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Abstract 12 

Imaging flow cytometry combines the high event rate nature of flow cytometry with the 13 

advantages of single cell image acquisition associated with microscopy. The measurement of 14 

large numbers of features from the resulting images provides rich datasets which have resulted 15 

in a wide range of novel biomedical applications. In this primer we discuss the typical imaging 16 

flow instrumentation, the form of data acquired and the typical analysis tools that can be applied 17 

to this data. Focusing on the first commercially available Imaging flow cytometer, the 18 

ImageStream (Luminex) we will use examples from the literature to discuss the progression of 19 

the analysis methods used in imaging flow cytometry. These methods start from the use of 20 

simple single image features and multiple channel gating strategies, followed by the design and 21 

use of custom features for phenotype classification, through to powerful machine and deep 22 

learning methods. For each of these methods, we outline the processes involved in analyzing 23 

typical datasets and provide details of example applications. Finally, we discuss the current 24 

limitations of imaging flow cytometry and the innovations and new instruments which are 25 

addressing these challenges.26 



[H1] Introduction 27 

Conventional flow cytometry is a widespread and powerful technique for the measurement of 28 

light scatter and fluorescence from cells stained with phenotypic and functional markers 1,2. Cells 29 

are directed at high speed past laser excitation sources. Collection optics and detectors allow 30 

sampling rates of more than 10,000 cells per second, from over 30 wavelength channels. The 31 

level of fluorescence intensity measured from each channel can subsequently be used to identify 32 

cells with various phenotypes of interest, using a range of multivariate analysis tools for example 33 

FlowJo and FCS Express. Traditionally this is achieved using a series of two-dimensional scatter 34 

plots of different combinations of markers [G]. The user defines a polynomial region on the two-35 

dimensional scatter plot which identifies the cells of interest, and these cells are used to generate 36 

the next scatter plot using different markers, repeating the process until all markers have been 37 

used to identify the cell phenotypes required. 38 

Imaging flow cytometry combines the high event rate sampling of traditional flow cytometry 39 

with the acquisition of an image of each cell 3, thereby providing spatial information as well as 40 

total fluorescence intensity from each channel. For example, the ImageStream system 41 

(Luminex4) uses a charge-coupled device (CCD) camera with time delay integration to 42 

simultaneously acquire up to 12 images of each cell including brightfield [G], darkfield [G] and 43 

multiple fluorescent images at rates of up to 5,000 objects per second. Time delayed 44 

integration transfers pixel information row-by-row across the detector CCD in synchrony with 45 

the cell flow velocity, enabling the high speed acquisition of focused images from low intensity 46 

objects. Time delayed integration requires a highly stable flow and precise measurement of 47 

the object transit speed using a velocity detection system which provides closed loop control 48 

to the system. An autofocus system corrects the focus of the object in the flow stream by 49 

moving the objective lens in the z direction. The acquisition of images dramatically increases 50 

the measures available for each channel, for example cell area can be measured directly and 51 

more complicated metrics such as correlation, texture and granularity give information on 52 

marker localization and cell morphology. Typically, hundreds of measures or features can then 53 

be incorporated into the gating strategy to define cell phenotypes. 54 

Early application of imaging flow cytometry relied on the definition of simple image features 55 

from a cell’s spatial information, for example the overlap of a marker’s signal with the nucleus 56 

of the cell to measure nuclear translocation 5. The rich multivariate dataset derived from the 57 

large numbers of image features has led to more powerful analyses and the application of 58 

machine and deep learning techniques to enable cell classification and functional analysis. 59 

Similarly, advances in microfluidic handling of the cells, CCD cameras and imaging modalities 60 



have led to the prospect of significant improvements in the multi-spectral images [G] obtained 61 

and the speed of acquisition. 62 

This Primer will focus on typical analyses that can be carried out using imaging flow cytometry, 63 

highlighting the advantages of the images acquired compared with traditional fluorescence 64 

flow cytometry. While new imaging flow technologies are constantly being reported, the 65 

commercially available system from Luminex 4 has been the mainstay of imaging flow studies 66 

to date and will be the main focus here. Data collection and analysis steps that can answer 67 

specific questions related to the biology of the cell are discussed using specific datasets. 68 

Typical applications that use simple features extracted from the single cell images are 69 

described. For example, the use of spot counting to measure the uptake of nanoparticles in 70 

cells, the location of calcium in T-cells and morecomplex, user-defined features to determine 71 

the activation of eosinophils. Advanced machine and deep learning techniques can be applied 72 

to solve more advanced problems such as the classification of white blood cells and the 73 

identification of micronucleus phenotypes in cells exposed to a genotoxic compound. The 74 

limitations of imaging flow cytometry using current commercial systems are discussed and new 75 

technologies which are being developed to overcome these issues are outlined.  76 

[H1] Experimentation 77 

The general experimental design of imaging flow cytometry can be considered an extension 78 

of traditional flow cytometry. The measurement of suspension cells is well suited to these 79 

instruments owing to the fluidic cell handling systems, however adherent cells can be lifted or 80 

dissociated with the correct protocols 6. The number of cell images required depends on the 81 

application. The high event rate of imaging flow cytometry is perfectly suited to applications 82 

requiring high cell numbers, for example the identification of rare cells. This section outlines 83 

the general instrumentation setup, experimental design, sample preparation and data 84 

collection steps for the measurement of cells using imaging flow cytometry. 85 

[H2] Instrumentation 86 

In general, an imaging flow cytometer enables cells suspended in a fluid to pass before an 87 

imaging system. The fluid handling system can employ a sheath fluid, as in traditional flow 88 

cytometry 1, or transport the cells in a microfluidic device 7-9. The imaging system is usually a 89 

traditional CCD camera ,4 but systems using radiofrequency-tagged emission fluorescence 90 



microscopy to take advance of the sensitivity of photomultiplier detectors have also been 91 

demonstrated10. The ImageStream system marketed by Amnis (now part of Luminex) 11 was 92 

the first imaging flow cytometer, introduced in 2004. Cells in suspension are hydrodynamically 93 

guided into a core stream which is illuminated by an LED array and mixture of collinear and 94 

spatially separated laser lines at rates of up to 5,000 objects per second (Fig.1a). The 95 

standard excitation laser has a wavelength of 488 nm however the system can be expanded 96 

with up to five further lasers at 375, 405, 561, 592, and 642 nm; a higher-power 488 nm laser 97 

is also available 4. The ImageStream MkII system doubles the original 6 channel acquisition 98 

capacity to 12 channels by using two image detection systems including filters, spectral 99 

decomposition systems and two CCD cameras. This enables the capture of images from up to 100 

10 fluorescence channels together with brightfield and darkfield images (Fig. 1b and 1c). 101 

Images can be captured at 3 different magnifications 20, 40 and 60X giving a pixel resolution 102 

of 1, 0.5 and 0.3µm and native depth of focus of 8, 4 and 2.5µm respectively. The native depth 103 

can be increased using an extended depth of field 12, maintaining focus over a depth up to 16 104 

µm, an option which is useful for spot counting applications. A high gain mode can also be 105 

introduced to adjust the gain setting, object detection thresholds and masks [G] to maximize 106 

the measured signal while minimally increasing the noise. This high gain mode enables the 107 

measurement of dim fluorescence markers or very small objects, such as extracellular 108 

vesicles13 and viruses. The ImageStream system can also be outfitted with a 96-well plate 109 

reader to aim unattended acquisition, 384-well plates and larger are not supported. 110 

A major strength of the ImageStream system is the comprehensive acquisition and analysis 111 

software for the exploration and analysis of the rich multivariate datasets. The data acquisition 112 

software (INSPIRE) enables the basic self-test, calibration and set up of the instrument. During 113 

data acquisition researchers can modify instrument operating parameters and observe the 114 

images obtained from each channel in real time. Furthermore, data can be acquired selectively, 115 

based on a gating strategy from image features to reduce the number of unwanted images in the 116 

subsequent data file. 117 

 118 

[H3] Calibration 119 

 Prior to analysis, all analytical systems should be calibrated [Au: Edit OK?]. The ImageStream 120 

system uses a suit of calibration tests called ASSIST. The ASSIST tests monitor excitation laser 121 

power, optical alignment, flow stream stability and focal quality. The calibration process also 122 

measures spatial registration and can correct if misaligned. During calibration, any failed tests 123 

are flagged so the user can compare the results against the accepted pass parameters. Often, 124 

rerunning the failed tests after a short wait time will rectify this, as it is quite common that after shut 125 



down and start up, the fluidics require time to stabilise, and the lasers need to warm up. However, 126 

continued failure is a sign that there is a more serious issue and a trained service engineer may 127 

be required to diagnose the fault and find a solution.  128 

 129 

System performance is monitored and tracked using a well characterised standard. In the case of 130 

the ImageStream system, the standards are 1µm polystyrene micro particles called speed beads. 131 

Speed beads are not fluorescently labelled and there has been some reluctance in the flow 132 

cytometry field to use them to measure or infer photonic sensitivity of the system as a flow 133 

cytometer. The ASSST tests are often supplemented using multi-level fluorescent microspheres 134 

that can be used to infer photonic sensitivity for each imaging channel 14 in molecules of equivalent 135 

soluble fluorescence (MESF). The smaller the MESF value, the more sensitive the system should 136 

be for detecting a lower number of fluorochrome molecules and associated photons per 137 

cell/particle. The quoted value for the ISXmKII is 5 MESF making it one of the most sensitive 138 

fluorescence-based flow cytometers on the market. It is also advised to use a standard biological 139 

control if available. For example, peripheral blood mononuclear cells from a healthy donor or 140 

Leukapheresis cone. In this case an antibody against the surface protein CD4 as it is highly 141 

expressed on CD4 T cells with low to intermediate expression on monocytes could be used. As 142 

such this creates a cellular control with multiple levels of signal. 143 

 144 

[H3] Data compensation 145 

As with traditional flow cytometry, before any quantitative analysis can be performed, the data 146 

must be compensated for the spectral crosstalk between channels. The process of 147 

compensating imaging flow cytometry data is more involved given the spatial nature of the data. 148 

Essentially the spatially resolved data requires compensation at an individual pixel level 15. 149 

Separate aliquots of sample are stained individually with each dye/marker required for the full 150 

experiment and are run through the ImageStream separately. The ImageStream Data 151 

Exploration and Analysis Software (IDEAS) can then take these individual sample results to 152 

measure the crosstalk from each marker into the empty channels and calculate a 153 

compensation matrix. The compensation matrix is multiplied by the fluorescence intensities in 154 

each pixel which removes these unwanted contributions from each channel. 155 

[H2] Experimental design 156 

The first step of experimental design is to formulate the question and determine what key 157 

measurements are needed. Imaging flow cytometry tends to be more labor intensive than non-158 

imaging flow cytometry and provides fewer fluorescence channels. If the biological question 159 

requires a spatial or morphometric read out, then imaging flow cytometry will be the preferred 160 



technology. For example, measuring the degree or amount of FoxP3 (a protein involved in 161 

regulating the development of T-cells) in the nucleus of primary human regulatory (T-regs) cells 162 

using the cluster of differentiation 4T (CD4T) marker. The system capability impacts how many 163 

parameters can be measured per cell and which fluorochromes and dyes can be detected. The 164 

number and wavelength of available excitation lasers as well as important information about the 165 

detection channels (for example one camera versus two camera system) should be considered. 166 

There are several widely available online spectral viewers that can create a virtual machine with 167 

the right lasers and filters to aid in designing the optical setup. Next, the minimum number of 168 

biomarkers required to identify the cell type of interest from a heterogeneous population should 169 

be determined. If additional channels are available, the researcher should consider whether 170 

other parameters might be of interest and measure them simultaneously. 171 

For example, consider a protocol previously used to identify T-regs from whole, lysed human 172 

blood 16. To do this effectively, the sample may need to be stained with antibodies against CD45 173 

(pan-white blood cell marker) to distinguish white blood cells from un-lysed red blood cells and 174 

debris. An antibody against CD3 should also be included to identify all T cells within the CD45-175 

positive white blood cell (WBC) population. If focusing on regulatory CD4-positive T cells, 176 

antibodies against CD4, CD25 and CD127 (IL-7 receptor alpha chain) should be included. Each 177 

antibody would need to be tagged to a unique fluorochrome that would be compatible with the 178 

spectral setup of the system as well as each other. An advantage of imaging flow cytometry is 179 

that markers may be used in the same spectral channel if they are spatially distinct. The 180 

selection of fluorochrome to marker/target follows the same rules and approaches for 181 

conventional and full spectral fluorescence flow cytometry, where essentially, low expressed 182 

markers are assigned to bright fluorochromes and highly expressed markers to dimmer 183 

fluorochromes 17. Using the example above, when measuring the nuclear occupancy of the 184 

FoxP3 protein, an antibody against FoxP3 tagged to a compatible fluorochrome as well as 185 

spectrally compatible nuclear dye should be selected. In all cases, the fluorescent reagents 186 

require careful titration, including the nuclear dye, because signal saturation can pose a 187 

challenge owing to the reduced dynamic range on the CCD camera (12-bit compared to 18-188 

bit on a non-imaging flow cytometer) and the lack of control over each imaging channel (signal 189 

intensity is controlled by laser power, meaning that it can be challenging to balance a dim and 190 

bright signal for the same laser). Once reagents have been optimized, sample preparation 191 

follows the same process as with conventional flow cytometry. 192 

[H2] Sample preparation 193 

Sample preparation for imaging flow cytometry is analogous, in practical terms, to any form of 194 

fluorescent antibody or dye-based technology that is used to analyze cells or particles in 195 



suspension. Cells are prepared in a single-cell suspension and stained with surface marker 196 

antibodies, fixed, treated with intracellular antibodies and nuclear dye prior to acquisition. 197 

Nuclear dyes must be carefully titrated to ensure it does not saturate the other signals. As with 198 

conventional flow cytometry, single stained controls are required for compensation for all 199 

markers. The most noteworthy difference in sample preparation comes at the last step where 200 

it is essential to concentrate the samples in a low volume, for example 50 μl, and ideally if cell 201 

numbers allow, at a concentration of 20-30 million cells per ml (1 million cells total in 50 μl). 202 

While this may seem extreme, the imaging flow cytometer tends to run at a slower rate than 203 

conventional systems so it can take impractical amounts of time to acquire enough cells in 204 

dilute samples, particularly if looking for rarer cell types. Also, for larger volumes of a similar 205 

concentration the large number of cells measured can make the data files very large and the 206 

processing of the subsequent images becomes highly computer intensive. A highly 207 

concentrated sample of no more than 50µl volume will help to alleviate these issues, however 208 

if working with larger and sticky cell types, less concentrated samples may be preferred. 209 

Sample acquisition is relatively easy; it is often best to begin with a fully stained sample and 210 

use plots that show the raw maximum pixel [G]  for all events in any channel and to ensure that 211 

the excitation laser powers are set to achieve maximum signal without any saturation. 212 

[H2] Data collection 213 

An advantage of imaging flow cytometry is that the data output is usually in the form of single 214 

cell images because of the control afforded by channeling the cells in a sheath fluid or 215 

microfluidic device in front of the detector. The magnification is usually between 10 and 60x 216 

(image size of between 50 and 150 pixels squared) and the images may consist of as many 217 

as 10 different spectral channels. The rate at which the images are acquired depend on the 218 

flow rate of cells past the detector and the frame rate of the detector itself. Early instruments 219 

acquired 100 cells/s but new developments in opto-mechanical imaging have pushed speeds 220 

to exceed 10000 cells/s 9. However, there is a tradeoff between the acquisition speed and the 221 

image quality, for example using time delayed integrated CCD based imaging, the binning of 222 

pixel rows required at higher flow rates reduces the spatial resolution of the images acquired.  223 

[H2] Defining masks 224 

A key step in data analysis is the generation of image masks, where the cell boundaries and 225 

important intracellular regions inside the cell, such as nucleus boundaries, are identified. Most 226 

commercial instrument providers provide bespoke software which segment the individual cells 227 



providing masks, preprocess data to exclude out of focus and cell clusters (Fig. 2), and 228 

generate multiple image features. Open-source software is also available. 229 

The contrast in the brightfield image is often good enough to be able to define a cell mask but 230 

often a cytoplasm marker is used to define the extent of the cell, or a DNA marker can be used 231 

to define a nuclear mask. Simple masks can be obtained using a user defined threshold value 232 

for the marker intensity and setting pixels to 1 above that value, however a host of methods 233 

are available to automatically define the threshold value or deal with complexities such as 234 

nonuniform illumination. Once a mask has been defined it can be used to generate image 235 

features. Morphology measurements, such as area and shape measures, can be directly 236 

obtained from the masks and intensity measures are generated from the fluorescence pixel 237 

channel values where the mask pixel values are 1. Most commercial and the more recently 238 

developed imaging flow systems have associated masking software which works best with the 239 

image capture modality, for example, the INSPIRE software supplied with the ImageStream 240 

provides basic masks for each channel however these usually need to be modified for 241 

accuracy as described later. 242 

[H1] Results 243 

In this section, the process of taking the basic images acquired by imaging flow cytometry to 244 

identify cell features that can be used to perform tasks such as defining cell phenotypes or 245 

measureing biological function is discussed. This will involve removing non cellular images 246 

(such as debris or calibration speed beads) or images which are out of focus. Then data 247 

analysis techniques to perform phenotypic identification and biological function assays will be 248 

outlined starting with simple gating strategies through to the use of the latest deep learning 249 

algorithms 250 

[H2] Cell feature generation 251 

The process of data analysis in imaging flow cytometry follows the same procedure as for high 252 

throughput microscopy. The masks generated from the various image channels define the cell 253 

body, nucleus and any subcellular organelles to be used for analysis. The cell, nucleus and 254 

organelle shapes and size features can be extracted using typical open-source software tools 255 

or as is more often the case, researchers would use developed scripts in software languages 256 

such as Python, MATLAB and R. Commercial instruments are usually provided with software 257 

tools which generate cell features from the raw image data files and the software to analyze 258 

these features extracted, for example, using IDEAS supplied with the ImageStream system. 259 



 [H2] Pre-processing the cell images 260 

Before analysis of the acquired cell images can take place, the data set needs to be filtered to 261 

remove images that capture objects other than single cells or are out of focus due to the cell not 262 

coinciding with the focal plane of the lens (Fig 2). To identify the in-focus events, the intensity 263 

gradient along a pixel line is used (the focus building block [G] within IDEAS software); in a well-264 

focused brightfield image, the cell boundaries create a sharp intensity change and hence a high 265 

intensity gradient (root mean squared) value. The in-focus sub-population can then be defined 266 

with a high-pass gating of the gradient histogram. The focused sub-population may be further 267 

filtered to select single cells based on object size and shape (the single cell building block). This 268 

operates on morphological features obtained from the brightfield image mask, producing a 2D 269 

scatter plot of aspect ratio [G] versus area. A single-cell sub-population may be defined from 270 

the dense cluster of events with high aspect ratio (tending to circular shape) and intermediate 271 

area (lying above a band of smaller objects corresponding to debris, and below higher points 272 

representing images containing multiple cells). One further pre-processing step could also 273 

involve the identifying of any dead or inactive cells providing a suitable cell marker has been 274 

included in the experimental design. 275 

 276 

[H2] Data analysis 277 

Once the image features have been generated and the basic preprocessing protocols run, the 278 

image features can be used to identify phenotypes and measure biological function. Usually, 279 

the phenotype of each cell should be determined using successive gating of features. A further 280 

advantage of acquiring single cell images is the opportunity to identify subcellular locations 281 

and the spatial trafficking of proteins and signaling molecules using a combination of masks 282 

and features. Advanced multidimensional algorithms can be used for phenotype classification 283 

and functional analysis. 284 

[H3] Use of image features in flow cytometry gating 285 

The ImageStream is provided with IDEAS software that enables the data preprocessing and 286 

the usual gating analysis associated with traditional flow cytometry. It also includes several 287 

building block tools that suggest suitable image features, masks and gating strategies for typical 288 

cell image analysis. The first step using IDEAS is to generate and implement a compensation 289 

matrix to correct for spectral spillover or crosstalk between channels using the individually 290 

stained samples. This is a familiar process for flow cytometry however in the case of imaging 291 

flow cytometry the compensation matrix is used to deconvolve the cross-channel contributions 292 



in each single pixel. Furthermore, at instrument start-up the acquisition software corrects for 293 

the individual variations in each pixel’s dark current and gain, to give a uniform photometric 294 

response for each pixel in the image. Any vertical and horizontal pixel spatial offsets are also 295 

computed, and these are corrected during acquisition. The result is a brightfield, darkfield (light 296 

scatter) and up to 10 fluorescence channel images for every event that triggers the acquisition 297 

process. 298 

IDEAS automatically generates a segmentation mask for each channel per field of view (Fig 299 

1b). This allows the user to mask the cell outline using the brightfield channel and the nucleus, 300 

for example, if a nuclear dye has been included in the experiment. Often the automated masking 301 

parameters need to be adjusted 18, for example, by changing the intensity threshold level for 302 

segmentation, a process which is critical especially when detecting subcellular organelles. Once 303 

the object masks are accurately defined, shape morphology features such as area, perimeter 304 

and aspect ratio can be measured to be used in cell gating strategies. IDEAS also allows the 305 

measurement of more complicated image features which measure the texture and granularity 306 

which considerably enhances the assay opportunities compared with traditional flow 307 

cytometry. 308 

The ability to capture images of single cells at different wavelengths opens up many new 309 

avenues of investigation in comparison with traditional flow cytometry 19. For example, 310 

compared with measuring just an intensity value per channel, imaging flow cytometry allows 311 

capturing morphological features for each channel, such as cell area, perimeter and shape 312 

metrics. Early applications of imaging flow cytometry exploited the use of these simple features 313 

unavailable to traditional flow cytometry for phenotype identification. For example, while a 314 

rough approximation of cell size and shape can be obtained using traditional flow cytometry 315 

using forward and side scatter, an obvious application of imaging flow cytometry would be the 316 

direct measurement of cell size and shape. Imaging flow cytometry has been used extensively 317 

to study the cell cycle control in fission yeast where a detailed measurement of cell size is 318 

critical20 21 22. Similarly, the technique has allowed the classification of the morphological 319 

phenotypes of budding yeast based on the measurement of the size of bud lengths 23. The 320 

change in shape of the nucleus during mitosis allowed the detection of the anaphase, 321 

prophase, metaphase and telophase of the cell cycle with only a DNA marker 24.  322 

Imaging flow cytometry can analyze subcellular structures which is far more difficult, if not 323 

impossible, with traditional flow cytometry.For example, the IDEAS analysis software allows 324 

the detection of ‘spots’ in the cellular image\. IDEAS v6.3 software now allows the use of 325 

connected component masks, where a channel mask can be broken down into multiple 326 



individual component masks to label subcellular structures. All the feature measurements 327 

available for masks can then be applied to the individual components. This addition is 328 

especially useful when measuring multiple subcellular structures, for example in particle 329 

uptake studies where the intensity of individual vesicles containing nanoparticles is requird 28.  330 

[H3] Use of user defined masks and features 331 

A strength of the IDEAS software is the flexibility it provides to take the basic features and 332 

masks and modify them to provide custom measures tailored to the application. For example, 333 

the internalization of nanoparticles by cells was quantified using an internalization score, which 334 

was derived from the correlation of the fluorescence nanoparticle pixels in the cell mask and 335 

the same cell mask that was eroded by 3μm to remove the outer membrane region 29. A similar 336 

strategy was also used to measure the extent of the ciliary zone thickness in mature human 337 

bronchial epithelial multi-ciliated cells, as the difference in area between the cell body and the 338 

ciliated zone mask 30.  339 

[H3] Machine learning analysis strategies 340 

Combining the large numbers of possible features which can be derived from each channel 341 

image for every cell in the population can lead to an incredibly rich dataset with the power to 342 

identify more complex phenotypes. These multivariate datasets are perfect candidates for the 343 

application for high content approaches to identifying cell phenotypes and determining cell 344 

function. 345 

One of the first examples applying machine learning to imaging flow data identified the stages 346 

of the cell cycle including mitosis, as well as DNA content, in a completely label-free assay 31. 347 

In the machine learning training step, Jurkat cells were stained with propidium iodide, to 348 

quantify DNA content, and a MPM2 (mitotic protein monoclonal #2) antibody, to identify mitotic 349 

cells. This enabled identifying cells in G1, S, G2 phases and the four mitotic phases–prophase, 350 

metaphase, anaphase and telophase–using traditional gating techniques. The annotated cells 351 

were used to train a network to classify the phases based on the brightfield and darkfield 352 

channels alone, without the fluorescence channels. Finally, in the prediction (or inference) 353 

step, the trained machine learning model used the label-free channels alone to classify cells 354 

into phases and predict the intensity of propidium iodide stain. This machine learning strategy 355 

has also been employed to classify human white blood cells where CD markers were used to 356 



annotate the B, T cells, eosinophils, monocytes and granulocytes. Trained machine learning 357 

algorithms were able to identify the cell types using just the brightfield and darkfield channels 358 

32,33.  359 

To apply machine learning the user must extract a table of image features for each cell. IDEAS 360 

can measure large numbers of features for each channel, and these can be output for future 361 

analysis. Similarly open source software tools such as CellProfiler 34, which can extract large 362 

numbers of shape, intensity and textures features for multivariate analysis can be used 35. The 363 

user must decide on what features are used in the analysis depending on the classification or 364 

regression task at hand. Care must be taken to remove any non-biological features that can 365 

be present such as cell number or a timestamp. The user can pre-filter the data to remove any 366 

correlated or redundant features which can confound the learning process and speed up 367 

analysis times 36,37. Once the feature table has been extracted the user is free to choose any 368 

appropriate analysis tools, for example, MATLAB has a user-friendly machine learning toolkit, 369 

Python has extensive libraries such as Scikit-learn and also the open-source R language has 370 

been specifically designed for statistical computing. A machine learning module has recently 371 

become available within the IDEAS v6.3 software package to enable the application of 372 

machine learning techniques to the image data with no expert knowledge. 373 



[H1] Applications 374 

The range of applications of imaging flow cytometry has increased over the past 15 years 375 

and this has been driven not only by new advances in the technology’s hardware but also in 376 

the rapid development of computational techniques available to analyze the rich multivariate 377 

datasets acquired using these instruments. Applications have matured from using a single, 378 

simple image feature through to the deployment of advanced deep learning algorithms.  379 

 380 

[H2] Nanoparticle uptake  381 

Imaging flow cytometry enables the recognition and enumeration of sub-cellular areas, such as 382 

punctate spots within a cell image. For example, the heterogeneity of fluorescent nanoparticle 383 

(quantum dots) loading into endosomes can be assessed. U2-OS Osteosarcoma cells loaded 384 

with Qtracker705 (Invitrogen) nanoparticles were excited at 488nm and images acquired using 385 

the 660-735 spectral channel. Bright spots under laser excitation corresponding to endosomal 386 

vesicles loaded with nanoparticles are clear in the fluorescent channel (Fig 3). Using the masks 387 

feature, these fluorescent areas can be identified using one of a number of possible masking 388 

functions such as intensity, peak or spot. A measurement feature may then be generated from 389 

the spot mask to generate a summed spot area or a spot count per cell. In this example, these 390 

represent a dose metric for the accumulated nanoparticles and would be of relevance to a 391 

nanotoxicology or nanomedicine assay. It should be noted that this process of mask generation 392 

and feature extraction relies only on the presence of distinct pixel intensity clusters that may be 393 

identified within the cell image. A fluorescence image is not therefore essential and sub-cellular 394 

morphology may be clear within the scattered light variation of the dark field channel or as dark 395 

spots in a bright field image. 396 

The extraction of spatial metrics is not an end in itself, and the real impact of imaging flow 397 

cytometry lies in the application of post-measurement models and analysis of the data. For 398 

example, in this nanoparticle uptake data the statistical distribution of the number of 399 

nanoparticles loaded vesicles per cell is over dispersed relative to the Poisson distribution 400 

expected on a hypothesis of random particle arrival and internalization. Further study shows 401 

that this is due to cell area heterogeneity and provides predictions of the dose heterogeneity 402 

of nano-vectors 42. The potential for probabilistic models of cell processes is realized here by 403 

the ability to extract spatial information across large populations. 404 



[H2] Calcium Mobilization in T Cells 405 

Calcium acts as a ubiquitous signaling moiety in cell biology, passing on extracellular signals 406 

to drive changes in gene expression and cellular responses. In the immune system, calcium 407 

acts as a key secondary messenger downstream of the T cell receptor after recognizing 408 

foreign antigens. The measurement of calcium mobilization in T cells is often a critical assay 409 

for the characterization of cells from patients and from various transgenic mouse models, 410 

where T cell signaling is suspected to have been perturbed in some way. One of the key 411 

features of calcium signaling and mobilization is the spatial aspect, with temporal involvements 412 

and dependencies on different subcellular locations making it a very attractive model system 413 

to be measured using imaging flow cytometry. 414 

A fluorescent dye panel that is compatible with a 4 laser, 2 camera, 12 channel imaging flow 415 

cytometer is used to identify two key intracellular organelles involved in calcium mobilization, 416 

namely the endoplasmic reticulum and the mitochondria, and secondly, to report the flux of 417 

calcium ions in these locations 43. These dyes were carefully titrated to ensure optimal signal 418 

to noise, onward cell viability and organelle specificity. For the latter consideration, it is 419 

possible to use spatial information to confirm specificity of each organelle dye as it has been 420 

shown that excessive concentrations of such dyes will lead to a loss of specificity and a generic 421 

labeling of intracellular structures. In this case the bright detail similarity feature provides a 422 

metric for the spatial segregation of two distinct organelle dyes with low feature values (less 423 

than 1.5) representing good spatial segregation. After ~60 seconds of data collection, the 424 

sample was unloaded, a stimulus such as anti-CD3 antibodies or Calcium modulator added 425 

and then the sample reloaded to continue data acquisition. Single-stained samples were 426 

collected for compensation purposes. 427 

Corrected and compensated data was analyzed by creating a range of masks based on the 428 

specific organelle stains and restricting the kinetic measurement of various fluorescent 429 

calcium probes to these structures versus the whole cell signal. Utilization of this approach 430 

uncovers interesting features of calcium mobilization in activated T cells, namely that 431 

mitochondria seem to be able to act as a sink for intracellular ER-derived calcium and not just 432 

from an extracellular influx; this observation is wholly dependent on the ability to obtain single 433 

cell, kinetic spatial information at a population-wide level. 434 

[H2] Morphology analysis of granulocytes 435 



While traditional flow cytometry can indirectly measure granularity via the intensity of the 436 

scattered laser light, imaging flow cytometry can directly measure spatial variation in the 437 

brightfield, darkfield and fluorescence images. For example, the pronounced morphological 438 

features of eosinophils, a type of granulocyte which play a role in mediating inflammatory 439 

response can be analyzed. The granules in eosinophils are enzyme-filled vesicles and these 440 

produce high-contrast dark spots within brightfield images. When an eosinophil is activated due 441 

to an immune threat the granules increase in number and migrate to the cell surface. The 442 

procedure for assessing the sub-cellular distribution of these granules is applicable to any 443 

analysis of cell morphology based on brightfield image contrast.  444 

Eosinophils derived from leukocytes in whole blood required gating on the high autofluorescence 445 

signal, owing to the concentration of flavin adenine dinucleotide localized within the granules44. 446 

The brightfield images for the eosinophil population were analyzed to determine whether the 447 

granules are located at the outer edge of the cytoplasm, next to the membrane, or more evenly 448 

distributed within the cell. The analysis is based on the creation of area masks to define general 449 

sub-regions of the cell and to define the granules (using the masks function) (Fig 4a). Logical 450 

mathematical operations using these masked areas can then identify degree of overlap and 451 

quantify the spatial distribution of the granule dark spots (using the features function). A mask of 452 

the brightfield channel is automatically generated by the IDEAS software; erosion of this mask 453 

isolates the inner body of the cell. Logical combination of original plus eroded masks can then 454 

produce a mask of the cell perimeter, through a Brightfield mask AND NOT Erode mask 455 

operation [G]: shared areas, common to both masks, are removed from the original brightfield 456 

mask. Having created location masks that define the cell interior and perimeter, the image spots 457 

corresponding to granules can be masked. This can be achieved with a number of alternative 458 

masking functions such as intensity, peak or spot, with selection determined by user preference 459 

and their relative performance when applied to the specific cell image set being analyzed. Final 460 

extraction of a measurement feature, defining the degree of membrane association of the 461 

granules, is achieved by calculating the area of a combined mask resulting from logical 462 

combination of the granule mask AND perimeter mask, which selects only those masked granule 463 

areas that lie close to the cell membrane (Fig 4b). A histogram of the calculated area is plotted 464 

and used to gate cells [G] that have a high or low degree of overlapping dark spots underneath 465 

the membrane mask. There are often alternative approaches that may be taken in a spatial 466 

analysis for example implementing a morphology-based approach using only the dark spot 467 

mask. Rather than isolating the membrane associated granules this approach seeks to classify 468 

the different spatial distributions seen across a cell population to differentiate when granules are 469 

distributed across the whole of the cell and those where they are preferentially clustered at the 470 

cell membrane. A scatter plot of these features (Fig 5) presents a distribution of the cell-state 471 



extending from cells with centrally located granules on the lower left (dispersed and asymmetric 472 

pattern) to those with strong membrane association in the upper right (localized and symmetrical 473 

pattern). 474 

[H2] Machine learning 475 

[H3] White blood cell classification 476 

White blood cell phenotype identification can be used to demonstrate the steps involved in 477 

applying machine learning for automated analysis. In traditional flow cytometry this is typically 478 

achieved using CD markers to label the different cell phenotypes together with forward and 479 

side scatter. However, the white blood cell phenotypes can be classified without CD markers 480 

using imaging flow cytometry and machine learning (Fig S1). White blood cells derived from 481 

healthy doners were stained with Fluorescein isothiocyanate (FTIC) labeled anti-bodies 482 

against the cell surface markers for monocytes (CD14), neutrophils (CD15) and lymphocytes 483 

(CD19 - B cells and CD3 – T cells). These markers together with autofluorescence were used 484 

to identify eosinophils, using traditional gating techniques on image data acquired using the 485 

ImageStream system32. To employ machine learning for this task the first step is to export all 486 

used features to a data text file (in this example the measurement features for darkfield, 487 

brightfield and channel 4, which contains autofluorescence images). The features together 488 

with the known phenotypes for a cell population is then used as an input to train typical 489 

machine learning algorithms32. This example focusses on classifying the eosinophil, 490 

neutrophil, monocyte and lymphocyte cell phenotypes. In addition to image channel features, 491 

IDEAS also exports cell object and time data columns. These biologically irrelevant metrics 492 

need to be removed from the data prior to implementation of machine learning. The ability of 493 

machine learning algorithms to correctly classify the cell phenotypes using the combined data 494 

set of all sub-populations can be assessed. In this case the combined data for the 3 channels 495 

provides a data matrix of 115 metrics for 3,168 cells. The feature data matrix may be used 496 

with any chosen machine learning software, in the form of confusion matrices [G], from 497 

MATLAB’s classification learner app. For illustration purposes a naive Bayes and a fine tree 498 

algorithm were chosen. Both deliver highly accurate classification and unsurprisingly the 499 

decision tree is optimum as it follows the binary signal discrimination employed in the original 500 

manual gating. 501 

[H3] Deep learning 502 



The examples we have described so far have required measuring particular image features 503 

that are pre-defined by software. The IDEAS software, as well as open source bioimage 504 

analysis tools such as CellProfiler and ImageJ, can measure a large number of features, which 505 

can be selected by the researcher or used en-masse for machine learning. Deep learning, by 506 

contrast, has the potential to go beyond features that humans have pre-programmed into 507 

software. Deep learning algorithms (neural networks) use full images as the input to a 508 

convolutional network. When appropriately trained, the network generates the features 509 

required for the analysis applications; these features can often be more powerful than human-510 

designed ones. Deep convolutional neural networks for image classification are well suited to 511 

small multichannel images and they require large numbers of images to train, which makes 512 

them perfect candidates for the analysis of data from imaging flow cytometers. 513 

One of the first applications of deep learning to imaging flow data 38 trained a deep convolutional 514 

neural network to detect the different phases of the cell cycle using the pixel data of the images 515 

rather than extracting conventional image features. Other challenging applications are quite 516 

diverse. For example, a convolution neural network was trained to classify phytoplankton species 517 

and also to identify the stages of the life cycle 39. More recently the same deep learning algorithms 518 

were used to classify large numbers of pollen species with high accuracy 40. Furthermore, 519 

morphological and fluorescence features that were conserved at the various levels of taxonomy 520 

were determined. Similarly, deep learning was similarly used for predicting Cryptosporidium 521 

and Giardia in drinking water41. 522 

 523 

[H3] Micronuclei detection using deep learning 524 

A typical application of deep learning to imaging flow cytometry data is to take advantage of 525 

the large number of single cell images to classify individual phenotypes. For example, deep 526 

learning can be used to classify micronuclei events from imaging flow data. The in vitro 527 

micronucleus assay is the standard method for the assessment of possible DNA damage 528 

induced by chemical / radiative perturbation. The assay is the gold standard test of 529 

genotoxicity in the development of all chemicals and pharmaceuticals. When the nucleus 530 

divides during mitosis, chromosome fragments that fail to be incorporated into the daughter 531 

nuclei appear as micronuclei within the cell. Imaging flow cytometry has been shown to be an 532 

effective measurement tool for the micronucleus assay giving the high throughput single cell 533 

nature of the data 45 46 47. The assay was partly automated using spot counting to find the 534 

micronuclei within the cells 48 however it was subsequently shown that this is a perfect 535 



application for the use of deep learning to fully automate the classification of cells with 536 

micronuclei 49 50
.  537 

As with the application of deep learning to any problem, the type of neural network to be used 538 

should be determined. Several classification networks have been applied to imaging flow data 539 

including AlexNet 51, ResNet50 52 and VGG-16 53, all of which have been pre trained on many 540 

thousands of annotated images. The number of layers and complexity of the network can 541 

improve classification accuracy but also increase the time required to re-train the neural network. 542 

Once the network has been selected the input layer needs to be matched to the single cell image 543 

size pixel sizes. The individual images extracted are often of different sizes and therefore they 544 

need to be cropped or padded to the network input size. Also the application will dictate which 545 

image channels will be input into the network for classification. While classification networks 546 

were the first to be applied to imaging flow data, other networks can be used. For example, a 547 

Faster region-based convolutional neural network was used to quantitatively analysis of 548 

phagocytosis in cells using imaging flow cytometry data 54.  549 

It is also important to consider which programming language to use to implement the network. 550 

MATLAB has useful deep learning toolboxes, however Python has a host of different packages 551 

to implement convolutional neural networks including Keras, Cafe and TensorFlow. Although 552 

for non-experts, as with the addition of machine learning into the IDEAS software, likewise a 553 

deep learning module has now also been developed. This module can train using one of the 554 

popular neural networks within the user interface, removing the need for cropping and 555 

padding, making the application of deep learning easier for novice users. This tool was used 556 

recently to classify silicone oil droplets from protein particles55, a protocol which has 557 

noteworthy application in the development of biopharmaceuticals. 558 

To demonstrate training a deep learning neural network to classify cells with micronuclei, the 559 

publicly available dataset50 which contains TK6 cells which exhibit mono, bi, tri and 560 

quardanuclated phenotypes together with micronuclei events (Fig S2) after exposure to 561 

carbendazim can be used. The human annotated dataset has both brightfield and DNA 562 

fluorescence images which have been cropped/padded to 64x64 pixels and 563 

maximum/minimum renormalised per image. As a simple example, just the DNA channel was 564 

input into the ‘DeepFlow’ neural network 38 developed specifically for Imaging flow cytometry 565 

data which is available in Python and MATLAB for this image size and trained on 6445 566 

randomly selected images from each class over 30 epochs, minibatch size of 30 using the 567 

ADAM optimizer. The resulting confusion matrix (Fig S2e) shows the results of the trained 568 

network on 1609 test images, which gives an overall accuracy of 79.1% This can be improved 569 



by augmenting the rarer cell classes, using the brightfield channel and increasing the number 570 

images used to train. As well as classification, the weights of the penultimate layers of the 571 

trained network can be used to visualize the performance of the network or even for regression 572 

analysis. For example, extracting the weights from the (average pooling) layer above the 573 

classification layer and using t-distributed stochastic neighbour embedding [G] to reduce the 574 

features to two dimensions to visualize the class prediction. 575 

[H1] Reproducibility and data deposition 576 

The ImageStream system for imaging flow cytometry has an extensive calibration, self-check 577 

and initialization start-up process, resulting in excellent data reproducibility. As with all 578 

protocols that require staining or labeling cells, variable uptake of the markers or target binding 579 

can lead to problems with reproducibility in the analysis, however this is not a problem specific 580 

to imaging flow cytometry. In fact, a study to detect micronuclei events in cell conducted at 581 

three different laboratories (using different instrument settings, such as excitation laser 582 

intensities) using different DNA stains demonstrated that deep learning algorithms trained on 583 

data from one laboratory could be used to classify results from the other laboratories with high 584 

accuracy 50.  585 

The move to open and transparent data analysis has led to authors depositing data and analysis 586 

code using platforms such as FigShare, GitHub and within supplementary information with 587 

manuscripts. The flow cytometry community has adopted a set of minimum standards required 588 

for data (MIFlowCyt)) 58 and the preferred depository, FlowRepository. While no formal 589 

standards exist for Imaging Flow Cytometry, attempts have been made to outline best practice 590 

in report results and depositing data 60 which will become more important as more data is being 591 

made available. The MIFlowCyt minimum standards for reporting results includes the details 592 

required on the experimental design, samples/specimens used, preparation, treatment and 593 

staining of samples, instrument details and the analysis applied to the data. These reporting 594 

standards apply equally to Imaging Flow Cytometry however the data analysis on the images 595 

produced is more aligned to high throughput microscopy data. While these standards are not 596 

well established in microscopy, recent attempts have been made to determine best practices for 597 

analysis61 and reporting62 which should also be applied to imaging flow cytometry. 598 



[H1] Limitations and optimizations 599 

Imaging flow cytometry shows the value in combining the advantages of a microscope and a 600 

flow cytometer. However, the technique does have limitations, for example, in lacking 601 

capability for workflow automation, cell sorting, repeated time-lapse imaging of the same cell 602 

and 3D resolution. Nevertheless, recent advances, in the field of imaging flow cytometry itself 603 

and from other disciplines, are beginning to address these limitations. 604 

[H2] Automation 605 

An imaging flow cytometry workflow involves multiple steps, in which both the laboratory 606 

procedures for data acquisition and the computational procedures for data analysis often 607 

require manual handling., Steps such as sample staining, centrifuging, washing, sample 608 

handling, instrument preparation, data capturing, event gating, triggering, data cleaning, 609 

profiling all require manual handling. For wet-lab procedures, there are currently no robotic 610 

options such as those in plate-based or slide-based high-throughput machines. Although batch 611 

processing can be used, expert-guided analysis is the norm in computational processes and 612 

thus scaling within an automated and distributed computing platform is difficult. This poses a 613 

major challenge in downstream analyses, in which over 100 unique features, typically dozens 614 

of masks for cellular objects and subcellular compartments, as well as a large collection of 615 

algorithms available for each channel, yields several thousands of combinations to identify 616 

features and populations of interest. Partial automation is available, for instance, the Luminex 617 

ImageStream system is accompanied by data acquisition software (INSPIRE) and a separate 618 

analysis suite (IDEAS). This analysis platform does provide biologist-friendly templates 619 

(wizards) to guide users through common analysis scenarios, including foundational 620 

(compensation, gating), application-specific (apoptosis, localization, internalization), and 621 

exploratory (feature finder) schemes. Moreover, there are open-source attempts to orchestrate 622 

software modules and algorithms to improve automation in analysis procedures, commonly 623 

written in Python, MATLAB 63, or R 64.  624 

[H2] Sorting 625 

Sorting is an important feature of a cytometric system, regardless of imaging capability, because 626 

it allows physical segregation of objects to isolate subpopulations of unique cell types. This can 627 

allow subsequent assays on the subpopulations, or valuable procedures such as clonal 628 

selection and expansion. Unfortunately, constructing an image-based cell sorter requires 629 

several major modernizations in highspeed image acquisition, intelligent data analysis (often 630 

machine learning-based), and microscale sorting modules. In contrast to a range of choices for 631 



sorting flow cytometry, only a few sorting Imaging flow cytometry systems have been 632 

designed, and these are yet to become commercially available 65 66 67 68.  633 

[H2] Temporal resolution 634 

In a flow-based system, once the objects flow past the imager, they are either discarded or 635 

recollected in a common container. It is not, therefore, readily feasible to enable repeated 636 

imaging of the same cell, as seen in time-lapse, slide-based microscopy. The limitation to a 637 

single snapshot of each cell also rules against implementation of 3D reconstruction 638 

approaches such as confocal sectioning. However, progress has been made in 3D cell image 639 

reconstruction using digital holography to produce tomographic flow cytometry69. Future 640 

development could alleviate snapshot restrictions through implementation of object tracking 641 

and unique identification using cellular barcodes 70 71.. New concepts such as the use of spatial-642 

temporal transformations allow the use of photomultiplier detectors72 which offer the possibility 643 

of high-speed acquisition and sorting. Likewise, the use of ultrafast quantitative phase imaging 644 

offers the prospect of high speed imaging flow cytometry which can provide label free 645 

phenotyping73. 646 

[H2] Multi-object interaction 647 

Imaging flow cytometers can capture multiple objects if they appear within the same field of 648 

view at the point of acquisition, and can therefore provide information on close-proximity, 649 

object interaction. For example, the platform has been used to identify platelet binding to white 650 

blood cells 74. However, complex and/or long-range interactions between multiple objects 651 

would be a considerable challenge, if not impossible, to achieve. 652 

[H1] Outlook 653 

New imaging flow systems are making use of new methods to flow cells past the detectors, 654 

developing completely new image capture systems and adding new functionality such as 655 

adding cell phenotype sorting. In fact, these exciting new technologies are leading the way in 656 

producing new types of assays that cannot be carried out using current technologies and will 657 

form the future commercial systems in the very near future. At their heart all these produce a 658 

large number of single cell, often multichannel images and therefore the strategies for using 659 

imaging flow cytometry data remain similar irrespective of the instrumentation and therefore 660 

the analysis examples given here will be easily adaptable to other systems.  661 



Like many imaging systems, Imaging flow cytometry is susceptible to the triangle of imaging 662 

constraints— speed, resolution, and sensitivity—improving one parameter causes the others to 663 

suffer. These compromises become even more critical as data volumes, velocity and variety of 664 

biomedical research increase in the next 5-10 years. Even so, there are certain gaps for 665 

improvement in photonics and optics that are likely to improve Imaging flow cytometry systems. 666 

Future iterations may bring novel data acquisition and sorting technologies at higher resolution, 667 

with higher dimensions (larger 2D/3D FOV, temporal feature availability), while retaining, if not 668 

improving, the event capture rate that makes Imaging flow cytometry advantageous over other 669 

single-cell imaging platforms.  670 

Equally important will be improvements in data analysis techniques, in which feature stability, 671 

model reproducibility, and automation should be prioritized. Even with machine learning-based 672 

assistance incorporated in today's workflows, users are still heavily taxed with many iterations 673 

of data cleaning and modeling processes, such as quality control checks, manual annotations 674 

in supervised learning, normalization of all features to a common base to offset the wide variation 675 

in feature value ranges, feature selection to alleviate the curse of dimensionality, feature ranking 676 

and combinations to optimize population separations. It would be helpful to see advanced AI 677 

methodologies incorporated into a biologist-friendly pipeline to deliver more automated, less 678 

supervised, and more reliable classifier/phenotyping models. 679 

Given the ever-increasing levels of information to be captured from single cells, Imaging flow 680 

cytometry coupled with machine learning approaches provides a powerful platform for disease 681 

fingerprinting in clinical applications. Rare events (such as metastatic cancer cells) may be 682 

detected better than by microscopy, and disease states may be detectable that are otherwise 683 

invisible to clinicians. With sorting capability, Imaging flow cytometry would prove to be a very 684 

useful tool for clinical diagnosis and treatment monitoring, especially for hematological 685 

disorders, even without the use of biomarkers 75. If an intelligent, label-free, sorting Imaging 686 

flow cytometry is developed, users might collect sorted cells to allow clonal selection and 687 

expansion and do so iteratively to produce an effective cell therapy. Sorting Imaging flow 688 

cytometry would excel in pooled screening campaigns, in which multitudes of gene/compound 689 

combinations can be tested in an unprecedented throughput. In pool-based format, nucleic 690 

acids, CRISPR-ed oligos, small molecules or antibodies are mixed in the microfluidic device 691 

into cellular or droplet form, then screened by image-based sorting followed by downstream 692 

omic techniques such as next-generation sequencing or proteomics. Novel readouts include 693 

combinatorial treatment responses, differential co-expression, network and pathway analyses, 694 



to help discern complex phenotypes and regulatory programs, and subsequently prioritize 695 

candidate genes or compounds for biopharmaceutical manufacturing. 696 



Glossary 697 

Gates: a range of bins for the histogram or a polygon for the scatter plot. This process 698 
selects cells for further analysis. The gating process can be repeated to define phenotypes 699 
which require more than two markers for identification. 700 

Brightfield image: The simplest form of microscopy, where the image is formed by white 701 
light which is transmitted through the sample and then capture on a detector. 702 

Darkfield image: In the context of imaging flow cytometry, the darkfield image is formed 703 
when light scattered from the cell is collected on the detector perpendicular to the excitation 704 
direction. 705 

 706 

Raw maximum pixel feature: A feature in IDEAS that returns the maximum pixel value in 707 

an image acquired by the detector before any compensation. This is often used to set the 708 

laser excitation intensity to ensure that the pixel values are not saturated. 709 

Mask: a binary image which defines the extent of the object in an image, the pixel values in 710 
the image are 1 inside the object perimeter and 0 elsewhere to represent the background. 711 

 712 

Building blocks: suggested feature scatter plots and gating strategies to help the user with 713 
simple analysis and preprocessing tasks, such as determining in-focus cells in the IDEAS 714 
software. 715 

Multi-spectral images:.An image dataset in which the same field of view is imaged in 716 
different spectral bands. 717 

Aspect ratio: the ratio of the minor axis and the major axis. The major axis is the longest 718 
line that can be drawn through the shape and the minor axis is the shortest line that can be 719 
drawn through the shape at right angles to the major axis. 720 



AND mask operation: The AND operator applied to two masks delivers the overlapped 721 
shared area between the masks. 722 
 723 
NOT mask operation: The NOT operator is a logic operator which delivers the inverse of a 724 
mask i.e. 0s become 1s. 725 

Confusion matrix: A confusion matrix is used to compare the predicted outcome of a machine 726 
learning algorithm with the known classes of the data. In general, the rows represent the 727 
number of instances of the actual class while the columns represent the number of instances of 728 
a predicted class from the algorithm, or vice versa. Therefore the diagonal elements represents 729 
the number of correct classifications and off diagonal elements can be used to assess where 730 
the algorithms is making misclassifications. 731 

t-distributed stochastic neighbour embedding: An algorithm used to visualise high 732 
dimensional datasets in two or three dimensions. Nonlinear dimensional reduction of the 733 
data to the 2/3D coordinate system is used to preserve the distances between similar and 734 
dissimilar data points. 735 

  736 
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Figure legends 754 
 755 

Figure 1: Overview of imaging flow cytometry and images generated (a) Diagram of the 756 
optical layout of the Imagestream flow cytometer. (b) Typical brightfield, darkfield and 757 
fluorescent images and masks obtained from the ImageStream system (c) Example of cell 758 
phenotyping using multiple CD markers using the ImageStream system  759 

Figure 2: Process flow employed to select in-focus, single cell images from an acquired 760 
event set. Using a histogram of the root-mean-squared pixel values from the masked 761 
brightfield image the higher values are gated to determine in-focus cells. We note that the 762 
image which belongs in yellow bin is blurred and removed to the gating choice. Using these 763 
gated cells, a scatter plot of aspect ratio of the brightfield mask versus the area of the 764 
brightfield mask is then used to further gate a population of objects with medium area and high 765 
aspect ratio which removes cell clusters (top cell image) and speed beads (bottom image) or 766 
debris.  767 

Figure 3: Data analysis based on spatial information. [Au: please add a title for the 768 
figure] Histogram of the number of nanoparticle loaded vesicles (NLV) in a cell population U2-769 
OS cells under exposure of 1nM Qtracker705 particles for 1 hour. The distribution exhibits 770 
over-dispersion relative to a Poisson process (dotted line) with accurate representation of the 771 
data being achieved using a negative binomial distribution function (solid red line). Typical cell 772 

images together with the masks used are also show, the scale bar denotates 10µm. 773 

Figure 4: Spatial analysis based on area masking. [Au: please add a title for the figure] 774 
(a) Differentiation of cell populations with membrane-associated or dispersed granules, 775 
according to mask area. A cell perimeter mask was generated using the brightfield mask AND 776 
NOT brightfield eroded mask – these are effectively the pixels that were removed by the 777 
eroding operation. The membrane associated granules are now determined by the overlap of 778 
the perimeter mask with the dark spot mask for example perimeter mask AND dark spot mask. 779 
(b) Histogram of the dark spot overlap with the perimeter mask, typical brighfield images and 780 
dark spot masks are shown for two typical histogram bins. 781 

Figure 5: Spatial analysis based on morphology. Differentiation of cell populations with 782 
membrane-associated or dispersed granules, according to the morphology of their spatial 783 
distribution.784 
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