Journal Pre-proof

Direct derivation scheme of DT-RNN algorithm for discrete time-variant
matrix pseudo-inversion with application to robotic manipulator

Yang Shi, Wenhan Zhao, Shuai Li, Bin Li, Xiaobing Sun

PII: S1568-4946(22)00910-3
DOI: https://doi.org/10.1016/j.as0c.2022.109861
Reference: ASOC 109861

To appear in: Applied Soft Computing

Received date: 23 May 2022
Revised date: 17 October 2022
Accepted date: 18 November 2022

Please cite this article as: Y. Shi, W. Zhao, S. Li et al., Direct derivation scheme of DT-RNN
algorithm for discrete time-variant matrix pseudo-inversion with application to robotic
manipulator, Applied Soft Computing (2022), doi: https://doi.org/10.1016/j.as0c.2022.109861.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2022.109861
https://doi.org/10.1016/j.asoc.2022.109861

Direct derivation scheme of DT-RNN algorithm for
discrete time-variant matrix pseudo-inversion with
application to robotic manipulator

Yang Shi®P* Wenhan Zhao®®, Shuai Li®* Bin Li*?, Xiaobing Sun®®

@School of Information Engineering, Yangzhou University, Yangzhou 225127, China
b Jiangsu Province Engineering Research Center of Knowledge Management and
Intelligent Service, Yangzhou University, Yangzhou 225127, China
¢College of Engineering, Swansea University, Fabian Way, Swansea, UK

Abstract

The improvement of recurrent neural network (RNN) algorithms is one of
target of many researchers, and these algorithms are wieldy used to solve
time-variant problems in a variety of domains. A novel direct derivation
scheme of discrete time-variant RNN (DT-RNN) algorithm for addressing
discrete time-variant matrix pseudo-inversion is discussed in this paper. To
be more specific, firstly, a DT-RNN algorithm mathematically founded on
the second-order Taylor expansion is proposed for dealing with discrete time-
variant matrix pseudo-inversion, and it does not require the theoretical sup-
port of continuous time-variant RNN (CT-RNN) algorithm. Secondly, the
results of theoretical analyses of the proposed DT-RNN algorithm are also
presented in this paper. These results demonstrate that the novel DT-RNN
algorithm has remarkable computing performance. The efficiency and appli-
cability of the DT-RNN algorithm have been verified through one numerical
experiment example and two robotic manipulator experiments.

Keywords: Direct derivation scheme, Discrete time-variant recurrent
neural network (DT-RNN), Discrete time-variant matrix pseudo-inversion,
Second-order Taylor expansion, Robotic manipulator.

*Corresponding author.
E-mail Addresses: shiy@yzu.edu.cn; shuaili@ieee.org

Preprint submitted to Applied Soft Computing Journal October 17, 2022

1. Introduction

For a matrix P, if there exists a matrix @) such that PQQ = QP = I, in
which [is an identity matrix of the same dimensions as P and @, we can
say that P is an invertible matrix, i.e., P is invertible; and say that @ is the
inversion matrix of P, i.e., Q = P~!. For example, we set up a system of
linear equations as follows [1]:

q11T1 + q12%2 + -+ -+ Q1pTp = P1
Q2171 + G22%2 + -+ - + G2y = P2

Am1T1 + GmaTo + - - + @mnTn = Pm

in which 21, @, ..., z,, represent the unknown quantities, ¢;; (1 <i <m,1 <
Jj < n) is the coefficient of above system of equations, and p; (1 < i < m)
is the constant term. The coefficients and constant terms are all arbitrary
complex numbers or elements of a domain. Then, we simplify the above
system of equations into a form of the matrix and vector as

Ox = p,

in which @ is a m x n matrix, x is an unknown n-dimensional vector, and p
is a m-dimensional constant vector. Immediately after, we assume that

1. m=n.
2. @ is invertible (i.e., @ is a square and full rank matrix).

Thus, we have x = Q~'p, which is a solution to the system of equations,
in which Q7! is a m x m (n x n) matrix satisfying Q7'Q = QQ~' = I.
Nevertheless, when m # n or @ is not invertible, the above assumption be-
comes meaningless. Because at this point, the Q! evidently does not exist.
Consequently, as a natural extension of the concept of inversion, the pseudo-
inversion becomes particularly important. Generally speaking, it not only
occupies an important place in computational mathematics [2, 3], but also
has a wide range of applications in other fields, for example, control the-
orey [4, 5], robotics [6, 7|, machine learning [8, 9] and pattern recognition
[10]. At the same time, many algorithms or models for pseudo-inversion so-
lutions have been proposed and improved one after another [11-13]. They
is beneficial to later researches; for instance, in [11], the authors presented
a technique for solving the weighted Moore-Penrose inversion of rational or

polynomial matrices with one variable; in [12], on the basis of Newton iter-
ation, an optimization algorithm was proposed, which can be used to deal
with Toeplitz matrix pseudo-inversion; in [13], for improving the accuracy of
classifiers, author used pseudo-inversion sample covariance matrix. Neverthe-
less, most of these proposed algorithms are introduced to solve static matrix
pseudo-inversion, i.e., time-invariant matrix pseudo-inversion [12, 14]. When
we directly use these algorithms to solve the time-variant matrix pseudo-
inversion, they become inefficient and limited due to the omission of the key
information of the time derivative, which lacks application value to some
extent in real life.

Consistently, many algorithms for solving time-variant matrix pseudo-
inversion have been presented. In the past decades, the artificial intelligence
has become a key force of the industrial development. Neural network, as a
fundamental research direction in the field of artificial intelligence, gradual-
ly attracts attention of researchers [15-21]. With the development of rele-
vant technologies, neural networks have become an important mathematical
tool for handling various domain problems, such as distributed parallel in-
formation processing. Because of the research and promotion of previous
researchers, recurrent neural networks (RNNs), as a branch of neural net-
works and with their powerful advantages [22-26], have developed in leaps
and bounds. Afterwards, a new class of RNN algorithm is presented by
Zhang and Ge. This is a continuous time-variant RNN (CT-RNN) algorithm
for solving time-variant matrix inversion [27], which shows global and ex-
ponential convergence and is characterized by implicit dynamics. However,
general speaking, continuous time-variant algorithms may be more difficult
to implement in industry than discrete time-variant algorithms, such as on
the digital circuits and on the digital computers.

Many researchers proposed improved RNN algorithms for solving discrete
time-variant matrix pseudo-inversion after Zhang et al. introduced the al-
gorithm [27], such as Wei et al. [28], Guo et al. [29], Liao et al. [30] and
Petkovi¢ et al. [31]. Besides, the study and processing of some mathematical
problems can also be realized by RNNs [32-37].

However, when researchers solve such discrete time-variant problems,
firstly, they need present discrete time-variant problem in the continuous
time-variant form. Then they define the error function of the continuous
time-variant problem through introducing the RNN design formula, immedi-
ately following that, the CT-RNN algorithm is developed. Whereafter, the
CT-RNN algorithm in the discrete time-variant form is shown. Finally, to

Novel derivation scheme

Discrete —
time-variant

problem 000000 ?T-gﬁ
formulation algori

Traditional derivation scheme

Figure 1: Comparison between novel derivation scheme and traditional derivation scheme.

solve the discrete time-variant problems, the corresponding discrete time-
variant recurrent neural network (DT-RNN) algorithm is established. It is
appropriate to note here that the above solving process is a indirect deriva-
tion scheme of DT-RNN algorithm, and the main procedure is shown in Fig.
1. Evidently, in this whole derivation scheme, researchers ignore the fact
that repeated conversion between the discrete and continuous environment
requires additional computational time, which may significantly reduce the
real-time performance of algorithm.

Under these conditions, we need to find a straightforward and effective
derivation scheme. By investigating second-order Taylor expansion, a novel
direct derivation scheme of DT-RNN algorithm is proposed, which means
that the derivation process nearly skips the continuous time-variant envi-
ronment and the target problem can be solved in the discrete time-variant
environment by a direct and efficient method. As shown in Fig. 1, compared
with the traditional derivation scheme, the new direct derivation scheme
omits some intermediate solving procedures, which can effectively improve
the efficiency of solving the discrete time-variant matrix pseudo-inversion
[38, 39].

Based on the above analyses, in this paper, a novel DT-RNN algorithm is
proposed, which is founded on the direct derivation scheme. The remaining
work is mainly divided into five parts. In the second section, we formulate
the discrete time-variant matrix pseudo-inversion problem and show an ap-
plication preliminary of robotic manipulator. The third section introduces
the DT-RNN algorithm for handling discrete time-variant matrix pseudo-
inversion, which is mathematically built on the second-order Taylor expan-

Start

_|<-|__l

Integrating documents 1

A,Band C '
v

NO

YES

Figure 2: Workflow diagram of entire research work.

sion. Moreover, the comparison with other method and theoretical analyses
of the DT-RNN algorithm are presented, and it is shown that the proposed
algorithm has excellent convergence.

The validity of the theoretical analyses is tested in the fourth section,
which includes a numerical experiment and corresponding comparison re-
sults. In addition, benefitted from [40-42], in the fifth section, we apply two
robotic manipulator experiments to further demonstrate efficiency and appli-
cability of the proposed DT-RNN algorithm, and the sixth section concludes
the paper. The main contributions of this paper can be summarized by the
following three items.

1. A direct derivation scheme founded on the second-order Taylor expan-
sion is proposed to establish DT-RNN algorithm for solving discrete
time-variant matrix pseudo-inversion, and the solving process no longer
requires the theoretical support of continuous time-variant algorithm.

To the authors’ knowledge, the proposed algorithm is quite different
from the previous DT-RNN algorithms.

2. For the proposed DT-RNN algorithm, theoretical analyses have shown
that such an algorithm is exactly convergent when it is exploited to
solve discrete time-variant matrix pseudo-inversion.

3. The effectiveness of DT-RNN algorithm for solving discrete time-variant
matrix pseudo-inversion is proved using numerical experiment results.
In addition, two application experiments of robotic manipulator are
shown to further validate the efficiency and practicability of the DT-
RNN algorithm.

In addition, for improving the readability of entire research work, a workflow
diagram is presented in Fig. 2.

2. Problem formulation and preliminary

In this section, the discrete time-variant matrix pseudo-inversion problem
is formulated firstly. Then, an application preliminary of robotic manipulator
is introduced.

2.1. Problem formulation

To begin with, benefitted from [7], we express the following definition:
Definition 1: For a matrix Q € R™ " if X € R™™ meets all the four
Penrose equations below:

QXQ=Q, XQX =X,
(QX)" = QX,(XQ)" = XQ,

in which (-)T represents the execution of matrix transpose, X is the pseudo-
inversion of the matrix @), which is represented by Q*. Note that, generally
speaking, Q" is unique in this paper.

Consider a matrix () € R™*"™ is full rank, i.e., rank(Q) = min{m, n}, we
can obtain the pseudo-inversion of @) by the lemma [32] below:
Lemma 1 : Consider a matrix @ € R"™*" if rank(Q) = min{m,n}, the
unique pseudo-inversion Q" can be expressed as

QT(QQ™) ', m < n,
QT ={ Q! m=n, (1)
(QTQ)"'Q",m > n.

6

The above three rows of formula represent the right pseudo-inversion of ma-
trix @), the inversion when () is a square matrix and the left pseudo-inversion,
respectively. Here, all the matrices in this paper are defined as full-rank ma-
trices, and we only consider m < n.

Let us formulate the discrete time-variant matrix pseudo-inversion prob-
lem as

Q(tk>X(tk) =1, ¢€ R

Note that we use the previous or current data at each computational time
interval [ty,tx, 1) in order to obtain the next data at the instant of time
trr1- Therefore, actually, in the discrete time-variant environment, instead
of Q(ty) X (tx) = I, we can express the target problem as

Q(trs1) X (ths1) = [€ R, (2)

in which Q(ty41) € R™" X(tgy1) € R™™ and I, € R™ ™ represen-
t the coefficient matrix, the unsolved matrix pseudo-inversion, and the i-
dentity matrix, respectively. Obtaining time-variant solution X (fx41) is
the purpose of this work, and X(#;y1) holds true at any instant of time
[ty ti1) C [to, te] C [0, +00), where k represents the number of updating.

2.2. Preliminary of robotic manipulator

A simplified robotic manipulator is considered in this subsection. For
one robotic manipulator tracking control problem [43, 44], there exists a
connection between the joint-angle vector

O(trs1) = (01 (trga) 5 02 (trsr) 5 03 (trg)] € R?

and the Cartesian position vector r (fx41) € R? of the end-effector

r (tey1) = (0(the1)s thrr)-

For a specific manipulator, ¢(-) represents a nonlinear forward kinematics
mapping function and we have known its parameters and structure [38].
Moreover, there exists a linear relationship between the joint velocity and
the end-effector Cartesian velocity which can be presented as

T (thi1) = J(trr1)0(tes),

where J(t41) is the Jacobian matrix. For above equation, we can obtain

O(tks1) = I (tepr)T (trsn) -

7

Remark 1. The related control rule can handle the robotic manipulator to
accomplish the tracking control task, and it can also be solved and character-
ized by joint-angle or joint-velocity variables after establishing Jacobian ma-
trix. Without a doubt, the matrix pseudo-inversion is linked to current devel-
opment of information science. Finding a novel and high-efficiency approach
for matrix pseudo-inversion is critical. Evidently, we need to obtain J* (t;,1)
for solving 6’(tk+1) at any instant of time [tg, t511) C [to, t¢] C [0, +00).

3. Direct derivation scheme of DT-RNN algorithm

An innovative DT-RNN algorithm and corresponding theoretical analyses
are investigated and studied in this section.

3.1. DT-RNN algorithm
To begin with, we present a theorem for introducing DT-RNN algorithm.

Theorem 1. The DT-RNN algorithm is presented as

X(tear) = = X(0)[(1 = w)(Qt) X (tr) = L)) = EX (1) Q1) X (1)

+ X(tr))

with truncation error O(&?). Here, X (ty+1) represents the matriz pseudo-
inversion to be solved at the instant of time t = (k+1)&; w represents a design
parameter; Q(ty) represents a discrete time-variant non-square matriz with

respect to ty; Q(ty) represents the time derivative of Q(ty,) at ty; I, represents
wdentity matriz; the sampling period is represented by the variable &, where

E>0.

Proof. Firstly, let us define matrix-valued error functions as

E(X(tet1)s tera) = Q1) X (ty1) — L € R™ (4)

and
E(X(tr), tr) = Q(tx) X (tk) — Iy € R™ ™. (5)

Then, based on (4) and (5), we have
E(X (trg1) trvr) — E(X (), th)

=(Qte+1) X (ter1) — L) — (Q(tR) X (k) — I1n) (6)
=Q(thr1) X (thy1) — Qtr) X (1),

8

when k is large enough, we set E(X (txi1), tkr1) = wE(X(tg), tr), where w
represents a design parameter. In view of the second-order Taylor expansion
38], we further have

Q(ths1) X (trr1) = Qtr) X (tr) + Q(tr) (X (trr1) — X (tk))
+ (trg1 — tk)@(tk)X(tk) +0(&?)
= Qe) X (tk) + Q) (X (th1) — X (tk))
+EQt) X (t) + O(£3).

(7)

Here O(£?) represents a matrix of order O(£?) for each of these elements,
we can further obtain the following formula by substituting (7) into (6) and
dropping the O(£2) above:

(w = D(QUr)X (1) — L) = Q(ta) (X (tr41) — X (t)) + EQtr) X (t)-

Next, the DT-RNN algorithm (3) can be represented by the following for-
mula:

X(tear) = X (t) = =X (8)[(1 = 0)(Q(t) X (tr) = In)] — EX (1) Q1) X (1),

the above formula can be further transformed into

X(trr1) = =X (t)[(1 = @) Q) X (t) — Ln)] — EX (1) Q(t) X (t4) + X ().
The proof is thus completed. O

For further comparison, we develop and present the existing Newton it-
eration [38, 40] as

X (tregr) = =X (t) (Q (te) X (t) — Ln) + X (t1)

for solving discrete time-variant matrix pseudo-inversion. Generally speak-
ing, the Newton iteration is a very common method for mathematical prob-
lems. Note that the Newton iteration can not process discrete time-variant
problem with a higher computational precision.

3.2. Theoretical analyses and results

The proposed DT-RNN algorithm (3) is actually built to solve discrete
time-variant problems, instead of solving continuous time-variant problems,
which means that the derivative process of the proposed algorithm (3) does

9

not need the theoretical support provided by continuous time-variant algo-
rithm. Furthermore, the following theorems are presented in this subsection
to show theoretical analyses and results of the DT-RNN algorithm (3) for
solving discrete time-variant matrix pseudo-inversion (2).

Theorem 2. The proposed DT-RNN algorithm (3) converges to the trun-
cation error of order O(&%) when the boundary of all partial derivatives of
Q(trs1) X (tgs1) is continuous.

Proof. As presented by Theorem 1, we have the following formula:

E(X (tkt1) o) — E(X (),)
= (Q(tk+1)X(tk+1) - Im) - (Q(tk>X(tk) - Im)
= Q(trr1) X (ter1) — Q) X ().

On the one hand, we define Q(tx+1)X (tx+1) as one binary function with two
variables (X and t); on the other hand, for X (¢xy1) and tx, 1, they are in
close proximity to any fixed point X (¢;) and t. It should be noted here that
Q(tg11) is a variable with respect to ¢, and is affected by it. If all partial
derivatives of Q(tyy1)X (tr41) exist, we have

Q(tr1) X (tr1) = Q) X (Er) + Q) (X (ter1) — X (tk)) (8)
+ (b =) Q1) X (1) + [lo [

where \
lolle < 5 UX Erer) — X (E)lle + [torr — tl)?,

and the partial derivatives of Q(tx4+1)X (fx+1) all have a constant border,
which is represented by A. The sampling period is £ = 541 — tx, and £ > 0.
By using Euler discretization formula [38], we have

X(ty) = %X(tm) - %X(m) 10,

which can be rewritten as

X(tra1) — X (tn) = EX (1) + O(€?),

10

and we have

2

lolle <5 (||eX @) +0 @) +é)
=5 (e(Jxa o, +1))

=5¢(Jxe+o@], +1)’
AN
¢

=0(&?),

) 2
in which N = (HX(tk) + O(f)H + 1) . Then, equation (8) can be rewritten
F
as

Qtrr1) X (1) = Q) X () + Q1) (X (try1) = X ()
+ (th1 — te)Q(te) X (t) + O(€?),

and we further obtain

Qtr) (X (tra1) — X (tr)) = Qtr1) X (fra1) — Q(tn) X (t) — £Q(t1) X (1)
+0(€%).

According to pervious section, we have

X(tre1) = = X(0)[(1 — @) (Q(te) X (tr) — Im)] — X (t:) Q1) X (1)
+ X (tr) + X (t)O(€?),

where X (t;)O0(£?) = O(£?), and finally we have

X(trs1) = = X () [(1 = w)(Q(t1) X (tr) — L)) — EX (1) Q(t1) X (1)
+ X (t) + O(£%).

It is clear from the aforementioned analyses that the DT-RNN algorithm
(3) converges to the truncation error of order O(£?). The proof is thus
completed. O

Theorem 3. The DT-RNN algorithm (3) has consistence and zero-stability.

Proof. Refer to Appendix for details. O

11

Algorithm: Numerical Implementation of DT-RNN Algorithm (3)
1. Input: Non-square and discrete time-variant matrix Q(tx) € R™ ",
2. Input: Sampling period &, design parameter w, identity matrix I,,
and instant of time [ty tx11) C [to, t] [0, +00);
Initialize: X (t1), Q(ty) and Q(ty);
Calculate: X(t2), Q(t1), Q(t1), X (t3), Q(t2) and Q(t2);
For: t3 — ¢
Calculate: Q(t;,) and Q(ty);
Calculate: X(t;4;) via the DT-RNN algorithm (3);
Output: Residual error of the DT-RNN algorithm (3) via
1B = Ok + D)

O N T W

9. End for:
10. Stop: Numerical Implementation of DT-RNN algorithm (3) is completed.

Theorem 4. For handling discrete-time matriz pseudo-inversion (2), the
steady-state residual error of DT-RNN algorithm (8) changes in an O(&?)
pattern with k being large enough.

Proof. Firstly, benefitted from the work of Jin and Guo et al. [7, 24], we
have

Jim [E(= (k+1D)Elp = i [|Q(Fs1) X (tri1) = Inlle,
500 k—o00

secondly, we define one theoretical solution for solving discrete time-variant
matrix pseudo-inversion (2), that is,

X*(tppr) = X*(t = (k+ 1)¢) € R™™,

According to the aforementioned theorems, X (tx11) = X*(try1) + O(E?) (k
is large enough), then we can obtain

1Qtks1) X (1) = Ll = [|Qtkst) (X" (th1) + O(E)) = Ll
= [QU)X (1) = L + Q1) O(E) -

Since Q(tg41)X*(t11) — I, = 0, we can rewrite the above equation as
1Q(tks1) X (ti1) — Ll = || Q(th11)O(E%) || = O(E?).

In summary, for handling discrete-time matrix pseudo-inversion (2), the
steady-state residual error of DT-RNN algorithm (3) changes in an O(&?)
pattern with k being large enough. The proof is thus completed. O

12

Define matrix Q(¢;), I, and the values of £ and w

l

Initialize the X (t;),Q (to) and Q (to)

l

Calculate the X (t5),Q (1), Q (t1), X (t3), Q (t2) and Q (t5)

Calculate the Q (tz) and Q (t)

l

Calculate X (t341) via the DT-RNN algorithm

l

Calculate || E(t = (k + 1)§)||p

l

kek+1

Save and output

Figure 3: Flow chart of numerical implementation of proposed DT-RNN algorithm (3).

Remark 2. Theorems 2, 3 and 4 prove that the DT-RNN algorithm (3) not
only has excellent convergence in the computational time interval [ty ti41) C
[to, te] € [0, +00), but also shows the computational effectiveness simultane-
ously. Compared with previous DT-RNN algorithms, it can been seen as a
significant improvement. The reason is that, for solving discrete time-variant
problems, by using traditional DT-RNN algorithm, we need to perform sev-
eral complex intermediate procedures.

4. Numerical experiment and verifications

In this section, we visually present the authenticity and validity of the
proposed DT-RNN algorithm (3) through a numerical experiment and corre-
sponding comparison results. Firstly, for the convenience of presentation and
readability, the numerical implementation process of DT-RNN algorithm (3)

13

0.5 0.5 102
Xia 1
ot e £=001s
0f Xu 0 100 1 X (trs1) = QF (sl oo £=0001s |
05 k 05 k b — £=0.0001s |
10 5000 10000 0 5000 10000 of!
109}
Olx,, 0 X 104
- k . k 10°
3
0.50 5000 10000, 0 5000 10000 1g
X3 107
0 0 8
10 : t)
10 :
0.5 k 0.5 Xz k 2 4 6 8 10
0 5000 10000 0 5000 10000
(a) (b)

Figure 4: Numerical experimental results of proposed DT-RNN algorithm (3) to solve
example 1 in Section 4 with ¢t = k€. (a) State trajectories of DT-RNN algorithm (3) using
& =0.001 s and w = 0.7, where horizontal axis represents number of updates and vertical
axis represents errors of two solutions. (b) Using different values of ¢ and w = 0.7, where
horizontal axis represents range of time and vertical axis represents residual errors.

Table 1: Maximum steady-state residual errors of DT-RNN algorithm in numerical exper-
iment example 1 with different sampling periods.

2s 6s 8s 10 s
£€=001s 2.04 x 10~4 2.04 x 10=4 2.04 x 104 2.04 x 10~
£€=0.001 s 2.041 x 106 2.041 x 10=6 2.041 x 106 2.041 x 10—6
€ =0.0001 s 2.041 x 108 2.041 x 108 2.041 x 108 2.041 x 108

is summarized and presented, and corresponding flow chart is also shown in
Fig. 3.2.

4.1. Ezample 1

Here, we present the following discrete time-variant matrix as an example
to authenticate the efficiency of the DT-RNN algorithm (3):

14

| sin(ty) cos(ty) —sin(ty) 9%3
Qte) = | _ cos(ty) sin(ty) cos(tx) € R 9)
and the theoretical solution can be presented as
1/2sin(ty) —1/2cos(t)
X*(ty) = cos(tg) sin(ty)
—1/2sin(tx) 1/2cos(ty)

fffff w=0.9 0 = w =09
ol - w=07 10 o- w=0.7
10 I (ta1) = @ (i)l oo o I (ta1) = @ ()l oo
1 - w=0.3 - w=0.3
10 w=01 10 w=01
102 107
10E
10° 10'5':*
10 3 08¢
7L
10° 10°F
108F
10° 109
t(s) t(s)
7 ok
10 10
0 2 4 6 8 10 0 2 4 6 8 10
(a) (b)

Figure 5: Numerical experimental results of proposed DT-RNN algorithm (3) to solve
example 1 in Section 4 with ¢t = k€. (a) Using different values of w and £ = 0.001 s, where
horizontal axis represents range of time and vertical axis represents residual errors. (b)
Using different values of w and & = 0.0001 s, where horizontal axis represents range of
time and vertical axis represents residual errors.

Table 2: Maximum steady-state residual errors of DT-RNN algorithm in numerical exper-
iment example 1 using different values of w and £ = 0.001 s.

2s 6s 8s 10 s
w=0.9 6.123 x 10—6 6.123 x 10—6 6.123 x 10—6 6.123 x 10~6
w=0.7 2.041 x 106 2.041 x 10=6 2.041 x 10—6 2.041 x 106
w=0.5 1.225 x 10~6 1.225 x 106 1.225 x 106 1.225 x 106
w=0.3 8.748 x 10~7 8.748 x 10=7 8.748 x 10~7 8.748 x 107
w=0.1 6.804 x 10~7 6.804 x 10~ 7 6.804 x 10~ 7 6.804 x 10~7

Then we obtain matrix pseudo-inversion of (9) through the DT-RNN al-
gorithm (3). It is shown in Fig. 4 that the numerical experiment results are
generated by the DT-RNN algorithm (3) when solving example 1. Specifi-
cally, starting with one random value, Fig. 4(a) illustrates that the actual
experimental results (represented by the blue dashed curve in the figure)
generated by the DT-RNN algorithm (3) using sampling period £ = 0.001 s
and w = 0.7 can be well fitted the theoretical solution (represented by the
red dash curve in the figure). Then, in Fig. 4(b) and Table 1, we can see
that the residual errors synthesized by DT-RNN algorithm (3) with w = 0.7
and different values of sampling period &, which shows that the residual er-
rors change in an O(&?) pattern approximatively, in other words, when the
sampling period value ¢ decreases tenfold, the residual error synthesized by
DT-RNN algorithm (3) reduces hundredfold, which complies with the theo-

15

108 108
10° TSN £=001s 10% ¢ DN Re— Newton iteration
4 1 X (tr41) = QF (s e L €=0001s 4 1 X (tr41) = QF (s e
10 g 107 — DT-RNN algorithm|
=0.0001 s -
10 £=10.0001s | 0ok]
102 102
10! 10'F
10%F 10°
107 107
102 102
408 Tttt mToomommommommoemmomoooy 103
4 4L ¥
10 ‘o) 10 &
10° : 10 ‘ ‘ ‘ ‘
0 2 4 6 8 10 0 200 400 600 800 1000
(a) (b)
108 10
e[Newton iteration oy Newton iteration
104 F X (tre1) = QF (trn) I ™ 1 102F X (tre1) = QF (trn) I v 1
103 F ——DT-RNN algorithm | § 101k ——DT-RNN algorithm | §
102 F 10%F -
10'F 107" E
100F 102
107" F 10°
102F 10
103 F 105k
10 10°F
10° 107 F
106 k 108 X
107 10° ‘
0 2000 4000 6000 8000 10000 0 2 4 6 8 10
x10*
(c) (d)

Figure 6: Numerical experimental results of Newton iteration and comparisons between
DT-RNN algorithm and Newton iteration with ¢ = k€. (a) Newton iteration using different
values of £ and w = 0.7. (b) Residual errors using £ = 0.01 s. (c) Residual errors using
&€ =10.001 s. (d) Residual errors using £ = 0.0001 s.

retical analyses of Theorem 4.

To further investigate the effect of change of design parameter w on the
computational performance of the proposed algorithm, we select five different
values from the range greater than 0 to less than 1 as variables. As shown in
Fig. 5, Table 2 and Table 3, the residual errors synthesized by DT-RNN algo-
rithm (3) with two different values of sampling period £ can quickly converge
to a relatively small value, respectively, which authenticates the accuracy
and convergence of DT-RNN algorithm (3). Generally speaking, for the DT-
RNN algorithm (3), choosing different values of sampling period £ can obtain
different computational performances. That is, the smaller sampling period
& value is, the more significant the computational performance improvement

16

Table 3: Maximum steady-state residual errors of DT-RNN algorithm in numerical exper-
iment example 1 using different values of w and £ = 0.0001 s.

2s 6 s 8s 10 s
w=0.9 6.124 x 108 6.124 x 10~8 6.124 x 10~8 6.124 x 108
w=0.7 2.041 x 108 2.041 x 108 2.041 x 10~8 2.041 x 108
w=0.5 1.225 x 108 1.225 x 108 1.225 x 108 1.225 x 108
w=0.3 8.748 x 1079 8.748 x 1079 8.748 x 10~9 8.748 x 102
w=0.1 6.804 x 10~9 6.804 x 10~9 6.804 x 10~9 6.804 x 10—2

Table 4: Position errors of elliptical path example using w = 0.3 and £ = 0.0001 s.

5s 15 s 25 s 30 s
ex 1.214 x 1079 4.982 x 1077 4.811 x 1079 5.22 x 1077
ey 5.12 x 1079 1.297 x 10~9 1.155 x 10~ 5.048 x 1079

of the proposed DT-RNN algorithm (3) is.

Furthermore, we present Fig. 6 to show the experimental comparison
between DT-RNN algorithm (3) and Newton iteration. Through illustrative
figures, the efficiency and superiority of the proposed DT-RNN algorithm
have been validated for solving discrete time-variant matrix pseudo-inversion.
Here, we can see that the steady-state residual error of the DT-RNN algo-
rithm changes in an O(£?) pattern, and the steady-state residual error of the
Newton iteration changes in an O(€) pattern.

5. Robotic manipulator application

In this section two robotic manipulator experiments are shown to further
verified the efficiency and applicability of the DT-RNN algorithm (3).

5.1. Example 1

In this subsection, benefitted from [6, 7, 41, 42], we handle a robotic
manipulator to prove potential of the DT-RNN algorithm (3) in practical
applications by performing a tracking control task.

Specifically, for such a robotic manipulator, there is a task duration ¢4 at
instant of time ¢, € [0,¢4] while performing a task. Through computing the
pseudo-inversion of a discrete time-variant Jacobian matrix, the proposed
DT-RNN algorithm (3) is applied to handle a robotic manipulator to draw a
designed path. When performing a task, the Jacobian matrix J € R?*? for

17

2.4 — T 2.4

22 Actual of end effector 22 Initial position of end effector
2 Y(m) \4 2 Y(m)
1.8 Desired path of end effector 1.8
16 16
1.4 1.805 1.4
1.2 12
1 1
0.8 1.804 0.8
0.6 0.6
0.4 0.4 Main axis
1.803
0.2 2158 2159 216 2.161 0.2
0 X(m) 0 X(m)
-0.2 -0.2
0 02040608 1 12141618 2 222426 0 02040608 1 12141618 2 222426
(a) (b)
2 4 .
0 — 0
— 0 2
rad 3trad/s | (.?2

Figure 7: Application of DT-RNN algorithm (3) with w = 0.3 and sampling period
& = 0.001 s for tracking path (11). (a) Motion trajectory of end-effector, where hor-
izontal axis represents horizontal displacement and vertical axis represents longitudinal
displacement. (b) Motion trajectory of whole robotic manipulator, where horizontal axis
represents horizontal displacement and vertical axis represents longitudinal displacement.
(c) Joint-angle profiles, where horizontal axis represents range of time and vertical axis
represents joint-angle change. (d) Joint-velocity profiles, where horizontal axis represents
range of time and vertical axis represents joint-velocity change.

such a robotic manipulator is provided as follows:

7= | —hst —lasbhy —I380125 —la86hs — 3012 _1359123]7 (10)

licty + laclia + 1350123 loctha + 1350193 l350123

in which [y, s, andls represent the length of manipulator rod 1,2 and 3,
respectively; 89123 = Sin(el —+ (92 + 93), 09123 = COS(€91 + 92 + 93), 5912 =
sin(f; + 6,) and cbhs = cos(f; + 63). Then the tracking control task is an
elliptical path that can be defined as

(9/25) cos(tr) +9/5 } .

(11/50) sin(ty) + 9/5 (11)

I'(tk) =

18

Figure 8: End-effector position errors. (a) Using £ = 0.001 s, where horizontal axis
represents range of time and vertical axis represents end-effector position errors. (b) Using
& = 0.0001 s, where horizontal axis represents range of time and vertical axis represents
end-effector position errors.

Table 5: Position errors of cardioid path example using w = 0.3 and £ = 0.0001 s.

5s 15 s 25 s 30 s
ex 1.159 x 108 7.467 x 1079 6.546 x 1079 1.194 x 108
ey 1.681 x 10~ 13 2.691 x 10~9 4.121 x 10~13 3.000 x 10~9

Here, we assign value of sampling period ¢ in the proposed DT-RNN
algorithm (3) being 0.001 s. In addition to these assignments, we set these
parameters: each rod length of robotic manipulator is 1 meter; the initial
state of three joints is set to 0y = [1/9; 7/9; 7/12]; the task duration tq = 30 s.
As we can see, Fig. 7(a) shows that the experimental trajectory (denoted
by red solid line) is very close to the desired elliptical path (denoted by
blue dashed line). Fig. 7(b) represents the simplified diagram of robotic
manipulator for drawing an elliptical path. Following that, Fig. 7(c) and
Fig. 7(d) illustrate the joint-angle § and joint-velocity 9, respectively.

From Fig. 8 and Table 4, we can see the end-effector position errors
synthesized by the DT-RNN algorithm (3) using different values of sampling
period &, Compared with & = 0.001 s, when & = 0.0001 s, the maximum
position error synthesized by the DT-RNN algorithm (3) is of order 107°.

5.2. Example 2

Based on the previous regular elliptical path, in this example, we choose
another complicated geometry as the second path for tracking control task of
robotic manipulator. The Jacobian matrix setting is the same as in example

19

24 2.4
2.2 Actual path of end effector 22 Initial position of end effector

21Y(m) 2Y(m)
18 Desired path of end effector 18
1.6 1.6
1.4 1.804 1.4
1.2 1.2
1 1.802 4
0.8 1.8 0.8
0.6 1.798 0.6
0.4 0.4 Main axis
1.796
0.2 2 2.01 2.02 0.2
0 X(m) 0 X(m)
-0.2 -0.2
0 02040608 1 12141618 2 222426 0 02040608 1 12141618 2 222426
(a) (b)
2 4 .
0 o
— 0 8
rad 3trad/s | (.?2

Figure 9: Application of DT-RNN algorithm (3) with w = 0.3 and sampling period
& = 0.001 s for tracking path (12). (a) Motion trajectory of end-effector, where hor-
izontal axis represents horizontal displacement and vertical axis represents longitudinal
displacement. (b) Motion trajectory of whole robotic manipulator, where horizontal axis
represents horizontal displacement and vertical axis represents longitudinal displacement.
(c) Joint-angle profiles, where horizontal axis represents range of time and vertical axis
represents joint-angle change. (d) Joint-velocity profiles, where horizontal axis represents
range of time and vertical axis represents joint-velocity change.

1. Then the tracking control task is a cardioid path that can be defined as

(1/5)(2 cos(tx) — cos(2tx)) +9/5

r(ty) = (1/10)(2sin(ty) — sin(2tx)) +9/5 | (12)

Whereafter, we set the same parameter as those used in example 1: the
value of sampling period & is 0.001 s; each rod length is 1 meter; the initial
state of three joints are ¢, = [7/9], 0, = [7/9] and 03 = [7/12], respectively;
the task duration tq = 30 s. Firstly, from Fig. 9(a) we can see two different
colored lines, which represent the experimental trajectory of robotic manip-
ulator and the desired path. Then Fig. 9(b) shows a simplified diagram of

20

Figure 10: End-effector position errors. (a) Using £ = 0.001 s, where horizontal axis
represents range of time and vertical axis represents end-effector position errors. (b) Using
& = 0.0001 s, where horizontal axis represents range of time and vertical axis represents
end-effector position errors.

robotic manipulator similar to that in example 1 when performing a track-
ing cardioid path task. Afterwards the joint-angle 6 and joint-velocity 6 of
robotic manipulator are depicted in Fig. 9(c) and Fig. 9(d), respectively.
Furthermore, the maximum position error synthesized by the DT-RNN al-
gorithm (3) with £ = 0.0001 s is of order 10~®, which is about 100 times less
than that with £ = 0.001 s on the whole, as shown in Fig. 10 and Table 5.

As shown in the aforementioned robotic manipulator applications as well
as the results of numerical experiment above, the DT-RNN algorithm (3),
such a novel algorithm from the direct derivation scheme, can not only have
excellent performance, but also omit some intermediate procedures compared
with the traditional derivation scheme.

6. Conclusion

The DT-RNN algorithm (3) has been proposed from the technical scheme
of direct derivation in this paper. Firstly, we have formulated the discrete
time-variant matrix pseudo-inversion problem and an application preliminary
of robotic manipulator has also been introduced. Secondly, the DT-RNN al-
gorithm (3) is founded on the second-order Taylor expansion. Then the DT-
RNN algorithm (3) has been analyzed theoretically, and the zero-stability,
consistence and convergence of the proposed DT-RNN algorithm(3) have
been proved. Finally, numerical experiment and comparison results have
verified the validity of the DT-RNN algorithm (3). Besides, inspired by pre-

21

vious work, two applications of robotic manipulator through computing the
discrete time-variant Jacobian matrix pseudo-inversion further validate the
efficiency and applicability for industry application of the proposed DT-RNN
algorithm (3). Due to the limitation of laboratory hardware equipment, the
implementation of the proposed DT-RNN algorithm on a physical application
would be our future research direction. In addition, more researches about
advanced statistical method and computational time are also meaningful and
worthwhile.

Appendix

For the purpose of theoretical analyses and explanations, based on the
[40], the following results are presented.

Result 1: The zero-stability of an N-step discrete time-variant method
ZLO TpOarr = & Z,]CV:O YrWarr can be checked by determining the roots of
its characteristic polynomial n(t) = S0 zxt*. If all roots of 7(t) = 0 meet
the requirements: each root has a modulus of less than 1, and a root whose
modulus equals 1 is a simple root, the N-step discrete time-variant method
has zero-stability.

Result 2: In general, we consider that if the truncation error of a smooth
exact solution of an N-step discrete time-variant method is O(£%) (¢ > 0),
the N-step method has consistence of g-order and the method is convergent
to the same order as its truncation error.

Referring to Result 1 and inspired by [40], we can know about the solu-
tion of characteristic polynomial that belongs to the DT-RNN algorithm (3)
is 0 = 1. In other words, the DT-RNN algorithm (3) shows zero-stability
when there is just one root on the unit circle; referring to the previous the-
orems and considering about the structural form of the DT-RNN algorithm
(3), it converges to a truncation error of order O(£?). Therefore, the DT-
RNN algorithm (3) is considered to have consistence according to Result 2.
From the above analyses, the DT-RNN algorithm (3) has zero-stability and
consistence. The proof is thus completed.

Acknowledgements

This work was supported by the National Natural Science Foundation
of China (with numbers 61906164 and 61972335), by the Natural Science
Foundation of Jiangsu Province of China (with number BK20190875), by

22

the Six Talent Peaks Project in Jiangsu Province (with number RJFW-053),
by Jiangsu “333” Project, by Qinglan project of Yangzhou University, by
High-end Talent Support Program of Yangzhou University, by the Cross-
Disciplinary Project of the Animal Science Special Discipline of Yangzhou

University, and by the Postgraduate Research & Practice Innovation Program
of Jiangsu Province (with numbers KYCX21.3234 and SJCX22_1709).

CRediT authorship contribution statement

Yang Shi: Writing - original draft, Formal analyses, Conceptualization,
Methodology. Wenhan Zhao: Formal analyses, Software, Writing - review
& editing. Shuai Li: Resources, Conceptualization, Methodology, Writing -
review & editing. Bin Li: Resources, Writing - review & editing, Supervision.
Xiaobing Sun: Validation, Formal analyses, Visualization, Software.

Declaration of competing interest

The authors declare that they have no known competing nancial inter-
ests or personal relationships that could have appeared to inuence the work
reported in this paper.

References

[1] Y. Shi, Y. Zhang, New discrete-time models of zeroing neural network
solving systems of time-variant linear and nonlinear inequalities, IEEE
Trans. Syst. Man Cybern. Syst. 50 (2) (2020) 565-576.

[2] L. Jin, S. Li, H. Wang, Z. Zhang, Nonconvex projection activated zero-
ing neurodynamic models for time-varying matrix pseudoinversion with
accelerated finite-time convergence, Appl. Soft Comput. 62 (2018) 840—
850.

[3] V. Chauhan, A. Tiwari, Randomized neural networks for multilabel clas-
sification, Appl. Soft Comput. 115 (2022) 108184.

[4] C. A. Lightcap, S. A. Banks, An extended Kalman filter for real-rime
estimation and control of a rigid-link flexible-joint manipulator, IEEE
Trans. Control Syst. Technol. 18 (1) (2010) 91-103.

23

[5]

[10]

[11]

[12]

[13]

[14]

K. Hauser, S. Emmons, Global redundancy resolution via continuous
pseudoinversion of the forward kinematic map, IEEE Trans. Autom.
Sci. Eng. 15 (3) (2018) 932-944.

7. Hu, L. Xiao, K. Li, K. Li, J. Li, Performance analysis of nonlinear ac-
tivated zeroing neural networks for time-varying matrix pseudoinversion
with application, Appl. Soft Comput. 98 (2021) 106735.

L. Jin, Y. Zhang, Discrete-time Zhang neural network of O(73) pattern
for time-varying matrix pseudoinversion with application to manipulator
motion generation, Neurocomputing 142 (2014) 165-173.

C. M. Wong, C. M. Vong, P. K. Wong, J. Cao, Kernel-based multilay-
er extreme learning machines for representation learning, IEEE Trans.
Neural Netw. Learn. Syst. 29 (3) (2018) 757-762.

Y. Zhang, J. Zhang, J. Weng, Dynamic Moore-Penrose inversion with
unknown derivatives: Gradient neural network approach, IEEE Trans.
Neural Netw. Learn. Syst. (2022) doi: 10.1109/TNNLS.2022.3171715.
In Press.

M. Hanmandlu, S. Singhal, Face recognition under pose and illumination
variations using the combination of information set and PLPP features,
Appl. Soft Comput. 53 (2017) 396-406.

M. B. Tasi¢, P. S. Stanimirovi¢, M. D. Petkovi¢, Symbolic computa-
tion of weighted Moore-Penrose inverse using partitioning method, Ap-
pl. Math. Comput. 189 (1) (2007) 615-640.

Y. Wei, J. Cai, M. K. Ng, Computing Moore-Penrose inverses of Toeplitz
matrices by Newton’s iteration, Math. Comput. Model. 40 (1) (2004)
181-191.

D. C. Hoyle, Accuracy of pseudo-inverse covariance learning - a random
matrix theory analysis, IEEE Trans. Pattern Anal. Mach. Intel. 33 (7)
(2011) 1470-1481.

V. Y. Pan, F. Soleymani, L. Zhao, An efficient computation of general-
ized inverse of a matrix, Appl. Math. Comput. 316 (2018) 89-101.

24

[15]

[16]

[18]

[19]

[20]

[21]

[22]

23]

L. Xiao, J. Dai, R. Lu, S. Li, J. Li, S. Wang, Design and comprehensive
analysis of a noise-tolerant ZNN model with limited-time convergence

for time-dependent nonlinear minimization, IEEE Trans. Neural Netw.
Learn. Syst. 31 (12) (2020) 5339-5348.

B. Liao, Y. Wang, W. Li, C. Peng, Q. Xiang, Prescribed-time conver-
gent and noise-tolerant Z-type neural dynamics for calculating time-

dependent quadratic programming, Neural. Comput. Appl. 33 (10)
(2021) 5327-5337.

L. Xiao, Y. Zhang, Q. Zuo, J. Dai, J. Li, W. Tang, A noise-tolerant
zeroing neural network for time-dependent complex matrix inversion
under various kinds of noises, IEEE Trans. Ind. Informat. 16 (6) (2020)
3757-3766.

L. Jin, L. Wei, S. Li, Gradient-based differential neural-solution to time-
dependent nonlinear optimization, IEEE Trans. Automat. Contr. (2022)
doi: 10.1109/TAC.2022.3144135. In Press.

M. Liu, L. Chen, X. Du, L. Jin, M. Shang, Activated gradients for deep
neural networks, IEEE Trans. Neural Netw. Learn. Syst. (2021) doi:
10.1109/TNNLS.2021.3106044. In Press.

Y. Shi, J. Wang, S. Li, B. Li, and X. Sun, Tracking control of cable-
driven planar robot based on discrete-time recurrent neural network with
immediate discretization method, IEEE Trans. Ind. Inf. to be published.
doi: 10.1109/T11.2022.3210255. In Press.

Y. Shi, Z. Pan, J. Li, B. Li, and X. Sun, Recurrent neural dynamics
for handling linear equation system with rank-deficient coefficient and
disturbance existence, J. Franklin Inst. 359 (7) (2022) 3090-3102.

J. Guo, B. Qiu, Y. Zhang, Future different-layer linear equation and
bounded inequality solved by combining adams-bashforth methods with
CZNN model, IEEE Trans. Ind. Electron. 68 (2) (2021) 1515-1524.

Y. Shi, C. Mou, Y. Qi, B. Li, S. Li, and B. Yang, Design, analysis
and verification of recurrent neural dynamics for handling time-variant
augmented Sylvester linear system, Neurocomputing 426 (2021) 274-284

25

[24]

[25]

[26]

28]

[29]

[30]

[31]

[32]

[33]

O. Barron, M. Raison, G. Gaudet, S. Achiche, Recurrent neural network
for electromyographic gesture recognition in transhumeral amputees,
Appl. Soft Comput. 96 (2020) 106616.

Y. Zhang, S. Li, J. Weng, Learning and near-optimal control of underac-
tuated surface vessels with periodic disturbances, IEEE Trans. Cybern.
(2020) doi: 10.1109/TCYB.2020.3041368. In Press.

Y. Shi, L. Jin, S. Li, and J. Qiang, Proposing, developing and verifica-
tion of a novel discrete-time zeroing neural network for solving future
augmented Sylvester matrix equation, J. Franklin Inst. 357 (6) 2020
3636-3655

Y. Zhang, S. S. Ge, Design and analysis of a general recurrent neural
network model for time-varying matrix inversion, IEEE Trans. Neural
Netw. 16 (6) (2005) 1477-1490.

W. Wei, B. Zheng, Improved recurrent neural networks for solving
Moore-Penrose inverse of real-time full-rank matrix, Neurocomputing
418 (2020) 221-231.

D. Guo, Z. Nie, L. Yan, Novel discrete-time Zhang neural network for
time-varying matrix inversion, IEEE Trans. Syst. Man Cybern. Syst. 47
(8) (2017) 2301-2310.

B. Liao, Y. Zhang, From different ZF's to different ZNN models accelerat-
ed via Li activation functions to finite-time convergence for time-varying
matrix pseudoinversion, Neurocomputing 133 (2014) 512-522.

M. D. Petkovi¢, P. S. Stanimirovi¢, V. N. Katsikis, Modified discrete it-
erations for computing the inverse and pseudoinverse of the time-varying
matrix, Neurocomputing 289 (2018) 155-165.

B. Liao, Y. Zhang, Different complex ZFs leading to different com-
plex ZNN models for time-varying complex generalized inverse matrices,
IEEE Trans. Neural Netw. Learn. Syst. 25 (9) (2014) 1621-1631.

L. Jin, S. Li, B. Hu, RNN models for dynamic matrix inversion: a
control-theoretical perspective, IEEE Trans. Ind. Informat. 14 (1) (2018)
189-199.

26

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

P. S. Stanimirovi¢, I. S. Zivkovié, Y. Wei, Recurrent neural network for
computing the Drazin inverse, IEEE Trans. Neural Netw. Learn. Syst.
26 (11) (2015) 2830-2843.

H. Lu, L. Jin, J. Zhang, Z. Sun, S. Li, Z. Zhang, New joint-drift-free
scheme aided with projected ZNN for motion generation of redundant

robot manipulators perturbed by disturbances, IEEE Trans. Syst. Man
Cybern. Syst. 51 (9) (2021) 5639-5651.

Y. Zhang, S. Li, G. Geng, Initialization-based k-winners-take-all neural
network model using modified gradient descent, IEEE Trans. Neural
Netw. Learn. Syst. (2021) doi: 10.1109/TNNLS.2021.3123240. In Press.

7. Zhang, X. Deng, M. He, T. Chen, J. Liang, Runge-Kutta type dis-
crete circadian RNN for resolving tri-criteria optimization scheme of

noises perturbed redundant robot manipulators, IEEE Trans. Syst. Man
Cybern. Syst. 52 (3) (2022) 1405-1416.

Y. Shi, W. Zhao, S. Li, B. Li, X. Sun, Novel discrete-time recur-
rent neural network for robot manipulator: a direct discretization
technical route, IEEE Trans. Neural Netw. Learn. Syst. (2021) doi:
10.1109/TNNLS.2021.3108050. In Press.

Y. Shi, L. Jin, S. Li, J. Li, J. Qiang, D. K. Gerontitis, Novel discrete-time
recurrent neural networks handling discrete-form time-variant multi-

augmented Sylvester matrix problems and manipulator application,
IEEE Trans. Neural Netw. Learn. Syst. 33 (2) (2022) 587-599.

Y. Shi, B. Qiu, D. Chen, J. Li, Y. Zhang, Proposing and validation of
a new four-point finite-difference formula with manipulator application,
IEEE Trans. Ind. Informat. 14 (4) (2018) 1323-1333.

L. Jin, Y. Zhang, G2-type SRMPC scheme for synchronous manipula-
tion of two redundant robot arms, IEEE Trans. Cybern. 45 (2) (2015)
153-164.

D. Chen, S. Li, L. Liao, A recurrent neural network applied to optimal
motion control of mobile robots with physical constraints, Appl. Soft
Comput. 85 (2019) 105880.

27

[43]

[44]

7. Xie, L. Jin, X. Luo, Z. Sun, M. Liu, RNN for repetitive motion
generation of redundant robot manipulators: an orthogonal projection-
based scheme, IEEE Trans. Neural Netw. Learn. Syst. 33 (2) (2022)
615-628.

L. Xiao, Z. Zhang, S. Li, Solving time-varying system of nonlinear e-
quations by finite-time recurrent neural networks with application to
motion tracking of robot manipulators, IEEE Trans. Syst. Man Cybern.
Syst. 49 (11) (2019) 2210-2220.

28

Highlights

First of all, a direct derivation scheme founded on the second-order Taylor expansion
has been proposed to establish discrete time-variant recurrent neural network algorithm
for discrete time-variant matrix pseudo-inversion, and the solving process has no longer
required the theoretical support of continuous time-variant background.

Secondly, for the proposed discrete time-variant recurrent neural network algorithm,
theoretical analyses have been shown that such algorithm could be exactly convergent.

Finally, the effectiveness of discrete time-variant recurrent neural network algorithm
for discrete time-variant matrix pseudo-inversion has been proved using numerical
experiment results. In addition, two application experiments of robotic manipulator
have been shown to further validate the efficiency and practicability of the discrete
time-variant recurrent neural network algorithm.

Credit authorship statement

Yang Shi: Writing - original draft, Formal analysis, Conceptualization,
Methodology.

Wenhan Zhao: Formal analysis, Software, Writing - review & editing.

Shuai Li: Resources, Conceptualization, Methodology, Writing - review &
editing.

Bin Li: Resources, Writing - review & editing, Supervision.

Xiaobing Sun: Validation, Formal analysis, Visualization, Software.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Direct derivation scheme of DT-RNN algorithm for discrete time-variant matrix pseudo-inversion with application to robotic manipulator
	CRediT authorship contribution statement
	Data availability

