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ABSTRACT 13 

Automatic monitoring of pavement structure health has always been a significant problem for transportation 14 

engineers. Although the generative adversarial network (GAN) has proven to be an effective tool for improving 15 

pavement distress recognition accuracy, it may lead to increased computational cost, which inconsistent with the 16 

requirements of engineering practice. This paper describes a lightweight GAN structure for automatic pavement 17 

distress identification with high computation efficiency and low computation cost. Squeeze and expand (SE), 18 

multiscale convolution (MC), and depthwise separable convolution (DSC) were selected as alternative lightweight 19 

methods, and two series of comparative experiments were conducted. The results showed that the GAN-based 20 

model with SE implemented on its fully connected layer, MC&DSC implemented on its transpose convolution 21 

layers in the generator, and MC implemented on its convolution layers in the discriminator could reduce the 22 

largest proportion of model parameters (94.8%) while achieving satisfactory classification accuracy (85.4%).  23 

Keywords: Automatic intelligent recognition, pavement distresses, Lightweight GAN, Multiscale 24 

convolution, Depthwise separable convolution  25 
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1 Introduction 1 

Pavement distress significantly influences road safety, service quality, and service life, making pavement 2 

distress recognition crucial for road maintenance. Considering the substantial financial cost of field monitoring, 3 

image-based pavement distress recognition methods have been widely used in practical work owing to their 4 

acceptable cost and high efficiency. In the early stage, the collected distress images are usually processed by a 5 

preliminary step, which is to reduce the noise and adjust the contrast by histogram equalization [1]. The distress 6 

can be identified using algorithms such as the threshold algorithm [2] and region algorithm [3]. The main 7 

disadvantage of the traditional method is that the procedure is complex. To further realize the automatic 8 

classification of pavement distress, additional algorithms must be designed and integrated into the identification 9 

procedure. Therefore, the traditional method is ineffective in dealing with large quantities of inspected images 10 

with diverse distresses, and is incapable of accurately classifying pavement distresses. 11 

Recent advances in machine learning methods have facilitated the investigation of image recognition. 12 

Various machine learning methods have been proposed to effectively detect, segment, and classify specific targets 13 

in heterogeneous images [4]. Among the machine learning methods, the convolutional neural network (CNN), 14 

which is a typical deep learning approach, has proven to be an effective tool for dealing with target identification 15 

issues because of its unique local connection and weight sharing features [5]. A CNN can efficiently extract 16 

features from an input image through basic procedures, including convolution, pooling, and activation, which 17 

significantly improves the accuracy and efficiency of target detection and classification [6]. Following the basic 18 

framework of CNN, a growing number of improved CNN-based networks, for example, AlexNet [7], VGG [8], 19 

GoogLeNet [9], ResNet [10], and DenseNet [11], have been established to continuously expand the types of 20 

identification targets and promote identification accuracy. Improved CNN-based networks have been widely used 21 

in engineering practice in many fields because of their distinguished performance in rapid estimation [12] and 22 

real-time monitoring [13]. 23 

These improved CNN-based networks have been introduced by scholars in the field of pavement distress 24 

identification. Kim et al. improved the AlexNet network using transfer learning to make it suitable for five types 25 

of distresses detection [14]. Chen et al. proposed a location-aware CNN, consisting of a localization network and a 26 

partial cause classification network for detecting potholes, which achieved impressive performance [15]. Li et al. 27 

proposed a deep CNN-based method that could automatically classify patches cropped from 3D pavement images 28 

with satisfactory performance [16]. NAM et al. proposed a deep CNN-based asphalt pavement crack identification 29 

system that could robustly detect and classify pavement cracks in complex background images [17]. Du et al. 30 

applied a well-known CNN-based identification algorithm, YOLO, to detect and classify pavement distress, and 31 

the results confirmed the high accuracy and efficiency of the method [18]. Zhong et al. proposed a new deep 32 

neural network structure, W-SegNet, which is based on multiscale feature fusion and can classify cracks, potholes, 33 

and patches with impressive accuracy [19]. Guan et al. developed an automatic pixel-level pavement distress 34 

detection framework by integrating stereo vision and deep learning, which showed advantages in terms of 35 

accuracy and inference speed over similar methods that segment cracks and potholes from the environment [20]. 36 

Liu et al. investigated the influence of image type on the accuracy of different deep learning models, and they 37 

found that CNN-based models produced the highest accuracy on fusion images, whereas transfer learning 38 

generated the highest accuracy on visible images [21]. Shim et al. proposed a novel neural network structure for 39 

detecting pavement distress, and their experimental results showed that this structure could achieve high accuracy 40 

with few parameters [22]. Similarly, Mandal et al. proposed an automated pavement distress analysis system 41 

based on YOLO v2 [23], and they deployed advanced deep learning algorithms based on different network 42 

backbones to detect and characterize pavement distresses [24]. 43 
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These studies clearly indicate that improved CNN-based methods have very broad prospects for the 1 

automatic detection and classification of pavement distress. However, a common limitation of the improved CNN-2 

based methods is that the accuracy relies heavily on the quality of the dataset, which is difficult to ensure in 3 

engineering practice [25]. Therefore, generative adversarial networks (GAN) have gained increasing attention 4 

from scholars because of their reliability and validity in data augmentation. The GAN can transform random noise 5 

and cunningly integrate it into the images to generate realistic-looking images, thereby expanding the sample size 6 

and solving the sample imbalance for the dataset [26]. Since its emergence, the original structure of GAN has 7 

continued to evolve with the incessant appearance of improved GANs for specific tasks, such as deep 8 

convolutional generative adversarial networks (DCGAN) [27], CycleGAN [28], StackGAN [29], and StyleGAN 9 

[30]. Improved GANs exhibit satisfactory reliability [31] and intelligence [32] in defect detection tasks [33]. 10 

Therefore, recent studies have demonstrated the feasibility and effectiveness of using improved GANs to improve 11 

the classification accuracy of pavement distress. Mazzini et al. utilized a GAN to generate new images using a 12 

CNN-based texture synthesizer, which was applied to asphalt pavement distress classification model training [34]. 13 

Chen et al. compared a dataset enhanced by GAN with an enhanced dataset using traditional methods, and proved 14 

that GAN could generate road texture images with better quality, based on which the classification accuracy using 15 

DenseNet could be improved significantly [35]. Zhang et al. proposed a crack-patch-only supervised GAN for 16 

end-to-end training that was able to avoid the “all-black” phenomenon during the image generation process, and 17 

their model achieved exceptional performance for crack datasets [36]. Behzadian et al. established a GAN-based 18 

model for pavement distress classification, and their results revealed that the utilization of a GAN increased the 19 

F1-score from 0.581 to 0.633 [37]. The utilization of GAN increased the accuracy of pavement distress 20 

classification to a higher level. However, at the same time, integration with GAN inevitably posed additional 21 

training time and extra computational cost to the classification models, which caused them to drift away from the 22 

constraints of practical work. In this context, lightweight GAN has become a critical issue in narrowing the gap 23 

between theoretical models and practical requirements. 24 

The basic structure of a GAN consists of a generator and a discriminator, which are essentially composed of 25 

several CNNs; hence, the lightweight GAN is regarded as the lightweight issue of the CNNs composing GAN at 26 

the primary stage. The representative lightweight methods established in previous studies include the multiscale 27 

convolution method used in Inception V1 [9], squeeze and expand method used in SqueezeNet [38], depthwise 28 

separable convolution method used in MobileNet [39], Xception [40], and group convolution and channel shuffle 29 

operation used in ShuffleNet [41]. Collectively, these studies provided ample alternative lightweight approaches 30 

for different procedures comprising the general structure of the GAN. In addition, the studies presented thus far 31 

have also provided evidence that different combinations of these lightweight approaches may lead to significant 32 

fluctuations in the classification accuracy in different tasks. The major reason is that there is an existing a game 33 

process between generator and discriminator, and the lightweight methods implemented on the CNNs could affect 34 

the performances of generator and discriminator independently, which may disrupt the balance of the game and 35 

ultimately decrease the accuracy of classification models. Therefore, the main challenge faced by researchers is to 36 

select the proper lightweight methods for the specific procedures in a GAN model to promote its computational 37 

efficiency while maintaining acceptable accuracy when dealing with different classification tasks. However, to the 38 

best of our knowledge, very few studies have been found that established lightweight GAN-based models for the 39 

classification of pavement distress, which is essential for intelligent pavement monitoring. 40 

To address this research gap, the main aim of this study was to establish a lightweight GAN-based pavement 41 

distress classification model that considers both accuracy and efficiency. To recognize multiple pavement 42 

distresses in one image, the detection of distresses is a prerequisite. However, considering that this study 43 

concentrated on the classification procedure, the situation in which every single image contained only one 44 



 

 4 

pavement distress was focused on. This study began by analyzing the general structure of a GAN composed of 1 

various layers, which was designed to enhance the pavement distress image datasets. Therefore, the layers with 2 

relatively large parameter quantities were locked as lightweight targets. After examining the structure of the target 3 

layers, several potential lightweight methods were proposed and listed as alternative inventories. To explore the 4 

most suitable combination of alternative lightweight methods for the GAN-based pavement distress classification 5 

model, two groups of comparative experiments named Test-I and Test-II series were conducted, which examined 6 

the lightweight degree and classification accuracy, respectively, for the lightweight models. Finally, a lightweight 7 

GAN-based model with an optimized structure is proposed based on the experimental results. Compared with 8 

previous studies, the present research verified the feasibility of making a lightweight GAN-based model in the 9 

field of pavement distress classification. Moreover, optimized lightweight GAN structures considering both 10 

computational cost and final classification accuracy were established for the enhancement of pavement distress 11 

datasets, which could be recognized as another contribution to the field of intelligent pavement distress 12 

classification.  13 

2 Lightweight Process 14 

2.1 Network Structure 15 

Referencing DCGAN [27], a basic GAN structure named Original GAN was designed to generate images 16 

with four categories of classification objects, including crack, pothole, patch and background. Original GAN is 17 

composed of a generator named Original-G and discriminator named Original-D, as shown in Fig. 1. Convolution 18 

kernels with a size of 6 × 6 are applied to the convolution layers and transpose convolution layers. Moreover, 19 

batch normalization layers were used to stabilize the training process, and the LeakyReLU(0.02) activation 20 

function and sigmoid activation function were assigned to different layers. During the training process, the batch 21 

size was set to 32, and the BCE loss function and Adam optimizer were selected to train the GAN at a learning 22 

rate of 10-5. 23 

 24 

Fig.1  Schematic diagram of Original GAN 25 

To make a GAN lightweight, the most direct approach is to reduce the parameters of the different layers. 26 

Therefore, the parameter quantity of the layers in Original-G and Original-D was listed, and then the layers with 27 

relatively large parameter quantities was designated as the main targets to be lightweight. The parameter quantities 28 

of the layers for Original-G are listed in Table.1. The fully connected layer has a dominant number of parameters 29 
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compared to the other layers, which pushes it to the position of the main lightweight target. Although the 1 

parameter quantities of the transpose convolution layers were not as large as those of the fully connected layer, the 2 

quantities were significantly larger than those of the other layers, and there were four transpose convolution layers 3 

in Original-G. Therefore, transpose convolution layers are also recognized as lightweight targets. Taken together, 4 

the design of a lightweight structure for the fully connected and transpose convolution layers in Original-G was 5 

considered. 6 

No. Layer Parameters No. Layer Parameters 

1 Fully connected 330,956,800 8 Batch normalization 512 

2 LeakyReLU 0 9 LeakyReLU 0 

3 Batch normalization 2,048 10 Transpose convolution 1,179,776 

4 Transpose convolution 18,874,880 11 Batch normalization 256 

5 Batch normalization 1,024 12 LeakyReLU 0 

6 LeakyReLU 0 13 Transpose convolution 4609 

7 Transpose convolution 4,718,848 14 Sigmoid 0 

Total parameter quantity：355,738,753 

Table.1  Parameter quantity of the layers in Original-G 7 

The parameter quantities of the layers in Original-D are listed in Table.2. In contrast to Original-G, only the 8 

convolution layers were required to achieve a lightweight design. The other layers contained a very limited 9 

number of parameters and thus showed scarce potential to achieve lightweight. Based on this observation, the 10 

convolution layers were recognized as lightweight targets, and alternative lightweight methods were selected 11 

according to their network structure. 12 

No. Layer Parameters No. Layer Parameters 

1 Convolution 4,736 9 LeakyReLU 0 

2 Batch normalization 256 10 Convolution 18,875,392 

3 LeakyReLU 0 11 Batch normalization 2,048 

4 Convolution 1,179,904 12 LeakyReLU 0 

5 Batch normalization 512 13 Average pooling 0 

6 LeakyReLU 0 14 Fully connected 1,025 
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7 Convolution 4,719,104 15 Sigmoid 0 

8 Batch normalization 1024    

Total parameter quantity：24,784,001 

Table.2  Parameter quantities of layers in Original-D 1 

In summary, the fully connected and transpose convolution layers in Original-G and the convolution layers in 2 

Original-D were confirmed as lightweight targets. Appropriate lightweight methods were selected as alternatives 3 

after analyzing the structural features of the target layers. Considering the structural similarity between transpose 4 

convolution layers and convolution layers, their lightweight issues were essentially the same, which means that 5 

the alternative lightweight methods for these layers should be identical. Therefore, a general lightweight process 6 

can be divided into two steps. First, the lightweight design of the fully connected layer in the Original-G was 7 

considered. Squeeze and expand method seemed to be the only reasonable potential method to achieve a light 8 

weight for this layer. In the second step, the lightweight design of the transpose convolution layers in Original-G 9 

and the convolution layers in Original-D was concentrated on, which followed the same idea. Multiscale 10 

convolution, depthwise separable convolution, and the integration of multiscale convolution and depthwise 11 

separable convolution constitute an inventory of alternative lightweight methods. To identify the best combination 12 

of lightweight methods for Original GAN, comparative experiments were designed and conducted, as described in 13 

the following section. 14 

2.2 Lightweight method based on Squeeze and Expand 15 

The squeeze and expand (SE) method, proposed by Iandola et al. [38], was selected as the lightweight 16 

method for the fully connected layer in Original-G. By implementing the SE method on the fully connected layer, 17 

the number of output nodes was controlled to a small value, which could further reduce the dimensions of the 18 

feature maps while retaining their size. During the expansion process, 1 × 1 convolution kernels are designed to 19 

restore the dimensions of the feature maps. Specifically, in Original-G, the input nodes of the fully connected 20 

layer were reduced from 100 to 1 to compress the random noise input. Moreover, the number of output nodes on 21 

the fully connected layer was squeezed from 102,400 to 12,800, and the dimensions of the corresponding feature 22 

maps reduced from 1,024 to 128. Subsequently, the dimensions of the squeezed feature maps were expanded to 23 

1,024 by 1 × 1 convolution. A schematic diagram of the lightweight method based on SE used in this study is 24 

shown in Fig 2. 25 

 26 

Fig.2  Lightweight process based on SE method 27 

2.3 Lightweight method based on Multiscale Convolution 28 

As for the alternative lightweight methods for the transpose convolution layers in Original-G and the 29 

convolution layers in Original-D, the multiscale convolution (MC) method was first considered, which has been 30 

proven to be an effective tool to reduce the number of network parameters and improve the network learning 31 
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performance [9]. The basic principle is to simultaneously learn the features in feature maps using different 1 

convolution kernels with the most appropriate size and reduce the output dimensions of each convolution kernel 2 

during convolution and transpose convolution. Subsequently, the tensor concatenation tool can concatenate the 3 

output feature maps at the dimension level. In this study, the original 6 × 6 convolution kernels were replaced by 6 4 

× 6 and 4 × 4 convolution kernels for all procedures requiring convolution kernels, and the output dimensions of 5 

the convolution kernels after replacement were half of those in the original convolution kernels. Subsequently, the 6 

output feature maps extracted by the replaced convolution kernels were concatenated to restore the original 7 

dimensions. A schematic of the lightweight method based on the MC used in this research is shown in Fig 3.  8 

 9 

(a) Lightweight of the transpose convolution layers in Original-G 10 

 11 

(b) Lightweight of the convolution layers in Original-D 12 

Fig.3  Lightweight process based on MC method 13 

2.4 Lightweight method based on Depthwise Separable Convolution 14 

Depthwise separable convolution (DSC), which has been proven to be an effective approach to reduce model 15 

parameters [39], is also an alternative lightweight method for the transpose convolution layers in Original-G and 16 

the convolution layers in Original-D. In the convolution and transpose convolution processes, conventional 17 

convolution convolved the dimensions and size of feature maps at the same time, which resulted in a large number 18 

of parameters. The DSC can separate the convolution process into a channel-by-channel convolution with priority 19 

for every feature map and a point-by-point convolution for the entire feature map set, thereby significantly 20 

reducing the number of parameters. In this study, the DSC method was implemented on all the transpose 21 

convolution and convolution layers. In addition, a batch normalization layer was added before the activation 22 

function of the generator output layer to enhance expressiveness. A schematic diagram of the lightweight method 23 

based on the DSC used in this study is shown in Fig 4. 24 

 25 

(a) Lightweight of the transpose convolution layers in Original-G 26 

 27 
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 1 

(b) Lightweight of the convolution layers in Original-D 2 

Fig.4  Lightweight process based on DSC method 3 

2.5 Integration of Multiscale Convolution and Depthwise Separable Convolution 4 

In addition to being applied separately, the MC and DSC can be integrated and applied to lightweight targets 5 

simultaneously, as represented by the MC&DSC method in this study. In this case, two sets of depthwise 6 

separable convolutions for the feature maps were first made, and the convolution kernels of 6 × 6 and 4 × 4 were 7 

then used for channel-by-channel convolution. Subsequently, the output dimensions of the subsequent point-by-8 

point convolutions were set to half of the final output dimensions, which were finally concatenated to restore the 9 

original dimensions. The MC&DSC process is illustrated in Fig 5. 10 

 11 

(a) Lightweight of the transpose convolution layers in Original-G 12 

 13 

(b) Lightweight of the convolution layers in Original-D 14 

Fig.5  Lightweight process based on MC&DSC  15 

3 Experiment Design 16 

3.1 Dataset 17 

The pavement images used in this study were extracted from the German asphalt pavement distress (GAPs) 18 

dataset [42] provided by the Laboratory of Neuroinformatics and Cognitive Robotics at the Technical University 19 

of Irmenau in Germany. The images were captured by road inspection vehicles on asphalt pavement, which had a 20 

single channel of 160 × 160 pixels. Typical extracted images are shown in Fig.6. 21 
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    1 

    2 

(a) Crack          (b) Pothole   (c) Patch       (d) Background 3 

Fig.6  Typical samples extracted from GAPs 4 

A total of 1,600 images were extracted from GAPs, consisting of four categories: crack, pothole, patch, and 5 

pavement background. Each category contained 400 images, of which 60% (240 images) were used as the training 6 

set, while the remaining 40% (160 images) were used as the test set. The sample composition of the dataset used 7 

in this study is presented in Table.3. 8 

Dataset 

Sample size 

Crack Pothole Patch Background 

Original training set for 

classification model 
240 240 240 240 

Test set 160 160 160 160 

Expanded training set 

for GANs  
1920 1920 1920 1920 

Table.3  Sample composition of the datasets consisting of four types of images  9 

It is noteworthy that background noise commonly exists in the images. In addition, the image exposure 10 

degrees and distress forms showed significant distinctions even between images of the same category. It could be 11 

inferred that the quality of the training set might not qualify to train the GANs to generate satisfactory images. 12 

Therefore, the sample size of the training set was expanded eight times using rotation transformation and mirror 13 

transformation on the images to construct an expanded training set for GANs. The sample composition of the 14 

expanded training set for the GANs is presented in Table.3. 15 

  16 
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  1 

(a) Transverse   (b) Longitudinal 2 

Fig.7  Typical samples extracted from GAPs 3 

Considering the actual demand in planning rehabilitations and evaluating the condition of the pavement, the 4 

categories of pothole, patch, and background were retained and the crack category was further divided into 5 

transverse and longitudinal. Four hundred transverse and longitudinal images each were extracted from the GAPs 6 

dataset, and typical samples are shown in Fig.7. Sixty percent (240 images) of the images for each category were 7 

used as the training set, whereas the remaining 40% (160 images) were used as the test set. To test the model 8 

performance on the reclassification dataset, the sample size of the training set was expanded eight times using 9 

noise transformation and mirror transformation on the images. The sample composition of the expanded dataset 10 

used in the experiments after the reclassification is presented in Table.4. 11 

Dataset 

Sample size 

Transverse Longitudinal Pothole Patch Background 

Original training set for 

classification model 
240 240 240 240 240 

Test set 160 160 160 160 160 

Expanded training set 

for GANs  
1920 1920 1920 1920 1920 

Table.4  Sample composition of the datasets consisting of five types of images  12 

3.2 Comparative Experiments 13 

Two groups of comparative experiments, namely, Test-I and Test-II series, were designed, as shown in Fig.8, 14 

to identify the model with the most suitable lightweight structure for pavement distress classification. Test-I 15 

contained 11 experiments that were conducted to examine the data enhancement results of lightweight GANs 16 

implementing different methods. The training times and parameter quantities of the lightweight GANs were 17 

compared to explore the lightweight effect. In Test-II, after the lightweight GANs with acceptable data 18 

enhancement results were selected from Test-I, the dataset enhanced by the lightweight GANs was input to a 19 

residual neural network (ResNet) for distress classification. The classification accuracies were compared with the 20 

results generated by the model without GAN and Original GAN-based model. Finally, the best model that 21 

comprehensively considers the degree of weight and classification accuracy was identified. 22 
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 1 

Fig.8  The flow chart of comparative experiments 2 

Specifically, in Test-I, the lightweight version of Original GAN followed two steps. In the first step, the 3 

lightweight fully connected layer in Original-G was achieved using the SE method, which constructed the model 4 

Light GAN-1. In the second step, a further lightweight was considered based on Light GAN-1. The remaining 5 

lightweight targets in Light GAN-1 were the transpose convolution layers of the generator and convolution layers 6 

of the discriminator. The alternative methods to achieve lightweight design for the convolution layers and 7 

transpose convolution layers were the same, including MC, DSC, and MC&DSC. In summary, three alternative 8 

methods for two lightweight targets were developed, which could generate nine different permutations. Therefore, 9 

nine corresponding experiments, named Test-I-AG1 to Test-I-AG9, as shown in Table.5, were designed to explore 10 

the effectiveness of alternative lightweight GANs with different combinations of lightweight methods. By 11 

observing the images generated by the alternative lightweight GANs after training for 1,000 epochs, feasible 12 

GANs that could generate relatively high-quality images were sifted for further examination of classification 13 

accuracy using ResNet in Test-II. Based on the different classifications of pavement diseases, the experiments 14 

were divided into Test-I-a, which was conducted based on four categories of images, including crack, pothole, 15 

patch, and background, and Test-I-b, which reclassified the crack images into transverse and longitudinal images. 16 

The parameter quantity, storage volume, and training time, which could jointly represent the lightweight degree of 17 

the selected feasible GANs, were preliminarily compared with each other and with those of Original GAN as a 18 

major result of Test-I. 19 
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Experiment GAN structure 

Generator input 

layer lightweight 

method 

Generator transpose 

convolution layer 

lightweight method 

Discriminator convolution 

layer lightweight method 

Test-I-OG Original GAN / / / 

Test-I-LG Light GAN-1 SE / / 

Test-I-AG1 Alternative GAN-1 SE MC MC 

Test-I-AG2 Alternative GAN-2 SE MC DSC 

Test-I-AG3 Alternative GAN-3 SE MC MC&DSC 

Test-I-AG4 Alternative GAN-4 SE DSC MC 

Test-I-AG5 Alternative GAN-5 SE DSC DSC 

Test-I-AG6 Alternative GAN-6 SE DSC MC&DSC 

Test-I-AG7 Alternative GAN-7 SE MC&DSC MC 

Test-I-AG8 Alternative GAN-8 SE MC&DSC DSC 

Test-I-AG9 Alternative GAN-9 SE MC&DSC MC&DSC 

Table.5  Experiments using different permutations of lightweight methods in Test-I 1 

The main objective of Test-II was to examine the classification accuracy using ResNet trained with the 2 

datasets enhanced by lightweight GANs. Test-II-a examined the classification accuracy for four categories of 3 

pavement distress, and Test-II-b validated the model performance for classifying five categories of pavement 4 

distress, which divided cracks into transverse and longitudinal. In Test-II-a, an experiment named Test-II-a-base 5 

was first conducted, which used ResNet trained with the original training set to classify the distress images in the 6 

test set. The results of Test-II-a-base were used as a benchmark for classification accuracy in Test-II-a. Then, the 7 

alternative lightweight GANs that could generate clear distress images were renamed from Light GAN-1 to Light 8 

GAN-n, where the value of n depends on the number of feasible lightweight GANs selected from Test-I-a. The 9 

training set for ResNet was successively enhanced by Light GANs from a sample size of 240 to 960, as shown in 10 

Table.6, and the classification accuracies with ResNet were obtained from the corresponding experiments of Test-11 

II-a-LG1 to Test-II-a-LGn. Considering that the lightweight process may negatively affect the performance of 12 

Original-GAN, an experiment named Test-II-a-OG was also conducted to check the classification accuracy of the 13 

ResNet trained with the dataset enhanced by Original-GAN. Finally, by comparing the results generated from the 14 

experiments in Test-II-a, the feasibility of using a lightweight GAN-based model for pavement distress 15 

classification was validated.  16 

Experiment 

Data 

enhancement 

method 

Sample size of training set Sample size of test set 

Crack Pothole Patch Background Crack Pothole Patch Background 
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Test-II-a-base Without GAN 240 240 240 240 160 160 160 160 

Test-II-a-OG Original GAN 960 960 960 960 160 160 160 160 

Test-II-a-LG1~ 

Test-II-a-LGn 

Light GAN-1 ~ 

Light GAN-n 
960 960 960 960 160 160 160 160 

Table.6  Sample size of the training set and test set for ResNet in Test-II-a 1 

The process of Test-II-b was similar to that of Test-II-a, including experiments without data enhancement and 2 

experiments with data enhancement using a lightweight GAN. The components of the training and test sets are 3 

presented in Table.7. Based on the results of Test-II-a and Test-II-b, the optimal pavement distress classification 4 

model with the most appropriate lightweight structure could be identified comprehensively by considering the 5 

lightweight degree and classification accuracy. 6 

Experiment 

Data 

enhancement 

method 

Sample size of training set / test set 

Transverse Longitudinal Pothole Patch Background 

Test-II-b-base Without GAN 240/160 240/160 240/160 240/160 240/160 

Test-II-b-LG1~ 

Test-II-b-LGn 

Light GAN-1 ~ 

Light GAN-n 
960/160 960/160 960/160 960/160 960/160 

Table.7  Sample size of the training set and test set for ResNet in Test-II-b 7 

8 3.3 Experimental Environment 9 

The experiments were performed on an NVIDIA GeForce RTX 3080 laptop GPU workstation with 16GB 10 

RAM. All models were implemented using the deep learning Pytorch library in Python. 11 

4 Result and Discussion 12 

4.1 Data Enhancement with Lightweight GANs 13 

In Test-I-a, the 11 different GANs listed in Table.5 were trained by the expanded training set shown in 14 

Table.3 and used to enhance the training set for ResNet, that is, generating the distress images, which means that 15 

11 individual experiments based on different GANs were conducted. In the individual experiments, represented by 16 

Test-I-OG to Test-I-AG9 as listed in Table.5, the GANs were trained for 1,000 epochs to generate 720 images for 17 

each of these categories, including crack, pothole, patch, and background, followed by a manual visual inspection 18 

of the generated images. Table.8 shows the typical generated images used to compare the performance of the 19 

GANs, and the models with satisfactory results are highlighted in green. Through careful observation, it was 20 

found that the qualities of the images generated by the same GAN for the same category were similar, which 21 

means that if the typical image shown in Table.8 is realistic-looking, the other images of this category generated 22 

by the same GAN are also clear. In contrast, the unclear images indicated that the images of the same category in 23 

that experiment did not reach the standard for data enhancement. Only the GANs that could quickly generate 24 

high-quality images for all categories were recognized as capable of data augmentation for the training set of the 25 

pavement distress classification model in this study. 26 
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Model Crack Pothole Patch Background 

Original 

GAN 

    

Light GAN-1 

    

Alternative 

GAN-1 

    

Alternative 

GAN-2 

    

Alternative 

GAN-3 

    

Alternative 

GAN-4 
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Alternative 

GAN-5 

    

Alternative 

GAN-6 

    

Alternative 

GAN-7 

    

Alternative 

GAN-8 

    

Alternative 

GAN-9 

    

Table.8  Typical images generated by the GANs in Test-I-a1 

After closer inspection of the experimental results, it can be confirmed that Original GAN can generate 2 

satisfactory images for all categories, which proves the effectiveness of Original GAN in enhancing the training 3 

set for the classification model. For the lightweight GANs, it is apparent from Table.8 that only a few lightweight 4 

GANs could generate realistic-looking images. The positive results generated by Light GAN-1 indicated that the 5 

SE of the fully connected layer in Original-G did not exacerbate its performance. Thus, it was reasonable to 6 

implement the SE method on all alternative lightweight GANs in Test-I, just as designed in this research. Turning 7 

now to the experimental results from Test-I-AG1 to Test-I-AG9, which considered all the permutations of MC, 8 

DSC, and MC&DSC, only Alternative GAN-1 (the lightweight GAN implementing MC on both the convolution 9 

layers and the transpose convolution layers) and Alternative GAN-7 (the lightweight GAN implementing 10 
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MC&DSC on the transpose convolution layers in Original-G and implementing MC on the convolution layers in 1 

Original-D) could generate high-quality distress images for all categories. The results of the experiments using 2 

other lightweight GANs were unclear for at least one category and thus unacceptable for data enhancement.  3 

Alternative GAN-1 and Alternative GAN-7 were successively renamed Light GAN-2 and Light GAN-3, and then 4 

their lightweight degree was compared with Original GAN, as shown in Table.9. 5 

Model name Parameter quantity（×106） Storage volume（MB） 
Training 

time

（h） Name in 

Test-I 

Renamed 

after Test-I 
Total Generator Discriminator Total Generator Discriminator 

Original 

GAN 

Original 

GAN 
380.5 355.7 24.8 4354.8 4071.1 283.7 8.8 

Light 

GAN-1 

Light 

GAN-1 
50.5 25.7 24.8 578.2 294.5 283.7 7.1 

Alternative 

GAN-1 

Light 

GAN-2 
36.8 18.9 17.9 420.8 215.8 205.0 7.2 

Alternative 

GAN-7 

Light 

GAN-3 
19.6 1.7 17.9 225.0 20.0 205.0 7.8 

Table.9  Lightweight degree of the GANs sifted by Test-I 6 

Table.9 illustrates that all the lightweight GANs significantly optimized the parameter quantity, storage 7 

volume, and training time compared with Original GAN. Among the three sifted lightweight GANs, Light GAN-3 8 

has the lowest value of parameter quantity and storage volume. However, the decrease in parameter quantity and 9 

storage volume were not accompanied with a further decrease in training time, which could be found from the 10 

comparison between Light GAN-1, Light GAN-2, and Light GAN-3. A possible explanation for the phenomenon 11 

is that the DSC increased the network depth, resulting in an increase in the time cost. Therefore, if the lightweight 12 

degree is defined based on parameters such as quantity and storage volume, Light GAN-3 has the most effective 13 

lightweight structure. According to Test-I, if training time is considered as the main indicator of lightweight 14 

degree, the Light GAN-1 seems to be more efficient in terms of computation.  15 

Based on Test-I-a, Test-I-b was designed to examine the generation effect of the transverse and longitudinal 16 

directions for Original GAN, Light GAN-1, Light GAN-2, and Light GAN-3. The generation results are presented 17 

in Table.10. It was found that Original GAN could not effectively generate realistic transverse and longitudinal 18 

directions. One possible reason for this is that the structure of Original GAN used in this study was adjusted 19 

according to the four-category scenario. After the reclassification of the crack category into transverse and 20 

longitudinal, the extremely obvious characteristics of transverse and longitudinal cause the game between the 21 

generator and discriminator to be unbalanced. In contrast, after conducting lightweight methods, the structure of 22 

Original GAN changed and could better adapt the transverse and longitudinal characteristics. Consequently, Light 23 

GAN-1, Light GAN-2, and Light GAN-3 can generate realistic transverse and longitudinal images, which also 24 
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indirectly indicates that these lightweight GANs may be more flexible and applicable to more situations than 1 

Original GAN. 2 

Model Transverse Longitudinal 

Original GAN 

  

Light GAN-1 

  

Light GAN-2 

  

Light GAN-3 

  

Table.10  Typical images generated by the GANs in Test-I-b 3 

As the performance of a GAN in data enhancement does not necessarily correlate with the performance of 4 

the corresponding GAN-based classification model in distress classification, the dataset enhanced by Original 5 

GAN, Light GAN-1, Light GAN-2, and Light GAN-3 in Test-II was used as the training set to compare the 6 

accuracy of the classification model. Each enhanced training set contained 240 images extracted from the GAPs 7 

and 720 images generated by the GAN without manual selection for every category. 8 

4.2 Classification accuracies using ResNet 9 

Test-II was concerned with the accuracy of lightweight GAN-based classification models. Supervised 10 

learning for the classification task of four categories of pavement distress, including crack, pothole, patch, and 11 

background was first conducted in Test-II-a. ResNet101, a representative ResNet, was successively trained using 12 

the original training set, which was enhanced by Original GAN, and the training sets were enhanced by 13 

lightweight GANs to conduct the experiments Test-II-a-base, Test-II-a-OG, Test-II-a-LG1, Test-II-a-LG2, and 14 
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Test-II-a-LG3. The number of training epochs was set to 200, with a batch size of 1. Adam was used as the 1 

optimization algorithm for gradient descent in back propagation, with a learning rate of 10-5 and default values of 2 

other parameters. The loss function of supervised learning is the BCE function. Accuracy, that is, the proportion of 3 

correctly classified samples to the total number of samples in the test set, was adopted as the evaluation index for 4 

the performance of the supervised classification models. The accuracy curve, confusion matrix, and loss function 5 

curve of the experiments in Test-II are shown in Fig 8. 6 

   7 

(a) Classification accuracy in Test-II-a-base 8 

   9 

(b) Classification accuracy in Test-II-a-OG 10 

   11 

(c) Classification accuracy in Test-II-a-LG1 12 
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   1 

(d) Classification accuracy in Test-II-a-LG2 2 

   3 

(e) Classification accuracy in Test-II-a-LG3 4 

Fig.9  Pavement distress classification accuracies of the experiments in Test-II-a  5 

As shown in Fig.9(a), the accuracy curves and the loss curve kept spiking during the 200 epochs in Test-II-a-6 

base using the classification model without GAN. Comparatively, Fig.9(b) to Fig.9(e) shows that classification 7 

accuracy and loss curves of GAN-based models tended to stabilize within 200 epochs, and the loss curves 8 

converged rapidly. To quantitatively analyze the performance of the models in Test-II-a, the classification 9 

accuracies for the distress images in the test set after 200 epochs are listed in Table.11.  10 

Classification Model 

Classification accuracy on test set（%） 

Crack Pothole Patch Background Average 

Original ResNet without GAN  50.6 50.0 60.6 82.5 60.9 

Original GAN based 78.8 90.0 60.6 82.5 78.0 

Light GAN-1 based 77.5 80.0 77.5 88.1 80.8 

Light GAN-2 based 63.1 76.9 81.3 92.5 78.4 

Light GAN-3 based 79.4 79.4 80.5 93.7 84.4 

Table.11  Classification accuracies of the four categories of distress 11 

The results, as shown in Table.11, revealed that training with the datasets enhanced by GANs significantly 12 

improved the classification accuracies of the pavement distress images for the ResNet models. A remarkable result 13 

was that the lightweight structures improved the classification accuracies of the GAN-based models instead of 14 

negatively affecting their performance, which could be found by comparing the classification accuracy of Original 15 
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GAN-based model with those of the lightweight GAN-based models. Specifically, Light GAN-1 and Light GAN-1 

2 slightly increased the accuracy of Original GAN-based model by less than 3%, whereas the Light GAN-3 based 2 

classification model achieved the most distinguished average accuracy, which was 84.4%.  3 

In Test-II-b, it was further examined that the classification accuracies of the lightweight GAN-based models 4 

after the pavement distresses were reclassified into five categories, that is, the crack was divided into transverse 5 

and longitudinal. The process of conducting Test-II-b was the same as that of Test-II-a. As shown in Table.12, in 6 

the case of the five categories of pavement distress, the lightweight GAN-based models also achieved higher 7 

accuracy than the original ResNet model without GAN, similar to the case of the four categories. Among the 8 

classification models, the Light GAN-2 based model showed the best performance, improving the average 9 

classification accuracy to 87.0%.  10 

Classification 

Model 

Classification accuracy on test set（%） 

Transverse Longitudinal Pothole Patch Background Average 

Original 

ResNet 

without GAN 

75.6 78.1 66.9 61.9 80.6 72.6 

Light GAN-1 

based 
95.6 85.0 72.5 71.9 86.9 82.4 

Light GAN-2 

based 
89.4 93.1 78.7 78.7 95.0 87.0 

Light GAN-3 

based 
89.4 88.7 77.5 77.5 93.8 85.4 

Table.12  Classification accuracies of the five categories of distress 11 

Comparing the results of Test-II-a and Test-II-b, the classification model without GAN has better 12 

performance in Test-II-b than in Test-II-a, however, the improvement of classification accuracy using lightweight 13 

GAN-based models is more significant in Test-II-a. A possible reason is that the characteristics of each category 14 

become more significant after the crack is divided into transverse and longitudinal, which naturally reduces the 15 

difficulty of classification and reduces the potential for using GAN-based models to improve the classification 16 

accuracy. Moreover, compared with the state-of-the-art method published recently [42], which achieved an F1 17 

value of approximately 0.6, it can be concluded that the classification accuracies of approximately 0.8 obtained in 18 

Test-II-a and Test-II-b using lightweight GAN-based models are satisfactory. 19 

4.3 Comprehensive comparison 20 

A comprehensive comparison of the model performance is shown in Table.13. The result of the classification 21 

model without GAN was listed as the benchmark of test accuracy, whereas the result of Original GAN-based 22 

model was selected as the benchmark to evaluate the lightweight degree. According to the results in Table.13, the 23 

lightweight GAN-based models improved the classification accuracy of pavement distress by at least 17.5% in the 24 

case of four categories and 9.8% in the case of five categories compared with Resnet without GAN. Moreover, all 25 

the lightweight structures sifted from Test-I could effectively reduce the parameter quantity, storage volume, and 26 

training time of Original GAN. In Light GAN-1, the parameter quantity and storage volume were reduced by 27 

86.7%, the training time was reduced by 19.3%, and the final improvement in classification accuracy was 28 

increased by 19.9% and 9.8%, respectively, in four-category and five-category classification tasks. In Light GAN-29 
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2, the parameter quantity and storage volume decreased by 90.3%, training time decreased by 18.2%, and 1 

classification accuracy increased by 17.5% in the four-category task and 14.4% in the five-category task. Light 2 

GAN-3 reduced the parameter quantity and storage volume by 94.8%, reduced the training time by 11.4%, and 3 

increased the classification accuracy by 23.5% for the four-category classification and by 12.8% for the five-4 

category classification. These results confirm that lightweight GAN-based models can effectively classify 5 

pavement distress with higher efficiency and even better accuracy compared to the model without GAN and 6 

Original GAN-based model. If the parameter quantity and storage volume are mainly considered, implementing 7 

SE and MC&DSC on the fully connected layer and the transpose convolution layers, respectively, in the 8 

generator, while implementing MC on the convolution layers in the discriminator, is the best lightweight structure. 9 

In addition, when the training time is the main factor, the lightweight GAN that only implements SE on the fully 10 

connected layer in the generator can achieve an acceptable classification accuracy with less training time. 11 

Classifica

tion 

Model 

Parameter quantity Storage volume Training time Test accuracy 

(×106) 
reduction 

(%) 
(MB) 

reduction 

(%) 
(h) 

reduction 

(%) 

4 categories 5 categories 

(%) 
increase 

(%) 
(%) 

increase 

(%) 

Without 

GAN 
/ / / / / / 

60.9 

(base) 
0 

72.6 

(base) 

0 

Original 

GAN 

based 

380.5 

(base) 
0 

4354.8 

(base) 
0 

8.8 

(base) 
0 78.0 17.1 / / 

Light 

GAN-1 

based 

50.5 86.7 578.2 86.7 7.1 19.3 80.8 19.9 82.4 9.8 

Light 

GAN-2 

based 

36.8 90.3 420.8 90.3 7.2 18.2 78.4 17.5 87.0 14.4 

Light 

GAN-3 

based 

19.6 94.8 225.0 94.8 7.8 11.4 84.4 23.5 85.4 12.8 

Table.13  Comprehensive comparison of lightweight GAN-based classification models 12 

5 Conclusions 13 

This paper described a lightweight GAN-based model used to perform an intelligent classification of 14 

pavement distresses based on datasets with small sample sizes. The model also helped explore the optimized 15 

lightweight structure considering both lightweight degree and classification accuracy. A DCGAN, together with a 16 

ResNet, collectively constructed the basic classification model in this study. For the lightweight methods, the SE 17 

method was used to lightweight the fully connected layer in the generator, while the MC method, DSC method, 18 

and their integration (MC&DSC) were used to lightweight the transpose convolution layers in the generator and 19 

convolution layers in the discriminator. Simultaneously, the different permutations of lightweight methods and 20 
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lightweight targets were considered to design experiments to compare the performance of the constructed models. 1 

Using two series of comparative experiments, feasible lightweight GAN-based models with optimized structures 2 

were proposed to achieve a more efficient and accurate classification of pavement distress. The major findings are 3 

summarized as follows: 4 

(1) Although only three of the ten lightweight GANs were verified to be capable of effectively enhancing the 5 

dataset of pavement distress images, all three sifted lightweight GANs could significantly reduce the computation 6 

cost and training time under the prerequisite of maintaining the classification performance.  7 

(2) In the case where the parameter quantity and storage volume were defined as the main indicators of the 8 

lightweight degree, the lightweight GAN-based model with the structure of SE implemented on the fully 9 

connected layer, MC&DSC implemented on the transpose convolution layers in the generator, and MC 10 

implemented on the convolution layers in the discriminator achieved the best performance, decreasing the 11 

computation cost by 94.8% and increasing the classification accuracy by 23.5% in four distress category tasks and 12 

12.8% in five distress category tasks. 13 

(3) If the main factor is the training time, the single use of the SE method to the fully connected layer in the 14 

generator is the best choice according to the results of this study, which could save 19.3% of the training time for 15 

the learning process of GAN and could still achieve satisfactory accuracies of 80.8% for the four-category 16 

classification and 82.4% for the five-category classification by integrating the lightweight GAN with the ResNet-17 

based classification model.  18 

In summary, the feasibility and effectiveness of a lightweight GAN-based model for pavement distress 19 

classification were verified with sufficient evidence in this research. The insights gained from this study may 20 

assist in the development of novel intelligent pavement monitoring tools with better adaptability for engineering 21 

practice, and we hope that this research can, to some extent, narrow the gap between theoretical research and 22 

practical engineering requirements in the field of intelligent monitoring of pavement distress. As this is the first 23 

study of substantial duration that attempts to make the GAN-based pavement distress classification model 24 

lightweight, it has also raised a number of questions that require further investigation. 25 

First, only a limited number of pavement distress categories were considered in this study. Although the 26 

crack category was divided into transverse and longitudinal to enhance the applicability of the proposed approach, 27 

it may still not be capable of directly supporting engineering practice considering the complex condition of the 28 

real pavement and the actual requirements of planning rehabilitation. Thus, a natural progression of this work is to 29 

expand the classification target for further optimization of GAN-based models. In particular, the classification of 30 

the alligator and block will be considered. 31 

Moreover, this study considered only the automatic classification of pavement distress. The proposed 32 

lightweight models may not be able to constitute an intelligent pavement distress recognition system 33 

independently. This is because in engineering practice, most pavement images contain more than one distress, and 34 

the distress needs to be first detected as a prerequisite for automatic classification. Therefore, an advanced 35 

lightweight automatic detection algorithm should be developed and integrated with classification models to meet 36 

the requirements of practical pavement inspection and maintenance. 37 

In addition, making the layers in the GAN lightweight directly is focused in this study. However, there are 38 

other routes for the distress classification model, such as the transfer-learning approach. Several transfer learning-39 

based approaches for pavement distress recognition have been proposed in recent studies, such as the models 40 

established by Hou [43], Li [44], and Liu [45], which also achieved impressive performance. Considerably more 41 

work will be needed to make comprehensive comparisons among the models following different lightweight 42 

routes to discuss their unique advantages as well as the feasibility of integrating these lightweight models.  43 

Finally, it was found that the lightweight model with the lowest computational cost and that with minimum 44 
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time cost were not the same. This is a rather interesting phenomenon that might be related to the depth of the 1 

network and the internal computational logic of the algorithm. Further research is needed to examine the links 2 

between the model structure and computational efficiency, which could provide support for engineers to adjust the 3 

algorithm according to the network structure. Thus, a higher classification efficiency can be expected, which is 4 

essential for pushing the theoretical models closer to the application in pavement inspection works. 5 
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