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Abstract

Data-based approaches are promising alternatives to the traditional analytical constitutive models for solid mechanics.
erein, we propose a Gaussian process (GP) based constitutive modeling framework, focusing on planar, hyperelastic and

ncompressible soft tissues. Specifically, the strain energy density of soft tissues is modeled as a GP, which can be regressed to
xperimental stress–strain data obtained from biaxial stretching experiments. Moreover, the GP model can be weakly constrained
o be convex. A key advantage of a GP-based model is that, in addition to the mean value, it provides a probability density
i.e. associated uncertainty) for the strain energy density. To simulate the effect of this uncertainty, a non-intrusive stochastic
nite element analysis (SFEA) framework is proposed. The proposed framework is verified against an artificial dataset based
n the Gasser–Ogden–Holzapfel model and applied to a real experimental dataset of a porcine aortic valve leaflet tissue. The
esults show that the proposed framework can be trained with limited experimental data and fits the data better than several
xisting models. The SFEA framework provides a straightforward way of using the experimental data and quantifying the
esulting uncertainty in simulation-based predictions.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Constitutive modeling; Nonlinear elasticity; Tissue biomechanics; Gaussian processes; Stochastic finite element analysis; Machine
earning

1. Introduction

Even with advanced numerical techniques, predictive mechanical modeling of complex materials, such as
oft tissues, remains an unresolved challenge. Although the governing equations for solid mechanics (based on
quilibrium) are deterministic and have been well established, uncertainty can arise through unknown variabilities
n the domain shape, boundary conditions, and/or material properties. These three primary sources of uncertainty
ave been investigated in the literature. The present work focuses on the material properties that, in the context of
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solid mechanics, enter through the constitutive model defining the relationship between stresses and strains. Soft
tissues are chosen as an application due to their nonlinear behavior and commonly observed variability in their
response, which makes predictive modeling particularly challenging.

Soft tissues are usually modeled as hyperelastic, wherein a strain energy density function (SEDF) is defined
o represent their stress–strain behavior. Traditionally, analytical forms of SEDF have been proposed based on
xperimental observations — both macro- and micro-scopic, and dozens of models can be found in literature [1].
ecently, we proposed a Bayesian framework to compare the models at describing the experimental data and

ound that the existing models do not fully capture the observed behavior. Hence, there is still a room for further
mprovements in constitutive models of soft tissues.

A recent, novel direction in constitutive modeling is using data-driven and machine learning approaches, which
orgo analytical forms in favor of numerical or statistical representations.

Conti et al. [2] proposed a purely data-driven approach and solved one-dimensional linear elasticity problems.
his approach can be thought of as a nearest-neighbor model, and it has been further developed for various
roblems. Kirchdoerfer and Ortiz [3] extended it to one- and two-dimensional linear elasticity problems, and further
orks have extended the approach to inelasticity [4], dynamics [5], fracture [6], and large-strain elasticity [7].
ecently, an enhancement in this approach was proposed to deal with outliers [8]. One of the issues in this approach

s that it is heavily influenced by the outliers. A solution to this issue has been proposed by He et al. [9]. However,
he authors of that study concluded with “reinstates the importance of having sufficiently rich data coverage”.
uch data-driven approaches are being further extended to reduce sensitivity to noise and find lower-dimensional
epresentations [10,11].

Another promising approach is the use of a neural network (NN) to model the constitutive behavior [12–16].
ince one key feature of NNs is their flexible architecture that can be adapted to a wide range of problems, several
tudies have explored varying versions of NNs [12]. For example, Zhang et al. [14] used strain components as the
nputs to the neural network, Klein et al. [16] used the deformation gradient, its cofactor and determinant as inputs,
nd Tac et al. [13] used strain invariants as inputs. Another difference between different formulations is whether
and how) they enforce convexity of the constitutive model. However, none of these models naturally account for
he variability in the responses that are commonly observed in soft tissues.

An alternative to neural networks in the machine learning literature is the Gaussian processes (GPs), which have
een used to model stochastic systems. One of the attractive features of GPs is that they are naturally Bayesian.
Ps also offer flexible regression and have a rigorous mathematical foundation that provides a control over their

moothness. In the field of mechanics, GPs have been primarily used as surrogate models, for example, for reduced-
rder modeling [17], for meta-modeling [18], for uncertainty propagation [19–21], and for inverse problems [22].
owever, their use in modeling constitutive relationships remains uncommon. To the authors’ best knowledge,
nly Frankel et al. [23] proposed using GPs for constitutive modeling of hyperelastic materials. However, their
ork was limited to isotropic materials and did not enforce any convexity constraints.
Herein, we propose to treat the constitutive model as a stochastic process, more specifically a Gaussian process

hat allows us to directly incorporate the experimental data, capture the observed experimental variations in the
tress–strain responses, and quantify the uncertainty through a natural Bayesian framework. Moreover, we propose
straightforward way to propagate the uncertainty through a nonlinear elasticity problem via a stochastic finite

lement method. The remainder of this paper is organized as follows. In Section 2, we delineate the development
f a GP-based constitutive model and how convexity can be enforced within this framework. In Section 3, we verify
he formulation based on an artificial dataset. In Section 4, we apply the proposed framework to a real experimental
ataset of planar soft tissue. In Section 5, we further present the stochastic finite element analysis framework and
he results obtained using the framework for analyzing valve leaflet closure under static follower pressure load.
inally, in Section 6, we discuss the advantages of this proposed framework and compare it to other approaches in

he literature, followed by some concluding remarks.

. Methods

.1. Nonlinear elasticity

Given a domain Ω ⊂ Rd , a (static) nonlinear elasticity problem involves finding the deformation mapping, i.e., a
ap from undeformed (also called reference) to deformed positions ϕ : X → x over the domain Ω , such that it
2
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satisfies the mechanical equilibrium [24]

∇X · P + B = 0, (1)

where P is the 1st Piola–Kirchhoff (PK) stress tensor, ∇X · P denotes the divergence of P with respect to the
ndeformed configuration X , and B is the applied body force per unit undeformed volume.

The equilibrium Eq. (1) is completed with boundary conditions on domain boundary ∂Ω . Assume xid denotes
he id -th component of x, where id

∈ {1, . . . , d}. To denote the boundary conditions in the id -th component,
he boundary ∂Ω is categorized into two types: Dirichlet boundary Ω id

D and Neumann boundary Ω id

N , such that
Ω id

D ∪ ∂Ω id

N = ∂Ω and ∂Ω id

D ∩ ∂Ω id

N = ∅, ∀id . Thus, the boundary conditions can be expressed as

xid = x̄id on X ∈ ∂Ω id

D and (2a)

Pid jd N jd = t̄id on X ∈ ∂Ω id

N , (2b)

here x̄id is the prescribed position on the Dirichlet boundary ∂Ω id

D , t̄id is the prescribed traction on the Neumann
oundary ∂Ω id

N with surface normal N in the undeformed configuration, and a summation is implied on repeated
ndices.

Following the standard definitions [24–26], the deformation gradient is F = ∇Xϕ = ∂x/∂ X and the right
auchy–Green deformation tensor is C = F⊤F, with three isotropic invariants

I1 := tr (C) , (3a)

I2 :=
1
2

[
tr2 (C) − tr

(
C2)] and (3b)

J :=

√
det (C). (3c)

Additional pseudo-invariants have been defined for anisotropic materials. A commonly used invariant for modeling
single-fiber anisotropy is [27]

I4 := M · CM, (4)

which is also equal to the square of the stretch ratio along the preferred fiber direction M.

2.2. Constitutive models, frame invariance, and poly-convexity

In order to close the governing system of equations, a relationship between stress and deformation (strain) needs
to be defined through a constitutive model. In hyperelasticity, the constitutive model is described using a strain
energy density function (SEDF) Ψ (F) from which stresses are derived through differentiation [24]. Specifically,
for a compressible material, the first PK stress is P = ∂Ψ/∂F and the Cauchy stress is σ = J−1PF⊤. For
an incompressible material, a constraint J = 1 is imposed by adding a Lagrange multiplier term. Thus, for an
ncompressible material, P = ∂Ψ/∂F − pF−⊤ and σ = PF⊤

− pI, where p is the hydrostatic pressure acting as
the Lagrange multiplier and I is an identity tensor.

A constitutive model must satisfy certain properties in order to ensure a unique solution of the elasticity problem.
Specifically, a model must be invariant with respect to rigid body rotation, which means that the SEDF is a function
of the right Cauchy–Green deformation tensor C. Moreover, a model must be invariant with respect to material
symmetry. This implies that, for isotropic materials, Ψ must be a function of the three isotropic invariants of C: I1,
I2, and J defined in Eq. (3). For anisotropic materials, the list needs to be expanded to include the pseudo-invariants
hat account for the material directions, such as I4 defined in Eq. (4). Herein, we focus on planar soft tissues, which
re nearly incompressible (i.e., J is constrained to be equal to 1) and have a single preferred fiber direction M. Thus,
e restrict our focus to solids where the SEDF Ψ is a function of I1 and I4. While some authors have demonstrated

he need to include other pseudo-invariants while modeling biological tissues [28], most of the existing hyperelastic
odels for planar biological tissues are only formulated based on I1 and I4 [1]. Consequently, the 1st PK stress can

e written as

P =
∂Ψ

− pF−⊤
= 2Ψ,1 F + 2Ψ,4 FM ⊗ M − pF−⊤, (5)
∂F
3
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where a short-hand notation (·),i := ∂(·)/∂ Ii is used for partial derivatives with respect to the invariants. Similar
otation is adopted for higher order derivatives, such as (·),i j := ∂2(·)/∂ Ii∂ I j , etc.

Another important property that the SEDF Ψ must satisfy is convexity [29–31], which ensures ellipticity of the
overning equations that in turn guarantees the existence and uniqueness of a solution to the problem of nonlinear
lasticity. In our case, this means that the second derivatives of Ψ with respect to I1 and I4 are always positive,
.e.,

Ψ,11 ≥ 0 and (6a)

Ψ,44 ≥ 0, (6b)

s well as the determinant of the Hessian is positive, i.e.,

Ψ,11Ψ,44 − Ψ 2
,14 ≥ 0. (6c)

emark 1. Several definitions of convexity have been proposed in literature, with full convexity (6) being the
trongest condition and a rank-one convexity being the fundamental requirement [32]. For constitutive models
ependent only on I1 and I4, some of the convexity definitions become equivalent. Thus, for simplicity, we seek
o enforce convexity weakly through Eqs. (6a) and (6b) only. That is, the positivity of determinant is not enforced.
owever, if desired, it is possible to enforce the full convexity within the proposed framework.

We note that for the incompressible case, I1 ≥ 3 always, while I4 > 0. Lastly, when the material is undeformed,
.e., F = I, I1 = 3 and I4 = 1. As a short-hand notation, a point in the I1 − I4 space is denoted as ϑ := (I1, I4), and
herefore, we write the SEDF as a function of ϑ , i.e., Ψ (ϑ). To denote a set/vector of points in the I1 − I4 space,

is used.

.3. Probability notation

A random scalar variable is denoted as uR and its realization is denoted as u ∈ R. To denote a higher-dimensional
andom variable, uR is used, and its realization is denoted as u ∈ Rn . The probability density function (PDF) of
andom variable uR is denoted as PuR (u); the PDF indicates that the probability of uR realizing a value in the
eighborhood of u is given by PuR (u)dU , where dU is the volume of the infinitesimal neighborhood around u in
n . Moreover, the probability given some information (or data) I is written as PuR (u | I). Two commonly used
easures of a random variable are its mean (or expected) valued vector of length n

E(uR) :=

∫
Rn

uPuR (u)dU, (7)

nd a positive semi-definite covariance matrix of dimension n × n

V(uR) :=

∫
Rn

[
u − E(uR)

]
⊗
[
u − E(uR)

]
PuR (u)dU. (8)

A Gaussian, also called normal, probability distribution is fully described in terms of the mean vector and
ovariance matrix. Specifically, for a normally distributed random variable uR with mean µ = E(uR) and
o-variance matrix Σ = V(uR), its probability density function is given by

PuR (u | µ,Σ) =
1

√
(2π )n det(Σ)

exp
[
−

1
2

[u − µ] · Σ−1[u − µ]
]

. (9)

he following short-hand is used to denote a normally distributed random variable:

uR
∼ N (µ,Σ) . (10)

slightly abusive short-hand to denote the PDF (9) evaluated at a general point u is also adopted, i.e.,

PuR (u | µ,Σ) = N (u | µ,Σ). (11)

normally distributed scalar variable with a zero mean and unit variance follows a PDF known as the standard
ormal distribution function, and it is denoted as

φ(u) :=
exp

[
−u2/2

]
√ . (12)
2π

4
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Table 1
A summary of the observations (or constraints) at locations in the ϑ-space and the associated likelihood functions
required to predict the posterior PDF of Ψ .

Type Locations (counter) Observations Likelihood,
Hyperparameters

Experimental
measurements

ϑd (id
= 1, . . . , N d) yd Eq. (19), e2

x , e2
y

Reference
point

ϑo (io
= 1) yo Eq. (20), e2

0

Convexity
constraints

ϑc (ic
= 1, . . . , N c) c Eq. (23), ν

Lastly, the cumulative distribution function (CDF) of the standard normal distribution function (12) is denoted as

Φ(u) :=

∫ u

−∞

φ(t) dt. (13)

e note that the above function (13) maps real numbers to a finite set, Φ : (−∞, ∞) → [0, 1]. To simplify the
otation of probability, it is common to skip the subscript when writing the PDF, i.e., P(u) is used instead of PuR (u).

Thus, from here on, we will follow this slightly abusive, but simpler, notation.

2.4. Bayes’ theorem

For two continuous random (scalar) variables uR and vR, let the joint prior probability density function be
denoted by P(u, v). Further, the prior marginal probability densities of uR and vR are denoted as P(u) and P(v),
respectively. The posterior probability density of uR given vR

= v (known as the conditional probability) is given
by the Bayes’ theorem:

Posterior  
P(u | v) =

Likelihood  
P(v | u)

Prior
P(u)

P(v)
Normalization term

,

here P(v | u) is the likelihood term. The denominator on the right-hand side is also the normalization term, i.e.,

P(v) =

∫
P(u, v) du =

∫
P(v | u)P(u) du.

In the present work, we model SEDF Ψ as a random process. In order to find the PDF of Ψ , we use Bayes’
heorem to incorporate three types of data/information, and write the posterior probability density of Ψ as:

P(Ψ | y, ϑ) =

Three likelihood terms  
P( yo

| ϑo,Ψ )P( yd
| ϑd,Ψ )P(c | ϑc,Ψ )P(Ψ )

P( yo, yd, c | ϑo, ϑd, ϑc)
, (14)

here yo are observations related to the original function Ψ at ϑo, yd are observations related to the derivatives of
at ϑd, c are constraints related to second derivatives of Ψ at ϑc, y = yo

∪ yd
∪ c, and ϑ = ϑo

∪ ϑd
∪ ϑc.

he three types of data/information are summarized in Table 1 and depicted in Fig. 1. Next we describe the three
erms one by one, starting with the observations related to the derivatives that come from experiments.

.5. Experimental observations

Constitutive models are empirical relationships that are based on experimental observations. For planar soft
issues, a common experiment is biaxial stretching, where a rectangular tissue sample is simultaneously stretched

n two orthogonal directions, with the fiber direction commonly aligned with one of the two directions (Fig. 2). If

5
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Fig. 1. Three types of inputs are used to train the GP model: stress–strain measurements (related to the derivatives of SEDF) at ϑd, reference
value of SEDF at ϑo, and convexity constraints (related to the second derivatives of SEDF) at ϑc.

Fig. 2. Biaxial stretching is a commonly used ex-vivo experiment for thin planar soft tissues: (a) a biaxial stretcher using BioRakes to
mount the tissue specimen; (b) a schematic of the tissue sample under biaxial stresses along two axes aligned with x− and y−axes and
fiducial markers to measure strain via digital image correlation; (c) one protocol is defined as a loading path in the stress or deformation
space; (d) the resulting stress–deformation curves along the two directions.

the Cartesian coordinates are aligned with the sample edges, the applied forces f̃x and f̃y in x- and y-directions
re converted into averaged components of 1st PK stresses P̃xx = f̃x/L y t and P̃yy = f̃y/L x t , where L x and L y are
he dimensions of the rectangular sample and t is its thickness in the undeformed configuration. Here, the notation
is used to denote quantities that are experimentally observed and therefore may contain observation noise.

In biaxial stretching experiments, the deformation is tracked via fiducial markers on the sample and the applied
eformation gradient F is derived using bilinear finite element shape functions [33]. Generally, the shear components
re difficult to control with the BioRake tissue mounting and therefore neglected. Thus, based on incompressibility,
e have

F = diag
[
λx , λy,

1
λxλy

]
, (15)

here λx and λy are the ratios of sample dimensions in the deformed and undeformed configurations (i.e., stretches)
long the x- and y-directions, respectively. Generally, a straight line in the deformation or stress space is followed
long which multiple points are recorded, which gives us the stress–stretch curves. One loading path (denoted using
he symbol r = Fxx/Fyy or r = Pxx/Pyy) is known as one protocol, and multiple protocols are combined to create

set of the experimental observations
{
λid

, λid
, P̃ id

, P̃ id
}Nd

, where N d is the total number of observations.
x y xx yy id=1

6
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t

In the experiments, it is a common practice to align the fiber direction with the x-axis, i.e., M = [1, 0, 0]. Thus,

he observed stretches can be transformed into deformation invariants as

I id

1 =

(
λid

x

)2
+

(
λid

y

)2
+

(
1

λid
x λid

y

)2

(16a)

I id

4 =

(
λid

x

)2
. (16b)

Furthermore, since the out-of-plane stress is zero, i.e. Pzz = 0, it is used to determine the hydrostatic pressure

p = 2Ψ,1/
(
λid

x λid
y

)2
[34,35]. Subsequently, the model stresses can be written in terms of the derivatives of Ψ as:

P id

xx = 2Ψ,1(I id

1 , I id

4 )

⎡⎣λid

x −
1(

λid
x

)3 (
λid

y

)2

⎤⎦+ 2Ψ,4(I id

1 , I id

4 )λi
x (17a)

P id

yy = 2Ψ,1(I id

1 , I id

4 )

⎡⎣λid

y −
1(

λid
x

)2 (
λid

y

)3

⎤⎦ . (17b)

These model stresses differ from the observed stresses by observation errors,

P̃ id

xx = P id

xx + ϵx (18a)

P̃ id

yy = P id

yy + ϵy, (18b)

where ϵx and ϵy are the experimental noises in the two measurements, and are assumed to be independent,
uniform (i.e., same for all id), and zero-mean Gaussian. That is, ϵx ∼ N (0, e2

x ) and ϵy ∼ N (0, e2
y), with e2

x
and e2

y being two hyperparameters to be determined. Thus, the observation points and observations are denoted

as ϑd
=

{
(I id

1 , I id

4 )
}Nd

id=1
and yd

= yd
x ∪ yd

y =

{
P̃ id

xx

}Nd

id=1
∪

{
P̃ id

yy

}Nd

id=1
, respectively, where superscript d denotes the

observations related to derivatives. In other words, for a given model Ψ (ϑ), the likelihood of the observed stresses
is given by:

P( yd
| ϑd,Ψ ) =

Nd∏
id=1

N (P̃ id

xx − P id

xx | 0, e2
x )N (P̃ id

yy − P id

yy | 0, e2
y), (19)

where P id
xx and P id

yy are derived from Ψ using Eq. (17).

2.6. Reference point

There are no direct observations on Ψ , thus making it arbitrary to an additive constant. However, customarily, Ψ
is set to be null at the reference configuration. That is, at ϑo

= {(3, 1)}, yo
= {0}, where the superscript o indicates

the observations related to the original function. Note that there is no error associated with this observation. In
other words, the likelihood function is a Dirac delta function, which, in practice, is implemented by using a normal
distribution with a fixed small variance e2

0 = 10−5:

P( yo
| ϑo,Ψ ) = N (Ψ (ϑo) | 0, e2

0). (20)

2.7. Convexity constraints

Using only the experimental observations, the resulting SEDF can exhibit negative second derivatives, thus
violating the convexity requirement (6). To resolve this issue, we propose a technique based on the monotonic
GPs developed by Riihimäki and Vehtari [36]. In their work, Riihimäki and Vehtari enforced monotonicity at a
finite number of locations by constraining the first derivatives to be positive through a likelihood function based on
the CDF (13).

Equivalently, herein we enforce the convexity constraints at a finite number of locations in the ϑ-space, denoted
as ϑ (ic), i c

= 1, . . . , N c. Thus, the constraints cic

d are denoted as:
ic ic
cd : Ψ,dd (ϑ ) ≥ 0, d = 1, 4. (21)
7
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Fig. 3. Likelihood function based on the CDF (13) used to enforce convexity constraints (21).

rom a probabilistic perspective, the above constraints can be viewed as follows. The likelihood of negative second
erivatives is zero, while the likelihood of positive second derivatives is non-zero but uniform (i.e., all positive
econd-derivatives are equally likely). To approximate such a likelihood function, following [36], a scaled version
f the CDF (13) is adopted, i.e.,

P
(

cic

d | ϑ ic
,Ψ
)

∝ Φ
(
νΨ,dd (ϑ ic

)
)

, i c
= 1, . . . , N c, d = 1, 4. (22)

lthough the above likelihood function tolerates small violations of the constraints for finite values of ν, it
pproaches the desired step function (Eq. (21)) when ν → ∞ (Fig. 3). The location of constraints, ϑ ic

, are chosen
o be equally spaced in a rectangular subspace (I1, I4) ∈ [3, I max

1 ] ⊗ [I min
4 , I max

4 ], where I max
1 , I min

4 and I max
4 are

hosen based on the target range of predictive deformation. Thus, the likelihood of all constraints combined c is
ritten as

P
(
c | ϑc,Ψ

)
=

1
Z

N c∏
ic=1

Φ
(
νΨ,11(ϑ ic

)
)
Φ
(
νΨ,44(ϑ ic

)
)

, (23)

here Z is a normalization factor.

.8. Gaussian processes

Now that the three likelihood terms in (14) have been defined, a prior probability distribution of SEDF, P(Ψ ), is
equired. In this study, we propose to model the SEDF prior as a Gaussian process (GP), which can be viewed as
generalization of a multivariate normal probability distribution to functions. More specifically, the strain energy

ensity is a GP dependent on ϑ and its prior distribution is denoted as [37]

ΨR(ϑ) ∼ GP
(
m(ϑ), k(ϑ, ϑ ′)

)
, (24)

here the prior mean m(ϑ) and covariance k(ϑ, ϑ ′) functions are defined as

m(ϑ) = E
(
ΨR(ϑ)

)
and (25a)

k(ϑ, ϑ ′) = Cov
(
ΨR(ϑ),ΨR(ϑ ′)

)
= E

((
ΨR(ϑ) − m(ϑ)

) (
ΨR(ϑ ′) − m(ϑ ′)

))
. (25b)

hile a zero-mean prior is common in the literature, a linear function (i.e., a linear hyperelastic model) is used
ere:

m(ϑ) = α(I1 − 3) + β(I4 − 1). (26)

n the other hand, various options have been proposed for the covariance function [37]; the most commonly used
quared exponential covariance function (also called the radial basis kernel) is adopted here

k(ϑ, ϑ ′) = σ 2
f exp

(
−

1
2 ∥ϑ − ϑ ′

∥
2
)

. (27)

2
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The above kernel choice gives a stationary and infinitely differentiable GP [37]. α, β, σ f and used in the definitions
above are the hyperparameters of the GP prior.

Since differentiation is a linear operator, the derivatives of a GP are also GPs as long as the kernel is
differentiable [37]. More specifically, the mean of the derivative is equal to the derivative of the mean. Therefore,
the mean of the combined vector of ΨR and its derivatives is a vector function given by

M(ϑ) := E

⎡⎢⎢⎢⎢⎣
ΨR

Ψ,1
R

Ψ,4
R

Ψ,11
R

Ψ,44
R

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
α(I1 − 3) + β(I4 − 1)

α

β

0
0

⎤⎥⎥⎥⎥⎦ , (28)

nd its full covariance matrix can be written as:

K(ϑ, ϑ ′) := Cov

⎡⎢⎢⎢⎢⎢⎣
ΨR,Ψ ′R ΨR,Ψ ′

,1
R ΨR,Ψ ′

,4
R ΨR,Ψ ′

,11
R ΨR,Ψ ′

,44
R

Ψ,1
R,Ψ ′R Ψ,1

R,Ψ ′

,1
R Ψ,1

R,Ψ ′

,4
R Ψ,1

R,Ψ ′

,11
R Ψ,1

R,Ψ ′

,44
R

Ψ,4
R,Ψ ′R Ψ,4

R,Ψ ′

,1
R Ψ,4

R,Ψ ′

,4
R Ψ,4

R,Ψ ′

,11
R Ψ,4

R,Ψ ′

,44
R

Ψ,11
R,Ψ ′R Ψ,11

R,Ψ ′

,1
R Ψ,11

R,Ψ ′

,4
R Ψ,11

R,Ψ ′

,11
R Ψ,11

R,Ψ ′

,44
R

Ψ,44
R,Ψ ′R Ψ,44

R,Ψ ′

,1
R Ψ,44

R,Ψ ′

,4
R Ψ,44

R,Ψ ′

,44
R Ψ,44

R,Ψ ′

,44
R

⎤⎥⎥⎥⎥⎥⎦ (29)

ere, Ψ ′ is the SEDF evaluated at ϑ ′. Similar to the mean, the covariance between the function and its derivatives
an be derived by differentiating the covariance function (Eq. (25b)). Using the symmetry property of the squared
xponential kernel function (Eq. (27)) about its two arguments, it is easy to see that

K(ϑ, ϑ ′) =

⎡⎢⎢⎢⎢⎣
k k,1 k,4 k,11 k,44

k,11 k,14 k,111 k,144
k,44 k,411 k,444

k,1111 k,1144
Sym. k,4444

⎤⎥⎥⎥⎥⎦ , (30)

here the short-hand notation for partial derivatives has been extended to the kernel function and all terms are
valuated at (ϑ, ϑ ′). The combined state of Ψ and its derivatives is denoted as F , and described as the following
oint GP:

FR
:=
[
ΨR,Ψ,1

R,Ψ,4
R,Ψ,11

R,Ψ,44
R]

∼ GP(M(ϑ),K(ϑ, ϑ ′)). (31)

ased on this prior, the distribution of ΨR and its derivatives at all observation points ϑ , is denoted as f R:

f R
∼ N (M(ϑ),K(ϑ, ϑ)) . (32)

he distribution of ΨR and its derivatives at desired prediction point (or a set of points, in general) ϑ∗ is denoted
s f ∗

R, and follows the following joint prior distribution with f R:[
f R

f ∗

R

]
∼ N

([
M(ϑ)
M(ϑ∗)

]
,

[
K(ϑ, ϑ) K(ϑ, ϑ∗)
K(ϑ∗, ϑ) K(ϑ∗, ϑ∗)

])
. (33)

ince the set ϑ has (N c
+ N d

+ 1) points, the length of f R, which includes the SEDF, its two first derivatives and
wo second derivatives, is 5 × (N c

+ N d
+ 1). However, not all the terms in f R are used in the three likelihood

erms of Eq. (14). For example, only the first derivatives are needed at ϑd. Therefore, we extract the relevant parts
f the mean vector and covariant matrix and denote them by ⟨·⟩

o for original function at ϑo only, ⟨·⟩
d for derivatives

t ϑd only, ⟨·⟩
c for second derivatives at ϑc only, and ⟨·⟩ for all the above three. Thus,

⟨ f R
⟩ ∼ N (⟨M(ϑ)⟩, ⟨K(ϑ, ϑ)⟩) and (34)[

⟨ f R
⟩

f ∗

R

]
∼ N

([
⟨M(ϑ)⟩
M(ϑ∗)

]
,

[
⟨K(ϑ, ϑ)⟩ ⟨K(ϑ, ϑ∗)⟩
⟨K(ϑ∗, ϑ)⟩ K(ϑ∗, ϑ∗)

])
. (35)

rom Eq. (35), we get an expression for P( f ∗ | ⟨ f ⟩)

f R
| ⟨ f ⟩ ∼ N

(
f̄ , Cov( f )

)
, (36a)
∗ ∗ ∗

9
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where

f̄ ∗ := ⟨K(ϑ∗, ϑ)⟩ [⟨K(ϑ, ϑ)⟩]−1
⟨ f ⟩ and

Cov( f ∗) := K(ϑ∗, ϑ∗) − ⟨K(ϑ∗, ϑ)⟩ [K(ϑ, ϑ)]−1
⟨K(ϑ, ϑ∗)⟩. (36b)

sing Eq. (34) we write the Bayes’ theorem (14) more explicitly as

P(⟨ f ⟩ | y, ϑ) =
P( yo

| ϑo, ⟨ f ⟩
o)P( yd

| ϑd, ⟨ f ⟩
d)P(c | ϑc, ⟨ f ⟩

c)P(⟨ f ⟩)
P( yo, yd, c | ϑo, ϑd, ϑc)

, (37)

nd, finally, we arrive at the probability distribution of predictions based on all the observations

P( f ∗ | y, ϑ, ϑ∗) =

∫
⟨ f ⟩

P( f ∗ | ⟨ f ⟩)  
Eq. (36)

P(⟨ f ⟩ | y, ϑ)  
Eq. (37)

d⟨ f ⟩. (38)

Out of the three likelihood terms, two are Gaussian, while the likelihood for constraints is non-Gaussian. In the
absence of constraints, a closed-form solution is available for Eq. (37) (called the exact GP, see Appendix A).
However, the presence of non-Gaussian constraints requires an alternative approach that we describe next.

2.9. Approximate GP

When using non-Gaussian likelihood, such as the likelihood in Eq. (22), a closed-form solution for the predicted
mean and covariance is no longer possible. Markov Chain Monte Carlo (MCMC) is a commonly used approach
to sample the posterior probability distribution in such cases. However, the latent variables of a Gaussian process
are highly correlated, making convergence of MCMC extremely challenging to achieve using standard MCMC
methods (see e.g. [38]). An alternative and by now popular approach based on variational inference is adopted,
which poses the problem in terms of an optimization problem to find an approximation to the posterior probability
distribution [39,40].

To simplify the notation, we first rewrite Eq. (37) using short-hand notation

P(⟨ f ⟩ | y, ϑ) =
LP(⟨ f ⟩)

D
, (39)

here L := P( yo
| ϑo, ⟨ f ⟩

o)P( yd
| ϑd, ⟨ f ⟩

d)P(c | ϑc, ⟨ f ⟩
c) is the combination of all likelihood terms and

D := P( yo, yd, c | ϑo, ϑd, ϑc) is denominator, also called the evidence. The approach of variational inference aims
o find an approximation for the posterior, Q(⟨ f ⟩) ≈ P(⟨ f ⟩ | y, ϑ). The difference between the two probability

distributions is quantified in terms of the Kullback–Leibler (KL) Divergence, denoted as

KL [Q(⟨ f ⟩) ∥ P(⟨ f ⟩ | y, ϑ)] :=

∫
⟨ f ⟩

Q(⟨ f ⟩) log
(

Q(⟨ f ⟩)
P(⟨ f ⟩ | y, ϑ)

)
d⟨ f ⟩. (40)

ur aim is to find Q that minimizes its KL divergence from the true posterior. When expanded using Eq. (39), we
et

KL [Q(⟨ f ⟩) ∥ P(⟨ f ⟩ | y, ϑ)] = log(D) − L. (41)

here

L ≜
∫

⟨ f ⟩

Q(⟨ f ⟩) log
(

LP(⟨ f ⟩)
Q(⟨ f ⟩)

)
d⟨ f ⟩ (42)

s defined as the loss function. Since D does not depend on ⟨ f ⟩ (i.e., a constant) and the KL divergence is non-
egative, Eq. (41) implies that log(D) ≥ L. Thus, the loss function (42) is called the evidence lower bound (ELBO),
nd if one maximizes the ELBO, the KL divergence is minimized.

Next, the approximate distribution Q needs to be parameterized such that the optimization of the ELBO is
omputationally tractable. To achieve that, the statistical model is augmented with a set of M inducing points
f I, ϑI), where the vector ϑI contains the locations of the inducing points in the original input space and f I is

governed by the GP prior, i.e.,

P( f | ϑ ) = N
(

f | M(ϑ ),K(ϑ , ϑ )
)
. (43)
I I I I I I

10
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The approximate distribution is assumed to have a form

Q := P(⟨ f ⟩ | y, f I, ϑI)Q( f I | ϑI). (44)

he specific augmentation decouples the variables and leads to a general expression for the ELBO in the sparse
ariational GP case

L = EQ
[
log L

]
− KL[Q( f I | ϑI) ∥ P( f I | ϑI)]. (45)

he inference problem is now reduced to determine the set of parameters determining Q through numerical
ptimization.

To support the setting where the likelihood L is not Gaussian, we follow Hensman et al. [40] and parameterize
( f I | ϑI) as a Gaussian distribution with free mean and covariance parameters (m, S), in which case the

expectation over conditionally independent data points can be estimated by Monte Carlo sampling. Therefore, the
final loss function, to be maximized, is given by

L =

M∑
i=1

Eq( fi ;m,S)
[
log Li

]
− KL[Q( f I | ϑI; m, S) ∥ P( f I | ϑI)],

q( fi ; m, S) ∼ N
(
βi m,K(ϑi , ϑi ) − βi (K(ϑI, ϑI) − S)βT

i

)
,

βi = K(ϑi , ϑI)K(ϑI, ϑI)−1.

This loss function can be optimized using standard mini-batch stochastic gradient methods similar to [40] as long
as we can evaluate the three likelihood functions present in Eq. (37). The set of optimized parameters, m, S, ϑI
and kernel hyper-parameters, ensures that the predictive distribution P( f ∗ | y, ϑ, ϑ∗) can be computed.

2.10. Optimization algorithm and parameters

Based on the GP prior, the posterior distribution depends on the following hyperparameters: α and β define the
mean function, σ f and define the covariance function, e2

x and e2
y are the errors in the derivatives-based likelihood,

and e2
0 is the error in the reference point likelihood. The constraint likelihood depends on the hyperparameter ν.

In addition, GP also depends on the location of the inducing points. Two of the hyperparameters, e2
0 = 10−5 and

ν = 104 are kept fixed, while the rest of the hyperparameters need to be determined. Regression of the GP (also
alled training) is an iterative process of finding values of hyperparameters that optimize the loss function.

The optimization is performed as follows. Negative of the loss function is minimized iteratively via a stochastic
radient method [40], where the step size is scaled by a parameter called the “learning rate”. First, 1000 iterations
re performed without the constraints and with a learning rate of 0.05. Then, the convexity constraint log-likelihood
erms multiplied by a scaling parameter γ , which is gradually increased in steps. It is initially set at a value of 10−11,

increasing to a final value of 10−6. At each value of γ , 500 iterations are performed with a learning rate of 0.01
(Fig. 4).

3. Verification test

In this section, the proposed framework is verified by training a GP based on artificial biaxial stretching data for
a known hyperelastic model (referred to as the ground truth) and comparing the results. Next, the methodology for
data creation is described, followed by the details of GP training procedure and the results.

3.1. Artificial data creation

A widely used model for soft tissues, the Gasser–Ogden–Holzapfel (GOH) model [41]

Ψ true
=

µ

2
(I1 − 3) +

k1

2k2

[
exp(k2(κ I1 + (1 − 3κ)I4 − 1)2) − 1

]
(46)

ith parameters µ = 5 kPa, k1 = 4 kPa, k2 = 10, κ = 0.1 and M = [1, 0, 0] is used to create artificial biaxial

tretch observations. ℓ straight lines in the deformation space (Fig. 5a), equi-spaced between 0 and π/2, are used

11
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Fig. 4. Iteration plots for two GPs trained using the proposed framework: (a) GOH with ℓ = 8 and convexity constraints and (b) real
experimental data for aortic valve leaflet tissue.

Fig. 5. Training and prediction protocols used for verification of the proposed GP model: a) the training protocols are straight lines in the
deformation gradient space, b) these protocols become nonlinear curves in the invariant space, and c) two testing protocols, one of them
also including shear deformation.

as inputs. These represent biaxial stretch protocols. In addition to the ℓ protocols, two pure shear protocols

F = diag [λ, 1/λ, 1] and
F = diag [1/λ, λ, 1] ,

ith λ > 1, are also used. It is typical for soft tissues to experience up to 20% stretches under physiological
onditions. Thus, for all of the protocols, a maximum tensile stretch of 1.2 is used, and the corresponding I1 and

I4 ranges are used for training and testing. To emulate the experimental error, a normally-distributed random noise
with mean 0 and variance 0.02 is added to the resulting stresses P̃xx and P̃yy . Thus, data from a total of (ℓ + 2)
protocols is used to fit a constitutive model. The effect of the number of protocols on the predictive capability of
the proposed framework is studied by using ℓ = 3 and ℓ = 8, as well as by removing the pure shear protocols.
The effect of noise is studied by increasing the variance of added error to 0.2. The locations of the experimental
observations, the straight lines in the deformation space (Fig. 5a), map to nonlinear paths in the ϑ space (Fig. 5b).
The extent of these observations is approximately I1 ∈ [3, 3.36] and I4 ∈ [0.7, 1.44]. To enforce convexity, this
region is padded with a 0.1 on each side and uniformly spaced points are used. Specifically, 20 × 20 uniformly
spaced points in I1 ∈ [2.9, 3.46] and I4 ∈ [0.6, 1.54] are used to enforce convexity.

In order to verify the proposed GP model ΨR against the ground truth Ψ true, the mean of the posterior SEDF Ψ
and its first derivatives Ψ,1 and Ψ,4 are plotted at 50 × 50 points in the ϑ space. To quantify the difference between
the ground truth and the fitted GP, the following error is defined:

ErrorΨ (ϑ) =
|Ψ (ϑ) − Ψ true(ϑ)|

true × 100. (47)

maxϑ∈ϑ∗

(Ψ (ϑ))
12
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Fig. 6. Verification of the proposed GP-based model was performed against a ground truth of GOH model. The resulting mean SEDF and
its derivatives for different numbers of protocols (ℓ), both with and without convexity constraints are plotted. Also the corresponding errors
with respect to the ground truth are plotted.

Similar error definitions are used for the first derivatives. In addition to the mean, the GP framework also provides
us with covariance of Ψ and its derivatives, from which the standard deviation at each point in ϑ-space is calculated
and plotted. Lastly, to check the convexity, the mean second derivatives are plotted at these points.

In order to test the predictive capability of the proposed GP model outside the training range (i.e., extrapolation),
two protocols different from the training protocols are used (Fig. 5c). First prediction protocol follows the same path
as one of the training protocols (i.e., I4 fixed), but extends to a larger stretch of 1.31. The second prediction protocol
follows a straight path in the ϑ-space from (3, 1) to (3.3, 0.8) which requires a shear strain (i.e., an off-diagonal
term in F). As a result, the second prediction protocol also generates shear stress, a situation which is not used for
training the GP. Lastly, one of the key advantages of GP models is that they provide a distribution rather than point
estimates. To use the distribution information, the mean and standard deviation of predicted stresses using the GP
model are computed and compared with the ground truth GOH model (46).

3.2. Results

The results using ℓ = 3 and ℓ = 8, with and without convexity constraints are shown in Fig. 6. The error in Ψ
for all cases is reasonably small (< 12%), especially near the training points (denoted as dots). The accuracy of
the derivatives of Ψ is more important, since the derivatives are directly related to the stresses. Again, the errors
n derivatives near the training points are small. However, the error farther from the training points reduces when
sing convexity. Moreover, when using higher ℓ, the errors also decrease slightly. Overall, the difference between
he accuracy using ℓ = 3 and ℓ = 8 is not significant. Thus, the proposed GP framework works well with a small
umber of protocols (ℓ ≳ 3). In practice, it is common to use between 3 and 10 protocols, thus a limited amount of
xperimental data is needed to train the proposed GP model. To fully understand the effect of training points and

oise on the results, two additional settings are compared in Appendix B.

13
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Fig. 7. Standard deviation in SEDF and its derivatives for different numbers of protocols (ℓ), both with and without convexity constraints
are plotted.

Fig. 8. Mean second derivatives of the resulting SEDF for different numbers of protocols (ℓ), both with and without convexity constraints
are plotted.

To quantify the resulting uncertainty in SEDF, the standard deviations of the fitted model are plotted in Fig. 7.
Interestingly, the standard deviation is reduced substantially when using convexity and when using a higher number
of protocols. Thus, the confidence in the GP results is increased when we enforce convexity and as we increase the
amount of experimental information.

Lastly, as mentioned previously, convexity is an important requirement for Ψ to satisfy. To verify convexity,
the second derivatives are plotted in Fig. 8. Clearly, when the convexity constraints are not enforced, the second
derivatives attain large negative values, especially away from the training points. However, including the convexity
constraints resolves the issue, and the resulting second derivatives of Ψ are positive in the chosen range of I1 and
I4.

The results of the prediction protocol are shown in Fig. 9. The mean response of the GP model (lines)
matches very well with the ground truth (points). The only significant deviation is in the ℓ = 3 case without
enforcing convexity. This is a remarkable result considering that in these prediction protocols we are also testing
the extrapolation capability of the GP. The shaded areas denote two standard deviations of the GP model, which
are get smaller as we increase the number of training protocols and include convexity. Thus, the proposed GP

framework also provides high confidence in the results.
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Fig. 9. Results for the two testing protocols with four settings, where the points denote the ground truth, lines are GP predictions, and the
haded areas indicate two standard deviations of the GP. Test protocol 1 represents a biaxial stretch (i.e., no shear), while the test protocol

includes a shear deformation and stress.

. Application to an experimental biaxial testing dataset

.1. Experimental methods

The experimental data used in this study is the same as that reported in a previous study [42], and its experimental
rocedure is summarized next. A porcine heart was obtained from a USDA-approved abattoir (Chickasha Meat
ompany, Chickasha, OK). The heart was dissected, and the aortic valve (AV) tissue was extracted from the aorta.
he excised tissue was then briefly stored at −20◦C prior to mechanics testing within 6–12 h. Prior to biaxial

testing, the excised AV specimen was thawed in an in-house phosphate-buffered saline (PBS) solution at room
temperature. Once thawed, a square region of the tissue was dissected and thickness measurements were made
using a non-contact laser displacement sensor (Keyence IL-030, Itaska, IL) at three different locations to determine
the average tissue thickness.

For biaxial testing, the tissue specimen was mounted to a commercial biaxial testing system (BioTester, CellScale,
Canada, 1.5 N load cells) via BioRake tines, resulting in an effective testing region of 6.5 × 6.5 mm. During

ounting, the tissue’s circumferential and radial directions were aligned with the x- and y-directions of the biaxial
esting system, respectively. Because the tissue’s fiber orientation was aligned with the biaxial testing direction in
he experimental setting, the off-diagonal terms in the deformation tensor F were small, and therefore any shear
eformation was neglected.

For testing, four glass beads (with a diameter of 300–500 µm) were placed on the center region of the specimen
o serve as fiducial markers for quantifying the in-plane strains. The specimen was submerged in a 32 ◦C PBS bath
uring the testing. The force readings from the load cells and CCD camera images capturing the bead positions
ere recorded at 15 Hz throughout the test. A preconditioning protocol, consisting of six loading/unloading cycles

t a target first PK peak stress of P = 240 kPa, was first applied to restore the tissue to its in-vivo functional
onfiguration. The preconditioning protocols were followed by seven testing protocols.

For using the above data in our GP framework, the measured deformations are converted into invariants I1 and
I4 (Eq. (16)), and the measured stresses from the seven protocols are used to train the GP. To enforce convexity,
imilar to the verification case in the last section, the range of I1 and I4 is padded with 0.1 in all directions, and
onvexity is enforced on uniformly spaced 20 × 20 points. In this case there is no ground truth to compare with.
herefore, just the fit to the input experimental data is quantified by the L2 norm of the difference between the
odeled mean and experimental stresses, i.e.,

L2 =

√ N d∑
d

{[
P̃ id

xx − P id
xx

]2
+
[
P̃ id

yy − P id
yy

]2
}
. (48)
i =1
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Table 2
List of seven chosen invariant-based hyperelastic models from literature.

Model Strain energy density function

GOH Ψ =
µ

2
(I1 − 3) +

k1
2k2

[
exp(k2(κ I1 + (1 − 3κ)I4 − 1)2) − 1

]
HGO Ψ =

µ
2 (I1 − 3) +

k1
2k2

[
exp(k2(I4 − 1)2) − 1

]
HGO2 Ψ =

k1
k2

[
exp(k2(I1 − 3)) − 1

]
+

k3
2k4

[
exp(k4(I4 − 1)2) − 1

]
Holzapfel Ψ =

µ

2
(I1 − 3) +

k1
2k2

[
exp(k2(κ(I1 − 3)2

+ (1 − κ)(I4 − 1)2)) − 1
]

HY Ψ =
k1
k2

[
exp(k2(I1 − 3)) − 1

]
+

k3
k4

[
exp(k4(

√
I4 − 1)2) − 1

]
LS Ψ =

µ

2
(I1 − 3) +

k1
2

[
κ exp(k2(I1 − 3)2) + (1 − κ) exp(k3(I4 − 1)2) − 1

]
MN Ψ =

µ

2
(I1 − 3) + k1

[
exp(k2(I1 − 3)2

+ k3(
√

I4 − 1)4) − 1
]

Also, the goodness of fit is quantified in terms of the coefficient of determination

R2
= 1 −

∑Nd

id=1

{[
P̃ id

xx − P id
xx

]2
+

[
P̃ id

yy − P id
yy

]2
}

∑N d

id=1

{[
P̃ id

xx − P̄
]2

+
[
P̃ id

yy − P̄
]2
} , (49)

where P̄ =
1

2Nd

∑N d

id=1

[
P̃ id

xx + P̃ id
yy

]
is the mean observed stress. To compare against some of the existing models

in the literature, the following seven invariant-based models were chosen: (i) the Lee–Sacks (LS) model for the
mitral valve leaflet tissue [43]; (ii) the May–Newman (MN) model with another form proposed for the mitral valve
tissue [44]; (iii and iv) two variants of a model proposed by Holzapfel, Gasser, and Ogden for arterial tissue with
an additive split of isotropic and anisotropic components [27] (HGO with linear isotropic term and HGO2 with an
exponential isotropic term); (v) Holzapfel model proposed for coronary arteries [45]; (vi) another model proposed
by Gasser, Ogden and Holzapfel (GOH) for coronary arteries [46], and (vii) Humphrey–Yin (HY) model developed
for myocardium [47]. These models and their corresponding SEDF are summarized in Table 2.

4.2. Results

The trained GP fits extremely well to the experimental data (Fig. 10a). Compared with the existing invariant-based
models in the literature, the GP model has the least fitting L2 norm (Fig. 10b) and highest (and almost perfect 1)
oefficient of determination (Fig. 10c).

. Stochastic finite element analysis

One of the advantages of a Gaussian process over the traditional models, and even other data-driven models, is
hat it is naturally Bayesian and provides a distribution of the SEDF ΨR. Thus, in addition to the mean values, one
lso obtains the variation in the SEDF and resulting stress–strain behavior. In this section, a framework is proposed
o use this distribution to carry out a stochastic finite element analysis (SFEA) in a non-intrusive manner. That is,
he aim is to use existing finite element solvers with the new GP-based constitutive model to find the distribution
f the finite element analysis (FEA) results, such as displacements and stresses.

In nonlinear FEA, even if the distributions of inputs are Gaussian, the distributions of the outputs are, in general,
ot necessarily Gaussian. Thus, finding the exact distribution of each FEA result becomes an extremely high-
imensional problem, where each scalar variable in the original FEA (such as displacement along one of the axes at
ne node at one load/time) becomes a function in the probability space. In its full generality, the problem of finding
hese distributions is prohibitively expensive. Thus, to simplify the SFEA, we focus on quantifying the expected

alue (i.e., the mean) and standard deviation of the FEA results.
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w
p
a

Fig. 10. Results of GP fitted to experimental dataset of AV leaflet tissue: (a) comparison of the trained GP (lines) versus the original data
(points); (b) the L2 norm of the GP fit compared with that of seven models from the literature; (c) the R2 coefficient of the GP fit compared
with that of seven models from the literature.

5.1. Proposed methodology

A practical challenges for SFEA is how to use a GP as a constitutive model in a traditional finite element solver.
The most straightforward approach to quantify the effect of uncertainty in ΨR on FEA results is by generating
samples of the function Ψ (I1, I4) and performing the FEA using each of the samples. This approach is also called
propagating the samples through FEA or a Monte Carlo simulation. However, there is no functional form of the
posterior distribution of GP. In general, a GP can only be sampled at a finite number of locations in the I1–I4 space.
One could directly use the mean of a GP for an FEA since every time a GP mean is evaluated at the same point, it
will be the same value (and same for the derivatives of the GP). However, for a random (not mean) sample from the
GP distribution, because of its randomness, every time it is evaluated, the value (and derivatives) will be different,
which cannot be used in FEA. To resolve this issue, we propose to use tensor product splines as intermediary
functions, as detailed below.

Once the posterior of the GP P( f ∗ | y, ϑ) has been obtained, it is sampled at ϑ∗ — a fine grid of N points in
the ϑ-space. We denote the vector of SEDF Ψ evaluated at ϑ∗ as WR, and thus obtain its distribution:

WR
∼ N

(
W̄ ,Σ

)
, (50)

here W̄ is the mean SEDF at N points (i.e., a vector of length N ) and Σ is the covariance of SEDF at those N
oints (i.e., a matrix of size N × N ). Next, we perform an eigenvalue decomposition of the covariance matrix Σ

nd sort its eigenvalues in the decreasing order. Thus, the covariance matrix can be written as:

Σ =

N∑
λi Ei ⊗ Ei , (51)
i=1
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Fig. 11. The eigenvalues of the covariance matrix of two GPs trained on (a) GOH model (with ℓ = 8 and convexity) and (b) real experimental
ata of AV leaflet show a spectrum much smaller than the size of the matrix.

here Ei is the i th eigenvector of Σ with λi the corresponding eigenvalue. Because of the high correlation present
n a GP, the spectrum (i.e., the number of non-zero eigenvalues) of Σ is expected to be much smaller than N
Fig. 11). Therefore, we approximate the eigenvalue decomposition as

Σ ≈

m≪N∑
i=1

λi Ei ⊗ Ei , (52)

here the approximation keeps only the m largest eigenvalues and it is desired to have m ≪ N . The decision on
ow many eigenvalues to keep is based on how much variation we would like to capture. A common way is to
eep m dominant modes such that

1 −

∑m
i=1 λ2

i∑N
j=1 λ2

j

< TOL, (53)

here TOL is a tolerance defining the error in the approximation. For most practical purposes, a tolerance of 0.05
s reasonable so that 95% of the variation is captured. Based on this approximation, the distribution of sampled
EDF can now be written as

WR
≈ W̄ +

m∑
i=1

ςi
REi , (54)

here ςi
R

∼ N (0, λi ) is the normally distributed coefficients along i th eigenvector.
Once this approximation has been made, a two-dimensional (i.e., the dimension of the ϑ-space) tensor product

pline is interpolated through the mean W̄ and each eigenvector Ei . The interpolated splines are represented as
¯(ϑ) and Si (ϑ), respectively. Interpolation property implies that S̄(ϑ j ) = W̄ j and Si (ϑ j ) = Ei j ∀ ϑ j

∈ ϑ∗ (see
ppendix C for more details on splines). Thus, a spline-based functional approximation of the SEDF ΨR can now
e written as

ΨR(ϑ) ≈ ΨR
S (ϑ) = S̄(ϑ) +

m∑
i=1

ςi
RSi (ϑ). (55)

he advantage of this approach is that it provides a straightforward reduced dimensional representation of the
tochastic ΨR in terms of m independent normally distributed scalar variables ςi

R, with a realization ς ∈ Rm .
Next, this lower-dimensional representation allows us to use any of the existing stochastic methods to propagate

he distributions of ςi through a finite element model. Here, we employ a sigma-point technique, which constructs
m + 1 points in the ς -space [48]. Each of these points are used in the finite element simulation, and the results
re weighted to obtain the mean and covariance of finite element results. That is, if the finite element result of each
imulation is Rk , for k = 1, . . . , 2m + 1, its variation can be represented as a normal distribution:

R ¯
R ∼ N (R, Cov(R)), (56)
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Fig. 12. Simulation setup of a bioprosthetic valve leaflet closure under static pressure head with the contact with other leaflets being modeled
as a contact with two rigid planes symmetrically arranged. The fibers are oriented approximately circumferentially and are depicted with
black lines.

where mean is R̄ =
∑

k wk Rk and covariance is Cov(R) =
∑

k vk(Rk − R̄) ⊗ (Rk − R̄). There are a variety of
ethods for determining the ς point locations and the corresponding weights wk and vk . Due to the independence

f ςi , the following simple choice is adopted here [49]:

{νk} = {0} ∪

{
±
√

mλ j

}m

j=1
(57a)

wk =

{
0 if k = 1

1
2m otherwise

(57b)

vk =

{
2 if k = 1

1
2m otherwise.

(57c)

5.2. Test case

A semilunar shaped single tissue representing a bioprosthetic valve leaflet with an area of 2.3 cm2 is simulated
sing Reissner–Mindlin thin shell elements in FEBio [50]. The sample geometry is meshed using 2789 quadrilateral
lements with a constant thickness of 0.38 mm [51]. Displacement is interpolated using bilinear shape functions and
tresses are integrated through the thickness using three-point Gauss quadrature rule to obtain bending moments.
he fibers are aligned approximately in the circumferential direction. Contact of the sample with other leaflets is
odeled using two idealized rigid planes placed at ±60◦ with respect to the sample’s plane of symmetry (Fig. 12).
A uniform normal follower pressure load is applied on the tissue with a maximum value of P0 = 80 Pa. The

ontact is solved using augmented Lagrange method as the pressure is linearly increased. A spline-based constitutive
odel is implemented as a plugin in FEBio, which allows us to use the interpolated spline ΨS as an input to the

imulations. The incompressibility condition is relaxed by adding a volumetric term to the SEDF and using isochoric
ersion of invariants. That is, I1 is replaced with Ĩ1 = J−2/3 I1 and I4 is replaced with Ĩ4 = J−1/3 I4. At each load
tep, static equilibrium equations (Eq. (1)) are solved using the BFGS solver to obtain the deformed shape of the
issue sample [52].

Two SFEA simulations are performed, and the mean and standard deviation of the displacement and von-Mises
tresses are calculated for each case at four pressure values: P = 0, P = P0/3, P = 2P0/3, and P = P0. The
rst simulation is performed using the GP trained on the artificial dataset from the GOH model (from Section 3,
= 8 with convexity). The ground truth Ψ true allows us to compare our SFEA results with the standard FEA using

he GOH model. The second simulation is performed using the GP trained on the real experimental dataset of AV

eaflet tissue (from Section 4).
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Fig. 13. Stochastic FE simulation result using the proposed GP-based framework (bottom two rows in a and b) compared with the standard
FE simulation using GOH model (top rows in a and b) shows good agreement with the mean. The standard deviation values are small
almost everywhere, except at the commissures, especially for stresses.

5.3. Results

The resulting displacement magnitudes and von-Mises stresses are shown in Fig. 13. The mean values from GP
match well with the ground truth GOH model. Also the standard deviations are small almost everywhere, except at
the commissures. The commissures are known to have high stress concentrations, which is also what we observe in
our results. In addition to high stresses, the results also show high standard deviation in those areas, indicating that,
based on the input data, our confidence on those stress concentration values is low. Importantly, the spline-based
model does not incur any significant additional computational cost. The solution time of the GP-based approach is
found to be only 10% higher, which is due to the need of slightly smaller load steps for convergence.

The resulting displacement and von-Mises stress – both mean and standard deviation (SD) – using GP trained on
the experimental data for AV leaflet tissue are shown in Fig. 14. The AV tissue is highly nonlinear, with very small
stiffness at the reference configuration (called the toe region) that increases rapidly at high stretches. This results
in more interesting displacement and stress patterns. The displacement magnitude is higher, and the variation in
displacement is largely in the belly region of the leaflet. The variation in stresses is also much higher compared to the
GOH model, which is expected when using real experimental data. Von-mises stress is highest at the commissures,

where we also find large variations. Moreover, the variation in stresses is also high at the fixed edge.
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Fig. 14. Stochastic FE simulation result using the proposed GP-based framework using the real experimental dataset for AV leaflet. Results
show higher standard deviations than the GOH-based model, thus capturing the effect of experimental uncertainty.

6. Discussion

Even after decades of important developments, constitutive modeling of materials remains an active area
f research. Traditionally, these models have been developed based on continuum mechanics/thermodynamic
equirements and understanding of a material’s microstructure. With the advances in data science and technology,
here is a drive to use experimental data to inform constitutive model development. One approach is to choose

odels based on the data; since there is a large number of analytical constitutive models available in literature, it
ecomes a challenge to select an appropriate model. We have addressed such a problem of model selection using
Bayesian framework [53]. Another approach to discover (new) analytical forms of the constitutive models from

ata, so that the traditional computational setup (such as finite element analysis) can be preserved [54–58].
An alternative and attractive approach is to forgo analytical constitutive models in favor of data-based ones. There

ave been several recent efforts in this direction, both using purely data-based approach (which can also be thought
f as a nearest-neighbor model) [2–11] and using neural network models [12–16]. The aim of the present work is
o propose a constitutive model based on Gaussian processes, which are naturally Bayesian. Given the strengths of
he Bayesian framework, interested readers may benefit from the tutorials on their application in mechanics [59].

.1. Advantages and features of the proposed GP model

A key feature of the Bayesian approach is in addition to the mean response, it also provides a distribution that can
e used to quantify the uncertainty and establish confidence in the results. The proposed GP framework makes three

ain improvements upon the work by Frankel et al. [23]: (1) enforcement of convexity constraints, (2) extension to
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anisotropic material, and (3) application to real experimental data of soft biological tissues. The new features have
been implemented in a github fork of GPytorch and are openly available.

The primary role of convexity constraint is to ensure that the resulting model can be readily used in solving
oundary value problems. This is because, without convexity constraints, the second derivatives could take large
egative values, especially in the areas of extrapolation (Fig. 8), which will result in a non-elliptic problem and,
ossibly, a non-unique solution. Any effect of convexity constraint on the accuracy is expected to be restricted to
he areas of extrapolation where there is no experimental data to guide the GP model.

The focus here was on planar soft tissues, which are hyperelastic, incompressible, and show single-fiber
nisotropy. As a result, their strain energy density is a function of only two strain invariants, I1 and I4. Comparison

of the proposed framework with an establish GOH model shows good agreement (Fig. 6), even when extrapolated
outside the training range (Fig. 9). The GP-based model is straightforward to use for real experimental data
combining multiple protocols, and shows better fit to biaxial data from an aortic valve leaflet compared to several
of the establish soft tissue hyperelastic models (also based on I1 and I4, Fig. 10).

The presented framework work adds to the several other advances being made in the field of data-based
onstitutive modeling. Some of the other data-driven approaches [2–11] rely on having a much larger number
f measurements such that the entire deformation space is filled. However, this may require an inordinately large
umber of experiments to be performed. This limitation was also highlighted by He et al. [9]. In contrast, the
roposed framework works with the number of protocols typically used in practice, and also allows us to quantify
he confidence in the results.

To fully utilize the distribution of the strain energy density provided by the GP framework, a non-intrusive
tochastic finite element framework has been proposed. An intermediate spline-based interpolation has been used
o take the GP predictions and use them in a finite element solver. The spline-based constitutive model has been
mplemented as a plug-in for FEBio [50]. The results of the traditional FE model using the GOH model have been
ound to be well comparable with those using SFEM with the fitted GP (Fig. 13). Also, the formulation allowed us
o simulate the leaflet closure directly using real experimental data, without assuming any functional form of the
train energy density, while quantifying the uncertainty in addition to the mean results (Fig. 14).

Based on the results, we believe that the GP-based framework is a strong contender for data-based constitutive
odeling. Its strength lies in its naturally Bayesian setup and a rigorous mathematical foundation it is built upon. The

roposed framework can be thought of as the first step towards exploring the full potential of GP-based constitutive
odeling. Such future developments are briefly discussed next.

.2. Future work

A natural extension will be made to hyperelastic solids where the strain energy depends on other strain invariants,
uch as I2, I5 and J . If a GP cannot fit a given experimental dataset, that might indicate that the considered list

of invariants is insufficient and therefore needs to be expanded or modified. Given that the proposed framework
does not incur additional computational cost during FEA, one could use GP-based framework as a surrogate for
hierarchical meso-scale and multi-scale modeling. More generally, the GP-based framework could be used with
reduced-order models, especially since GP allows one to quantify the uncertainty associated with model reduction.

The choice of kernel should be comprehensively explored. For example, in the squared exponential kernel
function, one could use an anisotropic length scale, that might provide more flexibility. There are also other kernel
functions proposed in the literature, such as periodic kernel could be used to model solids exhibiting hysteresis,
fatigue, and other similar inelastic effects. Newer, more sophisticated approaches for monotonic GP with better
theoretical properties have been proposed [60,61], and these could be explored for enforcing convexity constraints
instead.

In addition, the proposed framework could be implemented within FEniCS, which has been used in recent
open-source codes for performing uncertainty quantification [54], design of experiments [62] and parameter
estimation [63]. However, implementing a spline-based material model in the unified field language (used in FEniCS)
was found to be not straightforward, specifically the required conditional statements.

An important uncertainty in soft tissues is their reference configuration. While we considered the input stretches
(and therefore the strain invariants) as fixed in this work, one could allow them to vary during the model fitting,
thereby naturally determining pre-stretches as part of the GP training. We also considered a uniform experimental
22



A. Aggarwal, B.S. Jensen, S. Pant et al. Computer Methods in Applied Mechanics and Engineering 404 (2023) 115812

b

F
e
r
f
w
a

i
f
a
t

D

h

D

A

F

A

w
f

w

error in the observed stresses. However, depending on the exact experimental setup, the error could be non-
uniform (such as proportional to the applied force magnitude). Alternatively, one could constrain the range of error
hyperparameters (ex and ey) based on knowledge of the experimental setup, such as the least count of load cells in

iaxial testing setup.
Lastly, Bayesian optimization [64] and design of experiments [65] could also be leveraged as the next step.

or example, if the resulting model shows large variations for certain deformations, one could go back and design
xperiments to specifically measure stresses at those deformations and feed them back into the GP training, thereby
educing the uncertainty. The ability to make these choices provides a large flexibility in configuring the GP-based
ramework to one’s needs. The proposed framework addresses the uncertainty in material behavior. Combining it
ith other uncertainties, such as geometry and loading, remains a challenge that requires advanced computational

pproaches to deal with multiple uncertainties [66] and techniques to achieve feasible computation times [55,58,67].
In conclusion, the proposed GP-based constitutive model development is a promising research direction. Their use

n the context of soft tissues is particularly appealing given the ongoing research in constitutive model developments
or different soft tissues. Moreover, the option of using GPs to carry out stochastic finite element analysis provides
n important computational tool that could be used to improve our understanding and predictive capability of soft
issue mechanics.
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ppendix A. Exact GP

Dropping the convexity constraints (i.e., if ϑc
= ∅), the Bayes’ theorem (37) reduces to:

P(⟨ f ⟩ | y, ϑ) =
P( yo

| ϑo, ⟨ f ⟩
o)P( yd

| ϑd, ⟨ f ⟩
d)P(⟨ f ⟩)

P( yo, yd | ϑo, ϑd)
, (A.1)

Using Eqs. (18), (20) and (35), it is straightforward to see that the joint distribution of y and f ∗ is also Gaussian.
Specifically,[

yR

f ∗

R

]
∼ N

([
⟨M(ϑ)⟩
M(ϑ∗)

]
,

[
⟨K(ϑ, ϑ)⟩ + Λ ⟨K(ϑ, ϑ∗)⟩

⟨K(ϑ∗, ϑ)⟩ K(ϑ∗, ϑ∗)

])
, (A.2)

here Λ is a diagonal matrix with appropriate entries for the noise variance, i.e., e2
0, e2

x , or e2
y . From the above, the

ollowing closed-form solution of the posterior distribution can be derived [37]:

f ∗

R
| ϑ, y, ϑ∗ ∼ N

(
f̄ ∗, Cov( f ∗)

)
, (A.3)

here

f̄ ∗ := ⟨K(ϑ∗, ϑ)⟩ [⟨K(ϑ, ϑ)⟩ + Λ]−1 y and
−1
Cov( f ∗) := K(ϑ∗, ϑ∗) − ⟨K(ϑ∗, ϑ)⟩ [K(ϑ, ϑ) + Λ] ⟨K(ϑ, ϑ∗)⟩. (A.4)
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c

Fig. B.15. Results when pure shear protocols are not used in training show higher errors in the I4 < 1 area.

Appendix B. Effect of training points and noise on accuracy

To further understand the effect of training protocols, results without using the pure shear are presented
(Fig. B.15), which shows higher error in the I4 < 1 region. Thus, it is more important that the training data covers
the deformation space, rather than simply having higher number of protocols/data points. Moreover, to understand
the effect of noise in the data, results with higher noise (with a variance of 0.2) are also presented (Fig. B.16).
These results demonstrate the robustness of the framework with respect to noise and how number of protocols and
convexity conditions affect the accuracy.

Appendix C. Spline interpolation

Given n data points (xi , yi ), for i = 1, . . . , n, a one-dimensional spline is interpolated as follows. A spline
function is defined in terms of three quantities: order q , a knot vector of non-decreasing values ui , and control
points c j . Based on these quantities, the spline function is defined in terms of shape functions N q

j and (unknown)
ontrol points c j as:

Sq (x) :=

m∑
j=1

N q
j (x)c j . (C.1)

N q
j are calculated recursively, starting with zero-th order

N 0
j (x) =

{
1 if u j ≤ x < u j+1

0 otherwise
(C.2)

and calculating higher-order functions with the following recursive relation:

N q
j (x) =

x − u j N p−1
j (x) +

u j+q+1 − x
N p−1

j+1 (x). (C.3)

u j+q − u j u j+q+1 − u j+1
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Fig. B.16. Results when training data includes higher noise (variance of 0.2) show an improvement in accuracy when using convexity
onditions.

o interpolate to the data (xi , yi ), the control points c j are obtained by solving the following n equations:
m∑

j=1

N q
j (xi )c j = yi . (C.4)

n two dimensions, a tensor product spline is defined using m × n control points

Sq (x, y) =

m∑
j=1

n∑
k=1

N q
j (x)N q

k (y)c jk, (C.5)

nd the interpolation is done equivalently to find the control points. More details on the spline construction and
heir properties, such as their derivatives, can be found in [68].
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