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Abstract

Imaging flow cytometry combines the high event rate nature of flow cytometry with the
advantages of single cell image acquisition associated with microscopy. The measurement of
large numbers of features from the resulting images provides rich datasets which have resulted
in a wide range of novel biomedical applications. In this primer we discuss the typical imaging
flow instrumentation, the form of data acquired and the typical analysis tools that can be applied
to this data. Focusing on the first commercially available Imaging flow cytometer, the
ImageStream (Luminex) we will use examples from the literature to discuss the progression of
the analysis methods used in imaging flow cytometry. These methods start from the use of
simple single image features and multiple channel gating strategies, followed by the design and
use of custom features for phenotype classification, through to powerful machine and deep
learning methods. For each of these methods, we outline the processes involved in analyzing
typical datasets and provide details of example applications. Finally, we discuss the current
limitations of imaging flow cytometry and the innovations and new instruments which are

addressing these challenges.



[H1] Introduction

Conventional flow cytometry is a widespread and powerful technique for the measurement of
light scatter and fluorescence from cells stained with phenotypic and functional markers 2. Cells
are directed at high speed past laser excitation sources. Collection optics and detectors allow
sampling rates of more than 10,000 cells per second, from over 30 wavelength channels. The
level of fluorescence intensity measured from each channel can subsequently be used to identify
cells with various phenotypes of interest, using a range of multivariate analysis tools for example
FlowJo and FCS Express. Traditionally this is achieved using a series of two-dimensional scatter
plots of different combinations of markers [G]. The user defines a polynomial region on the two-
dimensional scatter plot which identifies the cells of interest, and these cells are used to generate
the next scatter plot using different markers, repeating the process until all markers have been

used to identify the cell phenotypes required.

Imaging flow cytometry combines the high event rate sampling of traditional flow cytometry
with the acquisition of an image of each cell *, thereby providing spatial information as well as
total fluorescence intensity from each channel. For example, the ImageStream system
(Luminex*) uses a charge-coupled device (CCD) camera with time delay integration to
simultaneously acquire up to 12 images of each cell including brightfield [G], darkfield [G] and
multiple fluorescent images at rates of up to 5,000 objects per second. Time delayed
integration transfers pixel information row-by-row across the detector CCD in synchrony with
the cell flow velocity, enabling the high speed acquisition of focused images from low intensity
objects. Time delayed integration requires a highly stable flow and precise measurement of
the object transit speed using a velocity detection system which provides closed loop control
to the system. An autofocus system corrects the focus of the object in the flow stream by
moving the objective lens in the z direction. The acquisition of images dramatically increases
the measures available for each channel, for example cell area can be measured directly and
more complicated metrics such as correlation, texture and granularity give information on
marker localization and cell morphology. Typically, hundreds of measures or features can then

be incorporated into the gating strategy to define cell phenotypes.

Early application of imaging flow cytometry relied on the definition of simple image features
from a cell’s spatial information, for example the overlap of a marker’s signal with the nucleus
of the cell to measure nuclear translocation ®. The rich multivariate dataset derived from the
large numbers of image features has led to more powerful analyses and the application of
machine and deep learning techniques to enable cell classification and functional analysis.

Similarly, advances in microfluidic handling of the cells, CCD cameras and imaging modalities



have led to the prospect of significant improvements in the multi-spectral images [G] obtained

and the speed of acquisition.

This Primer will focus on typical analyses that can be carried out using imaging flow cytometry,
highlighting the advantages of the images acquired compared with traditional fluorescence
flow cytometry. While new imaging flow technologies are constantly being reported, the
commercially available system from Luminex * has been the mainstay of imaging flow studies
to date and will be the main focus here. Data collection and analysis steps that can answer

specific questions related to the biology of the cell are discussed using specific datasets.

Typical applications that use simple features extracted from the single cell images are
described. For example, the use of spot counting to measure the uptake of nanoparticles in
cells, the location of calcium in T-cells and morecomplex, user-defined features to determine
the activation of eosinophils. Advanced machine and deep learning techniques can be applied
to solve more advanced problems such as the classification of white blood cells and the
identification of micronucleus phenotypes in cells exposed to a genotoxic compound. The
limitations of imaging flow cytometry using current commercial systems are discussed and new

technologies which are being developed to overcome these issues are outlined.

[H1] Experimentation

The general experimental design of imaging flow cytometry can be considered an extension
of traditional flow cytometry. The measurement of suspension cells is well suited to these
instruments owing to the fluidic cell handling systems, however adherent cells can be lifted or
dissociated with the correct protocols ®. The number of cell images required depends on the
application. The high event rate of imaging flow cytometry is perfectly suited to applications
requiring high cell numbers, for example the identification of rare cells. This section outlines
the general instrumentation setup, experimental design, sample preparation and data

collection steps for the measurement of cells using imaging flow cytometry.

[H2] Instrumentation

In general, an imaging flow cytometer enables cells suspended in a fluid to pass before an
imaging system. The fluid handling system can employ a sheath fluid, as in traditional flow
cytometry ', or transport the cells in a microfluidic device °. The imaging system is usually a

traditional CCD camera ,* but systems using radiofrequency-tagged emission fluorescence
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microscopy to take advance of the sensitivity of photomultiplier detectors have also been
demonstrated’®. The ImageStream system marketed by Amnis (now part of Luminex) "' was
the first imaging flow cytometer, introduced in 2004. Cells in suspension are hydrodynamically
guided into a core stream which is illuminated by an LED array and mixture of collinear and
spatially separated laser lines at rates of up to 5,000 objects per second (Fig.1a). The
standard excitation laser has a wavelength of 488 nm however the system can be expanded
with up to five further lasers at 375, 405, 561, 592, and 642 nm; a higher-power 488 nm laser
is also available *. The ImageStream MKkIl system doubles the original 6 channel acquisition
capacity to 12 channels by using two image detection systems including filters, spectral
decomposition systems and two CCD cameras. This enables the capture of images from up to
10 fluorescence channels together with brightfield and darkfield images (Fig. 1b and 1c).
Images can be captured at 3 different magnifications 20, 40 and 60X giving a pixel resolution
of 1, 0.5 and 0.3um and native depth of focus of 8, 4 and 2.5um respectively. The native depth
can be increased using an extended depth of field 2, maintaining focus over a depth up to 16
um, an option which is useful for spot counting applications. A high gain mode can also be
introduced to adjust the gain setting, object detection thresholds and masks [G] to maximize
the measured signal while minimally increasing the noise. This high gain mode enables the
measurement of dim fluorescence markers or very small objects, such as extracellular
vesicles™ and viruses. The ImageStream system can also be outfitted with a 96-well plate
reader to aim unattended acquisition, 384-well plates and larger are not supported.

A major strength of the ImageStream system is the comprehensive acquisition and analysis
software for the exploration and analysis of the rich multivariate datasets. The data acquisition
software (INSPIRE) enables the basic self-test, calibration and set up of the instrument. During
data acquisition researchers can modify instrument operating parameters and observe the
images obtained from each channel in real time. Furthermore, data can be acquired selectively,
based on a gating strategy from image features to reduce the number of unwanted images in the

subsequent data file.

[H3] Calibration

Prior to analysis, all analytical systems should be calibrated [Au: Edit OK?]. The ImageStream
system uses a suit of calibration tests called ASSIST. The ASSIST tests monitor excitation laser
power, optical alignment, flow stream stability and focal quality. The calibration process also
measures spatial registration and can correct if misaligned. During calibration, any failed tests
are flagged so the user can compare the results against the accepted pass parameters. Often,
rerunning the failed tests after a short wait time will rectify this, as it is quite common that after shut



down and start up, the fluidics require time to stabilise, and the lasers need to warm up. However,
continued failure is a sign that there is a more serious issue and a trained service engineer may
be required to diagnose the fault and find a solution.

System performance is monitored and tracked using a well characterised standard. In the case of
the ImageStream system, the standards are 1um polystyrene micro particles called speed beads.
Speed beads are not fluorescently labelled and there has been some reluctance in the flow
cytometry field to use them to measure or infer photonic sensitivity of the system as a flow
cytometer. The ASSST tests are often supplemented using multi-level fluorescent microspheres

that can be used to infer photonic sensitivity for each imaging channel ™

in molecules of equivalent
soluble fluorescence (MESF). The smaller the MESF value, the more sensitive the system should
be for detecting a lower number of fluorochrome molecules and associated photons per
cell/particle. The quoted value for the ISXmKIl is 5 MESF making it one of the most sensitive
fluorescence-based flow cytometers on the market. It is also advised to use a standard biological
control if available. For example, peripheral blood mononuclear cells from a healthy donor or
Leukapheresis cone. In this case an antibody against the surface protein CD4 as it is highly
expressed on CD4 T cells with low to intermediate expression on monocytes could be used. As

such this creates a cellular control with multiple levels of signal.

[H3] Data compensation

As with traditional flow cytometry, before any quantitative analysis can be performed, the data
must be compensated for the spectral crosstalk between channels. The process of
compensating imaging flow cytometry data is more involved given the spatial nature of the data.
Essentially the spatially resolved data requires compensation at an individual pixel level "°.
Separate aliquots of sample are stained individually with each dye/marker required for the full
experiment and are run through the ImageStream separately. The ImageStream Data
Exploration and Analysis Software (IDEAS) can then take these individual sample results to
measure the crosstalk from each marker into the empty channels and calculate a
compensation matrix. The compensation matrix is multiplied by the fluorescence intensities in

each pixel which removes these unwanted contributions from each channel.

[H2] Experimental design

The first step of experimental design is to formulate the question and determine what key
measurements are needed. Imaging flow cytometry tends to be more labor intensive than non-
imaging flow cytometry and provides fewer fluorescence channels. If the biological question
requires a spatial or morphometric read out, then imaging flow cytometry will be the preferred



technology. For example, measuring the degree or amount of FoxP3 (a protein involved in
regulating the development of T-cells) in the nucleus of primary human regulatory (T-regs) cells
using the cluster of differentiation 4T (CD4T) marker. The system capability impacts how many
parameters can be measured per cell and which fluorochromes and dyes can be detected. The
number and wavelength of available excitation lasers as well as important information about the
detection channels (for example one camera versus two camera system) should be considered.
There are several widely available online spectral viewers that can create a virtual machine with
the right lasers and filters to aid in designing the optical setup. Next, the minimum number of
biomarkers required to identify the cell type of interest from a heterogeneous population should
be determined. If additional channels are available, the researcher should consider whether

other parameters might be of interest and measure them simultaneously.

For example, consider a protocol previously used to identify T-regs from whole, lysed human
blood '® To do this effectively, the sample may need to be stained with antibodies against CD45
(pan-white blood cell marker) to distinguish white blood cells from un-lysed red blood cells and
debris. An antibody against CD3 should also be included to identify all T cells within the CD45-
positive white blood cell (WBC) population. If focusing on regulatory CD4-positive T cells,
antibodies against CD4, CD25 and CD127 (IL-7 receptor alpha chain) should be included. Each
antibody would need to be tagged to a unique fluorochrome that would be compatible with the
spectral setup of the system as well as each other. An advantage of imaging flow cytometry is
that markers may be used in the same spectral channel if they are spatially distinct. The
selection of fluorochrome to marker/target follows the same rules and approaches for
conventional and full spectral fluorescence flow cytometry, where essentially, low expressed
markers are assigned to bright fluorochromes and highly expressed markers to dimmer
fluorochromes . Using the example above, when measuring the nuclear occupancy of the
FoxP3 protein, an antibody against FoxP3 tagged to a compatible fluorochrome as well as
spectrally compatible nuclear dye should be selected. In all cases, the fluorescent reagents
require careful titration, including the nuclear dye, because signal saturation can pose a
challenge owing to the reduced dynamic range on the CCD camera (12-bit compared to 18-
bit on a non-imaging flow cytometer) and the lack of control over each imaging channel (signal
intensity is controlled by laser power, meaning that it can be challenging to balance a dim and
bright signal for the same laser). Once reagents have been optimized, sample preparation

follows the same process as with conventional flow cytometry.
[H2] Sample preparation

Sample preparation for imaging flow cytometry is analogous, in practical terms, to any form of

fluorescent antibody or dye-based technology that is used to analyze cells or particles in



suspension. Cells are prepared in a single-cell suspension and stained with surface marker
antibodies, fixed, treated with intracellular antibodies and nuclear dye prior to acquisition.
Nuclear dyes must be carefully titrated to ensure it does not saturate the other signals. As with
conventional flow cytometry, single stained controls are required for compensation for all
markers. The most noteworthy difference in sample preparation comes at the last step where
it is essential to concentrate the samples in a low volume, for example 50 ul, and ideally if cell
numbers allow, at a concentration of 20-30 million cells per ml (1 million cells total in 50 pl).
While this may seem extreme, the imaging flow cytometer tends to run at a slower rate than
conventional systems so it can take impractical amounts of time to acquire enough cells in
dilute samples, particularly if looking for rarer cell types. Also, for larger volumes of a similar
concentration the large number of cells measured can make the data files very large and the
processing of the subsequent images becomes highly computer intensive. A highly
concentrated sample of no more than 50ul volume will help to alleviate these issues, however
if working with larger and sticky cell types, less concentrated samples may be preferred.
Sample acquisition is relatively easy; it is often best to begin with a fully stained sample and
use plots that show the raw maximum pixel [G] for all events in any channel and to ensure that

the excitation laser powers are set to achieve maximum signal without any saturation.
[H2] Data collection

An advantage of imaging flow cytometry is that the data output is usually in the form of single
cell images because of the control afforded by channeling the cells in a sheath fluid or
microfluidic device in front of the detector. The magnification is usually between 10 and 60x
(image size of between 50 and 150 pixels squared) and the images may consist of as many
as 10 different spectral channels. The rate at which the images are acquired depend on the
flow rate of cells past the detector and the frame rate of the detector itself. Early instruments
acquired 100 cells/s but new developments in opto-mechanical imaging have pushed speeds
to exceed 10000 cells/s °. However, there is a tradeoff between the acquisition speed and the
image quality, for example using time delayed integrated CCD based imaging, the binning of

pixel rows required at higher flow rates reduces the spatial resolution of the images acquired.
[H2] Defining masks

A key step in data analysis is the generation of image masks, where the cell boundaries and
important intracellular regions inside the cell, such as nucleus boundaries, are identified. Most

commercial instrument providers provide bespoke software which segment the individual cells



providing masks, preprocess data to exclude out of focus and cell clusters (Fig. 2), and

generate multiple image features. Open-source software is also available.

The contrast in the brightfield image is often good enough to be able to define a cell mask but
often a cytoplasm marker is used to define the extent of the cell, or a DNA marker can be used
to define a nuclear mask. Simple masks can be obtained using a user defined threshold value
for the marker intensity and setting pixels to 1 above that value, however a host of methods
are available to automatically define the threshold value or deal with complexities such as
nonuniform illumination. Once a mask has been defined it can be used to generate image
features. Morphology measurements, such as area and shape measures, can be directly
obtained from the masks and intensity measures are generated from the fluorescence pixel
channel values where the mask pixel values are 1. Most commercial and the more recently
developed imaging flow systems have associated masking software which works best with the
image capture modality, for example, the INSPIRE software supplied with the ImageStream
provides basic masks for each channel however these usually need to be modified for

accuracy as described later.

[H1] Results

In this section, the process of taking the basic images acquired by imaging flow cytometry to
identify cell features that can be used to perform tasks such as defining cell phenotypes or
measureing biological function is discussed. This will involve removing non cellular images
(such as debris or calibration speed beads) or images which are out of focus. Then data
analysis techniques to perform phenotypic identification and biological function assays will be
outlined starting with simple gating strategies through to the use of the latest deep learning

algorithms

[H2] Cell feature generation

The process of data analysis in imaging flow cytometry follows the same procedure as for high
throughput microscopy. The masks generated from the various image channels define the cell
body, nucleus and any subcellular organelles to be used for analysis. The cell, nucleus and
organelle shapes and size features can be extracted using typical open-source software tools
or as is more often the case, researchers would use developed scripts in software languages
such as Python, MATLAB and R. Commercial instruments are usually provided with software
tools which generate cell features from the raw image data files and the software to analyze

these features extracted, for example, using IDEAS supplied with the ImageStream system.



[H2] Pre-processing the cell images

Before analysis of the acquired cell images can take place, the data set needs to be filtered to
remove images that capture objects other than single cells or are out of focus due to the cell not
coinciding with the focal plane of the lens (Fig 2). To identify the in-focus events, the intensity
gradient along a pixel line is used (the focus building block [G] within IDEAS software); in a well-
focused brightfield image, the cell boundaries create a sharp intensity change and hence a high
intensity gradient (root mean squared) value. The in-focus sub-population can then be defined
with a high-pass gating of the gradient histogram. The focused sub-population may be further
filtered to select single cells based on object size and shape (the single cell building block). This
operates on morphological features obtained from the brightfield image mask, producing a 2D
scatter plot of aspect ratio [G] versus area. A single-cell sub-population may be defined from
the dense cluster of events with high aspect ratio (tending to circular shape) and intermediate
area (lying above a band of smaller objects corresponding to debris, and below higher points
representing images containing multiple cells). One further pre-processing step could also
involve the identifying of any dead or inactive cells providing a suitable cell marker has been

included in the experimental design.

[H2] Data analysis

Once the image features have been generated and the basic preprocessing protocols run, the
image features can be used to identify phenotypes and measure biological function. Usually,
the phenotype of each cell should be determined using successive gating of features. A further
advantage of acquiring single cell images is the opportunity to identify subcellular locations
and the spatial trafficking of proteins and signaling molecules using a combination of masks
and features. Advanced multidimensional algorithms can be used for phenotype classification

and functional analysis.

[H3] Use of image features in flow cytometry gating

The ImageStream is provided with IDEAS software that enables the data preprocessing and
the usual gating analysis associated with traditional flow cytometry. It also includes several
building block tools that suggest suitable image features, masks and gating strategies for typical
cell image analysis. The first step using IDEAS is to generate and implement a compensation
matrix to correct for spectral spillover or crosstalk between channels using the individually
stained samples. This is a familiar process for flow cytometry however in the case of imaging

flow cytometry the compensation matrix is used to deconvolve the cross-channel contributions



in each single pixel. Furthermore, at instrument start-up the acquisition software corrects for
the individual variations in each pixel's dark current and gain, to give a uniform photometric
response for each pixel in the image. Any vertical and horizontal pixel spatial offsets are also
computed, and these are corrected during acquisition. The result is a brightfield, darkfield (light
scatter) and up to 10 fluorescence channel images for every event that triggers the acquisition

process.

IDEAS automatically generates a segmentation mask for each channel per field of view (Fig
1b). This allows the user to mask the cell outline using the brightfield channel and the nucleus,
for example, if a nuclear dye has been included in the experiment. Often the automated masking
parameters need to be adjusted '8, for example, by changing the intensity threshold level for
segmentation, a process which is critical especially when detecting subcellular organelles. Once
the object masks are accurately defined, shape morphology features such as area, perimeter
and aspect ratio can be measured to be used in cell gating strategies. IDEAS also allows the
measurement of more complicated image features which measure the texture and granularity
which considerably enhances the assay opportunities compared with traditional flow

cytometry.

The ability to capture images of single cells at different wavelengths opens up many new
avenues of investigation in comparison with traditional flow cytometry '°. For example,
compared with measuring just an intensity value per channel, imaging flow cytometry allows
capturing morphological features for each channel, such as cell area, perimeter and shape
metrics. Early applications of imaging flow cytometry exploited the use of these simple features
unavailable to traditional flow cytometry for phenotype identification. For example, while a
rough approximation of cell size and shape can be obtained using traditional flow cytometry
using forward and side scatter, an obvious application of imaging flow cytometry would be the
direct measurement of cell size and shape. Imaging flow cytometry has been used extensively
to study the cell cycle control in fission yeast where a detailed measurement of cell size is
critical®® 2 22 Similarly, the technique has allowed the classification of the morphological
phenotypes of budding yeast based on the measurement of the size of bud lengths ?°. The
change in shape of the nucleus during mitosis allowed the detection of the anaphase,

prophase, metaphase and telophase of the cell cycle with only a DNA marker 2.

Imaging flow cytometry can analyze subcellular structures which is far more difficult, if not
impossible, with traditional flow cytometry.For example, the IDEAS analysis software allows
the detection of ‘spots’ in the cellular image\. IDEAS v6.3 software now allows the use of

connected component masks, where a channel mask can be broken down into multiple



individual component masks to label subcellular structures. All the feature measurements
available for masks can then be applied to the individual components. This addition is
especially useful when measuring multiple subcellular structures, for example in particle

uptake studies where the intensity of individual vesicles containing nanoparticles is requird 2

[H3] Use of user defined masks and features

A strength of the IDEAS software is the flexibility it provides to take the basic features and
masks and modify them to provide custom measures tailored to the application. For example,
the internalization of nanoparticles by cells was quantified using an internalization score, which
was derived from the correlation of the fluorescence nanoparticle pixels in the cell mask and
the same cell mask that was eroded by 3um to remove the outer membrane region #°. A similar
strategy was also used to measure the extent of the ciliary zone thickness in mature human
bronchial epithelial multi-ciliated cells, as the difference in area between the cell body and the

ciliated zone mask %

[H3] Machine learning analysis strategies

Combining the large numbers of possible features which can be derived from each channel
image for every cell in the population can lead to an incredibly rich dataset with the power to
identify more complex phenotypes. These multivariate datasets are perfect candidates for the
application for high content approaches to identifying cell phenotypes and determining cell

function.

One of the first examples applying machine learning to imaging flow data identified the stages
of the cell cycle including mitosis, as well as DNA content, in a completely label-free assay *'.
In the machine learning training step, Jurkat cells were stained with propidium iodide, to
quantify DNA content, and a MPM2 (mitotic protein monoclonal #2) antibody, to identify mitotic
cells. This enabled identifying cells in G1, S, G2 phases and the four mitotic phases—prophase,
metaphase, anaphase and telophase—using traditional gating techniques. The annotated cells
were used to train a network to classify the phases based on the brightfield and darkfield
channels alone, without the fluorescence channels. Finally, in the prediction (or inference)
step, the trained machine learning model used the label-free channels alone to classify cells
into phases and predict the intensity of propidium iodide stain. This machine learning strategy

has also been employed to classify human white blood cells where CD markers were used to



annotate the B, T cells, eosinophils, monocytes and granulocytes. Trained machine learning

algorithms were able to identify the cell types using just the brightfield and darkfield channels
32,33

To apply machine learning the user must extract a table of image features for each cell. IDEAS
can measure large numbers of features for each channel, and these can be output for future
analysis. Similarly open source software tools such as CellProfiler 34, which can extract large
numbers of shape, intensity and textures features for multivariate analysis can be used *°. The
user must decide on what features are used in the analysis depending on the classification or
regression task at hand. Care must be taken to remove any non-biological features that can
be present such as cell number or a timestamp. The user can pre-filter the data to remove any
correlated or redundant features which can confound the learning process and speed up
analysis times ***". Once the feature table has been extracted the user is free to choose any
appropriate analysis tools, for example, MATLAB has a user-friendly machine learning toolkit,
Python has extensive libraries such as Scikit-learn and also the open-source R language has
been specifically designed for statistical computing. A machine learning module has recently
become available within the IDEAS v6.3 software package to enable the application of

machine learning techniques to the image data with no expert knowledge.



[H1] Applications

The range of applications of imaging flow cytometry has increased over the past 15 years
and this has been driven not only by new advances in the technology’s hardware but also in
the rapid development of computational techniques available to analyze the rich multivariate
datasets acquired using these instruments. Applications have matured from using a single,
simple image feature through to the deployment of advanced deep learning algorithms.

[H2] Nanoparticle uptake

Imaging flow cytometry enables the recognition and enumeration of sub-cellular areas, such as
punctate spots within a cell image. For example, the heterogeneity of fluorescent nanoparticle
(quantum dots) loading into endosomes can be assessed. U2-OS Osteosarcoma cells loaded
with Qtracker705 (Invitrogen) nanoparticles were excited at 488nm and images acquired using
the 660-735 spectral channel. Bright spots under laser excitation corresponding to endosomal
vesicles loaded with nanoparticles are clear in the fluorescent channel (Fig 3). Using the masks
feature, these fluorescent areas can be identified using one of a number of possible masking
functions such as intensity, peak or spot. A measurement feature may then be generated from
the spot mask to generate a summed spot area or a spot count per cell. In this example, these
represent a dose metric for the accumulated nanoparticles and would be of relevance to a
nanotoxicology or nanomedicine assay. It should be noted that this process of mask generation
and feature extraction relies only on the presence of distinct pixel intensity clusters that may be
identified within the cell image. A fluorescence image is not therefore essential and sub-cellular
morphology may be clear within the scattered light variation of the dark field channel or as dark

spots in a bright field image.

The extraction of spatial metrics is not an end in itself, and the real impact of imaging flow
cytometry lies in the application of post-measurement models and analysis of the data. For
example, in this nanoparticle uptake data the statistical distribution of the number of
nanoparticles loaded vesicles per cell is over dispersed relative to the Poisson distribution
expected on a hypothesis of random particle arrival and internalization. Further study shows
that this is due to cell area heterogeneity and provides predictions of the dose heterogeneity
of nano-vectors “2. The potential for probabilistic models of cell processes is realized here by

the ability to extract spatial information across large populations.



[H2] Calcium Mobilization in T Cells

Calcium acts as a ubiquitous signaling moiety in cell biology, passing on extracellular signals
to drive changes in gene expression and cellular responses. In the immune system, calcium
acts as a key secondary messenger downstream of the T cell receptor after recognizing
foreign antigens. The measurement of calcium mobilization in T cells is often a critical assay
for the characterization of cells from patients and from various transgenic mouse models,
where T cell signaling is suspected to have been perturbed in some way. One of the key
features of calcium signaling and mobilization is the spatial aspect, with temporal involvements
and dependencies on different subcellular locations making it a very attractive model system

to be measured using imaging flow cytometry.

A fluorescent dye panel that is compatible with a 4 laser, 2 camera, 12 channel imaging flow
cytometer is used to identify two key intracellular organelles involved in calcium mobilization,
namely the endoplasmic reticulum and the mitochondria, and secondly, to report the flux of
calcium ions in these locations *. These dyes were carefully titrated to ensure optimal signal
to noise, onward cell viability and organelle specificity. For the latter consideration, it is
possible to use spatial information to confirm specificity of each organelle dye as it has been
shown that excessive concentrations of such dyes will lead to a loss of specificity and a generic
labeling of intracellular structures. In this case the bright detail similarity feature provides a
metric for the spatial segregation of two distinct organelle dyes with low feature values (less
than 1.5) representing good spatial segregation. After ~60 seconds of data collection, the
sample was unloaded, a stimulus such as anti-CD3 antibodies or Calcium modulator added
and then the sample reloaded to continue data acquisition. Single-stained samples were

collected for compensation purposes.

Corrected and compensated data was analyzed by creating a range of masks based on the
specific organelle stains and restricting the kinetic measurement of various fluorescent
calcium probes to these structures versus the whole cell signal. Utilization of this approach
uncovers interesting features of calcium mobilization in activated T cells, namely that
mitochondria seem to be able to act as a sink for intracellular ER-derived calcium and not just
from an extracellular influx; this observation is wholly dependent on the ability to obtain single

cell, kinetic spatial information at a population-wide level.

[H2] Morphology analysis of granulocytes



While traditional flow cytometry can indirectly measure granularity via the intensity of the
scattered laser light, imaging flow cytometry can directly measure spatial variation in the
brightfield, darkfield and fluorescence images. For example, the pronounced morphological
features of eosinophils, a type of granulocyte which play a role in mediating inflammatory
response can be analyzed. The granules in eosinophils are enzyme-filled vesicles and these
produce high-contrast dark spots within brightfield images. When an eosinophil is activated due
to an immune threat the granules increase in number and migrate to the cell surface. The
procedure for assessing the sub-cellular distribution of these granules is applicable to any

analysis of cell morphology based on brightfield image contrast.

Eosinophils derived from leukocytes in whole blood required gating on the high autofluorescence
signal, owing to the concentration of flavin adenine dinucleotide localized within the granules*.
The brightfield images for the eosinophil population were analyzed to determine whether the
granules are located at the outer edge of the cytoplasm, next to the membrane, or more evenly
distributed within the cell. The analysis is based on the creation of area masks to define general
sub-regions of the cell and to define the granules (using the masks function) (Fig 4a). Logical
mathematical operations using these masked areas can then identify degree of overlap and
quantify the spatial distribution of the granule dark spots (using the features function). A mask of
the brightfield channel is automatically generated by the IDEAS software; erosion of this mask
isolates the inner body of the cell. Logical combination of original plus eroded masks can then
produce a mask of the cell perimeter, through a Brightfield mask AND NOT Erode mask
operation [G]: shared areas, common to both masks, are removed from the original brightfield
mask. Having created location masks that define the cell interior and perimeter, the image spots
corresponding to granules can be masked. This can be achieved with a number of alternative
masking functions such as intensity, peak or spot, with selection determined by user preference
and their relative performance when applied to the specific cell image set being analyzed. Final
extraction of a measurement feature, defining the degree of membrane association of the
granules, is achieved by calculating the area of a combined mask resulting from logical
combination of the granule mask AND perimeter mask, which selects only those masked granule
areas that lie close to the cell membrane (Fig 4b). A histogram of the calculated area is plotted
and used to gate cells [G] that have a high or low degree of overlapping dark spots underneath
the membrane mask. There are often alternative approaches that may be taken in a spatial
analysis for example implementing a morphology-based approach using only the dark spot
mask. Rather than isolating the membrane associated granules this approach seeks to classify
the different spatial distributions seen across a cell population to differentiate when granules are
distributed across the whole of the cell and those where they are preferentially clustered at the

cell membrane. A scatter plot of these features (Fig 5) presents a distribution of the cell-state



extending from cells with centrally located granules on the lower left (dispersed and asymmetric
pattern) to those with strong membrane association in the upper right (localized and symmetrical

pattern).

[H2] Machine learning

[H3] White blood cell classification

White blood cell phenotype identification can be used to demonstrate the steps involved in
applying machine learning for automated analysis. In traditional flow cytometry this is typically
achieved using CD markers to label the different cell phenotypes together with forward and
side scatter. However, the white blood cell phenotypes can be classified without CD markers
using imaging flow cytometry and machine learning (Fig S1). White blood cells derived from
healthy doners were stained with Fluorescein isothiocyanate (FTIC) labeled anti-bodies
against the cell surface markers for monocytes (CD14), neutrophils (CD15) and lymphocytes
(CD19 - B cells and CD3 —T cells). These markers together with autofluorescence were used
to identify eosinophils, using traditional gating techniques on image data acquired using the
ImageStream system?2. To employ machine learning for this task the first step is to export all
used features to a data text file (in this example the measurement features for darkfield,
brightfield and channel 4, which contains autofluorescence images). The features together
with the known phenotypes for a cell population is then used as an input to train typical
machine learning algorithms®. This example focusses on classifying the eosinophil,
neutrophil, monocyte and lymphocyte cell phenotypes. In addition to image channel features,
IDEAS also exports cell object and time data columns. These biologically irrelevant metrics
need to be removed from the data prior to implementation of machine learning. The ability of
machine learning algorithms to correctly classify the cell phenotypes using the combined data
set of all sub-populations can be assessed. In this case the combined data for the 3 channels
provides a data matrix of 115 metrics for 3,168 cells. The feature data matrix may be used
with any chosen machine learning software, in the form of confusion matrices [G], from
MATLADB’s classification learner app. For illustration purposes a naive Bayes and a fine tree
algorithm were chosen. Both deliver highly accurate classification and unsurprisingly the
decision tree is optimum as it follows the binary signal discrimination employed in the original

manual gating.

[H3] Deep learning



The examples we have described so far have required measuring particular image features
that are pre-defined by software. The IDEAS software, as well as open source bioimage
analysis tools such as CellProfiler and ImageJ, can measure a large number of features, which
can be selected by the researcher or used en-masse for machine learning. Deep learning, by
contrast, has the potential to go beyond features that humans have pre-programmed into
software. Deep learning algorithms (neural networks) use full images as the input to a
convolutional network. When appropriately trained, the network generates the features
required for the analysis applications; these features can often be more powerful than human-
designed ones. Deep convolutional neural networks for image classification are well suited to
small multichannel images and they require large numbers of images to train, which makes

them perfect candidates for the analysis of data from imaging flow cytometers.

One of the first applications of deep learning to imaging flow data * trained a deep convolutional
neural network to detect the different phases of the cell cycle using the pixel data of the images
rather than extracting conventional image features. Other challenging applications are quite
diverse. For example, a convolution neural network was trained to classify phytoplankton species
and also to identify the stages of the life cycle *°. More recently the same deep learning algorithms
were used to classify large numbers of pollen species with high accuracy “°. Furthermore,
morphological and fluorescence features that were conserved at the various levels of taxonomy
were determined. Similarly, deep learning was similarly used for predicting Cryptosporidium
and Giardia in drinking water*'.

[H3] Micronuclei detection using deep learning

A typical application of deep learning to imaging flow cytometry data is to take advantage of
the large number of single cell images to classify individual phenotypes. For example, deep
learning can be used to classify micronuclei events from imaging flow data. The in vitro
micronucleus assay is the standard method for the assessment of possible DNA damage
induced by chemical / radiative perturbation. The assay is the gold standard test of
genotoxicity in the development of all chemicals and pharmaceuticals. When the nucleus
divides during mitosis, chromosome fragments that fail to be incorporated into the daughter
nuclei appear as micronuclei within the cell. Imaging flow cytometry has been shown to be an
effective measurement tool for the micronucleus assay giving the high throughput single cell
nature of the data *°“¢*’. The assay was partly automated using spot counting to find the

micronuclei within the cells *® however it was subsequently shown that this is a perfect



application for the use of deep learning to fully automate the classification of cells with
49 50

micronuclei
As with the application of deep learning to any problem, the type of neural network to be used
should be determined. Several classification networks have been applied to imaging flow data
including AlexNet ° ResNet50 2 and VGG-16 3, all of which have been pre trained on many
thousands of annotated images. The number of layers and complexity of the network can
improve classification accuracy but also increase the time required to re-train the neural network.
Once the network has been selected the input layer needs to be matched to the single cell image
size pixel sizes. The individual images extracted are often of different sizes and therefore they
need to be cropped or padded to the network input size. Also the application will dictate which
image channels will be input into the network for classification. While classification networks
were the first to be applied to imaging flow data, other networks can be used. For example, a
Faster region-based convolutional neural network was used to quantitatively analysis of

phagocytosis in cells using imaging flow cytometry data °*

It is also important to consider which programming language to use to implement the network.
MATLAB has useful deep learning toolboxes, however Python has a host of different packages
to implement convolutional neural networks including Keras, Cafe and TensorFlow. Although
for non-experts, as with the addition of machine learning into the IDEAS software, likewise a
deep learning module has now also been developed. This module can train using one of the
popular neural networks within the user interface, removing the need for cropping and
padding, making the application of deep learning easier for novice users. This tool was used
recently to classify silicone oil droplets from protein particles®™, a protocol which has

noteworthy application in the development of biopharmaceuticals.

To demonstrate training a deep learning neural network to classify cells with micronuclei, the

2 which contains TK6 cells which exhibit mono, bi, tri and

publicly available datase
quardanuclated phenotypes together with micronuclei events (Fig S2) after exposure to
carbendazim can be used. The human annotated dataset has both brightfield and DNA
fluorescence images which have been cropped/padded to 64x64 pixels and
maximum/minimum renormalised per image. As a simple example, just the DNA channel was
input into the ‘DeepFlow’ neural network *® developed specifically for Imaging flow cytometry
data which is available in Python and MATLAB for this image size and trained on 6445
randomly selected images from each class over 30 epochs, minibatch size of 30 using the
ADAM optimizer. The resulting confusion matrix (Fig S2e) shows the results of the trained

network on 1609 test images, which gives an overall accuracy of 79.1% This can be improved



by augmenting the rarer cell classes, using the brightfield channel and increasing the number
images used to train. As well as classification, the weights of the penultimate layers of the
trained network can be used to visualize the performance of the network or even for regression
analysis. For example, extracting the weights from the (average pooling) layer above the
classification layer and using t-distributed stochastic neighbour embedding [G] to reduce the

features to two dimensions to visualize the class prediction.

[H1] Reproducibility and data deposition

The ImageStream system for imaging flow cytometry has an extensive calibration, self-check
and initialization start-up process, resulting in excellent data reproducibility. As with all
protocols that require staining or labeling cells, variable uptake of the markers or target binding
can lead to problems with reproducibility in the analysis, however this is not a problem specific
to imaging flow cytometry. In fact, a study to detect micronuclei events in cell conducted at
three different laboratories (using different instrument settings, such as excitation laser
intensities) using different DNA stains demonstrated that deep learning algorithms trained on
data from one laboratory could be used to classify results from the other laboratories with high

accuracy °*

The move to open and transparent data analysis has led to authors depositing data and analysis

code using platforms such as FigShare, GitHub and within supplementary information with

manuscripts. The flow cytometry community has adopted a set of minimum standards required

for data (MIFlowCyt)) % and the preferred depository, FlowRepository. While no formal

standards exist for Imaging Flow Cytometry, attempts have been made to outline best practice
in report results and depositing data & which will become more important as more data is being
made available. The MIFlowCyt minimum standards for reporting results includes the details
required on the experimental design, samples/specimens used, preparation, treatment and
staining of samples, instrument details and the analysis applied to the data. These reporting
standards apply equally to Imaging Flow Cytometry however the data analysis on the images
produced is more aligned to high throughput microscopy data. While these standards are not
well established in microscopy, recent attempts have been made to determine best practices for

analysis®' and reporting® which should also be applied to imaging flow cytometry.



[H1] Limitations and optimizations

Imaging flow cytometry shows the value in combining the advantages of a microscope and a
flow cytometer. However, the technique does have limitations, for example, in lacking
capability for workflow automation, cell sorting, repeated time-lapse imaging of the same cell
and 3D resolution. Nevertheless, recent advances, in the field of imaging flow cytometry itself

and from other disciplines, are beginning to address these limitations.

[H2] Automation

An imaging flow cytometry workflow involves multiple steps, in which both the laboratory
procedures for data acquisition and the computational procedures for data analysis often
require manual handling., Steps such as sample staining, centrifuging, washing, sample
handling, instrument preparation, data capturing, event gating, triggering, data cleaning,
profiling all require manual handling. For wet-lab procedures, there are currently no robotic
options such as those in plate-based or slide-based high-throughput machines. Although batch
processing can be used, expert-guided analysis is the norm in computational processes and
thus scaling within an automated and distributed computing platform is difficult. This poses a
major challenge in downstream analyses, in which over 100 unique features, typically dozens
of masks for cellular objects and subcellular compartments, as well as a large collection of
algorithms available for each channel, yields several thousands of combinations to identify
features and populations of interest. Partial automation is available, for instance, the Luminex
ImageStream system is accompanied by data acquisition software (INSPIRE) and a separate
analysis suite (IDEAS). This analysis platform does provide biologist-friendly templates
(wizards) to guide users through common analysis scenarios, including foundational
(compensation, gating), application-specific (apoptosis, localization, internalization), and
exploratory (feature finder) schemes. Moreover, there are open-source attempts to orchestrate
software modules and algorithms to improve automation in analysis procedures, commonly
written in Python, MATLAB 3, or R &

[H2] Sorting

Sorting is an important feature of a cytometric system, regardless of imaging capability, because
it allows physical segregation of objects to isolate subpopulations of unique cell types. This can
allow subsequent assays on the subpopulations, or valuable procedures such as clonal
selection and expansion. Unfortunately, constructing an image-based cell sorter requires
several major modernizations in highspeed image acquisition, intelligent data analysis (often

machine learning-based), and microscale sorting modules. In contrast to a range of choices for



sorting flow cytometry, only a few sorting Imaging flow cytometry systems have been

designed, and these are yet to become commercially available %657 68,

[H2] Temporal resolution

In a flow-based system, once the objects flow past the imager, they are either discarded or
recollected in a common container. It is not, therefore, readily feasible to enable repeated
imaging of the same cell, as seen in time-lapse, slide-based microscopy. The limitation to a
single snapshot of each cell also rules against implementation of 3D reconstruction
approaches such as confocal sectioning. However, progress has been made in 3D cell image
reconstruction using digital holography to produce tomographic flow cytometry®®. Future
development could alleviate snapshot restrictions through implementation of object tracking
and unique identification using cellular barcodes °’". New concepts such as the use of spatial-
temporal transformations allow the use of photomultiplier detectors’? which offer the possibility
of high-speed acquisition and sorting. Likewise, the use of ultrafast quantitative phase imaging
offers the prospect of high speed imaging flow cytometry which can provide label free

phenotyping”.

[H2] Multi-object interaction

Imaging flow cytometers can capture multiple objects if they appear within the same field of
view at the point of acquisition, and can therefore provide information on close-proximity,
object interaction. For example, the platform has been used to identify platelet binding to white
blood cells . However, complex and/or long-range interactions between multiple objects

would be a considerable challenge, if not impossible, to achieve.

[H1] Outlook

New imaging flow systems are making use of new methods to flow cells past the detectors,
developing completely new image capture systems and adding new functionality such as
adding cell phenotype sorting. In fact, these exciting new technologies are leading the way in
producing new types of assays that cannot be carried out using current technologies and will
form the future commercial systems in the very near future. At their heart all these produce a
large number of single cell, often multichannel images and therefore the strategies for using
imaging flow cytometry data remain similar irrespective of the instrumentation and therefore

the analysis examples given here will be easily adaptable to other systems.



Like many imaging systems, Imaging flow cytometry is susceptible to the triangle of imaging
constraints— speed, resolution, and sensitivity—improving one parameter causes the others to
suffer. These compromises become even more critical as data volumes, velocity and variety of
biomedical research increase in the next 5-10 years. Even so, there are certain gaps for
improvement in photonics and optics that are likely to improve Imaging flow cytometry systems.
Future iterations may bring novel data acquisition and sorting technologies at higher resolution,
with higher dimensions (larger 2D/3D FOV, temporal feature availability), while retaining, if not
improving, the event capture rate that makes Imaging flow cytometry advantageous over other

single-cell imaging platforms.

Equally important will be improvements in data analysis techniques, in which feature stability,
model reproducibility, and automation should be prioritized. Even with machine learning-based
assistance incorporated in today's workflows, users are still heavily taxed with many iterations
of data cleaning and modeling processes, such as quality control checks, manual annotations
in supervised learning, normalization of all features to a common base to offset the wide variation
in feature value ranges, feature selection to alleviate the curse of dimensionality, feature ranking
and combinations to optimize population separations. It would be helpful to see advanced Al
methodologies incorporated into a biologist-friendly pipeline to deliver more automated, less

supervised, and more reliable classifier/phenotyping models.

Given the ever-increasing levels of information to be captured from single cells, Imaging flow
cytometry coupled with machine learning approaches provides a powerful platform for disease
fingerprinting in clinical applications. Rare events (such as metastatic cancer cells) may be
detected better than by microscopy, and disease states may be detectable that are otherwise
invisible to clinicians. With sorting capability, Imaging flow cytometry would prove to be a very
useful tool for clinical diagnosis and treatment monitoring, especially for hematological
disorders, even without the use of biomarkers . If an intelligent, label-free, sorting Imaging
flow cytometry is developed, users might collect sorted cells to allow clonal selection and
expansion and do so iteratively to produce an effective cell therapy. Sorting Imaging flow
cytometry would excel in pooled screening campaigns, in which multitudes of gene/compound
combinations can be tested in an unprecedented throughput. In pool-based format, nucleic
acids, CRISPR-ed oligos, small molecules or antibodies are mixed in the microfluidic device
into cellular or droplet form, then screened by image-based sorting followed by downstream
omic techniques such as next-generation sequencing or proteomics. Novel readouts include

combinatorial treatment responses, differential co-expression, network and pathway analyses,



to help discern complex phenotypes and regulatory programs, and subsequently prioritize

candidate genes or compounds for biopharmaceutical manufacturing.



Glossary

Gates: a range of bins for the histogram or a polygon for the scatter plot. This process
selects cells for further analysis. The gating process can be repeated to define phenotypes
which require more than two markers for identification.

Brightfield image: The simplest form of microscopy, where the image is formed by white
light which is transmitted through the sample and then capture on a detector.

Darkfield image: In the context of imaging flow cytometry, the darkfield image is formed
when light scattered from the cell is collected on the detector perpendicular to the excitation
direction.

Raw maximum pixel feature: A feature in IDEAS that returns the maximum pixel value in
an image acquired by the detector before any compensation. This is often used to set the
laser excitation intensity to ensure that the pixel values are not saturated.

Mask: a binary image which defines the extent of the object in an image, the pixel values in
the image are 1 inside the object perimeter and 0 elsewhere to represent the background.

Building blocks: suggested feature scatter plots and gating strategies to help the user with
simple analysis and preprocessing tasks, such as determining in-focus cells in the IDEAS
software.

Multi-spectral images:.An image dataset in which the same field of view is imaged in
different spectral bands.

Aspect ratio: the ratio of the minor axis and the major axis. The major axis is the longest
line that can be drawn through the shape and the minor axis is the shortest line that can be
drawn through the shape at right angles to the major axis.



AND mask operation: The AND operator applied to two masks delivers the overlapped
shared area between the masks.

NOT mask operation: The NOT operator is a logic operator which delivers the inverse of a
mask i.e. 0s become 1s.

Confusion matrix: A confusion matrix is used to compare the predicted outcome of a machine
learning algorithm with the known classes of the data. In general, the rows represent the
number of instances of the actual class while the columns represent the number of instances of
a predicted class from the algorithm, or vice versa. Therefore the diagonal elements represents
the number of correct classifications and off diagonal elements can be used to assess where
the algorithms is making misclassifications.

t-distributed stochastic neighbour embedding: An algorithm used to visualise high
dimensional datasets in two or three dimensions. Nonlinear dimensional reduction of the
data to the 2/3D coordinate system is used to preserve the distances between similar and
dissimilar data points.
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Figure legends

Figure 1: Overview of imaging flow cytometry and images generated (a) Diagram of the
optical layout of the Imagestream flow cytometer. (b) Typical brightfield, darkfield and
fluorescent images and masks obtained from the ImageStream system (c) Example of cell
phenotyping using multiple CD markers using the ImageStream system

Figure 2: Process flow employed to select in-focus, single cell images from an acquired
event set. Using a histogram of the root-mean-squared pixel values from the masked
brightfield image the higher values are gated to determine in-focus cells. We note that the
image which belongs in yellow bin is blurred and removed to the gating choice. Using these
gated cells, a scatter plot of aspect ratio of the brightfield mask versus the area of the
brightfield mask is then used to further gate a population of objects with medium area and high
aspect ratio which removes cell clusters (top cell image) and speed beads (bottom image) or
debris.

Figure 3: Data analysis based on spatial information. [Au: please add a title for the
figure] Histogram of the number of nanoparticle loaded vesicles (NLV) in a cell population U2-
OS cells under exposure of 1nM Qtracker705 particles for 1 hour. The distribution exhibits
over-dispersion relative to a Poisson process (dotted line) with accurate representation of the
data being achieved using a negative binomial distribution function (solid red line). Typical cell
images together with the masks used are also show, the scale bar denotates 10um.

Figure 4: Spatial analysis based on area masking. [Au: please add a title for the figure]
(a) Differentiation of cell populations with membrane-associated or dispersed granules,
according to mask area. A cell perimeter mask was generated using the brightfield mask AND
NOT brightfield eroded mask — these are effectively the pixels that were removed by the
eroding operation. The membrane associated granules are now determined by the overlap of
the perimeter mask with the dark spot mask for example perimeter mask AND dark spot mask.
(b) Histogram of the dark spot overlap with the perimeter mask, typical brighfield images and
dark spot masks are shown for two typical histogram bins.

Figure 5: Spatial analysis based on morphology. Differentiation of cell populations with
membrane-associated or dispersed granules, according to the morphology of their spatial
distribution.
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