a TOC analyzer (Schimadzu TOC‐VCPH/CPN, Kyoto, Japan) 182 

with a measurement precision of ±2.0% and a flow injection analyzer (Skalar Analytical 183 

SAN++, Netherlands) with a measurement precision of ±3.0%, respectively. Soil MBC and 184 

MBN contents were calculated from the differences in extractable DOC and DON 185 

between fumigated and unfumigated samples, using a KEC (correction factor) of 0.38 for 186 

MBC and 0.54 for MBN (Li et al., 2010; Vance et al., 1987).    187 

2.4. Soil Organic Carbon Mineralization Incubation Experiment  188 

The rates of anaerobic mineralization of SOC into CO2 and CH4 were determined 189 

according to Kane et al. (2013) and Luo et al. (2019b). Briefly, approximately 30 g of 190 

fresh soil sample was put into a 200 mL glass incubation bottle (in triplicate); 191 

deoxygenated in situ water was then added in 1:1 v/v to make a slurry with 160 mL 192 
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headspace. All incubation bottles were flushed with pure N2 gas for 5–8 min to create an 193 

anoxic condition (Vizza et al., 2017; Wassmann et al., 1998), then sealed with a silicone 194 

rubber and incubated for 60 days at in situ temperature. On Days 1, 3, 7, 14, 21, 30, 45 195 

and 60, each bottle was shaken on a rotary shaker for 0.5 h at 200 rpm min-1 to drive CO2 196 

and CH4 into the headspace (Luo et al., 2019a); 5 mL of the headspace gas sample was 197 

then withdrawn with a syringe and 5 mL of pure N2 gas was added back to maintain the 198 

pressure (Yang et al., 2019). The extracted gas samples were analyzed for CH4 and CO2 199 

on a gas chromatograph equipped with a flame ionization detector (FID) (GC-2010, 200 

Shimadzu, Japan). Three CH4 (or CO2) gas standards, namely 1.96 (490.5), 8.25 (1003.4), 201 

and 100.3 (3090.3) ppm, were used in the calibration. The detection limits for CH4 and 202 

CO2 were 0.3 ppm and 1.0 ppm, respectively, and the measurement reproducibility was 203 

≦2.0% and ≦3.0%, respectively. The measured CO2 and CH4 concentrations were 204 

corrected for pH, headspace volume, pressure and temperature (Ye et al., 2012), and was 205 

corrected for the dilution effect from the added N2 gas (Tong et al., 2010). SOC 206 

mineralization rate [SOCM; μg C g-1 (dry weight) day-1] was estimated from the 207 

combined CO2 and CH4 produced per gram of dry soil over time. Soil dry weight was 208 

calculated from the sample wet weight and its water content (see section 2.3). The 209 

cumulative mineralization of SOC over the 60 days of incubation (ΣSOCM) was fitted to 210 

a first-order kinetic equation to derive the mineralization rate constant (k; d-1) (Cooper et 211 

al., 2011; Hyvonen et al., 2005): 212 

  ktexpC  1ΣSOCM 0                       )1.(Eq   213 
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where ΣSOCM is the cumulative amount of CO2–C and CH4–C mineralized from SOC 214 

(μg C g-1), C0 is the initial bioavailable SOC (μg C g-1), and t is the incubation time (d).  215 

2.5. Calculation of ∆EF, ∆ΣSOCM and ∆SOC Mineralization Parameters 216 

To explore the synchronous responses of various environmental and soil parameters to 217 

habitat modification as results of plant invasion and aquaculture pond creation, we 218 

examined the rates of change of environmental factors (∆EF), cumulative SOC 219 

mineralization (∆ΣSOCM), and SOC mineralization parameters [∆C0, ∆k, and 220 

∆(C0/SOC)], which were calculated as follows:  221 
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where the subscripts B and A denote before and after habitat modification, respectively. 227 

The relationships between ∆ΣSOCM (or ∆SOC mineralization parameters) and ∆EF were 228 

further examined to reveal the key EF affecting SOC mineralization in the different 229 

habitats. 230 

2.6. Calculation of Response Ratio and Weighted Response Ratio 231 
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The response ratio (RR) was calculated to assess the responses of SOCM, ΣSOCM, C0 232 

and k to habitat modification, following Hedges et al. (1999), Luo et al. (2006) and Tan et 233 

al. (2019). A total of 21 sites with data for treatment groups (habitats after modification) 234 

and control groups (habitats before modification) were used to calculate the natural 235 

logarithm of RR (lnRR): 236 

                       Eq.(7)                                       XlnXln
X

X
lnlnRR CT

C

T 







  237 

where the subscripts T and C denote treatment and control groups, respectively; X denotes 238 

the mean value of the parameter (SOCM, ΣSOCM, C0 or k). The variance (v) was 239 

calculated as: 240 
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where n denotes the sample size and S the standard deviation. 242 

We also calculated a weighted response ratio (RR++) from individual RRij (i = 1, 2, 3,...., 243 

m; j = 1, 2, 3,...., yi) pairwise comparison between treatment and control groups: 244 
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where m is the number of groups (different habitat types), yi is the number of comparisons 246 

in the ith group, and wij is the weighting factor. wij and the standard error (s(RR++)) were 247 

calculated as follows: 248 

v
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 14


 

 
m

i

y

j

ij

i

w

s

1 1

1
)RR(

                          )11.(Eq  250 

The 95% confidence interval (95% CI) for the log response ratio was estimated as: 251 

95% CI = RR++ ± 1.96 s(RR++)                     Eq.(12) 252 

If the 95% CI did not overlap with zero, the response of the concerned variable to habitat 253 

modification was considered significant.  254 

2.7. Statistical Analysis.  255 

All data were tested for normality and homogeneity of variance. Significant differences in 256 

environmental factors, SOCM, ΣSOCM and SOC mineralization parameters [∆C0, ∆k, 257 

and ∆(C0/SOC)] among habitat types were tested by analysis of variance (ANOVA) 258 

followed by pairwise comparisons. Pearson correlation analysis was used to examine the 259 

relationships between ΣSOCM (or SOC mineralization parameters) and environmental 260 

variables. Redundancy analysis (RDA) was performed to determine which ∆EF best 261 

explained the variability in ∆SOCCM [or ∆C0, ∆k and ∆(C0/SOC)]; input parameters for 262 

the analysis include ∆pH, ∆salinity, ∆SWC, ∆BD, ∆NH4
+–N, ∆NO3

––N, ∆Cl-, ∆SO4
2-, 263 

∆C:N, ∆SOC, ∆MBC, ∆MBN and ∆SPS. ANOVA and Pearson correlation analysis were 264 

done in SPSS 17.0 (SPSS Inc., USA); RDA was done in CANOCO 5.0 for Windows 265 

(Microcomputer Power, Ithaca, USA). All results were considered significant at p < 0.05 266 

and were summarized as mean ± 1 standard error, unless otherwise stated. Sampling site 267 

map, statistical plots and conceptual diagrams were produced using ArcGIS 10.2 (ESRI 268 

Inc., Redlands, CA, USA), OriginPro 9.0 (OriginLab Corp. USA) and EDraw Max 269 
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version 7.3 (EdrawSoft, Hong Kong, China), respectively.  270 

3. Results   271 

3.1. Soil Properties Across Habitat Types.  272 

The soil physicochemical properties were shown in Figure 2. There were no significant 273 

differences in mean soil pH (Figure 2a), salinity (Figure 2b), bulk density (Figure 2d), Cl- 274 

(Figure 2e), MBC (Figure 2h), soil C:N (Figure 2i) or soil particle size (Figs 2j-l) among 275 

the three habitat types (p > 0.05), but there were significant differences for the other 276 

parameters. Soil SO4
2- (Figure 2f) were higher in aquaculture ponds (APs) than in mud 277 

flats (MFs) and S. alterniflora marshes (SAs) (p < 0.05 or < 0.01). Soil water content was 278 

higher in SAs and APs than in MFs (p < 0.05; Figure 2c). SOC (Figure 2g) was higher in 279 

SAs, followed by APs and MFs (p < 0.01). 280 

3.2. Soil Organic Carbon Mineralization (SOCM) Rate  281 

Across all sampling sites, the rate of CO2 production from anaerobic SOC mineralization 282 

averaged 11.9 ± 1.6 μg g-1 d-1 in MFs, 20.4 ± 2.1 μg g-1 d-1 in SAs, and 16.9 ± 2.3 μg g-1 283 

d-1 in APs (Figure 3a). Overall, CO2 production rate decreased significantly among the 284 

three habitats in the order of SAs > APs > MFs (p<0.01). The rate of CH4 production 285 

from SOC mineralization averaged 5.0 ± 1.4 ng g–1 d-1 in the MFs, 25.8 ± 2.8 ng g–1 d-1 in 286 

SAs, and 14.3 ± 1.3 ng g–1 d–1 in the APs (Figure 3b). Like CO2, CH4 production rate 287 

decreased significantly among the three habitats in the order of SAs > APs > MFs 288 

(p<0.01).  289 
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The SOCM rates for the different wetland habitat types are shown in Figure 4 and Figure 290 

S1. Because CO2 production rates were 1000-fold higher than CH4 production rates on a 291 

per mass basis, the SOCM rates were mainly driven by mineralization of SOC into CO2. 292 

Across all sampling sites, the mean SOCM rates varied in the range of 3.9–20.5 μg g-1 d-1 293 

for MFs, 7.2–38.2 μg g-1 d-1 for SAs, and 6.6–30.0 μg g-1 d-1 for APs (Figure 4a). The 294 

measured rates peaked on the 3rd day in all habitat types, then steadily decreased toward 295 

the end of the incubation (Figure 4a). The SOCM rate was significantly higher in SAs 296 

(20.4 ± 2.1 μg g-1 d-1), followed by APs (16.9 ± 2.4 μg g-1 d-1) and MFs (11.9 ± 1.7 μg g-1 297 

d-1) (p<0.05 or <0.01) (Figure 4b).   298 

3.3. Cumulative Soil Organic Carbon Mineralization (ΣSOCM)  299 

ΣSOCM during the 60-d incubation period for the different wetland habitat types is 300 

shown in Figure 5 and Figure S2. ΣSOCM across all sampling sites was 35.5–186.9 μg g-1 301 

in MFs, 59.2–284.0 μg g-1 in SAs, and 49.8–271.4 μg g-1 in APs (Figure S2). ΣSOCM 302 

increased initially but then approached a plateau toward the end of the incubation, and the 303 

values increasingly diverged from one another among the three habitat types (Figure 5a) 304 

and there were significant differences among the three habitats (p<0.05 or <0.01) (Figure 305 

5b). The mean ΣSOCM was highest in SAs (111.5 ± 12.6 μg g-1), followed by APs (90.0 ± 306 

12.8 μg g-1) and MFs (65.2 ± 9.0 μg g-1). At the end of the 60-day incubation, the mean 307 

ΣSOCMfinal was 95.0, 163.0 and 135.0 μg g-1 for MFs, SAs and APs, respectively (Table 308 

1). 309 

3.4. First-Order Kinetic Model for Carbon Mineralization.  310 
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To better compare the mineralization processes across the wetland habitat types, the data 311 

were fitted to a first-order kinetic model. The values of the fitting parameters C0 (initial 312 

bioavailable SOC) and k (mineralization rate constant) are listed in Table 1 and Table S1. 313 

Across all the sampling sites, C0 varied in the range of 48.1–252.3 μg g-1 for MFs, 314 

80.2–373.2 μg g-1 for SAs, and 67.8–365.7 μg g-1 for APs (Table S1). The mean C0 was 315 

highest in SAs (152.3 μg g-1), followed by APs (125.6 μg g-1) and MFs (88.8 μg g-1) 316 

(Table 1). MFs had a higher mean k but lower C0/SOC than the other two habitats (Table 317 

1). The ΣSOCMfinal/C0 values varied by less than 0.5% among the three habitats (Table 1). 318 

The goodness of fit values (Adj. R2) of the equations were all better than 0.94 (Table 1).      319 

3.5. Response of Carbon Mineralization Parameters to Habitat Modification.  320 

The Weighted response ratios (RR++) of SOCM, ΣSOCM, C0 and k are shown in Figure 6. 321 

Conversion of MFs to SAs significantly (p<0.05) increased SOCM by 43.4% (range 322 

21.9–61.1 %; Figure 6a), ΣSOCM by 40.4% (range 21.9–48.4 %; Figure 6b) and C0 by 323 

47.9% (Figure 6c). However, conversion of SAs to APs significantly (p<0.05) decreased 324 

SOCM by 22.2% (range 8.9–30.4 %; Figure 6a), ΣSOCM by 21.8% (range 16.0–31.5 %; 325 

Figure 6b), and C0 by 24.5% (Figure 6c). Moreover, MF-to-SA and SA-to-AP conversions 326 

significantly increased k by 3.2% and 2.9%, respectively (p<0.05) (Figure 6d).  327 

3.6. Change in Soil Organic Carbon Mineralization and its Environmental Drivers.  328 

Based on redundancy analysis (RDA), changes in EF (∆EF) presented in the ordination 329 

explained 69.0% of the variability in ∆ΣSOCM, ∆C0, ∆k, and ∆(C0/SOC) in the case of 330 

MF-to-SA conversion (Figure 7a), and 64.1% in the case of SA-to-AP conversion (Figure 331 
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7b). Overall, ∆SOC was the most important driver of ∆ΣSOCM in both scenarios of 332 

habitat modification, explaining 45.5% of the variability when MFs were converted to 333 

SAs (Figure 7a), and 37.2% when SAs were converted to APs (Figure 7b). Interestingly, 334 

∆NH4
+-N was only a minor factor (4.8%) in MFs-to-SAs conversion, but it became the 335 

second main driver (16.2%) in SAs-to-APs conversion; ∆SO4
2- played a slightly larger 336 

role in the latter scenario (6.4% vs. 8.5%). The correlation coefficients between changes 337 

in ΣSOCM, C0, k and C0/SOC and the different environmental variables for the different 338 

cases of habitat modification are shown in Table 2.  339 

4. Discussion   340 

4.1. Comparison of Soil Properties Among Habitat Types  341 

Previous studies have shown that the soil physicochemical properties are sensitive to 342 

environmental changes and anthropogenic disturbances (e.g., Gao et al., 2019; Mueller et 343 

al., 2016; Wang et al., 2019). In the present study, we assessed the response of soil 344 

properties to habitat modification in impacted coastal wetlands in China. Among the 345 

variables examined, only soil SOC and SO4
2- differed significantly among the three 346 

habitat types. The soil SO4
2- in APs was about twice the concentration in MFs and SAs 347 

(Figure 2f). Similar results were reported earlier that soil SO4
2- in the aquaculture ponds 348 

was 3–5 times higher than the natural saltmarsh (Gao et al., 2019). While SO4
2- in the soil 349 

could be converted to H2S by sulfate reducing bacteria under anaerobic condition and be 350 

lost from the system, the much larger volume of saltwater in APs might be able to 351 

replenish SO4
2- more quickly, thereby maintaining a higher SO4

2- concentration in the soil. 352 
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Additional SO4
2- may have also originated from aquaculture feeds and pond disinfectants 353 

(Feng, 2014; Zou et al., 2022). 354 

Contrary to the expectation that use of feeds would increase the soil carbon content in 355 

aquaculture ponds, we found SOC in APs was significantly lower than SAs (Figure 2g). 356 

The results could be primarily attributed to higher productivity of the marsh vegetation 357 

leading to larger inputs of plant litter and root exudates into the soil (Mueller et al., 2016; 358 

Xia et al., 2021), which were eliminated when the vegetation was removed to create the 359 

aquaculture ponds. By comparison, SOC in the mudflats was the lowest likely due to the 360 

lack of autochthonous or allochthonous carbon inputs. 361 

4.2. Production of Carbon Greenhouse Gases Among Habitat Types  362 

Organic carbon in waterlogged soil is mineralized primarily via anaerobic microbial 363 

metabolism (e.g., Hopfensperger et al., 2014; Kostka et al., 2002), with CO2 as the main 364 

by-product (e.g., Gribsholt & Kristensen, 2003; Kim et al., 2015; Luo et al., 2019b). This 365 

is consistent with our observations that CO2 production rates were 1000-fold higher than 366 

CH4 production rates on a per mass basis (Figure 3). Similar to earlier observations 367 

(Boulogne et al., 2016; Keller et al., 2015; Kim et al., 2015), it appeared that the bacterial 368 

communities required about three days to acclimate to the experimental condition before 369 

they reached maximum SOC mineralization rates, after which the rates decreased as labile 370 

organic carbon became depleted (Figure 4a).  371 

It is worth noting that CO2 and CH4 production in our study was measured by incubation 372 

of slurries, which may not reflect the dynamic condition in situ where river flow and 373 
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periodic tidal flushing would change the soil conditions (Wells et al., 2018) and affect 374 

CO2 and CH4 production. Therefore, future research may consider in situ measurements 375 

using tracer technique, without the need for incubation, to give more accurate gas 376 

production rates. 377 

4.3. Responses of Soil Carbon Turnover to Habitat Modification 378 

The differences in SOC mineralization rate and cumulative SOC mineralization among 379 

the three habitat types (Figs. 4b and 5b) followed the differences in their SOC content 380 

(Figure 2g), showing that S. alterniflora invasion and aquaculture operation both 381 

increased labile soil organic substrates and subsequent mineralization activities relative to 382 

the native mudflats. Nevertheless, based on the first-order kinetic model, C0/SOC was all 383 

under 0.02 (Table 1), meaning that < 2% of the soil organic carbon was bioavailable to 384 

microbes (labile to semi-labile), and the vast majority might be considered as refractory 385 

for longer-term burial. Our data also suggest that all bioavailable carbon was mineralized 386 

within 60 days, and the value of ΣSOCMfinal/C0 being slightly higher than 1 may be 387 

indicative of inherent uncertainty in deriving C0 from curve fitting, or labile C0 facilitating 388 

mineralization of some of the refractory carbon (i.e., priming effect; Guenet et al., 2010). 389 

Based on our incubation experiments, the CO2 production rate averaged 1.6 g C kg-1 yr-1 390 

across the coastal wetlands in our study. Assuming this represented the labile fraction of 391 

carbon deposition, the corresponding potential burial of refractory carbon would be ~8.4 g 392 

C kg-1 yr-1. Given the measured soil bulk density of 1300 kg m-3 and a median sediment 393 

accretion rate of ~3.4 cm yr-1 in coastal marshes in China (Wang et al., 2006), the 394 
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estimated carbon burial rate would be ~370 g C m-2 yr-1. This is comparable to the 395 

estimated mean carbon accumulation rate (~200 g C m-2 yr-1) for tidal wetlands in China 396 

in a recent study (Wang et al., 2021; their Fig. 2). 397 

Because habitat types affect both carbon deposition (as indicated by SOC and C0 data) 398 

and carbon mineralization (ΣSOCM), we may derive a ‘Habitat Ratio’ using data from 399 

Figure 2 and Table 1 to compare their overall carbon source-sink dynamics (Table 3). 400 

Comparison of the Habitat Ratio between SAs and APs showed that the former had higher 401 

organic carbon deposition, bioavailable carbon and cumulative C mineralization, but all 402 

by a similar extent (20–21%); therefore, the soil carbon source-sink dynamics did not 403 

appear to be different between the two habitat types. On the other hand, SAs had 50% 404 

higher SOC than MFs but 71–72% higher bioavailable carbon and carbon mineralization, 405 

suggesting that SAs functioned as more concentrated stocks of labile soil organic carbon 406 

and stronger net carbon emission sources relative to MFs. This is consistent with others’ 407 

observations showing an increase in labile organic carbon fraction in S. alterniflora soil 408 

with time (Cui et al., 2021), but it contradicts another study suggesting that S. alterniflora 409 

invasion of mudflat decreased the labile organic carbon pool in the soil (Yang et al., 2013). 410 

The differences could be due to the fact that Yang et al. (2013) measured carbon 411 

mineralization under aerobic condition, which did not represent the water-logged, 412 

low-oxygen condition of the soil and which would have suppressed methanogenesis and 413 

underestimated the labile carbon turn-over. APs had 25% higher SOC, but 41–42% higher 414 

bioavailable carbon and carbon mineralization than MFs, reflecting the high amounts of 415 
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sedimented labile organics from excess feeds and biological productivity in the ponds 416 

(Yang et al., 2022). 417 

4.4. Implications for Coastal Biogeochemistry 418 

Continuous land development and land use change has drastically altered the coastal 419 

landscape of China (Cui et al., 2016; Meng et al., 2017). Based on our findings, 420 

conversion of mudflats to Spartina marshes increased soil organic carbon mineralization, 421 

but conversion of Spartina marshes to aquaculture ponds decreased soil organic carbon 422 

mineralization (Figure 8)—This was consistent across all sites over a large latitudinal 423 

range, independent of differences in local geography, land management practices or 424 

climate conditions. In both land change scenarios, soil organic carbon was the 425 

overwhelming factor (37.2–45.5 %) that determined the mineralization activity.  426 

The invasive S. alterniflora was introduced to China originally to protect mudflats against 427 

erosion, and it has proliferated along the coast since (An et al., 2007). Meanwhile, 428 

increasing food demand has led to rapid expansion of coastal aquaculture in China (Ren et 429 

al., 2019). While on-the-ground census data are rare, scientists used remote sensing 430 

methods to estimate the historical change in areal coverage by S. alterniflora marshes 431 

(Mao et al., 2019) and coastal aquaculture ponds (Duan et al., 2021) in the recent decades. 432 

Combining these literature data with our measured habitat-specific soil CO2 and CH4 433 

production potentials, we calculated the total CO2-eq production in the 20 cm topsoil, 434 

considering CH4 has 45 times the 100-year warming potential as CO2 (Neubauer & 435 

Megonigal, 2015); we further assessed landscape change effect by estimating the net 436 
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increase in soil CO2-eq production relative to native mudflats. Our calculations suggest 437 

that total soil CO2-eq production increased 12-fold as S. alterniflora marshes spread along 438 

China’s coast, whereas the expanding aquaculture activities increased total soil CO2-eq 439 

production ~1.6 fold during the past three decades (Figure 9). The estimated land 440 

coverage by coastal aquaculture ponds was an order of magnitude larger than S. 441 

alterniflora marshes; consequently, the net increase in soil CO2-eq production relative to 442 

native mudflats was largely driven by the large-scale conversion of coastal land to 443 

aquaculture ponds (Figure 9). Nevertheless, the total area of coastal aquaculture ponds 444 

appeared to have plateaued in recent years and therefore the contribution of soil CO2-eq 445 

production from coastal aquaculture is expected to remain stable at ~4.3 Tg yr-1. 446 

Meanwhile, if S. alterniflora marsh expansion continues along the trajectory, it is 447 

expected to cause further net increase in soil CO2-eq production to ~0.7 Tg yr-1 by end of 448 

this decade. 449 

5. Conclusions and recommendations  450 

The coastal mudflat habitats of China have undergone drastic changes in the recent 451 

decades due to the spread of the invasive S. alterniflora and conversion to aquaculture 452 

ponds. We showed that these land use change increased the total and labile fractions of 453 

soil organic carbon, carbon mineralization rate as well as greenhouse gas production 454 

relative to the native mudflats, and the effects were consistent across a wide latitudinal 455 

range and climate gradient (Figure 8). As the areal coverage of S. alterniflora marshes and 456 

coastal aquaculture ponds continue to increase, we may expect a net increase in carbon 457 
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greenhouse gas production and emission along the coast. This study provides a better 458 

insight into assessing the effects of land use and land cover change (LULCC) on coastal 459 

wetland carbon biogeochemical cycle process and land surface greenhouse gas emission 460 

across a large geographical range. 461 

Several recommendations should be considered in future study: 1) Accurate census and 462 

monitoring of coastal habitats including small-hold aquaculture ponds is much needed in 463 

China and it will improve our assessment of landscape change effects on coastal carbon 464 

and greenhouse gas dynamics. 2) While we measured greenhouse gas production in soils, 465 

the actual emissions to the atmosphere could be further modulated by in situ physical (e.g., 466 

water turbulence, wind) and biological factors (e.g., consumption by microbes). 467 

Measurements of in situ emissions from the different habitats, using methods such as flux 468 

chambers, will be valuable. 3) Lastly, most of our sampling sites were concentrated in the 469 

northeastern part of the coast. Additional sampling in the southern provinces would allow 470 

data analysis based on a finer spatial resolution. 471 
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Figure captions 

Figure 1. Locations of the study areas and 21 sampling sites across the coastal regions in 

southeastern China. Three wetland habitat types were investigated including mud flat 

(MFs), S. alterniflora marshes (SAs) and aquaculture ponds (APs). 

Figure 2. Surface soil physicochemical properties across the three wetland habitat types 

(mean + SE; n = 63). MFs, SAs and APs represent mud flats, S. alterniflora marshes and 

aquaculture ponds, respectively. Different letters above the bars indicate significant 

differences (p<0.05). 

Figure 3. Box plots of CO2 and CH4 production rates in surface soil for the three wetland 

habitat types, measured by incubation experiments (n = 63). MFs, SAs and APs represent 

mud flats, S. alterniflora marshes and aquaculture ponds, respectively. Different letters 

above the boxes indicate significant differences (p < 0.05). 

Figure 4. (a) SOC mineralization rate in surface soil for the three wetland habitat types, 

measured by incubation experiments (mean ± SE; n = 63). (b) Boxplots of SOC 

mineralization rates for the three wetland habitat types; different letters above the boxes 

indicate significant differences (p < 0.05). MFs, SAs and APs represent mud flats, S. 

alterniflora marshes and aquaculture ponds, respectively. 

Figure 5. (a) Cumulative SOC mineralization in surface soil over the 60-d incubation 

period for the three wetland habitat types (mean ± SE; n = 63). (b) Boxplots of cumulative 

SOC mineralization for the three wetland habitat types; different letters above the bars 

indicate significant differences (p < 0.05). MFs, SAs and APs represent mud flats, S. 

alterniflora marshes and aquaculture ponds, respectively. 

Figure 6. Weighted response ratios (RR++) of (a) SOC mineralization rate, (b) cumulative 

SOC mineralization (ΣSOCM), (c) initial SOC (C0) and (d) mineralization rate constant (k) 

for the different habitat modification scenarios: MFs → SAs represents conversion of 

mudflats to S. alterniflora marshes; SAs → APs represents conversion of S. alterniflora 

marshes to aquaculture ponds. Bars represent the RR++ values and 95% CIs (n = 63). 

Effects of habitat modifications were significant at p < 0.05 in all cases. 
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Figure 7. Redundancy analysis (RDA) biplots of the relationship between ∆ΣSOCM, ∆C0, 

∆k, and ∆(C0/SOC), and ∆EF (environment factors) for the different habitat modification 

scenarios: (a) conversion of mud flats to S. alterniflora marshes; (b) conversion of S. 

alterniflora marshes to aquaculture ponds. The pie charts show the percentages of 

variance in ∆ΣSOCM explained by the different variables. List of abbreviations is 

provided in the text. 

Figure 8. A schematic illustration of landscape change effects on soil organic carbon 

mineralization and carbon emission in impacted coastal wetlands across a wide latitudinal 

range in China. 

Figure 9. Changes in coastal landscape and related soil CO2-eq production in China: (a) S. 

alterniflora marsh area (from Mao et al., 2019), estimated marsh soil CO2-eq production 

and net increase relative to native mudflats; (b) coastal aquaculture pond area (from Duan 

et al., 2021), estimated pond soil CO2-eq production and net increase relative to native 

mudflats. See text (section 4.4) for explanation. 
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Table 3  10 

Habitat Ratio for SOC, C0 and ΣSOCM, based on data from Fig. 2 and Table 1. 11 

MFs, SAs and APs represent mud flats, S. alterniflora marshes and aquaculture 12 

ponds, respectively. 13 

 SAs : APs : MFs 

SOC 1.50 : 1.25 : 1 

C0 1.72 : 1.41 : 1 

ΣSOCM 1.71 : 1.42 : 1 

 14 
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Figure 2. Surface soil physicochemical properties across the three wetland habitat types (mean + 5 

SE; n = 63). MFs, SAs and APs represent mud flats, S. alterniflora marshes and aquaculture ponds, 6 

respectively. Different letters above the bars indicate significant differences (p<0.05). 7 
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8 

Figure 3. Box plots of CO2 and CH4 production rates in surface soil for the three wetland habitat 9 

types, measured by incubation experiments (n = 63). MFs, SAs and APs represent mud flats, S. 10 

alterniflora marshes and aquaculture ponds, respectively. Different letters above the boxes indicate 11 

significant differences (p < 0.05). 12 
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13 

Figure 4. (a) SOC mineralization rate in surface soil for the three wetland habitat types, measured 14 

by incubation experiments (mean ± SE; n = 63). (b) Boxplots of SOC mineralization rates for the 15 

three wetland habitat types; different letters above the boxes indicate significant differences (p < 16 

0.05). MFs, SAs and APs represent mud flats, S. alterniflora marshes and aquaculture ponds, 17 

respectively. 18 
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19 

Figure 5. (a) Cumulative SOC mineralization in surface soil over the 60-d incubation period for 20 

the three wetland habitat types (mean ± SE; n = 63). (b) Boxplots of cumulative SOC 21 

mineralization for the three wetland habitat types; different letters above the bars indicate 22 

significant differences (p < 0.05). MFs, SAs and APs represent mud flats, S. alterniflora marshes 23 

and aquaculture ponds, respectively. 24 
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25 

Figure 6. Weighted response ratios (RR++) of (a) SOC mineralization rate, (b) cumulative SOC 26 

mineralization (ΣSOCM), (c) initial SOC (C0) and (d) mineralization rate constant (k) for the 27 

different habitat modification scenarios: MFs → SAs represents conversion of mudflats to S. 28 

alterniflora marshes; SAs → APs represents conversion of S. alterniflora marshes to aquaculture 29 

ponds. Bars represent the RR++ values and 95% CIs (n = 63). Effects of habitat modifications were 30 

significant at p < 0.05 in all cases. 31 
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Figure 9. Changes in coastal landscape and related soil CO2-eq production in China: (a) 41 

S. alterniflora marsh area (from Mao et al., 2019), estimated marsh soil CO2-eq 42 

production and net increase relative to native mudflats; (b) coastal aquaculture pond 43 

area (from Duan et al., 2021), estimated pond soil CO2-eq production and net increase 44 

relative to native mudflats. See text (section 4.4) for explanation. 45 
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32 

Figure S1. Soil organic carbon mineralization rates in surface soil (0–20 cm) from three 33 

wetland habitat types across different coastal sites in China.34 
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 35 

Figure S2. Cumulative mineralization of soil organic carbon in surface soil (0–20 cm) 36 

from three wetland habitat types across different coastal sites in China. 37 


