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Abstract

To characterize the Neumann problem for nonlinear Fokker-Planck equations, we in-
vestigate distribution dependent reflecting SDEs (DDRSDESs) in a domain. We first prove
the well-posedness and establish functional inequalities for reflecting SDEs with singular
drifts, then extend these results to DDRSDEs with singular or monotone coefficients, for
which a general criterion deducing the well-posedness of DDRSDEs from that of reflecting
SDEs is established.
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1 Introduction

Because of intrinsic links to nonlinear Fokker-Planck equations/mean-field particle systems and
many other applications, distribution dependent (McKean-Vlasov) SDEs have been intensively
investigated, see for instances the monograph /surveys [7, 11, 28] among many other references.
To characterize the Neumann problem for nonlinear Fokker-Planck equations in a domain, we
aim to develop a counterpart theory for distribution dependent reflecting SDEs (DDRSDEs for
short).

The only reference we know on this topic is [1], where DDRSDEs are studied in a convex
domain for coefficients satisfying the Ws-Lipschitz condition in the distribution variable and
the semi-Lipschitz condition in the space variable. We will work on a general framework where
D may be non-convex and the coefficients could be singular in both space and distribution
variables.
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We first state the fundamental assumption on the domain in the study of reflecting SDEs,
then introduce the link of DDRSDEs and nonlinear Neumann problems, and finally summarize
the main results derived in the paper with an example of (singular) granular media equation
with Neumann boundary.

1.1 Assumption on the domain

Let D C R? be a connected open domain with boundary dD. For any € D and r > 0, let
Npr={n€R: n|=1,B(x—rn,r)ND =0},
where B(z,r) :=={y € R?: |z — y| < r}. Since 4, is decreasing in r > 0, we have

Ny = UpsoMNpr = liﬂ)l Npry x € 0D.
T

We call .4, the set of inward unit normal vectors of 0D at point x. When 0D is differentiable
at x, 4, is a singleton set. Otherwise .4, may be empty or contain more than one vectors.
For instance, letting D be the interior of a triangle in R?, at each vertex z the set .4, contains
infinite many vectors, whereas for D being the exterior of the triangle .4, is empty at each
vertex point x.

Following [19, 24], throughout the paper we make the following assumption on D, which
automatically holds for D = R? where 0D = ().

(D) Either D is convex, or there exists a constant 1o > 0 such that A, = A, ,, # 0 and

(1.1) sup inf {(v,n(y)) : y € B(z,70) NOD,n(y) € A} >ro, x € ID.

veR?,Jv|=1

Remark 2.1. We present below some facts on assumption (D).

(1) According to [24, Remark 1.1], for any x € 9D and r > 0, n € .4, if and only if
(y —x,n) > —% for € D, so that the condition 4, = A, ,, in (D) implies
ly —

, y€ D,z €dD,n(z) € N,
27’0

(1.2) (y —a,n(z)) > -
When D is convex, (D) holds for any 79 > 0 so that

(1.3) (y —x,n(x)) >0, y€ D,x €dD,n(zx) € N,
and (1.1) holds if d = 2 or D is bounded, see [29)].

(2) When 9D is C'-smooth, for each z € 9D the set .4, is singleton. If n(z) € A, is
uniformly continuous in x € 9D, then (1.1) holds for small 7 > 0. In particular, (D)
holds when 9D € C? in the following sense.



Definition 1.1. For any r > 0, let
O,D :={z € D:dist(z,0D) <r}, 0_.D:={x e D°:dist(z,0D) <r},
O0+.D :=(0,D)UO_.D, D,:=DU(J_.D).

For any k € N, we write 0D € CF if there exists a constant ry > 0 such that the polar coordinate
map

I:0D x [—ro,10] 2 (0,p) = 0+ pn(0) € Ospy D

is a C*-diffeomorphism, such that (6(z), p(x)) := I~!(x) having bounded and continuous deriva-
tives in « € d4,, D up to the k-th order, where 6(z) is the projection of x to 9D and

(1.4) p(z) = dist(z, D)1, py(z) — dist(z,0D)1s_, py(z), * € OxpyD.

Moreover, for € € (0,1), we denote 0D € C’f+€ if it is in CF with V*p and V*0 being e-
Holder continuous on 0,,D. Finally, we write 0D € C’f Lt it is CF with V¥p being Lipschitiz
continuous on 0,,D.

Note that D € CF does not imply the boundedness of D or 9D, but any bounded C*
domain satisfies 9D € C¥.

1.2 DDRSDE and nonlinear Neumann problem

Let Z(D) be the space of all probability measures on the closure D of D, equipped with the
weak topology. Consider the following DDRSDE on D C R¢:

(15) dXt = bt(Xty gxt)dt + Ut(Xh fxt)dVVt + H(Xt>dlt, t Z 07

where (W;)i>0 is an m-dimensional Brownian motion on a complete filtration probability space
(Q,{F }1>0,P), L, is the distribution of X, n(z) € A; for x € 9D, I, is an adapted continuous
increasing process which increases only when X; € 0D, and

b:[0,00) x Dx Z(D) = R% 0:[0,00) x Dx Z(D) = R'@R™

are measurable. When different probability measures are considered, we denote by Zxp the
distribution of a random variable X under the probability P.

Definition 1.2. (1) A pair (X;,[;)>0 is called a solution of (1.5), if X; is an adapted continuous
process on D, [; is an adapted continuous increasing process with dl; supported on {t > 0 :
X; € 0D}, such that P-a.s.

t
| 2]+ o (X, 2P < 0, £z 0,
0
and for some measurable map 0D > z — n(z) € 4;, P-as.
t ¢ ¢
Xt = X0+/ bT(Xr,gxr)d’l“—l—/ O'T(Xr,gxr)dwr —l—/ H(Xr)dlr, tZ 0.
0 0 0
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In this case, [; is called the local time of X; on 0D. We call (1.5) strongly well-posed for
distributions in a subspace PCP (D), if for any .Zy-measurable variable X, with Ly, € P,
the equation has a unique solution with Zy, € P for t > 0; if this is true for & = P (D), we
called it strongly well-posed.

(2) A triple (Xi, 1, Wy)i>0 is called a weak solution of (1.5), if W is an m-dimensional Brow-
nian motion under a probability space and (X, l;)¢>o solves (1.5). (1.5) is called weakly unique
(resp. jointly weakly unique), if for any two weak solutions (Xi,l;, W;);>o under probability
P and (Xt,lt,Wt)t>0 under probability P, Lxop = ,,S”XO@ implies Z{x,1,),50p = Dg(Xt,Zt)tonf’
(rAesp. LxteWisolP = LX) solp)- We call (L5) weakly Well—posefi for distributions in
P C P(D), if it has a unique weak solution for initial distributions in & and the distribution
of the solution at any time is in 2; it is called weakly well-posed if moreover & = 2 (D).

(3) We call (1.5) well-posed (for distributions in £2), if it is both strongly and weakly
well-posed (for distributions in ).

To characterize the nonlinear Fokker-Planck equation associated with (1.5), consider the
following time-distribution dependent second order differential operator:

1 _
(1.6) Ly, = Qtr{ (0007) (-, 1)V} + Vi, t>0,p € 2(D),

where V and V2 are the gradient and Hessian operators in RY respectively, and V, is the
directional derivative along v € R%. Assume that for any u € C([0,0); (D)),

(1.7) oy (x) = o¢(z, pue), by (x) = by(, p1e)

satisfy [|o** + [0"] € Lj,.([0,00) x D;dt py(dz)).

Let C%(D) be the class of C2-functions on D with compact support satisfying the Neumann
boundary condition V, f|sp = 0. By It6’s formula, for any (weak) solution X to (1.5), p; =
Zx, solves the nonlinear Fokker-Planck equation

(1.8) Oypur = Ly, e with respect to C3 (D), ¢ >0

for probability measures on D, in the sense that u. € C([0,00); 2(D)) and

(1.9 Pi= [ fdoc= s /us@suf) 5, 120, € C3(D).

On the other hand, by establishing the “superposition principle” as in [3, 4] based on [31],
under reasonable conditions we may prove that a solution to (1.8) also provides a weak solution
o (1.5). We leave this to a future study.
To understand (1.8) as a nonlinear Neumann problem on D, let Lf , be the adjoint operator
of Ly,: forany g € Lj,.(D, (llow(z, )|+ [be (2, p1e)|)dz), L7 ,,g is the linear functional on C§(D)
(the class of C?-functions on D with compact support) given by

(1.10) CiD)3 = [ (fLiuah@)s = [ {oLuyfHa)do
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Assume that %y, has a density function py, i.e. = ZLx, = pi(x)dx. It is the case under a
general non-degenerate or Hérmander condition (see for instance [6]), and Krylov’s estimate
(2.20) or (2.59) below implies the existence of p; for a.e. t > 0. When D € C?, (1.8) implies
that p; solves the following nonlinear Neumann problem on D:

(1.11) oot = Ly p,pt, Vimpilop =0, t >0
in the weak sense, where L, ,, := L ,(z)dz, and for a function g on 0D
Ving = Voeing + divop(gro,o/n)
for the divergence divgp on 0D and the projection 7 to the tangent space of dD:
v :=v — (v,n(z))n(z), ve Rz eadD.

If in particular co*n = An holds on [0,00) x D for a function A # 0 a.e., Vinplop = 0 is
equivalent to the standard Neumann boundary condition Vy,p;|ap = 0.
We now deduce (1.11) from (1.9). Firstly, by (1.10), (1.9) implies

[smwis= [ G+ [as [ (1, pwar fecioizo

so that 0yp; = Ly, pi- Next, by the integration by parts formula, (1.9) implies

[ Gmwie= [ Gowae+ [ ds [ ouLon e
~ [ tm@as+ | t ([GLpp@ie s [ {1 Tumzap = 0V oinf Yol ) s
- [ tm@as+ | t ([ o000t [ {Fumzapet flivon(pumo.oin) Yoo ) ds

- /D (for)(@)dz + /0 3 [ (AT} @e, ] € CHD). 20

Thus, Vinptlon = 0.

1.3 Summary of main results

Theorems 2.1-2.3 provide sufficient conditions for the well-posedness and functional inequalities
of reflecting SDEs with singular drifts. These results generalize the corresponding ones derived
in recent years for singular SDEs without reflection, and improve some existing results for
reflecting SDEs. The essential difficulty in the study of singular reflecting SDEs is explained in
the beginning of Section 2.

Theorems 3.1-3.4 present the weak and strong well-posedness of the DDRSDE (1.5) under d-
ifferent conditions, where the first result applies to locally integrable drifts with the distribution
dependence bounded by || - ||xvar + Wi (see Section 2 for definitions of probability distances),
the second result includes a general criterion deducing the well-posedness of (1.5) from that of
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reflecting SDEs, and the last two results work for the monotone case with the dependence on
distribution given by Wy (k > 1) or more general W,, induced by a cost function .

Theorems 4.1 and 4.2 establish the log-Harnack inequality for solutions to (1.5) with respect
to the initial distributions, which in particular implies the gradient estimate and entropy-cost
inequality for the distributions of the solutions. The first result applies to the singular case and
the other works for the monotone case.

To conclude this section, we consider an example of (1.11) arising from kinetic mechanics. For
simplicity, we only consider bounded domain, but our general results also work for unbounded
domains. See [35] for the study of exponential ergodicity.

Example 1.1 (Granular media equation with Neumann boundary). Let D be a
bounded domain with 0D € C’f L For a potential V : D — R and an interaction functional
W : R — R, consider the following nonlinear PDE for probability density functions on D:

Oor = Agy + diV{QtVV + o V(W x Qt)}v Vaoilop = 0,

where (W % 0,)(2) := [pa W (2 — 2)0i(2)dz. Tt is easy to see that this equation is covered by
(1.11) with
b(w, 1) = =VV(2) = V(W * p)(z), ofz,p) = V2l

where I, is the d x d identity matrix, and (W * p)(2) := [o. W(x — 2)p(dz).

If V and W are weakly differentiable with |[VW | < oo and |VV] € LP(D) for some
p > dV 2, then Theorem 3.1 with & = 0 implies that the associated SDE (1.5) is well-posed,
and Theorem 4.2 provides some functional inequalities for the solution. These results apply to
W (z) := |x|> which is of special interest from physics [5].

2 Reflecting SDE with singular drift

Let o¢(x,u) = oi(x) and by(z, ) = b(z) do not depend on p, so that (1.5) reduces to the

following reflecting SDE on D:
(21) dXt = bt(Xt)dt + Ut(Xt)th + n(Xt)dlt, te [0, T],

where T' > 0 is a fixed time. The associated time dependent generator reads
1
(2.2) L= §tr{0tafv2} +Vy,, t€10,7T).

The problem of confining a stochastic process to a domain goes back to Skorokhod [26, 27], and
has been well developed under monotone (or locally semi-Lipschitz) conditions, see the recent
work [10] and references within. In this section, we solve (2.1) with a singular (unbounded on
bounded sets) drift.

SDEs with singular coefficients have already been well investigated by using Zvokin’s trans-
form, see for instances [17, 37, 38, 41] and references within. However, the corresponding study
for singular reflecting SDEs is very limited. With great effort overcoming difficulty induced by
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the local time, in the recent work [39] Yang and Zhang were able to prove the well-posedness of
(2.1) for bounded C? domain, bounded b and o = I;. So, the general setup we discussed here
is new in the literature.

Before moving on, let us explain the main difficulty of the study by considering the following
simple reflecting SDE on D:

(2.3) dX; = by(X,)dt +V2dW, 4+ n(X,)dl,, t e [0,T],

where Wt is the d-dimensional Brownian motion and fo |1 dt < oo for some p,q > 2

”Lp Rd
with 4 » 4+ 2 . < 1. When A > 0 is large enough, the unique solution of the PDE

(@+A+Vbt)ut:/\ut—bt, t e [07T],UT:O

satisfies )
1 a
il + 190 < 5. 19001z = ([ 19200 it < o

see [17, 41]. Thus, for any t € [0, 7], ©; := id + u; (id is the identity map) is a homeomorphism
on R?, and by It6’s formula, Y; := 0;(X;) solves

dY; = Muy 0 O, 1 (Y,)dt + dW; + {(Vuy) 0 ;7 (V) AW, + {n(X;) + Vau (X;) }dl;.

When D = R¢, we have [, = 0 so that this SDE is regular enough to have well-posedness, which
implies the same property of (2.3) since ©; is a homeomorphism, see [17]. When D # R?, to
prove the pathwise uniqueness of Y; by applying Ito’s formula to |Y; — Y;|?, where Y, = @t(Xt)
for another solution X; of (2.3) with local time I, one needs to find a constant ¢ > 0 such that

(0:(Xe) — ©:(Xy), (0 + Vaug) (Xe))dl + (0:(X;) — ©4(Xy), (n + Viauy)(Xy)))dly

(2.4) . .
< | Xy — X7 (dly + diy).
This is not implied by (1.2) except for d = 1, since only in this case the vectors O;(x) — O4(y)
and (n + Vyu,)(z) are in the same directions of x — y and n(x) respectively for large A > 0.
To overcome this difficulty, we will construct a Zvokin’s transform by solving the associated
Neumann problem on D, for which V,u|gp = 0. Even in this case, ©; may also map a point
from D to D¢ such that (1.2) does not apply. To this end, we will construct a modified process
of | X; — X;|? by using a function from [9]. Our construction simplifies that in [39] and enables
us to work in a more general framework.

2.1 Conditions and main results

We first recall some functional spaces used in the study of singular SDEs, see for instance [37].
For any p > 1, LP?(RY) is the class of measurable functions f on R¢ such that

I fllLr ey := (/]Rd |f(x)|pdx)p < 0.



For any € > 0 and p > 1, let H*?(R?) := (1 — A)~2 LP(R?) with

1f1

For any z € R? and 7 > 0, let B(z,7) := {z € R?: |x — z| < r} be the open ball centered

at z with radius r. For any p,q > 1 and ty < t, let Lg(to, t1) denote the class of measurable
functions f on [to, 1] x R? such that

fer®d) = [[(1 = A)% fllo(ey < 00, f € HP(RY),

t1 %
g0 =510 ([ Matens flleett) < o

z€R4 to

For any € > 0, let flg’p(to,tl) be the space of f € f){;(to,tl) with

1

q
1f] ]?_Heyp(Rd)dt) < o0

t1
HSP (to,t1) -— SUP (/ lg(z + ) fi]

z€R4 to

for some g € C5°(R?) satisfying g|p(,1) = 1, where C5°(R?) is the class of C*° functions on R?
with compact support. We remark that the space Hg? (to, t1) does not depend on the choice of
g. When tq = 0, we simply denote

f/g(tl) = E{I’(O, tl), ﬂ;’p(tl) = ﬁ;’p(o,tl), t; > 0.

For a domain D C R?, we denote f € ié’(to, t1, D)(=: Dg(tl, D) for ty = 0), if f is a measurable
function on [tg, ;] x D such that

Hf”ig(to,tl,l)) = H]‘Df”f/g(to,tl) < 0.

A vector or matrix valued function is said in one of the above introduced spaces, if so are its
components.
We will take (p, q) from the class

d 2
H = {(p,Q)-p,qe(l,oo), 5+5<1},

and use the following assumptions on the coefficients b and o. Let || - [|» denote the uniform
norm for real (or vector/matrix) valued functions.

(AJ") (D) holds, a := oo and b are extended to measurable functions on [0,T] x R%, b has
decomposition b = b® + b1 with bﬁo)

(2.5) lim  sup |a;(x) — ai(y)|| = 0.

£20 13—yl <etel0,T)



(2) There exists (po,qo) € KX such that || € f}gg (T). Moreover, b is locally bounded on
0, T] x R, and there exist a constant L > 1 and a function p € CZ(D) such that

b () — bV ()]

(2.6) ||Vb(1)||C>o = sup <L,
te[0,T], x4y [z — |
(2.7) oM Vip > —L, (Vi n)lep >1, te0,T).

(A7") (AS®) holds, and there exist {(p;, ;) }ocici C H# and 0 < f; € ng (T),1 <i <1, such that
I
bOP € Lin(T), |IVol> <) fi
i=1

Remark 2.1. Each of the following two conditions implies the existence of p in (2.7):
(a) 0D € Cf and there exists a constant K > 0 such that (bﬁ”, n)|sp > —K for t € [0,T];

(b) D is bounded and there exist ¢ € (0,1) and xy € D such that
(2.8) (xg —z,n(x)) > el —xo|, =€ ID.

Indeed, if (a) holds then there exists rq > 0 such that p € C?(9,,D). Let h € C*(]0,0)) with
h(r) =r for r € [0,79/4] and h(r) = ro/2 for r > ry/2. By taking p = ho p we have p € CZ(D),
(Vp,n)|ogp = 1, and for any x € D letting £ € D such that |x — | = p(z), we deduce from
(2.6) and K (p(x)) = 0 for p(x) > ry/2 that

(b1 (@), V() = W (p(@) {0 (2), (@) + 0" (2) = " (@), m(@) } = =1+ o) LI |
Therefore, (2.7) holds for some (different) constant L. Next, if (b) holds, by (2.8) we may

take p(z) = N/l + |z — x|? for large enough N > 1 such that (Vp,n)|sp > 1. So, by the
boundedness of D and b € C([0,T] x R%), (2.7) holds for some constant L > 0.

Assumption (AJ") will be used to establish Krylov’s estimate for functions f € Nip,q)e Jgf/g (T),
which is crucial to solve singular SDEs, see Lemma 2.5 below. To improve this estimate for
(p, q) satisfying ;;l - % < 2 as in the case without reflecting (see [37]), we introduce one more
assumption.

Consider the following differential operators on D:

op® 1 .
(2.9) L = §tr(atUtV2)+VbE1>, te[0,7].

Let {P7"

¢ € C}(D), and any t € (0,71, (P;f;b(l)gzﬁ)se[M is the unique solution of the PDE

. = ob(D) :
}rst,>t=s50 be the Neumann semigroup on D generated by L7 1 , that is, for any

(2.10) Oty = —L;”b(l)us, Vats|lap = 0 for s € [0,1),u; = ¢.

For any t > 0, let C;([0,] x D) be the set of functions f € Cy([0,] x D) with bounded and
continuous derivatives 9, f, Vf and V2f.



(AS") 0D € C>" and the following conditions hold for o and b on [0,T] x D:

(1) a; := ov0] is invertible, (2.5) holds for x,y € D and there exist {(pi, ¢;) }o<i<t C A with
pi>2and 0 < fy € LP(T), 1 <i <1, such that
l
Vol <> fis Nallos + lla™ lloo + IVoll 221 7,0y < 00
i=1
(2) b=bD + 5 with VbV op = 0, [V |l + [|1on (0, 1) |0 < 00 and [0 € Lro(T), D)
for some (po, qo) € H with py > 2.

(3) For any ¢ € C%(D) and t € (0,T], the PDE (2.10) has a unique solution P_‘;’b(l)qb €
CY2([0,t) x D), such that for some constant ¢ > 0 we have (V°¢ := ¢)

IV P Gl < et — 8) 2|V ' lle, 0<s<t<T, i=1,2

(2.11) " 1
10.P5 " dlloe < clt — ) [ Vo], 0<s<t<T.

Remark 2.2. (1) Let p € C?(9,,D) for some ry > 0. Since Vplop = n, [|[VOWY | +
11op (0™, n)|| < oo implies [|15, p(b™", Vp)|lse < oo, which will be used in the proof of
Lemma 2.6 below.

(2) (A7%)(3) holds if D is bounded with dD € C?* for some o € (0,1), and there exists
¢ > 0 such that

(212) {b"(2) = b W) + llar(w) — as@)||} < et = s|* + |z = y|?), s,t €[0,T),z,y € D.

Indeed, 0D € 02+a implies n € C'*(9D), so that (2.12) implies estimates (3.4) and (3.6) in [8,
Theorem VI.3.1] with ¢ = oo for the Neumann heat kernel p;',’f(l)(x, y) of P;;b(l). We note that
according to its proof, the condition (3.3) therein is assumed for some a € (0, 1) rather than all

€ (0,1). In particular, VQpi )(,y)(x) and 85p§7’f(1)(:£, y) are continuous in (s,z) € [0,¢] x D,
and there exists a constant ¢ > 1 such that

. i |z—y| _
V'p Z’f<1)(-, y)(x)| <clt —s|” Gre e S> 0<s<t<T,z,yeD,i=0,1,2,

le—y|? _
107" (2, 9)| = |72 (L) (@) < et — 5| Fe D, 0<s<t<T,ayeD.

These properties imply (2.11). For instance, by [ b Psit(z,y)dy = 1, the second estimate implies
that for some constant ¢’ > 0,

/pﬁ“@ww@m4=69/pﬁmanmw—¢m»@

2 —yl? _
< c||ng§Hoo/ w1t — s~ e T dy < d(t—s), 0<s<t<T.z€D.
D

b
0P p(x)| =

When D = R? these estimates (hence (2.11)) hold for more general ¢ and bV, see [22].

The following are main results of this section, where Theorem 2.2 improves the main result
(Theorem 6.3) in [39] for bounded C? domain D, bounded drift b and o = I;. Moreover, going
back to the case without reflection (i.e. D = R?), Theorem 2.3 covers the main result (Theorem
1.1) of [18] where b(Y) = 0 is considered.
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Theorem 2.1 (Weak well-posedness). If either (AT") or (AS") holds, then (2.1) is weakly
well-posed. Moreover, for any k > 1 there exists a constant ¢ > 0 such that

(2.13) E[ sup |X§”\k] <c(l+|zF), Eefr <e¢, x€ D,

t€[0,T)
where (X7, 17) is the (weak) solution of (2.1) with X§ = x.
Theorem 2.2 (Well-posedness). Assume that one of the following conditions holds:
(i) d=1 and (A7) holds;
(i1) (AS") holds.

Then (2.1) is well-posed, and for any k > 1, there exists a constant ¢ > 0 such that

(2.14) E| sup [X* — Xtyvf] <clz —y|t, z,yeD.
te[0,T]

Consequently, for any p > 1 there exists a constant c(p) > 0 such that P,f(x) := E[f(X})]
satisfies

(2.15) [VPf(@)| = limsup LW =IO oy pio @, 1eciD), te o,

y—=T [z — |

Theorem 2.3 (Functional inequalities). Assume that (AS") holds with p, > 2. Then there
exist a constant C > 0 and a map c: (1,00) — (0,00) such that

(216) vas < Bpit, te0.1)5 € AD). p> L
(2.17) Bf? — (Pf)? <tCRIVf]?, feCHD), tel0,T],

Clr — y|? _ _
(2.18) Plog f(x) <log P f(y) + ——————, t€[0,T),z,y € D,0< f € %B(D).

t

To prove these results, we first establish Krylov’s estimates under different conditions, then
prove the weak and strong well-posedness by using Girsanov’s transform and Zvokin’s trans-
forms respectively.

2.2 Krylov’s estimate and It6’s formula

A crucial step in the study of singular SDEs is to establish Krylov’s estimate [16]. To this end, we
first introduce the following lemma taken from [40, Theorem 2.1}, which extends [37, Theorem
3.2] where bM) = 0 is considered. See [37, 41] and references within for earlier assertions.
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Lemma 2.4. Assume (AJ"). For any 0 < tg <t, <T and f € f}g(to,tl) for some p,q > 1,
the PDE

(219) (@ + Lt)u? = )\Ut)\ + ft, t e [to, tl], Ut)\l = O,

has a unique solution in f[g’p(to,tl). Moreover, for any 0 € [0,2),p" € [p,00] and ¢' € [q, 0]
with %+§ <2—-0+ ]% + %, there exist constants \g, ¢ > 0 increasing in ||b(0)||i§8 () (i-e. they do
not have to be changed when b is replaced by b® ujith Hb(O)HEgg(T) < ||b(0)||1i§g(T)): such that
forany X > Xo and 0 <tog <ty <T,A> X and f € LE(to,t1), the solution satisfies

12_9+i+ _d_2
S A [T 199 oy T 100+ Vo )l zgag )+ 10 200y < ell g0y

By estimating the local time, this result enables us to derive the following Krylov’s estimate
(2.20) and Khasminskii’s estimate (2.21).

Lemma 2.5. Assume (AJ"). Let (p,q) € .

(1) There exist a constant i > 1 depending only on (p,q), and a constant ¢ > 1 increasing in
||b(0)||£§8(T), such that for any solution X; of (2.1), and any 0 < to < t; < T, the following
estimates hold.

e E|( / Ifs(Xs)ldS)j

Fo| <y T € Bt 2 1

(221) ( fto ex) ‘dt‘ < eXp [C + CHfHLP (to tl)]’ f S z;(l])(t(htl)?
(2.22) sup E(e’ (r— lto)}ﬁ ) < 0 X > 0.
to€[0,T]

(2) For any u € C([0,T] x RY) with continuous Vu and
(2.23) ulloo + [IVeelloo + 11(8: + Vi Jullzzery + IVl gy < o0,
we have the following Ité’s formula for a solution X, to (2.1):

(2.24) dug(X,) = (8, + Lo)ug(X)dt + (Vuy(X,), oo (X)W + (Vauy) (X,)dL.

Proof. (1) We first prove (2.20) for j = 1. By first using (| f| An)1p(o.n) replacing f then letting
n — 0o, we may and do assume that f is bounded with compact support. Next, by a standard
approximation argument, we only need to prove for f € C5°([to, 1] x R?).

Let f € C°([to, t1] x RY). By Lemma 2.4, for any (p/,¢') € ¢, (2.19) has a unique solution
satisfying
N ([l loo + VUM loo) +11(8: + Vb<1>)u)\Hf,Z:(t07tl) + HUAng;pI(tO "

(2.25) o

S CleHEp:(toil)’ )\ Z )\07
q
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where € > 0 depends on (p/, ¢') and Ag,c > 0 are constants 1ncreasmg in [|6©| izo(r)- To apply

It6’s formula, we make a standard mollifying approximation of u*, which is extended to R4*!
by letting u := u?tvto)Atl for t € R. Let 0 < o € C3°(R%*1) such that Jgair 0(2)dz = 1. For any
n > 1, let
(2.26) u)"(z) = nd+1/ up (v —y)o(ns,ny)dsdy, tc R zcR%
Rd+1
Then
7}5{30 {”(at + Vb(l))(u’\’” o U)\)“i/f;:(to,tl) - HuAn - u>\||f{§/’p/(t0,tl)} =0, ()X,

so that as shown in the proof of [38, Lemma 5.4,

(2.27) 1= (0 + Lo — Nup"
satisfies
(228) B 1 = 1 0 = 00 ) € .

and (2.25) with (p/,¢') = (p, q) implies
(229) [ e + IV o < A gy 7> 1A > Ao

By Theorem 6.2.7(ii)-(iii) in [6], the conditional distribution of X; under P, is absolutely
continuous for ¢ > t¢, so that by the dominated convergence theorem, (2.28) implies P-a.s.

t1NTE
ﬁ) = lim E( / FI(X,)ds| 7, )
n—0o0 tO

Tk —mf{té[to, T|:l — 1y + /|b |ds>k} k> 1

Applying 1to’s formula to u»", we deduce from (2.27) and (2.29) that

(2.30) E( / T (s

to

where

— An
20)‘ E”f”f/p(to,tl) 2 ]E{uh/\ﬂ'k (th/\Tk) uto XtO "74150}
q

LTk t1 ATk
(2.31) :E( / (95 + Lyyuz™(Xs)ds + / {(Vaaoud"HX,)dl

to to

AvA
zE( [ i)z
to
Therefore,

tl/\’Tk { }
E / M (Xg)ds|.Z )
o E([ e
< CHfH[iZ(to,tl){z)‘iE + A+ AiEE(ltl/\Tk - lto’g}o)}v n7k > 1, A>0.

Sﬂto)

) = e T+ A Erny — ol Fio)

13



Combining this with (2.30), we obtain

t1ATE t1NTE )
E/ fSXSdsﬁ)zlimE(/ fa Xsdsa‘)
(233) ( to ( ) o n—ro0 to ( )
<l fllzpgein 2 F A+ ATEW, = Lol Fi) ), A> 0,k > 1

On the other hand, by (2.7) and the boundedness of o, we find a constant ¢; > 0 such that

(2.34) dp(X,) > —crdt — i [b0(X,)|dt + dly + (VA(X,), 00( X )dW,).

AvA
E(ltl/\Tk - lto’yto) < cl(t - to) +01E(/ ’bgO)(XS)‘dS ﬁ\to) + Hﬁ”oo
to

< ea(14N) + AN Ellynr, — b F), t €t T], A>0k>1

So, (2.33) with (p,q) = (po. ¢o) implies

for some constant ¢, > 0 increasing in [|b(|| izery- Taking A > 0 large enough such that

CoN" € § =, we arrive at
E(ltl/\Tk - lto’yto) S C37 k Z 1

for some constant c3 > 0 increasing in [|b(®| iz(r)- Letting k — oo gives
(235) E(ltl — lto|ﬁt0) S Cs, tO S tl S T.

This and (2.33) with & — oo imply (2.20) for 7 = 1, which further yields the inequality for
any j > 1 as shown in the proof of [38, Lemma 3.5]. Moreover, taking ¢’ € (2,¢q) such that
(p,q') € ', (2.20) for j =1 with (p, ¢’) replacing (p, q) yields

(/ f(X

This and [38, Lemma 3.5] with LIqJ, replacing L? imply (2.21) for i = ﬁ. Finally, combining
(2.21) with (2.34), b© € L¥(T) and [|0* V| < 0o, we derive (2.22).

(2) We first extend u to R by letting u; = ug for t < 0, and consider its mollifying
approximation u{™ defined above. Then ||¢||. < oo and (2.23) imply

(2.36) Tim {[Ju = u™ oo + [V (u = ul) oo + 10 + Le) (u = ™) g7} = 0.

< chHL” (to,t1) = <ty — tg) = Hf”ig(to,tl)-

Combining this with |||l < 0o and (2.20), we obtain

lim sup ]ufn}(Xt) —u(Xy)| =0, P-a.s.

n—00 te[o T

lim Vnu{"} S)dl, = / Vats(X,)dl, P-as.

n—oo

(2.37) T
lim ]E/ (00 + L) (ul™ — )| (X.)ds = 0,
0

n—oo

/ <V(U’§n} - us)(Xs)7 Js(Xs>dWs> = 0.

lim E sup
N0 10,7
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Therefore, we prove (2.24) by letting n — oo in the following It6’s formula:
t
@W&wmewﬁ/@+um&m&ms
0

+ / t<w§”}(xs),as(xs)dws>+ / t(Vnuin})(Xs)dlS, te[0,7T].

[]

+ % < 2, we first extend Lemma 2.4 to

the Neumann boundary case. For any k € N, let CO*([to, 4] x D; ;R?) be the space of f €
Cy([to,t1] x D;R?) with bounded and continuous derlvatlves in z € D up to order k. Let
Cy*([to, t1] x D; R?) denote the space of f € C,"*([to, t1] x D; R?) with bounded and continuous

Of.

Lemma 2.6. Assume (AS") but without the condition on |Vo||. Then (AJ") and the following
assertions hold.

To improve Lemma 2.5 for (p,q) € # with %

(1) Forany A>0,0<ty<t; <T and b, f € 02’2([150,151] x D;RY), the PDE
a,b) ~ -
(2.38) O+ LT + Vi, — N} = fi, 47, = Vaiplop = 0,t € [to, t]
has a unique solution @ € Cy*([to, 1] x D;RY).

(2) For any (p,q),(',q") € H and b € CP*([0,T] x D;RY), there exist a constant € > 0
depending only on (p,q) and (p',q'), and constants Ao,c > 0 increasing in HbH

such that for any 0 <ty <t, <T and f € Cy*([to, t1] x D;RY),

LP (T,D)’
239) XU+ 198 550011.00) < el 312000 A= Do (when p>2),

(2.40) NIV o < ellf gy A2 Ao

and there exists decomposition @ = aM + a™? such that

||v2 i 1||Lp(t0 t1,D) + ”(at + vb(l)) ||L” (to,t1,D) + ||V2 /\QH
+11(0: + me)ﬂA’QHi

LP (to,t1,D)
(2.41) ot

(to,t1,D) CHfHLP(tO t1,D)> A > Ao

Proof. (1) Let V := C*([to, t1] x D;R?), which is a Banach space under the norm

lullv.y o= sup ¥ luflog + [Vuelloe + [ VPl }, uweV

te(to,t1]
for N > 0. To solve (2.38), for any A > 0 and u € V, let

t1
O u) ;:/ e A= SP"b {Viu — fiydt, s € [to, t1].
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Then (A3") implies ®*(u) € C}*([to, t1] x D) with
(242) (95 + L2 = N)®M(w) = fo — Vi us, 5 € [to, 1], Va®(u)|op = 0, ) (1) = 0.

So, it suffices to prove that ®* has a unique fixed point @* € V :

s

t1
(2.43) aA:/ e A=) PV I @) — fAt, s € [to, 1),

which, according to (2.42), is the unique solution of (2.38) in Cr*([to, t1] x D;R?).
For any u,u € V, by [|b]|« < 00, we find a constant ¢; > 0 such that

t1 _ t1
192 (u) — (@) oo < / 1ol IV Cate — )| oodlt < 1 / 19 (g — 1) .

Similarly, (2.11) with ¢ = 1 implies
t1 N
V{2 (u)s — PMw)s}| o < c/ (t = 5) "2 [|belloo| IV (e — )] ocdt
t
< cl/ (t — 5) 31|V (g — ) | ool
while (2.11) with ¢ = 2 and ||b|es + || Vb|ee < 00 yield
t1
IV2{®)(u) — P2 (1) }H]oo < 0/ (t— 5)"2||V{V;, (ur — @)} || _dt
t1 °
<o / (t— ) {1Vt — @)oo + [ Vot — 1)}l

Combining these with (2.42) and the boundedness of a and b € C"'([to, t1] x D;RY), we find a
constant ¢y > 0 such that

1% (w) — (@) [lv.x

t1
< ¢y sup / e_N(tl_S)(t—s)_%{Hut—ﬂtHoo
SE[to,tﬂ
19 e = ) oo + (192 (0 — ) bt
t1 1
<l =l sup [ eV s) Hr

s€lto,t1] /s

So, ®* is contractive under the norm || - ||y v for large enough N > 0, and hence has a unique
fixed point @* in V.

(2) To prove (2.39) and (2. 41) we extend the PDE (2.38) to a global one such that estimates
in Lemma 2.4 apply. By (AS?), there exists 7o > 0 such that

©:0_pop = OnyD; 0 —1n(0) — 0 +1rn(d), rel0,r),0cdD
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is a C’b1 L _diffeomorphism (i.e. it is a homeomorphism with V¢ bounded and Lipschitz contin-
uous) and pp := dist(-, D) € C%(D,, \ dD), recall that D,, = {pp < ro}. For any vector field v
on 0y, D, v* := (¢~ ")*v is the vector field on 0°, D := 0_,,D \ 9D given by

(v, Vg)(2) == (v, V(g0 ¢ ")) (p(2)), €, D, geC' (3, D).
We then extend b\" and b, to R? by taking
(2.44) b = 1pb + hlpp/2)1a0, p(B7)%, b= 1pby + oo p(Bi)",

where h € C*°(R) such that 0 < h < 1, hf(—ooy/a = 1 and A, 2,00) = 0. Since (AS") implies
115V o < 00 and V,bM|sp = 0, we have ||[VbM ||, < co. Let

(2.45) p(x) = xlp(r) + (@)l plx), =€ Dy,
We extend @ to [tg, t;] x R? by setting

(2.46) u} = h(pp) (@) o @), t € [to,t].

We claim that

(2.47) u} € CPH(RY), t € [to, 1],

where Cp( TO) is the class of C}-functions f on D,, with Lipschitz continuous V f. Indeed,

since ¢ is a Cp*-diffeomorphism from d_,,D to 8,,D, ¢ € CY*(D,, \ dD) with bounded

and continuous first and second order derivatives, which together with @} € C2%(D) yields

u} € CPF(R?\ D). So, we only need to verify that @} o ¢ € Cp*(D,,). To this end, for any
r€0_,,D and v € RY, let
v = v — (v,n(0(z)))n(f(z))

be the projection of v € T,R? to the tangent space of 9D, recall that #(x) is the projection of
x to 0D, i.e. x = 0(x) — pp(z)n(f(x)) for pp(z) := dist(x, D). We have

Vo@(2) = Vi no@)m@@)P(x) + Vi, p(T)
(2.48) = lop(z)|(v,n(0(2))) n(0(x)) + {1p — 1o, p}(x)(v,n(6(x)))n(0(z))
—|—7T$U—|—pp( )( Trxvn)( ( ))

Since @} € CZ(D) with V,i}aop = 0, (2.48) yields
V(@ 0 @)(x) = (V7)) o p(z)

(2.49) =21y, p(x){v,n(0(x))) - (n(0(x)), (Vi) o $(x))
+ pp(2) (V (9, om0@) @) © §(2), T € Dy

Combining this with V) € CH(D), Va@}sp = 0 and n, Vn are Lipschitz continuous on d_,, D)
due to D € CP*, we conclude that V(4 o ) is Lipschitz continuous on D,,.
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Next, we construct the PDE satisfied by u*. By (2.48), we see that
(2.50) (V@) (V@) =@ holds on D, \ 9D,
where @) is a d X d symmetric matrix valued function given by

(Q@)vr, v) = (v1,02) + pp(2)*((Vir,0y 1) (0(2)), (Vir,0om)(0(2)))
+ pD(ﬂf){@l — 2o, p(){v1, n(0(2))n(0(2)), (Vr,en)(0(z)))
+ (v2 = 215, p(2)(v2, n(0(x)))n(6(x)), (szmn)(9($))>}

for x € D,,,v1,v2 € R¢. Then by taking o > 0 small enough, on D,, the matrix-valued
functional @) is bounded, invertible, Lipchitz continuous, and symmetric with

1
(2.51) Q ' (x) > Slas 7€ Dy

We extend a; := %ata;‘ from D to R? by letting

(2.52) ar := h(pp/2)(a; 0 3)Q " + (1 — h(pp/2))14.

Since (2.5) holds for ,y € D, with this extension of a it holds for all z,y € R% Combining
this with (2.44), Remark 2.1(a) for the existence of p, and noting that b; = bgl) +1 Dbgo) extends
b from D to R, we see that (AJ") holds.

Since h(pp/2), h(pp) € CER?) with h(pp/2) =1 on {h(pp) # 0}, by (2.38), (2.44), (2.52),
(2.47) and (2.50), we see that u} in (2.46) solves the PDE

(2.53) (9 + tr{a,V?} + V05 )ui = A + O+ 2 e lto, ], u} =0,

1)+I~7t
where outside the null set 0D,

F = (hopp)fio @+ 2(a,V(h o pp), V{i} o $}),

(2.54) )
£ = (@) 0 @)L + V3) (ho pp).

By (2.48), h € C>([0,00)) with support supph C [0,70/2], [|allec + [I16,,0Vwpllee < 00
according to (A5") and Remark 2.2(1), we find a constant ¢ > 0 such that

V] < ey (il + IVE) 0 &,

2] < elpppemay {(L+ BDIEN} o 6.
Since |f| + |b| + |@*| is bounded on [0,7] x D, so is |fOT+ @] on [0,7] x RY. Hence, by
Lemma 2.4, the PDE (2.53) has a unique solution in Hg’p(to,tl), for each i = 1,2 and A > 0,
the PDE

(2.55) (0 + tr{a, V2 + Voo g Jut = M + £t € [to, 1], uy’ =0
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has a unique solution in H gvp(to, t1) as well, and there exist constants c1,cy > 0 increasing in
Hb||£é,:(T7D) such that

N5 M oo + AP0 VM

(to,t1)

(2.56)

S cl”f(l)HZ;g(to,tl) — CQ(HJCHLP/2 tO t1, D + ||ut ||Lp t() t1 D)) p > 27

lq_d_2
(2.57) A% q)||vu)"1||oo + ||V2UA’1||£Z(to,t1) + [1(0: + Vb(l))u/\’lHig(to,tl)

< Cl"f(l)‘|[~/§’(to,t1) < 02(’|f|’[~/g(t07t17p) + Ha)\l‘ﬂg(to,tl,D))>
and

lq_d_2
MOFD (2 + [902) 4 1920,

(2.58)

+ H(at + vb(l))uAQ”ij(tO tl Cl“f ||LP t 1 ) < 62(]‘ + ||b|| tO tl’D))Hﬁ/)\HOO?

where the last step in these estimates follows from (2.54) and the integral transform
D,,\D — D

with [[(V@) ™! |e < 0o due to (2.50) and (2.51).
By taking large enough Ay > 0 increasing in [[b]|;,

that

.y We derive from (2.56) and (2.58)

1
e oo + 190 g1y < 5 (1 2072000, + 1 N 2gc01.0):

||u>\72||oo + ||Vu oo < 5”22)\”00’ A > Ao

Noting that the uniqueness of (2.53) and (2.55) implies u} = u;"" + ", this and the definition
of u yield

2
- - i g
18 oo + IV | 2p(e0,00 < D U108 oo + VUM | 23 00))
=1

1.,. -
< 5@ oo + 1l 2720 00,09 1821 2500001,

so that
H/&)\”OO + Hvﬁ)‘Hf}g(to,tl,D) S Hf”if;;;(to,thD)? A 2 )\0'

This together with (2.56)-(2.58) implies (2.39), (2.40) and (2.41) for some ¢, > 0. O

Lemma 2.7. Assume (AS") but without the condition on |Vo|. For any (p,q) € A with
p > 2, there exist a constant i > 1 depending only on (p,q), and a constant ¢ > 1 increasing
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in Hb(o)\bgg(ﬂl)), such that (2.22) holds for any solution (X, li)icjor) of (2.1), and for any
0<ty <t <T,

j .
f) < I

7p/2 .
ng(toytl)’ fe Lq/2(t07t1),j > 1,

(2.59) E( / Y R)lds

to

) f c Ep/2(t07T)7t0 S [OvT]

T (X)|d i
(2.60) E (el FE1 2, ) < exp [c—i—chHZpg(t . &5

0,T)

Proof. By Remark 2.1 (a) and step (2) of the proof of Lemma 2.6, (0, b\") extends to R¢ such
that (AT?) holds for b@15. = 0. So, (2.22) is ensured by Lemma 2.5.

As explained in step (1) of the proof of Lemma 2.5, for (2.59) and (2.60) it suffices to prove
(2.59) for j =1 and f € C°([to,t1] x RY).

Let (b°™),>1 be the mollifying approximations of 6 = 15b("). We have

(2.61) 1%l 20 ¢y < 1620 . Tim [[p™" — 6 220y = 0.

By Lemma 2.6 for (f,0,--- ,0)_rep1acing f, there exist constants ¢, \¢g > 0 such that for any
A > Ao, the following PDE on D

o (1) n n n
(2.62) (0, + L7 + Vyom — Nup™ = fi, t € [to,t1), V" op = 0,u"™ =0
has a unique solution in C12([tg,t,] x D), and for some constant ¢; > 0 we have

(2.63) 6™ loo < 1l fll oz g1, 0y 1VE " lloe < tllfllocy A2 Aoim 2 1.

Moreover, since (AJ”) implies (A5°) due to Lemma 2.6, by (2.20) for f = |b(© — 5°"|, we find
a constant cs > 0 such that

t1
(2.64) IE( / 5O — 0 (X,)ds

to

gzto) S C2Hb(0) - b07n"i58(t0’t1)7 n Z 1

By (2.62) and ™" € C,*([to, t1] x D), we have the following It6’s formula

dup™(X;) = (9, + Lo)u}™ (X,)dt + dM,
={fi+ ngm_bg,nulf’"}(Xt)dt + dM,

for some martingale M;. Combining this with (2.63) and (2.64), we obtain

t1
0 n
E( [ X2, ) < el g0+ el el = 87 g

Therefore, by (2.61), we may let n — oo to derive (2.59) for j = 1. O
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2.3 Weak well-posedness: proof of Theorem 2.1
We first introduce some known results for the reflecting SDE with random coefficients:
(2.65) dX; = Jy(Xy)dt + Sy(Xy)dW, + n(X,)dl,, t€[0,T],

where (W})icpo,r is an m-dimensional Brownian motion on a complete filtration probability
space (Qa {ta/\t}tE[O,TbP)a

J:0,T]x QxR =R S:[0,T] x QxR » R @ R™

are progressively measurable, and [; is the local time of X; on 0D. Let A be the set of increasing

functions h : (0,1] — (0, c0) such that fol hcés = 00, and let I be the class of increasing functions
v :[0,00) = [1,00) such that [~ ds = 00. When D is convex the following result goes back

v(s)
to [29], and in general it is mainly summarized from [10, Theorem 1, Corollary 1 and Theorem

2], where the condition in the first assertion is more general than that stated in [10, Theorem
1.1]:

1S:(x) = Se(y)I7rs + 2z — . Ju(2) — Ju(y)) < g:h(|lx —y[*), t€[0,T),z,y € D,
since in the proof of this assertion, one only uses the upper bound of
1S:(Xe) = Su(Yo)l[7rs + 2(Xs = Vi, Jo(Xe) — Ju(Y2)),

so that the present condition is enough for the pathwise uniqueness. In Theorem 2.8(3), the
term tr{S;S;V?V;} was formulated in [10, Theorem 1.1] as ||S;(z)||*?AV;(z), which should be
changed into the present one according to Ito’s formula of V;(X;). Moreover, when S and .J are
bounded and deterministic, the weak existence is given in [23, Theorem 2.1].

Theorem 2.8 ([10, 23, 29]). Assume (D).

(1) For any two solutions X, and Y; of (2.65) with Xy =Y, € D, if there exist h € A and a
positive L*([0, T))-valued random variable g such that P-a.s.

1S:(Xe) = Se(Yo)llzzs + 2(Xe — Yo, Ji(Xy) — Ju(Y2)) < geh(| X, = Yif?), t €0, 7],
then X; =Y, up to life time.

(2) If P-a.s. S and J are continuous and locally bounded on [0, 00) x D, then for any initial
value in D, (2.65) has a weak solution up to life time. If S and J are bounded and
deterministic, (2.65) has a global weak solution.

(3) If either D is bounded, or there exist 1 <V € CY2([0,T] x D) with
lim inf Vi(z) =00, VaViop <0,

2€D,|z|—00 t€[0,T
and a positive L*([0, T))-valued random variable g such that P-a.s.

tr{S,S; V2V, } + 2(VV(x), Jy(2)) + 20,Vi(z)
< gy(Vi(z)), t€[0,T],2 €D

holds for some ~ € T', then any solution to (2.65) is non-explosion.
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Next, we apply Theorem 2.8 to (2.1) with coefficients satisfying the following assumption,
where (1) is known as monotone or semi-Lipschitz condition, which comparing with (1,) allows
o to be unbounded.

(H1) b and o are locally bounded satisfying the following conditions.
(1) One of the following conditions holds:

(1a) (AJ) holds with ||Vol||> < S, fi for some 1 < f; €€ EZ; (T) withl € N and {(pi, ¢;) }1<i<i C
., or (AJ%) holds. Moreover, there exists a constant K > 0 such that

(266) <l’ - yvbt(x) - bt(y» < K|$ - y|27 te [07T]ax7y € D
(1) There exists an increasing function h : [0,00) — [0, 00) with fo T+h Tihey = 0% such that
(2.67) 2(x —y.be(2) = bu(y) " + lov(x) — oe()lls < h(lw —yl), t€[0,T],2,y € D.

(2) |lo|l < c(14-[?) holds for some constant ¢ > 0, there exist zo € D and OD C dD such
that

(2.68) (x — z0,n(2)) <0, x€dD\ID, n(z) € N
and when OD # 0 there exists a function p € CZ(D) such that

(2.69) (Vp,m)op = 15p, e, {Ilo"Vpll + [[tr{oo"V?p} | + (b, Vp) "} < K.
0,T|xD

According to (1.3) and Remark 2.1(a), (H1)(2) holds with p = 0 if either D is convex, and
it holds with g = p in p,, /2D for some ro > 0 when 0D € C} and |lo|| + (b, Vp)~ is bounded
on [0,T] x 0,,D.

Lemma 2.9. Assume (D) and (H1)(1). Then the reflecting SDE (2.1) is well-posed up to life
time. If (H1)(2) holds, then the solution is non-explosive, and for any k > 0 there exists a
constant ¢ > 0 such that

(2.70) E[ sup |Xf|k} <c(1+|z), xeD,tel0,T]
te[0,T

(2.71) SUPE(ek(ifl_i%”ﬁto) <c 0<t <t <T,
z€D

where (X7, 17) is the solution with X& = x, and I¥ = fo ) (X9)dIs.

To prove this result, we need the following lemma on the maximal functional for nonnegative
functions f on D:

Mp f(x) = sup !

_ Ipf)(z +y)dy, =€ D.
S0P 1B ] Sy 2 TY)
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Lemma 2.10. Let 0D € C’g.

(1) For any real function f on D with |V f| € Li (D),

loc

(@) = W)l < clz = yl(Ap|V fI(z) + AV fI(y) + Ifll«), ae zy€D.

(2) There exists a constant ¢ > 0 such that for any nonnegative measurable function f on
0,7] x D,
-0 gy < W zgroy, P> 1.
Proof. We only prove (1), since (2) follows from [37, Lemma 2.1(ii)] with 15 f replacing f. Let
@ be in (2.45). Take 0 < h € C3°(R) with h(r) =1 for r <r¢/4 and h(r) = 0 for r > ry/2. We
then extend a function f on D to f on R? by letting

f(x):={hopp}fogp,

where pp is the distance function to D. Then there exists a constant ¢ > 0 such that
VI <16Vl +ela,, .n(lf o ¢l +[Vflo@).

By [41, Lemma 5.4] and the integral transform z — @(z) with |[(V@)~!|| bounded on 9_,,D,
we find constants ¢y, co > 0 such that for any x,y € D,

|f(x) = fy)l = If(ff) — f(y)l
< ale —yl(A|Vfl(@) + AV fI(y) + 1 flloo}
< eolw — yl{Ap|V () + |V fI(y) + | flloc )
where .# = .#p for D = R, m

Proof of Lemma 2.9. (1) We first prove the existence and uniqueness up to life time. Since o
and b are locally bounded, by a truncation argument we may and do assume that ¢ and b are
bounded. Indeed, let for any n > 1 we take

of™(z) == o ({1 A (n/]z))}x), bi™(x) = h(jz|/n)bi(z), t>0,2 € D,

where h € C§°([0,00) with 0 < h < 1 and hlpy = 1. Then o™ and b{™ are bounded on
[0,7] x D and for some constant K,, > 0,

(b (@) = b (), x — )
< h(|z|/n)(be(x) = biy),z — ) + |h(|2|/n) — h(ly!/n)\@t(y),x -y
< (by(x) = be(y),x —y)" + Kyl —yl*, t€[0,T),z,y € D,|y| < |zl

So, by the symmetry of (b;{n} (x) — bf"} (y),r —y)" in (z,y), under (1,), o and bi" are bounded
on [0, 7] x D and satisfy (2.66) with K + K, replacing K; while (1,) and

HIA (n/[z)}e = {1 A (n/ly) 3yl < |z =y
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imply that ot and b{"} are bounded and satisfy (2.67) for 2h(r) + K,r replacing h(r). There-
fore, if the well-posedness is proved under (H1) for bounded b and o, the SDE is well-posed
up to the hitting time of dB(0,n) for any n > 1, i.e. it is well-posed up to life time.

When o and b are bounded, the weak existence is implied by Theorem 2.8(2). By the
Yamada-Watanabe principle, it suffices to verify the pathwise uniqueness. Let X; and Y; be
two solutions starting from x € D. By Lemma 2.10(1) and (H1)(1),

| X — Yi|?, under (1,),
X)) — o, (Y)I? 4+ 2(X; = Y., b,(X;) — bi(Yy)) <
lon(X0) = (Vi) s + 20X, = i, bu(X) = bu(¥2) < {hﬂ X, ~Yi?), under (1),
where for some constant ¢ > 0
gi = c{l + Mp ||V |*(X) + t///D”VUt”Q(Y;)}'

So, by Theorem 2.8(1), it suffices to prove fOT gdt < oo under (1,). By Lemma 2.10, this
follows from (2.20) under condition (AJ") with [|[Ve||> < S2i_, fi for some 1 < f; €€ ZNL{]’Z? (T)
with [ € N and {(pi, ¢:) }1<i<i C 2, or (2.59) under condition (AJ").

(2) To prove the non-explosion, we simply denote (X;,l;) = (X7, [I7) and let

T, =inf{t > 0:|Xy| >n}, n>1
By (H1)(2), we find a constant ¢; > 0 such that
(2.72) dp(X,) > —Kdt + dM, + dl,, t € [0,T]

holds for dM; := {0:(X;)*Vp(X;), dW;) satisfying d(M); < K?2dt. This implies (2.71). Next,
by (H1), we find a constant ¢; > 0 such that

2(be(z), @ — 20} + low(@)lZrs

= 2(be(2) — bi(wo), x — @0) + [loe() — ou(w0) s
+2(be(wo), @ — w0) + l|ow(20) 15 + 2(0e(w0), 0e(7)) s

<ei(1+ |z —xf*), v €D.

Then by (H1)(2) and It6’s formula, for any k£ > 2 we find a constant ¢ > 0 such that
d’Xt — .T0|k S 62(1 + |Xt — $0|k)dt + th + let - l’0|k71dit,

where M, is a local martingale with d(M); < ¢5(1 + |X; — 0/*)2dt. By BDG’s inequality and
(2.71), we find constants cs, ¢4 > 0 such that

o™= sup (L4 X, —@off), n>1,te(0,T]

S€[0,tATR]

satisfies

t t 3 L
En{™ <1+ |z — a|* + 03E/ ni"ds + 2¢sE” (/ |n§”}|2d8) +kE [Im{"}l%lt}
0 0

24



t
< ZEn{™ + (1 + |2fF) + 64/ En{™ds, t e [0,T].

0

N =

By Gronwall’s lemma, we obtain
Efpi") < 2ei(1+ [e[)e***, t€[0.T],x € Don>1,
which implies the non-explosive of X; and (2.70) for some constant ¢ > 0. [

Proof of Theorem 2.1. Let Xy = x € D. We consider the following two cases respectively.
(a) Let (AT") hold. Then (H1) holds for b replacing b. By Lemma 2.9, the reflecting
SDE

(2.73) dX, = b (X)) dt + oy (X,)dAW, + n(X;)dl,

is well-posed with (2.70) holding for all £ > 1 and some constant ¢ > 0 depending on k. By
Lemmas 2.5-2.7, (2.71) and (A3") with [b©]2 e Lio(T), we see that (2.21) holds for f := [b(© 2,
so that for some map ¢ : [1,00) — (0, 00) independent of the initial value x,

(2.74) sup E*|Ry[* < c(k), k>1

zeD

holds for . .
Ry = el (o3 (@on) 0 HX).dWa) -5 [{lo3(0:od) UV P(X)ds ¢ e [0, 7],

By Girsanov’s theorem,

S

¢
W, =W, — / {07 (0,0") DO} X,)ds, te€0,T]
0

is an m-dimensional Brownian motion under the probability measure Q := R7pP. Rewriting
(2.73) as 3
dXt = bt(Xt)dt —+ O-t(Xt)dVVt —+ n(Xt)dlt,

we see that (X, [, Wt)te[gyT] under probability Q is a weak solution of (2.1). Moreover, letting
Eg be the expectation under Q, by (2.70) and (2.74), for any k£ > 1 we find a constant ¢(k) > 0
independent of = such that

E@[ sup |Xt|k] :E[RT sup |Xt\k]
t€[0,T t€[0,T]

< B[7))} ( swp 1X*])" <ab)(1 +[ef), weD

te[0,7]

for some constant ¢ > 0. Similarly, (2.71) and (2.74) imply Eqer < C(k) for k > 1 and
constant C'(k) > 0 independent of z. So, (2.13) holds for this weak solution.

To prove the weak uniqueness, let (X, 1, Wi)tepo,r) under probability P be another weak
solution of (2.1) with X, = z, i.e.

(275) dXt = bt(Xt>dt + O't(Xt)th + H(Xt)dZt, te [O, T], XO = X.

25



It suffices to show

(2.76) Lz LX)

tejo, )P tefo,71Q-

By Lemma 2.5 the estimate (2.21) holds for X; and f = |[b® |2, so that
(2.77) Egeto 117 (XPdt - oo\ 5 0,

By Girsanov’s theorem, this and (AJ") imply that
t
Gy(X, W) =W, +/ {07 (0,07) WO} (X,)ds, te€(0,T]
0

is an m-dimensional Brownian motion under the probability Q := R(X, W)P, where

R(X,W):=e" Jo {oz(s02) 7MY (Xe) . dWe) =3 [ {02 (0502) 710l }(Xo)2ds

Reformulating (2.75) as
dX, = 0" (X,)dt + 0,(X,)dG(X, W) + n(X,)dl,, t € [0,T],

and applying the well-posedness of (2.73) which implies the joint weak uniqueness, we conclude
that
"%Xtvl_t:Gt(KW))te[o,T]l@ = D%(Xtyltth)te[O,T]‘P'
Noting that
RIX, W) =eli |{o;(asa;rlbé‘”}(&)PdsR(X, G(X, W)™,

this implies that for any bounded continuous function F on C([0,T]; R¢ x [0, c0)),

’W))—le—foTI{a;‘(asa:)*lbg’)}(?’(s)ﬁdsp()‘(’ )]
Lo Jo Ho3(osod) 0V HXPds o )]

= Ep[Ry F(X,1)] = Eo[F(X, ).
Therefore, (2.76) holds.

(b) Let (A2") hold. By Lemma 2.7, (2.74) and (2.77) hold, so that the desired assertions
follow from Girsanov’s transforms as shown in step (a). O

2.4 Well-posedness: proof of Theorem 2.2

The weak existence is implied by Theorem 2.1. By the Yamada-Watanabe principle, it suffices
to prove estimate (2.14) which in particular implies the pathwise uniqueness as well as estimate
(2.15):

V1) i timsup DL = PIWN iy [V = 70X0)

D3y—zx ‘x - y‘ Day—x ’x - y’
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Xi) — SOXI 5 (Bl Xﬂp’%])p;l

. |/ (
< lim sup (E Xr = X

Day—a |z — y|7 T

< c(p)(PIVfIP)*(2), =€ D,tel0,T)]feCyD).
Let (Xt(i), lgi)) be two solutions of (2.1) with Xéi) =2 € D,i=1,2. Below we prove (2.14) in
situations (i) and (i7) respectively.

Proof of Theorem 2.2 under (i). In this case, D is an interval or a half-line. For any A > 0, let
u) be the unique solution to (2.19) with ¢y = 0,¢; = T and f = —b®, that is,

(2.78) (0 + Lou = M} — b7, t €[0,T],uy = 0.

By (2.25) with f = —b® ¢ ng;g (T), we take large enough A > 0 such that
1

(2.79) [ loo + V0 oo < 5 Il 2zmo gy < 00

Then ©)}(x) := x + u)(x) is a diffeomorphism and there exists a constant C' > 0 such that
(2.80) Sle =3l < 10Xw) — 8)p)| < 20—yl wy e RLE,T]
Let (X, 1) solve (2.1) for X" = 2® € D,i =1,2, and let

v = e)x) = XY+ (X)), i=1,2.

By It6’s formula in Lemma 2.5(2),

(2.81) Ay, = B,(v,)dt + Z(Y,)dW, + {1 + Ve (X In(X)dl, i =1,2
holds for
(2.82) By(x) := {b{” + xi}} ({0} (@), Tu(z) == {(1 4+ Vu))o } ({61} (2)).

By (A7), (2.79), (2.82) and ||[VbW||, < oo due to (AF"), we find 0 < F; € LP(T),0 < i < 1,
such that

l
(2.83) IVB < 00, [VEP <Y F.
i=0
Since d = 1, for any z € 0D and y € D we have y — x = |y — z|n(x), so that (2.79) implies
(2.84) (0} (y) — 67(2), {1+ Vup () fn(w)) > |y — 2](1 — [ Vu']|)* > 0.

Combining this with (2.81) and Itd’s formula, up to a local martingale we have

B Y(l) — B Y(Q) kIS Y(l) -3 Y(2) 2
d|Yt(1)—Yt(2)|2k§2k5|Yt(1)—Yt(2)|2k{| (Y ) t(g t )|+ [12:(Y ) (Y )HHS}dt

v, — v, v, -y @)
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So, by Lemma 2.10, we find a constant ¢; > 0 and a local martingale M, such hat
|Yt(1) _ Y;(2)|2k < |Y0(1) o Y02|2k +e /t |Ys(1) _ }/8(2)|2kd9% +dM,,
0
where
255) Zoom [ {14 oS OO) + AT s
0

Combining this with (2.83), (2.21), Lemma 2.10 and the stochastic Gronwall lemma (see [25]
or [38]), for any k > 1 and p € (3,1), we find constants cs, c; > 0 such that

2 2
(B[ sup ©3(x(1) = X(x)]) = (B sup [y - v.2)

s€[0,t] s€[0,t]
c p=1
< afty! — VPP (R TH) T < 0|03 (a) — ().
This together with (2.80) implies (2.14) for some constant ¢ > 0. O

To prove (2.14) under (A35°), we need the following lemma due to [39, Lemma 5.2, which
is contained in the proof of [9, Lemma 4.4]. Let V; and V3 be the gradient operators in the
first and second variables on R? x RY,

Lemma 2.11. There exists a function g € C*(R? x R?) N C*((R?\ {0}) x R?) having the
following properties for some constants ks > 1 and ki € (0,1) :

(1) ki|z]? < g(z,y) < kolz|?, 2,y € RY

(2) (Vig(z,y),y) <0, |yl =1,(z,y) < ki|z;

(3) |ViVig(z,y)| < kolz|>™%, 0,5 €{0,1,2},i+7j < 2,2,y € R%

Proof of Theorem 2.2 under (ii). Let b>™ be the mollifying approximation of () = 1;b6(0). By
Lemma 2.6, there exists Ay > 0 such that for any A > Ay and n > 1, the PDE

(2.86) (O + Lo+ Vipn_y0 = MNup" = —b)" uy" = Vau)"op = 0,
has a unique solution in C,*([0,7] x D), and there exist constants &, ¢ > 0 such that

(287) A (Il lloo + Ve lloo) + 11Bs + Vo )u™ | zz0 7,5y + V20 [ 220 (7. p)
' < ch(O)Higg(T,D), A> N\g,n > 1.
Then for large enough Ay > 0, O} := id + u"" satisfies

1 . . _
(2.88) Slv ol <1077 (2) =6 ()P < 20w —yf’, A= XozyeD.

28



Since D € Cp", there exists a constant ry > 0 such that p € C?(d,, D) with V?p Lipschitz
continuous on d,,D. Take h € C*([0,00);[0,00)) such that A’ > 0, h(r) = r for r < ry/2 and
h(r) =ry for r > ry.
Let (X7, 1) solve (2.1) starting at 2 € D for i = 1,2. Alternatively to |Xt(1) - Xt(2)|2,
we consider the process
H, = g(67"(X{V) = 0"(X(), V(ho p)(X;")), t€[0,T],
where ¢ is in Lemma 2.11. By Lemma 2.11(1) and (2.88), we have

ka

1Y = XPP < H <okl x - XPP, e [0,7)

(2.89)

Simply denote
& =0 (X{Y) = e (XP), my = V(hop)(X{V).
By Itd’s formula, (2.86) and Vn@;\’"]ap = n due to Vnu;\’nbp = 0, we have
ag = [ (X)) = ™ (XP) + 0 — 00y (XD) — 0 — o) (XP) Yt
(2.90) + {[(V@i"”)at](X(l)) — [(VOr™)a) (X)) aW; 4+ n(X)dlY — n(xP)dl?,
diy = LiV(ho p)(XV)dt + {[V2(h o p)loy }(X)AW, + {VaV (h o p) XM,
Hence, 1t6’s formula for H; reads
(2.91) dH, = Adt + BPaiY — BPai® + di,,
where
Ar:={(Vag(&m), M (X)) = " (X))
+ (V1g(&,me), ngm_bg,n@?’n(Xt(l)) - Vb§0>_bt0,n®?7n(Xt(2))>

+ (Vag(&om), LeV(ho p)(X "))+ (VR m). NN g

(2.92) :

+ (ViVag (&), Neo(X ) V2 (ho p) (X)) 1

+<V§9(§tant)7 {[VQ(hop)]atatV2(hOp)}( t))>Hs7

N, :={(vO;)a X)) — {(Ve; e (X)),
D =(Vig(&m), (X)) + (Vag(&,me), Va{ V(R o p)HXD)),
(2.93) 2) @)
3:<V19(§t77lt>7n(Xt )>7

200 dM, = (Vig(&,m), [{(VO})a (X)) — {(VO}™)a (X)) dW,)

+(Vag (& m). [{V2(ho p)}or] (X)dW2).
In the following we estimate these terms respectively.
Firstly, (1.2) implies

(©(@) - 02 (g () < U |V fe . x oDy € D
0
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Combining this with (2.87), we find constants £y, A; > 0 such that for any A > Ay,

(07" (x) — 6;" (y),n(w)) < k1O (z) — O (y)],
v €0D,y€ D, |z —y| <ep,n>1,te(0,T).

So, Lemma 2.11 yields

(V19(07" () — € (y). n(x)), n(2)) < kol{jamyise |07 (2) — 07" (y)]

(295) —1 1A\ An 2 _
< hoey 107" () — O, (y)|?, x € 0D,y € D,n>1,t€[0,T].

Next, by the same reason leading to (2.95), we find a constant ¢; > 0 such that

(V19(67" () — ©;"(y), V(h o p)(x)),n(y))
> (V19(6;" () — ;" (y),n(y)).n(y))
ngg V(O ) 6N w). Vo p)y) — Vig(61"(x) —62"(w). Vo p)(a))
: -1 An 2
> —L{je—y|>e01 k20 |@ (x) @t "(y)]

— W[l V1 V29(07" () = €7 (), loo|OF " () = 67" (1)
> —¢|O)"(x) — @;\’"(y)|2, re€D,yedD,n>1,tel0,T)

Moreover, by (A5") and h o p € C2(D), there exists a constant C' > 0 such that
LAV (ho p)} < COL+ ")), t€0,T]

Combining this with Lemma 2.11, Lemma 2.10, (2.89), and (2.92)-(2.96), we find a constant
K > 0 such that

A < K00 =002 M)+ o = od 2P}

2
T Kx® - XPF{l O XD + Z/zD||V{<V@i’”>at}}|2<xf”>},

=1
2
n 2 7
a(M), < KIXD - X£2>|4{1 S | VIO (] >>},
=1
B < KIXO ~XPP. b < KX - xPP

Combining these with (2.89) and (2.91), for any k£ > 1, we find a constant ¢; > 0 such that

oen S er Xp = XEPPEDL” — b P + 5 = 0P () Jae
+o| XY - xP AL + kH T AM,,
where
(298) %= l§1)+l§2)+/ {1+ 101 x¢ +Z%D\V{ (VOX)o,}|*(X1) pas
0
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For any 7 > 1, let
r=inf {t>0: XY - xP| > j}.

By (2.89) and (2.97), we find a constant ¢ > 0 such that

t/\Tj 5
(2.99) X0 - XE PG +er [ XD - XOPRAZ 4 I
0

holds for some local martingale M, and
tAT;
Gyt) i= calet® = a4 x| O — 40K 4 60— 1P (X s
0
Since (A5") and (2.87) imply
!
sup [V{(VOr")o | < 3 F
nz i=0

for some 0 < F; € L»(T),0 < i < I, by (2.22), (
Gronwall lemma, and Lemma 2.10, for any p € (

.59) and (2.60) in Lemma 2.7, the stochastic
, 1) there exist constants cg, ¢y > 0 such that

o= DN

2 cop 1-p
(B[ swp X0 - XOP]) < es(®ei™ ) 5 BG;(1)
se

[O,t/\Tj]
< 64(|x(1) _ x(2)|21€ +j2(1<:—1)||b(0) _ bo’n||i’;’g(T))7 n,j > 1.

By first letting n — oo then j — oo and applying (2.61), we prove (2.14) for some constant
c>0. [

2.5 Functional inequalities: proof of Theorem 2.3

Let {Pst}i>s>0 be the Markov semigroup associated with (2.1), i.e. P.f(z) := Ef(X{,) for
t>s, f € By(D), where (X7,)>s is the unique solution of (2.1) starting from = at time s. We
have

(2.100) Puf(r) = (P f)(XE), s € 0,1], f € CH(D),
where X7 := X§ . By (2.15) for (2.1) from time s, for any p > 1, we have
(2.101) VP, f| < c(p) (P V)P, 0<s<t<T,feCHD).

Recall that C}(D) is the set of C*-functions f on D with compact support and Neumann
boundary condition V,, f|ap = 0. If P,f € CY%([0,¢] x D) for f € C%(D) such that

(2.102) (0s+ Ly)Psysf =0, f€CH(D),VaPsiflop =0,

then the desired inequalities follow from (2.101) by taking derivative in s to the following
reference functions respectively:

P{Ps(e+ f)}, P{Psi(e+ f)}27 P{log Psi(e + f)}(z +s(y — s)/t), s€[0,1],
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see for instance the proof of [36, Theorem 3.1]. However, in the present singular setting it is
not clear whether (2.102) holds or not. So, below we make an approximation argument.

(a) Proof of (2.16). Let {b°"},>; be the mollifying approximations of b©. By (AJ"), for
any f € C%(D) and t € (0,T), the equation

t
u’, = Ps‘f;fbmf +/ Ps‘f;nb(l)(vbg,nugt)dr, s € [0,t].
has a unique solution in C"2([0,¢] x D), and P, f := u?, satisfies
(2.103) (0 + LT + Vyou) P f =0, s € [0,4], f € C3(D).
By this and [t6’s formula for the SDE
AXT = (0 + b (XIdE + o (XI) AW + n(X]")dl, ¢ > s, X =,

we obtain P, f(z) = Ef(X/") for 0 < s <t. Let X, solve (2.1) from time s with X, = x, and
define

Ry = el & W3 [y 16 Pdr - en . Lo (6071 (00 — B0 }(X), s € [0,1].
By Girsanov’s theorem, we obtain
[Pyuf = P24 f|() = [ELF(X,) — Rif (X))
< [ fllo (BT 1500 1) = | e, 0 s<EST,
where ¢ > 0 is a constant and due to (2.60), £, — 0 as n — oco. Consequently,
(2.104) [Poif = Péiflloo < €nllflloc; n21,0<s<t<T.

Moreover, the proof of (2.101) implies that it holds for P, replacing Ps; uniformly in n > 1,
since the constant is increasing in [|b©| 7207y, which is not less that (00| Lz(;g( ). Thus,

’d\'—‘

(2.105) VPl < c(p)(PLIV )P, 0<s<t<T,feCy(D),n>1.

Now, let 0 < f € C%(D) and t € (0,7T). For any ¢ > 0 and p € (1,2], by (2.105), (2.103),
(2.104), (AS") and Itd’s formula, we find constants ¢;, ¢, > 0 such that

d(e+ PI,f) = {p(e + PL AP0 — 00" VP f)
+p( —1)(e+ PP 2|0V " 1P H(X)ds + dM,
> {eo(e+ PP VP2 — e[V Fllaolb® = 007} (X,)ds + dM,, s € [0,8],6 > 0

holds for some martingale M,. By (2.20), Hélder’s inequality, and [b©® — 07| o) — 0 as
n — 0o, we find a constant c3 > 0 and sequence g, — 0 as n — oo such that

en+Pt<e+f>p—(a”f+e>pzc2/ P{(c + P, fy 2|V P2, £ s
0
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' _(RIVPLIP) IVRPLSP
262/ dsZc;;/ ~ds, ¢¢€(0,1).
{P(5+Pntf>} {P(5+Pntf)}p
Thus, for any € D and = # y € B(x,0) C D for small § > 0 such that
r=x+r(y—x)e D, rel01],

this implies

(PP f(z) — P.P2(y))d Lot
o ‘x_y‘ ot (y))ds| g/ dr/ VPP f|(2,))ds

[ ([ o) ([ o)

g/1031/2{5n+a(5+f)} (z+r(y— x))(/(a—i—PP”tfp) ®) (@ )ds);dr.

0 0
Combining this with (2.104) and letting n — oo, — 0, we obtain

AL = BIOL <2 [t ([ o7 was) ar

|z —y]
Letting y — x we prove (2.16) for some constant ¢ depending on p, for p € (1,2] and all
f € C%(D). By Jensen’s inequality the estimate also holds for p > 2, and by approximation
argument, it holds for all f € %(D).
(b) Proof of (2.17). By (2.105), Itd’s formula and (A5"), we find a constant ¢, > 0 and a
martingale M, such that

A(PL )P (Xs) = 2{(VPLf,00 = b0™) + [0V P f 1P H(Xo)ds + d M

< ea{ ||V flloo]b? = 027 + PV P HX)ds + dM;, s € [0,1].
Integrating both sides over s € [0, ], taking expectations and letting n — oo, and combining
with (2.20) and (2.104), we prove (2.17).

(c) Proof of (2.18). Let 0 < f € C}(D). By taking Ito’s formula to P7',(e + f)(X,) for
e > 0 and taking expectation, we derive

d
£PS log Pl {e + f} = —Pi|o:V log PI, > + P (b — 02", Vlog Pr (e + f)).

For any =,y € D, let v : [0,1] — D be a curve linking = and y such that |¥,| < ¢|z — y| for
some constant ¢ > 0 independent of z,y. Combining these with (AJ") and (2.15) for p = 2 we
find a constant ¢5 > 0 such that

t
n d n
Pilog(e + ) (o) ~log P+ £)) = | §oPulog s (ds
0
t
< / {Ctil‘x - yHVPS 10g Ps@f(’Vs/t)' - PS|U:VIOg P:tf|2}(73/t)d5
0

t 12 2
< 05/ ‘x t2y‘ ds = 65‘:6 y‘ , te (OaT]
0

t
Therefore, (2.18) holds.
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3 Well-posedness for DDRSDEs

To characterize the dependence on the distribution, we will use different probability distances.
For a measurable function

Y : D x D — [0,00) with ¢(z,y) = 0 if and only if x = y,

we introduce the associated Wasserstein “distance” (also called transportation cost)
(3.1) Wy (p,v) == inf Y(z,y)r(de, dy), p,v e P (D),
w€C (V) J Px D

where € (p,v) is the set of all couplings for p and v. In general, W, is not necessarily a
distance as it may be infinite and the triangle inequality may not hold. In particular, when
Y(x,y) = |x — y|* for some constant k > 0, the L*~Wasserstein distance Wy, := (Ww)ﬁ is a
complete metric on the space

P(D) = {p € D)+ |l :=p(] - |)F < oo},
where u(f) == [ fdu for f € L'(u). When k = 0 we set ||ullo = 1 such that P, (D) = £ (D)

and Wy reduces to the total variation norm

1 1
Wolp,v) = sl = Vllvar := 5 sup [u(f) —v(f)| = sup |u(A) —v(A)],
2 2511 Ac#(D)

where Z(D) is the Borel g-algebra of D. We will also use the weighted variation norm for
kE > 0:

11— Vllkwar = sup  |u(f) —v(f)], n,ve P(D).
|FI<14] |

According to [30, Theorem 6.15], there exists a constant ¢ > 0 such that
(3:2) e = llvar + Wi, )™ < el = vliwar, 1,v € Pu(D).

However, when k > 1, for any constant ¢ > 0, Wy (u, ) < ¢||t — V|| var does not hold. Indeed,
by taking

p=270, v=>01-n"""+n"1"5,., n>1ecRwith|e| =1,

we have Wy (i, v) = n~k, while

3
||N - V”k,var = nilikHéO - 5ne”k,var S nilik{éo(l + ’ : |k) + 677,6(1 + ’ * ‘k)} S 57 n Z 17
so that lim,, W = oo for k > 1.
In Theorem 3.1 below, we use the enlarged probability distance || - || var + Wy to measure

the distribution dependence of the DDRSDE (1.5). For any subspace & of (D) and any
T € (0,00], let C([0,T]; &) be the set of all continuous maps from [0, 7] N [0,00) to &2 under

the weak topology. For any p € C([0,00); Z(D)), let o and b* be in (1.7).

34



3.1 Singular case

We make the following assumption. Recall that b}’ := b;(-, u;) for u € C([0, 0); Z(D)).
(A1) Let T > 0 and k > 0. o* = o does not depend on u, and there exists ji € Py(D) such
that at least one of the following two conditions holds.

(1) (A;”‘;) holds for b= b(-, i), and there exist a constant o > 0 and 1 < f; € f/f]’: (T, D),0 <
i <1, such that for any t € [0,T], x € D, and p,v € P(D),

(3.3) () — BV (2)] < folt, z) + allullx,
(3.4) 07 () = B )] < (Il = Vil + Wi, )} 3 il ).

(2) (A‘IT’I;) holds, and (3.3)-(3.4) holds for |fi|* € sup, e [:Z(T, D),0<i<I.

Since lA),El) is regular, (3.3) gives a control for the singular term of b*. Moreover, (3.4) is a
Lipschitz condition on by(z,-) in || - ||xver + W with a singular Lipschitz coefficient.

Theorem 3.1. Assume (Al).

(1) (1.5) is weak well-posed up to time T for distributions in Py(D). Moreover, for any
v € P%(D), and any n > 0, there exists a constant ¢ > 0, such that

(3.5) E[ sup | X"

te[0,7

XO] < o(1+ [ Xo|"), EeMr < e

holds for the solution with Lx, = 1.

(2) (1.5) is well-posed up to time T for distributions in (D) in each of the following
situations:

(1) d =1 and (A1)(2) holds.
(17) (A1)(1) holds.
To prove Theorem 3.1, we first present a general result on the well-posedness of the DDRSDE

(1.5) by using that of the reflecting SDE (2.1).
For any k > 0,v € &, N > 2, let

PN = {1 e (0, T 2(D)) : o =7, sup e (14 pu(]- 1)) < N }.

te[0,7

Then as N 1 oo,
(3.6) Pyt 2L = {p e C(0,T]; Z4(D)) : po = 7}

Y
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For any p € QZ,CTW, we will assume that the reflecting SDE

(3.7)

dXP7 = by (X7, pe)dt + o (XE7) AW, + n(XP7)dl, ¢ € [0,T], Lypn =

has a unique weak solution with

Hg(ﬂ) = ng’” S @k(D% t e [O,T}

(H2) Letk > 0,T > 0. For any v € (D) and u € P, (3.7) has a unique weak solution, and

there exist constants {(p}, q;) > 1}o<i<i, No > 2 and increasing maps C' : [Ny, 00) — (0, 00)
and F': [Ny, 00) x [0,00) — (0, 00) such that for any N > Ny and p € QZkTVN, the (weak)
solution satisfies

T,N
(38) H’y('u) = "ZYX#W)te[O,T] € '@kﬂy )
(3.9) (E[(1+ [X7%)?XE7]) 2 < C(N)(1+ [ X575, telo,T],
t 2
E(/g%&“ﬁa < OV g,
(3.10) 0 O
Eelo (X504 < (N, |\gllzze,py), ¢ € [0,T],9 € Li(t,D),0 <i <.

Obviously, when k£ = 0, conditions (3.8) and (3.9) hold for Ny = 2.

Theorem 3.2. Assume (H2) and let o* = o do not depend on pi. Assume that there exist a
measurable map T': [0, T] x D x Z(D) — R™ such that

(3.11) be(, ) — bi(x, 1) = oe(@)Te(x, v, 1), x € Dyt € [0,T], v, 1 € Py(D).
Let f == (XL, fl)% for some 1< f; € L“(T),O <i<l.
(1) If
(3.12) Ti(w, v, )| < fel@)llv = pllbwar, © € Dyt €[0,T], v, € Pp(D),

Then (1.5) is weak well-posed up to time T for distributions in Py(D). If, furthermore,
in (H2) the SDE (3.7) is strongly well-posed for any v € Py(D) and p € P}
(1.5) up to time T for distributions in Py(D).

s SO 1S

Let k> 1 and for any p,v € P(D),

(3.13) Tz, v, )| < fol@){Iv = pellkwar + Wi(u,v)}, (t2) €[0,7] x D.

If for any € Pv(D) and N > Ny, there exists a constant C(N) > 0 such that for any
pve Pl

kv’

814 VA, B0 < O [ (s = vl + Wl s, 1€ 0.7),
then assertions in (1) holds.
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Proof. Let v € 9,(D). Then the weak solution to (3.7) is a weak solution to (1.5) if and only
if 1 is a fixed point of the map H” in gzk So, if H” on gzk has a unique fixed point in
P}, then the (weak) well-posedness of (3. 7) implies that of (1 5) Thus, by (3.6), it suffices
to show that for any N > Ny, H? has a unique fixed point in QZMN. By (3.8) and the fixed
point theorem, we only need to prove that for any N > Ny, H” is contractive with respect to
a complete metric on ?/-’T,YN

(1) For any A > 0, consider the metric

Wk,k,var(,ua V) = Sup € M ||,ut - Vt“kvar; u, v € 9
t€[0,T]

Let (X}, 1"7) solve (3.7) for some Brownian motion W; on a complete probability filtration
space (2, {%#},P). By (3.10), (3.12) or (3.13), we find a constant ¢; > 0 depending on N such
that

T Y 2
sup E(e2f0 ITs (X7 v s)| d8|ﬂ0> S C%,
u,ueﬂaiv

T 2
sup E((/ gS(X;W)dS)
st \\Jo

Then by Girsanov’s theorem,

(3.15)

ﬁ) < gl 9 € BT), 0P <L,

¢
Wy =W, —/ Do (XE7 v, pus)ds, t€0,7)
0

is a Brownian motion under the probability Q := Ry P, where
Ry = olo Co(X v dWa) =4 5 I (X woi)Pds 4 ¢ [0, 7]
is a P-martingale. By (3.11), we may formulate (3.7) as
AXPY = by(X7, w)dt + oy (X)W, + (X)) ¢ € [0,T], Lypn = 7.
By the weak uniqueness due to (H2), the definition of || - ||x.var, (3.9) and (3.11), we obtain

1H7 (1) = HY (W) ar = sup [B[(R, = 1) f(X})]|

|FI<1+]- |

(316) < E[1+ |XI)R - 1]] <E[{E( 1+|XW| 1Z0) V2 {E(|R, — 112|%0)}

N

|

< O[]

Moreover, (3.15) implies

]E(efot T (XE°7 v )| ?ds — 1|ﬁo>

t
< E<efélfs<Xé“”’”S’“S>'2ds / T (X1, v, 1) [Pds
0
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t 2 1
<efs(( [ inee .- usui,wds) %)}
0
2
< ci1€ )\th/\var ,ua { ((/ |fs |2 Baaln S)ds)

2 2)\tZ”fl A H p; Wk,)\,var(ﬂa V)2, t € [O,T]

qi

)

Combining this with (3.16) and the definition of Wy 44, We obtain

(317) Wk,k,var(*[—[,y(/ﬁ)? HW(”)) S C(N)(l + 7 1VE Wk:)\var /L, 7 A> 07
where

g(A) := sup ZHfZ —2A(= Hp ¢O as AT oo.

te0,7] 7

So, H" is contractive on (,@M , Wi\ var) for large enough A> 0.
(2) Let k > 1. We consider the metric Wk«\,var = Wi avar + Wy a, where

Wia(i,v) = sup e MWy, 1), pve 20
t€[0,T]

By using (3.13) replacing (3.12), instead of (3.17) we find constants {C(N,\) > 0} o with
C(N,A) — 0 as A — oo such that

(318) Wk,/\,var(Hw(M)vH’y(y)> S C(N7 A)Wk,)\,var(ﬂay)a >‘ > Ovljlvy € ‘@]Z:g

On the other hand, (3.14) yields

Lk
Wi (" (), HY(1)) < sup ( / [lite = 25 + Wi () Qk}ds)

te[0,T]

= Ak = C(N)i" =
< Wi nvar (1, V) sup <C(N)/ e 2R s)d5> < + Wi var (1, 7), A > 0.
te[0,T] 0 (2\k)z*

Combining this with (3.18), we concluded that H? is contractive in 3”,? ’WN under the metric

Wk’ avar When A is large enough, and hence finish the proof. O

Proof of Theorem 3.1. Let v € Z.(D) be fixed. By (3.3), for any i = 1,2, condition (Afb)
implies (A7"") for any pu € C([0,00); Z(D)). “So, by Theorem 2.1, (A1) implies the weak
well-posedness of (3.7) for distributions in 22 (D) with

(3.19) H) (1) € Z4(D), EeNr" < oo, A>0,7v€ Pu(D), e C([0,00); Z(D)),

and also implies the strong well-posedness of (3.7) in each situation of Theorem 3.1(2). More-
over, by Lemma 2.5 and Lemma 2.7, (A1) implies that (3.10) holds for any (p,q) € £, as well
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as for (p,q) = (po/2,qo/2) under (A3"), (3.11) with (3.12) holds for k& < 1 due to (3.2), and
(3.11) with (3.13) holds for & > 1. Therefore, by Theorem 3.2, it remains to verify (3.5), (3.8),
(3.9), and (3.14) for £ > 1. Since (3.9) and (3.8) are trivial for £ = 0, we only need to prove:
(3.5), (3.9) and (3.8) for k£ > 0, (3.14) for k > 1 for case (i), and (3.14) for k > 1 for case (ii).

(a) Simply denote
I

fi(z) = Zfz(t,x)

i=0
We first prove that under (A1), there exits a constant ¢ > 0 and an increasing function

c¢:[1,00) = (0,00) such that for any j > 1 and p € gsz’,y,

([ 1noenras) <o+ [ o)

(3.20) t t
Eexp [j / \fs(Xé"”)FdS] < c(j)exp [ / Husuids], Le0.7],

where X7 solves (3.7). We will prove these estimates by Lemmas 2.5 and 2.7 for the following
reflecting SDE:

dX, = by(X,)ds + 0,(X,)AW, + n(X,)dl,, X, = X7 s €0,

By (2.60) under (A1)(1), and (2.21) under (A1)(2), for any j > 1 we find a constant ¢;(j) > 0
such that

(3.21) Eed S PHAREds < ¢ 5y ¢ e [0,T).

Let v, = {[07(0507) 710 — by) }(X,), and
Ry = elo (e dWe) =3 fy ‘%Pds, W, == W, —/ ydr, s € [0,t].
0

By Girsanov’s theorem, (Ws)se[o,t} is a Brownian motion under R;PP, and the SDE for X < becomes
dX, = b(X,)ds + o, (X)dW, + n(X,)dl,, Xo= X4, s € 0,1].
So, by (3.3), (3.21) and Hélder’s inequality, we find constants ¢y, ¢, ¢(j) > 0 such that
Red Jo [7s(XET)Pds _ E[Rtejfélfs(??s)l%s} < (EerfOtlfS(Xs)lzds)%(E[R?])%
< /1 (2j) (Be® fé{wﬁf”\2+<fs+a||usHk)?}(fcs)ds)% < c(j)ecfo lusliids,

Next, taking cy(j) > 0 large enough such that the function r — [log(r + c2(j))}? is concave for
r > 0, so that this and Jensen’s inequality imply

o [ I0eefas) < B(oslen)+ o0 )
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t Yy |2 j . . t J
< []Og(c2(j)+Eef0 | fs(XE7)] ds)}] < C(])+C(])</O ||,us||zd3>

holds for some constant ¢(j) > 0. Therefore, (3.20) holds.
(b) Proof of (3.8). Simply denote X; = X;*”. By (3.3), the boundedness of o and the

condition on b in (AJ") which follows from (AJ") due to Lemma 2.6, we find a constant
c1 > 0 such that

1 2 1
Loy = 5tr{0107V?} + Vi, Lo = S {0 V2 + Vi

satisfy
e )
Lowp > LT = |t = Bi71 - V5] = —er(fi+ ).
Since (n, p)|sp > 1, by It6’s formula we obtain

for some martingale M; with (M); < ct for some constant ¢ > 0. This together with (3.20)
yields that for some constant kg > 0,

k

Combining this with (2.20), (3.4), (3.20) and ||0'||oo < 00, and using the formula

t t t
X, = Xo +/ b (Xs)ds +/ 0s(Xs)dW; —i—/ n(X;sdly, Lx, =1,
0 0 0

we find constants ki, ko > 0 such that

B+ 1) < R+ 1)+ BE( [ {11 LA+ s )
(3.23) .

t 2
§k2+k2]E(/ {!Xs\2+HusHi}d3) , telo,T].
0

(b1) When k > 2, by (3.23) we find a constant k3 > 0 such that
t
B+ < b+ ks [ {BIXI + nli}ds, ¢e (0.7)
0
By Gronwall’s lemma, and noting that g € 2", we find constant k4 > 0 such that

ko

t

t
E(1+ | X|*) < ky + k4/ (1+ ||lps|[F)ds < key + k:4NeNt/ e N=9ds < 2kt t € [0, 7).
0 0

Taking Ny = 2k, we prove

sup e M1+ | Hy(w)||¥) = sup e ME(1 4 |X,|F) < Ny <N, N> Ny, pue 25

k )
t€[0,T t€[0,T]
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so that (3.8) holds.
(b2) When k € (0,2), by BDG’s inequality, and by the same reason leading to (3.23), we
find constants ks, kg, k7 > 0 such that

t
0= B sup 1+ 11] < ks -+ k([ {00+ )

s€[0,t]

_k t %
< byt s 1) ([ 1as) Yo [ i)
s€[0,t] 0
k
1 ¢ 5. )2
§k6+§Ut+k7/ USdS—f-]{?G(/ ||,u5||,€ds) s t e [O,T]
0 0

By Gronwall’s lemma, we find constants kg, kg > 0 such that for any u € ,@,CT WN ,

t
E(L+ |X,) < U, < ks + k( / ||/~bs|lid8>
0
t 2
< kg + ngeNt( / e_QN(t_S)/kds) < ks + kgN'"2eM, € [0, 7).
0

Thus, there exists Ny > 0 such that for any N > N,

sup e M1+ || Hy(p)||F) = sup e ME(1 4 | X, |*) < ks + keN'"2 <N, pe L@,m ,
te[0,T) t€[0,T

which implies (3.8). o

(c) Proofs of (3.9) and (3.5). Simply denote (X;,1;) = (X/*7,1"7) in (3.7) for p, = fi,t €
[0, T]; that is,
(324) dXt = Bt<Xt)dt + U(X't)th + H(Xt)d[t, gf(o =.

By (A1) and Theorem 2.1, this SDE has a unique weak solution, and for any n > 1 there exists
a constant ¢ > 0 such that

(3.25) ]E[ sup |Xt ‘XO} <c(1+ |X0| ), Eenir <ec.
t€[0,T

So, by (3.4), Lemma 2.5, Lemma 2.7 under (Ag’i’), and Girsanov’s theorem,

Wt = Wt - /0 {0:(080:)_1}(X8){bg()28) - BS(XS)}dS7 te [07T]

is a Q-Brownian motion for Q := RrIP, where

Ry = ofo ({o3(0:02) T HX){E (Xo)—ba(Xo) 1, dWe) = 5[5 12 (000%) 7 H(Xa) {BE (Xo) b (X o) }2ds
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By (A1), (3.25), Lemma 2.5 when |f;]* € u(p,q)efi;g(T), and Lemma 2.7 when (Agf’) holds,
we find an increasing function F' such that

E(|RT|2|9’0) < E(efoT\fs(Xs)F{Ilus—ﬂllk,erwk(us,ﬂ)}st|go) < F(|lpllnr),
where ||ullx.r = sup,co.r pe(| - |¥). Reformulating (3.24) as
dXt = b?(Xt)dt + O't(Xt)th + H(Xt)dit, "%XO =7,

by the weak uniqueness we have $X|@ = Pxun~, so that (3.25) with 2n replacing n implies

E [ sup |
te[0,7

é\i| :EQ[ sup |Xt|"’g¢70]
te[0,7

1
fg(E[ﬁm\Xw%*%ﬂ)<ER%5%ﬁfsdl+wawaumm»

te[0,T
Since sup,, TN || ¢/l is a finite increasing function of N, this implies (3.9).
Y
Finally, since X; := X/"" solves (1.5) with initial distribution L and p; = Ly, (i.e. u is the
fixed point of H?), and since H” has a unique fixed point in 93 N for some N > 0 dependmg

on 7y as proved in the proof of Theorem 2.1 using (3.10) and (3.8), we have Ly, € ngvN,
hence (3.5) follows from (2.13).
(d) Proof of (3.14) for k > 1 in case (7). Let u} and ©} be constructed for b* replacing b

in the proof of Theorem 2.2 under (AJ") for d = 1. Let X(()l) = XéQ) be .#;-measurable with

Z i) =7,1=1,2. As explained in the beginning in the present proof, the following reflecting
0

SDEs are well-posed:

Ax® = b(XY, p)dt + o (X)AW, + n(x )i,
AX{? = b(X(?, ) dt + oo X)W, + n(X)d?, ¢ € [0, 7).

Then instead of (2.81), the processes
v =e)Nx"), i=1,2

satisfy

+ o~
=
\_/
o
o~
~ —~

av,V = B(v"yat + =, (v "aw, + {1 + v (xM)n(x
dv,? = By(Y,®)dt + Et(Yt(Q))th + {1+ Vu(X, )}n(Xt(z))dlt(Z)
+ {bt(Xt(Z),l/t) —bt( ,/Lt }dt
By (3.4), Yo(l) = YO(Q), [to’s formula to ]Yt(l) — Y;(Q)]Qk with this formula replacing (2.81), the

calculations in the proof of Theorem 2.2 under (AJ") for d = 1 yield that when X is large
enough,

t
|WWJ@WSQ/D®—HWM%+M
0
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t
+o / YO — VP XV s — vsllkwar + Wi (s, v5) Hds
0

t t
< Cl/ ‘Ys(l) - }/;(2)’216(1929 + Cl/ {H/,Ls - VsHk,var + Wk(,usa Vs)}deS + Mt7 te [OaT]

holds for some constant ¢; > 0 depending on N uniformly in p € PEN some martingale M,,

%, in (2.85), and

kw7

t t
Zi=Ziv [ 1) as < ik [ 1) as
0 0
By the stochastic Gronwall lemma, Lemma 2.5, we find a constant ¢; > 0 depending on /N such

that .
2
(B sup 1Y = YOF]) < o [ {lte = vllaar + Wl )} s,
0

s€[0,t]
which implies (3.14) since by (2.80) and the definition of H”, there exists a constant ¢ > 0
depending on N such that

EY,"Y - v PM?2 > (B XD — XPF)? > eWy(H] (1), Hy (v)*

(e) Proof of (3.14) for k > 1 in case (i1). Let u}™ solve (2.86) for L, = Ly, b = bgo)(-, V)
and the mollifying approximation b%" = b)"(-, ). Then in (2.90) the equation for & becomes

d& = {ou"(X0) = 2" (X)) + (7 — ") (X
— (B — B0 (XP) + b(X P, ) — (X ,z/t)}dt
+{[(VOr)al(xi") = (VO ol (Xi) bW, + n(X;”) i — n(X)d?.
So, as shown in step (d) by (3.4), instead of (2.99), we have
X~ X2 <G e [ XD, — XD, M0+
for some local martingale M,,

A /|fSX2 J2ds, te[0,T]

for £ in (2.98), and due to X = X = X in the present setting,

Gon(t) ::/0 {eam?t= 1)2;5 S PXO) 4 (e — vl + Wi, )™ s,

By the stochastic Gronwall inequality, Lemma 2.7 and (3.20), we find a constant ¢ > 0 such
that

Wi (H] (1), Hy (v))?* < <E|X‘” — XD k2

3.26
( ) < climinf lim inf EG,, /{H,Us Vs||kvaT+Wk(/~Ls;Vs)2k}d3-

m—0o0 n—oo

Thus, (3.14) holds. O
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3.2 Monotone case

For any k > 0, 22,(D) is a complete metric space under the L*-Wasserstein distance Wy, where

Wo(p,v) == %HM — Vl[var and

E _
Wi(p,v) == inf / o —yl*n(de,dy) ), pv e P(D), k>0.
m€¢(wv) \ JDxD

In the following, we first study the well-posedness of (1.5) for distributions in £2,(D) with
k > 1, then extend to a setting including k = 1.

(A2) Let k > 1. (D) holds, b and o are bounded on bounded subsets of [0,00) x D x (D),

and the following two conditions hold.
(1) For any T > 0 there exists a constant K > 0 such that

loe(, 1) = ou(y, v)lligs + 2( =y, bu(w, 1) = bi(y, v))*
< K{\x —y|* + |z — y|We(p, v) + Lik>2y Wi (p, V)2}, te0,T),z,y € D,u,v e P(D).

(2) There ezists a subset 0D C D such that

(3.27) (y —z,n(z)) >0, £edD\ID, ye D,

and when D # 0, there exists p € C2(D) such that plap = 0, (Vp,n)|op > 15, and

(3.28) A {I(@)"Vpl*(@) + (b, Vi)~ (2)} < oo, peC([0,T]; Z4(D)).
t,x)€[0,T|x D

(A2)(1) is a monotone condition, when k& > 2 it allows o(z, pt) depending on x, but when
k € [1,2) it implies that o;(x, 1) = o¢(x) does not depend on .

(A2)(2) holds for D = §) when D is convex, and it holds for D = dD if 9D € C? and for
some 1 > 0

sup — {[I(of)"Vpl*(z) + ()", V)~ (2)} < o0, p € C([0,T]; Zx(D)),
(t,2)€[0,T] xry D
where in the second case we may take p = hop for 0 < h € C*([0,00)) with h(r) = r for

r < ro/2 and h(r) = ro for r > ro. In general, (A2)(2) includes the case where 0D is partly
convex and partly C?.

Theorem 3.3. Assume (A2). Then (1.5) is well-posed for distributions in Py (D), and for
any T > 0, there ezist a constant C' > 0 and a map c : [1,00) — (0,00) such that for any
solution (X3, 1;) of (1.5) with Lx, € P(D),

(3.29) E[ sup \Xﬂ < C(1+E| X,
t€[0,T]
- B T
(3.30) Ee"™ < ¢(n), n>1,lp ::/ 15p(X)dl,.
0
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Proof. Let Xy be Fy-measurable with v := %x, € 2(D). Then
,@M—{MEC [0, T); 2.(D =~}
is a complete space under the following metric for any A > 0:

WQ’T(/L, V) = sup e”\th(,ut,ut), [,V E gszﬁ_
t€[0,T]

By Lemma 2.9, (A2) implies the well-posedness of the following reflecting SDE for any pu €
e@,CT,Y:

and the solution satisfies

(3.32) E[ sup \Xﬂk} < 00

te[0,T

So, as explained in the proof of Theorem 3.2, for the well-posedness of (1.5), it suffices to prove
the contraction of the map

;@,CTN Spur— H(p) = Lxu € g@kTﬂ

under the metric WQ’T for large enough A > 0.
Denote

.= /t Ly, (X®)dir, 1V = /t 15,(X0)dlY, t>0.
0 0
By (1.2), (A2) and It6’s formula, for any k£ > 1 we find a constant ¢; > 0 such that
(3.33)  dIX! — XV|* < et {IXI — XU|* + Wi (e, v)* Fdt + r—kO|Xf — Xy[M(dl + dlY) + dM,
for some martingale M; with
d(M), < cl{|X“ X”|2k + Wi (e, 1) }dt
To estimate fot | X# — XY [*(dl* + dlY), we take
(3.34) 0 < h e C([0,00)) such that A’ <0, h'(0) = —(1 + 2ry k), h(0) =1,
where g > 0 is in (1.2). Let

F(z,y) =z —yl*{(hop)(x) + (hop)(y)}, z,y€D.
By (A2)(2), we have plsp = 0 and Vyuplop > 155, so that (3.34) and (1.2) imply

VaF (-, XP) (XAl + VaF(XE, ) (X))l < —|XE — XY H(dl + diy).
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Therefore, by (A2) and applying It6’s formula, we find a constant ¢; > 0 such that
AP (X}, XY) < e |X] = XY 1F 4+ Wi, v0)* bt — [ XP = X7 [5(AlY + dlY) + dM,

for some martingale M,. This and F(XE, X¥) = F(Xo, Xo) = 0 imply
t t

(3.35) E/ | XE— XYFdlr + dly) < 02/ {BIXE — XY|* + Wi (s, vs)* Hds.
0 0

Substituting (3.35) into (3.33) and applying BDG’s inequality, we find a constant ¢z > 0 such
that
G = sup |XV = XV[*, te[0,T]

s€[0,¢]

satisfies
t

(3.36) E¢ < 03/ {E¢ + W (ps, v5)" }ds, t€[0,T],
0

so that for any \ > c3,

t t
E¢ < C3/ eIV (s, 1) Fds < C3ek’\tW2’T(Ma V)k/ o (kA—cs)(t—s) 4 ¢
0 0

3.37
(3:37)

WgT(Ma V)ka te [OaT]
3

Therefore, H is contractive in WQ’T for large A > 0 as desired.
It remains to prove (3.29) and (3.30). Let X; be the unique solution to (1.5). By (A2), for
any k > 1, we find a constant ¢(k) > 0 such that

(338) d|Xt|k S C(k){l + |Xt|k + E|Xt|k}dt + ]f|Xt|k_2<Xt, O-t(Xta O%Xt)dVVt> + k|Xt|k_1dZt,

where dl, := 15,(X,)dl,. By applying 1t6’s formula to (1 + |X,|*)(ho p)(X,), similarly to (3.35)
we obtain

(3.39) E/t(l + | X, F)dl, < é(k) /tE{l + | X[ }ds

for some constant ¢(k) > 0. Combining (3.39) with (3.38) and using Gronwall’s lemma, we
derive
E[ sup |Xt|’“] < (1 +E|X ")
t€[0,T)]
for some constant ¢ > 0. Substituting this into (3.38) and using BDG’s inequality, we prove
(3.29) for some constant ¢ > 0.
Finally, by (A1)(2) and applying It6’s formula to 5(X;), we prove (3.30). O
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We now solve (1.5) for distributions in
Py(D) = {p€ PD):|lully = u(| - 1)) < oo},
where ¢ belongs to the following class for some x > 0:

W, = {1 € C*((0,050)) N C([0,00)) = $(0) = 0, ¥|ig) > O, [/]]oc < 00

(3.40) ! (r) + 72 {"} (1) < wp(r) for 7> 0}

Let W, be in (3.1).

(A3) (D) holds, oi(x, i) = o¢(x) does not depend on p, b and o are bounded on bounded subsets
of [0,00) x D x Py (D) for some € V,, and k > 0. Moreover, for any T > 0 there exists
a constant K > 0 such that

low(z) — o2 (y)llars + 2(x — y, be(w, 1) = bely, v))
< Kl —y|{|z —y|+ Wy(p,v)}, t€[0,T),z,y € D, p,ve P(D).

Theorem 3.4. Assume (A3) and (A2)(2). Then (1.5) is well-posed for distributions in
Py(D), and

(3.41) E[ sup ¢(|Xt\)] <00, T>0,% € Py D).

te€[0,7)
Proof. Let Xy be Zy-measurable with Ev(]X|) < oo, and consider the path space
2= {pneC([0,T]; 2y(D)) : o = Lx, }-
For any A > 0, the quasi-metric

Wi (i v) = sup e MWy, 1), pv e Py
t€[0,T)]

is complete. By Lemma 2.9, (A3) implies the well-posedness of the SDE (3.31) for any p € ;@5
By (A2)(2) and Ito’s formula for v, := /1 + | X} — X,[?, we find a constant ¢; > 0 such that

dye < er{|lpelly + v ddt + 77 HXT — Xo, oo (X])dW,) + dit,

where dil := 15,(X/")dl#*. Combining this with ¢ € U, and the linear growth of ||o;|| implied
by (A3), we find a constant c; > 0 such that

(3.42) dep(e) < eofllpually + ()}t + ' () (XL = Xo, o0( X[ )AWS) + ¢ ()dly'.

Next, by (A2)(2), ¢ € ¥, which implies ¥'(v;) < k() since 74 > 1, and applying Ito’s
formula to ¥ () {||5]lcc — A(X}')}, we find a constant ¢z > 0 such that similarly to (3.35),

43) B [ vl <8 [ w00l < o [ {1 o+ 0o(0XED}ds, te 0.7
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Combining this with (3.42), r'(r) < ki(r), the linear growth of oy ensured by (A3), and
applying BDG’s inequality, we obtain

E| sup y(|X/])| < oo.
te[0,7]

Consequently, (3.41) holds for solutions of (1.5) with Zx. € Z7]. So, as explained in the proof
of Theorem 3.2, it remains to prove the contraction of the map

Py > H(p) == Lxu Gﬁg

under the metric W ,, for large enough A > 0.
By (1.2), (A2)(2), [|¢'|lcc < 0o and 79/(r) < ki)(r), we obtain

(3.44) Valt(| - —y)}w) < s—15p(@)e(lz —yl), €D,y e D.

<
- 27”0
Combining this with (A3) and It6’s formula, we find a constant ¢4 > 0 such that

(3.45) d(IX}' = X7) < a0 (1X] = XY 1) + W, 14) b + eatp (1XF — X7 |)(dlf' + ) +dM,

for some martingale M,.
On the other hand, let ¢ = 22 and take h € C*(]0,00)) with A’ > 0, h(r) = r for r < /2

2K
and h(r) = e for r > e. Consider

M= (X = XYD{2e = ho pXY) = ho p(XP)}.
By (3.44), (A2)(2), ¢ = 52 and It6’s formula, we find a constant ¢5 > 0 such that
2ekK - - -
ne < e {(XE = XY1) + W) Yt 4 (57— DJ(IXE = XY1)(al + ) + i,
1 . . -
= es{ (X7 = XY1) + W, ) bt = So(1XE — XP) (Al + dlY) + dM,.
Since X} = X§ = Xo, this implies
t t
B [ (X2 = XD+ ) < 20 | {BO(XE - X2 + Wyl vi) s
0 0
Substituting this into (3.45), we find a constant ¢g > 0 such that

W) Hiv) < (XY = X2) < 6o [ Wousv)ds, ¢ € [0.7]

so that H is contractive in W, , for large A > 0. Therefore, the proof is finished. m

4 Log-Harnack inequality and applications

In this section, we study the log-Harnack inequality introduced in [32] and applications for
DDRSDEs with singular drift or under monotone conditions.
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4.1 Singular case

(A4) Let dD € CP* and T > 0. oy(x,

p) =
(A3) holds with p, > 2, where b= (-
constant a > 0 and 1 < f; € LP (T),0

oi(z), and there exists i € Po(D) such that

1) with regular term b, Moreover, there exist a
1 <

< [ such that

41) () = 0P (@)] < folt,x) + allulle, @ Po(D), (t,x) € [0,T] x D,

l
(4'2) |bé‘(l’) - b?(l’ﬂ < WQ(M’ V)Zfi(tax>’ MV € <@2(D>7(t7'x> < [OvT] x D.

=1

According to Theorem 3.1, (A4) implies the well-posedness of (1.5) up to time 7' for
distributions in 5(D). Let

Prp= %, for X;solving (1.5) with L, = u € Py(D), t > 0.
We consider
P /fdPt*m t> 0,1 € 25(D), f € %,(D),
where %,,(D) is the class of all bounded measurable functions on D.
Theorem 4.1. Assume (A4). For any N > 0, let Py n(D) :={u € Po(D) : ||ulls < N}.

(1) For any N > 0, there exists a constant C(N) > 0 such that for any v € P (D) and
any t € [0, T, the following inequalities hold:

(4.3) WP, Piv)* < C(N)Wa(p,v)?, p € Pa(D),

(4.4) Plog f(v) <log P, f(u) + @Wg(u,y)a 0< fe€B(D),uec Pyn(D),

@WQ(M,V)Q, JIAS yQ,N(D%

@s) A B :

< Ent(Pv| P ) <

var

o IRS0) - BS) _ /20Y)
(4.6) [[VPf(v)||lw, := HLV s %?VQ Walro) < 7

[ flleos  f € (D).

(2) Let (4.1) hold for oo = 0. Then there exists a constant C' > 0 such that
(47) W2(*Pt*u7 Pt*y>2 < CW?(:U’J V)27 JIRZAS ‘@2(‘5)

Moreover, if either sup;<;<; || filloo < 00 or D is bounded, then (4.4)-(4.6) hold for some
constant C' replacing C(N) and all p,v € Py(D).
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Proof. (1) Since the relative entropy of p with respect to v is given by

Ent(v|p) = sup  v(logyg),
geB+(D),u(g)=1

(4.4) is equivalent to

(18) Ent (ol B < SO 0)2, 1€ (0.T], 1w € Pan(D).

By Pinsker’s inequality
1
Sl = v, < Bnt(]n).

we conclude that (4.8) implies (4.5), which further yields (4.6). So, we only need to prove (4.3)
and (4.8). B
For any u,v € P5(D), let X, solve (1.5) for £x, = i, and denote

= Pip=2x,, v:=PFv =%, tel0,T],

where X; solves

dX; = b(Xy, v)dt + oy (X,)dW,, t€[0,T), Xo = Xo.
Let o and b := b(-, i) = bM) + b satisfy (Agb) Consider the decomposition
b= by ) = b 4 00, b0 =y — b,
By (3.5) and (4.2), there exists a constant K (/N) > 0 such that
(4.9) b7 < B0+ K(N)fo(t. ), vl <N, te[o,T].

So, by Theorem 2.2 and Theorem 2.3, the estimate (2.14) and the log-Harnack inequality (2.18)
hold for solutions of (2.1) with b” replacing b with a constant depending on N; that is, there
exists a constant ¢;(/N) > 0 such that

(4.10) Wo(fie, 4)* < er(N)Wa(p,v)?, t € 10,7, u € Po(D),
(4.11) Ent(v| i) = f>0811(1;):1(3f)(y) < Cl(tN)Wg(u, v)?, t€(0,T), u€ P(D).

Moreover, repeating step (e) in the proof of Theorem 2.2 for k = 2 and (X;, X;) replacing

(Xt(l),X,f2)), and using (4.2) replacing (3.4), instead of (3.26) where |[us — vsl|} 0, disappears

in the present case, we derive
t
Wa (e, i)' < (BIX, — X,[*)? < Cz(N)/ Wa(ps, vs)'ds, t € 0,7
0

for some constant co(N) > 0. This together with (4.10) yields

Wo (e, Vt)4 < 8Wo (i, ﬂt)4 + 8Wo (i, Vt)2
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t
< 8c1(N)*Wy(u, v)* + 802(]\7)/ Wo(ps, pis)*ds, t € [0,T).
0

Therefore, Gronwall’s inequality implies (4.3) for some constant C'(N) > 0.
On the other hand, let ||u|l2 < N and define

Ry = exp {— /tm,dwg - l/t \%!2618} :
= {3 () X A% — 3]

By Girsanov’s theorem, we obtain

/ (jﬁi) d t—E{(j}’Z(Xt)) V—E{(B[rix)])} <ER.

As shown in [12, p 14-15], by combining this with the Young inequality (see [2, Lemma 2.4])

(4.12) p(fg) < p(flog f) +logu(e?), f,g>0,u(f)=1,uc 2 (D),
we derive
dy dy, djig
Ent(v|p) = / log <du >dl/t / {logd—t + log — 4 }dl/t
_ d d,ut
: = Ent lo dji; < 2Ent 1 —d
(4.13) n (Vt|Mt)+/jj <du> ngt fir < 2Ent(vg|fie) + og/ s fit
dp
= 2Ent (4| i) +log/ (—) dpe < 2Ent(v4]ji;) + log ER}.
D Ndpu

Let fo(z) == YL, fi(s,2). By (4.2), (4.3), [[0*(00*)[lse < o0 and (2.60) due to (A3"), we
find constants c3(N), c4(N) > 0 such that

E[R]] < (E

lin
<1 +E|:C3(N)W2 K, v (/ fs 2dS)e N)Wa(p, V)2fo fs(Xs)? :|

< 1+C3(N)W2 [, v [ (/ fs st) } |:Ee203(N)W2(,u7V)2fotfs(Xs)2dSi|§
<1+ ca(N)Wy(p, v)*.

Combining this with (4.11) and (4.13), we prove (4.8) for some constant C'(N) > 0.

(2) When o = 0, (4.9) holds for K(N) = K independent of N, so that (4.10) and (4.11)
hold for some constant C;(N) = C; > 0 independent of N and all y,v € ZP5(D), and in (4.14)
the constant C3(N) = Cj is independent of N as well. Consequently, (4.7) holds and

t])Q < Fecs(N)Wa(u.v)? Jo fs(Xs)%ds

(4.14)

E[R2] < EeCo™2()? i Fs(X0ds < (Ol

if sup;<;<; || filloe < o0, and when D is bounded we conclude that C4(N) = Cy in (4.14) is
uniform in N > 0. Therefore, (4.4) and hence its consequent inequalities hold for some constant
independent of N. m
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4.2 Monotone case

(A5) (D) and (A2)(2) hold, oy(x, ;1) = o¢(x) does not depend on p and is locally bounded on
[0,00) x D, oo* is invertible, b is bounded on bounded subsets of [0,00) x R? x Py(D),
and for any T > O there exists a constant L > 0 such that

low(@) = oe(W)lls + 2(x =y, bew, 1) = by, v)" < Llz — yI* + Ll — y[Wa(p, v),
lov(2)(ov0?) " (@)|| < L, t€0,T],2,y € D,u,v € Po(D).
By Theorem 3.3, (A5) implies that (1.5) is well-posed for distributions in 2y(D).

Theorem 4.2. Assume (A5). Then for any T > 0, there exists a constant C' > 0 such that
the following inequalities hold for all t € (0,T] and v € Py(D):

(4.15) Wo (P, Prv)? < CWy(u,v)?, u€ Py(D),
C ) _ _
(4.16) Plog f(v) <log P,f(n) + ?Wg(,u, v):, 0< fePBy(D),pe PD),
1 * * 112 * * ¢ 2 N
(4.17) I 1 = Pivlloay < Ent(Prv|Piu) < - Wa(p,v)", 1€ Po(D)

— T |Pf () = Bif )| _ V20| ]l
(4.18) VP (V). -—Mlirjlfnugvz W (i) < i

Proof. As explained in the proof of Theorem 4.1 that it suffices to prove (4.15) and (4.16). To
this end, we modify the proof of [34, Theorem 4.1] as follows.
Firstly, for pg, vo € P(D), let (Xo, Yy) be Fy-measurable such that

(419) "%XO = Mo, gyo = 1), E|X0 — }/0|2 = Wg(,uo, 1/0)2.

Denote
pe = Plug, vy = Py, t>0.

Let X, solve (1.5). We have
(4.20) dX, = b(Xy, py)dt + oy (X,)dW, +n(X,)dl*, t€[0,T],
where ¥ is the local time of X; on dD. Next, for any t, € (0,7] consider the SDE

av, ={bi(Yi, m) + Ut(m{azﬁ(a’“’:?}(}(ﬁ)(){t —%) pat

+ o (V) AW, +n(Y,)dlY, t€[0,t),

(4.21)
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where [} is the local time of Y; on dD. For the constant L > 0 in (A5), let

1
(4.22) &= 7 (1 - eL(t_t°)>, t e [0,t).
The construction of Y; goes back to [33] for the classical SDEs, see also [34] for the extension
to DDSDEs. According to Theorem 2.8, (A5) implies that (4.21) has a unique solution up to

times .
Tom 1= nofl Ainf {t € [0,40) : |Yi| = m}, n,m>1.

Let h be in (3.34) for k = 2. By (1.2) and (A2)(2), we have

V{1+h0p) —x0|}Yt n(Y;))dly <0, x4 € D,
so that (A5), for any n > 1 we find a constant ¢(n) > 0 such that
d{(1+ hop)(Y)|Y: — zo|*} < c(n)(1 + [Yi*)dt + dM;, ¢ € [0,Tm), n,m > 1

ton

holds for some martingale M;. This implies lim,;, oo Tym = and hence (4.21) has a unique

P
solution up to time ?o.

Next, let Y; solve the SDE
(4.23) AY; = by(V;, v)dt + 0y (V) AW, + (V)L , Yo = Yot € [0, 7],

where lf is the local time of ¥; on dD. By (A5), (1.2) and It6’s formula, we find a constant
¢ > 0 such that

t
E|X; — Vi[> <Ws (o, 10)” + 02/ {E|X; — Yi|? + Wo(ps, v5)* }ds
(4.24) . 0 )
+ _E/ |Xs - }73‘2((”2( + dlz/)a te [OvT]
To 0

For h in (3.34) with k£ = 2, we deduce from (A2)(2) that

(4.25) (V{IXe = (o p(X) + ho p)}(¥o), m(¥))dly < —[X, = Vif*dRy,
(V{[¥i — [2(h o p(¥i) + o p) }(X0)n(X0))dEY < X, - .
So, applying 1t0’s formula to
1= | Xe = Yo (ho p(Xe) + ho p(Vy)),
and using (A5) and (1.2), we find a constant ¢z > 0 such that
e < e3{|Xe — Yif? + Wa(pg, 1)}t + dM, — | X, — Yo 2(dEY +diY)

holds for some martingale M;. This together with (4.24) yields
t
E|X; — Yi* < Wa(uo, v0)® + Eno + (c2 + ¢3) / {E|X, — Yi|* + Wa(us, vs)* }ds
0
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t
S SWQ(MO, V0)2 + 2(62 + 63)/ Ele — Y;|2d8, t e [O,T],

0

where we have used the fact that Wy (p, v)* < E| X, —Y,|? by definition. By Gronwall’s lemma,
this and Wy (s, 4)? < E|X; — Yi|?, we find a constant ¢4 > 0 such that

(4.26) Wa (e, 1) < EIX, — V| < eaWa(po,10)?, t € [0, 7],

so that (4.15) holds.
Moreover, for any n > 1, let

ton .
(4.27) Ty = ni - Ant{t € [0,0) 1 | X, = Yi] > n}.

By Girsanov’s theorem,

W, =W, + /t é{a:(asaz)_l}(Xs)(Xs —Y,)ds, te€[0,7,]
0 S

is an m-dimensional Brownian motion under the probability Q,, := R,P, where

B N ™ ok (oso8)™ 1}(xs )(Xs=Y8) 2 4
(4.28) R, =e & {od(oso) THX) (Xo=Ye).dWe) =3 [5 les 2 @,

Then (4.20) and (4.21) imply

X =Y,
dX; = {bt<Xta,Ut) - = :
t

AY; = b(Yy, v)dt 4 o, (V) AW, +n(Y,)dlY, t € [0,7.],n > 1.

i X
(4.29) }dt + 0y(X;)dW; + n(X;)di;",

Combining this with (A5), (1.2), (4.26) and [t6’s formula, we obtain

X, - Y,|?
g Xe =1l tg | — dM,
t
< {L|Xt = Vi + L|X; — Yi|Wa (e, 1)) X —Yt|2(2+§£)}dt
- &t &
X, -Y|?* -
(4.30) X Wl t€2 ! (d¥ +diy)
t
o [Pl X VPREEZLG= Dy, | XKW Gy g
- 2 &2 &
L2€2LtW2(M0 V0)2 ’Xt _ Y2|2 |Xt _ YHQ ~
< ’ — dt + 1 (diX +4dlY), t
_{ 9 2€t2 } StZ ( t + t )a € [O’Tn]’

where dM, := %<Xt — Y, {00(Xy) — 0u(Y})}dW,) is a Q,-martingale. By (4.25) for (¥;,1})

replacing (Y, l?), and applying I[t6’s formula to 4 := |Xt Yt' (hop(Xy)+ hop(Y,)), we find a
constant ¢; > 0 such that

- e g N
Y < esydt + dM, — T(dlt +dly), tel0,7,),n>1

o4



holds for some Q,-martingale M,. This and (4.19) imply that for some constants cg, ¢ > 0,

Eg, Yinm, < e“4TEyy < @WQ(,Um )2,
X - Y|P e NG

Eq, f—(dl sl <© WQ(MO,VO) =160
0 ¢

Combining this with (4.26), (4.30) and (A5), we derive

1 Tn O Xs _ Y; 2
E[R, log R.] = Eq, [log R,] = §E@n/ {oi(os02) " HX : s)( W4,
(4.31) . 0 i
< t_WQ(,UOaVO)Z: n =1
0
for some constant ¢ > 0 uniformly in ¢, € (0,7]. Therefore, by the martingale convergence
theorem, R, := lim,,_,, R, exists, and

ot (oot ~1 1 gt Mol (osod) ™ 3 (Xe) (Xs = Yo) 2
Nt = e 0 E <{ s( E] ) }(Xs)(Xs Ys) dWS> fO |§S\ ds , te [O’to]
is a P-martingale. )
Finally, let Q := N, P. By Girsanov’s theorem, (W;)icpo4, is an m-dimensional Brownian
motion under the probability Q, and (X}):c[0.4] solves the SDE

X, -, _
(4.32) dX, = {bt(Xt,,ut)— t& t}dt+0t(Xt)th+n(Xt)dlf(, t € [0,t).

Let (Y})ieo,t0) SOlve
(4.33) AY; = by(Ys, 1) dt 4 o, (Y)dW, +n(Y,)dlY, ¢ € [0,t].

By the well-posedness of (1.5), this extends the second equation in (4.29) with %, 1o = v4,.
Moreover, (4.31) and Fatou’s lemma implies

1 o sO Xs_}/s 2

_EQ/ o) DX V)P

(4.34) 2 "o €| .

= E[N;, log N;,] < liminf E[R, log R,] < t—WQ(MO, vo)?,
n—o0 0

which in particular implies Q(Xy, = Y;,) = 1. Indeed, by (A5), if X;,(w) # Y;,(w) then there
exists a small constant € > 0 such that

{05 (0505) " HX)(Xs = Y)P(w) > &, s € [t — &, to],
which implies fo Hoilosos) 1|}(|XS)(XS Yo)l ( )ds = o00. So, (4.34) implies Q(X;,, = V;,) = 1

&s|?

Combining this with the Young’s inequality (4.12), we arrive at
Py, log f(vo) = E[Ny, log f(Y,)] = E[Vy, log f(Xy,)] < E[Ny, log Ny | + log E[f (Xy,)]
c
< log Py, f(po) + %Wz(M07V0)27 to € (0,T].

Hence, (4.16) holds. O
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